1
|
Qiu S, Zuo C, Zhang Y, Deng Y, Zhang J, Huang S. The ecology of poverty and children's brain development: A systematic review and quantitative meta-analysis of brain imaging studies. Neurosci Biobehav Rev 2025; 169:105970. [PMID: 39657837 DOI: 10.1016/j.neubiorev.2024.105970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/05/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
A growing number of studies have demonstrated associations between poverty and brain structure and function. However, the strength of this association and the effects of poverty level (e.g., family or neighborhood poverty), age and sex on the association are strikingly inconsistent across studies. We aimed to synthesize findings on gray matter volume and task-based brain activation associated with poverty in youth samples and disentangle the effects of poverty level, age, and sex. In general, poverty was associated with alterations in volume and activation in the frontal, temporal, and subcortical regions. Among 14,188 participants and 14,057 participants, poverty was associated with smaller gray matter volumes in the amygdala and hippocampus, respectively. Moderator testing revealed that family poverty had a stronger association than neighborhood poverty and that poverty was related to slower development of amygdala volume. Among 2696 participants, convergent functional alterations associated with poverty were observed in the left middle temporal gyrus (MTG) and left middle frontal gyrus across all task domains, with the percentage of girls positively associated with increased activation in the precuneus. Subgroup analyses revealed that greater poverty was associated with deactivation in the left MTG for top-down control and hyperactivity in the right superior temporal gyrus, left superior frontal gyrus, left insula, cerebellum/left fusiform gyrus, and left amygdala/hippocampus for bottom-up processing. These findings provide insights into the neuroscience of poverty, suggesting implications for targeted interventions to support the cognitive and mental health of children living in poverty.
Collapse
Affiliation(s)
- Shaojie Qiu
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Chenyi Zuo
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Ye Zhang
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Yiyi Deng
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Jiatian Zhang
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Silin Huang
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, China.
| |
Collapse
|
2
|
Zhao S, Su H, Cong J, Wen X, Yang H, Chen P, Wu G, Fan Q, Ma Y, Xu X, Hu C, Li H, Keller A, Pines A, Chen R, Cui Z. Hierarchical individual variation and socioeconomic impact on personalized functional network topography in children. BMC Med 2024; 22:556. [PMID: 39587556 PMCID: PMC11590456 DOI: 10.1186/s12916-024-03784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The spatial layout of large-scale functional brain networks exhibits considerable inter-individual variability, especially in the association cortex. Research has demonstrated a link between early socioeconomic status (SES) and variations in both brain structure and function, which are further associated with cognitive and mental health outcomes. However, the extent to which SES is associated with individual differences in personalized functional network topography during childhood remains largely unexplored. METHODS We used a machine learning approach-spatially regularized non-negative matrix factorization (NMF)-to delineate 17 personalized functional networks in children aged 9-10 years, utilizing high-quality functional MRI data from 6001 participants in the Adolescent Brain Cognitive Development study. Partial least square regression approach with repeated random twofold cross-validation was used to evaluate the association between the multivariate pattern of functional network topography and three SES factors, including family income-to-needs ratio, parental education, and neighborhood disadvantage. RESULTS We found that individual variations in personalized functional network topography aligned with the hierarchical sensorimotor-association axis across the cortex. Furthermore, we observed that functional network topography significantly predicted the three SES factors from unseen individuals. The associations between functional topography and SES factors were also hierarchically organized along the sensorimotor-association cortical axis, exhibiting stronger positive associations in the higher-order association cortex. Additionally, we have made the personalized functional networks publicly accessible. CONCLUSIONS These results offer insights into how SES influences neurodevelopment through personalized functional neuroanatomy in childhood, highlighting the cortex-wide, hierarchically organized plasticity of the functional networks in response to diverse SES backgrounds.
Collapse
Affiliation(s)
- Shaoling Zhao
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China
- Chinese Institute for Brain Research, Beijing, Beijing, 102206, China
| | - Haowen Su
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China
- Chinese Institute for Brain Research, Beijing, Beijing, 102206, China
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jing Cong
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China
- Chinese Institute for Brain Research, Beijing, Beijing, 102206, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Xue Wen
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China
| | - Hang Yang
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China
- Chinese Institute for Brain Research, Beijing, Beijing, 102206, China
| | - Peiyu Chen
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China
- Chinese Institute for Brain Research, Beijing, Beijing, 102206, China
| | - Guowei Wu
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China
- Chinese Institute for Brain Research, Beijing, Beijing, 102206, China
| | - Qingchen Fan
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China
- Chinese Institute for Brain Research, Beijing, Beijing, 102206, China
| | - Yiyao Ma
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China
- Chinese Institute for Brain Research, Beijing, Beijing, 102206, China
| | - Xiaoyu Xu
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China
- Chinese Institute for Brain Research, Beijing, Beijing, 102206, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Chuanpeng Hu
- School of Psychology, Nanjing Normal University, Nanjing, 210024, China
| | - Hongming Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Arielle Keller
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269, USA
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Adam Pines
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Runsen Chen
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China.
| | - Zaixu Cui
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China.
- Chinese Institute for Brain Research, Beijing, Beijing, 102206, China.
| |
Collapse
|
3
|
Whittle S, Zhang L, Rakesh D. Environmental and neurodevelopmental contributors to youth mental illness. Neuropsychopharmacology 2024; 50:201-210. [PMID: 39030435 PMCID: PMC11526094 DOI: 10.1038/s41386-024-01926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
While a myriad of factors likely contribute to the development of mental illness in young people, the social environment (including early adverse experiences) in concert with neurodevelopmental alterations is undeniably important. A number of influential theories make predictions about how and why neurodevelopmental alterations may mediate or moderate the effects of the social environment on the emergence of mental illness. Here, we discuss current evidence supporting each of these theories. Although this area of research is rapidly growing, the body of evidence is still relatively limited. However, there exist some consistent findings, including increased striatal reactivity during positive affective processing and larger hippocampal volumes being associated with increased vulnerability or susceptibility to the effects of social environments on internalizing symptoms. Limited longitudinal work has investigated neurodevelopmental mechanisms linking the social environment with mental health. Drawing from human research and insights from animal studies, we propose an integrated mediation-moderation model and outline future research directions to advance the field.
Collapse
Affiliation(s)
- Sarah Whittle
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia.
- Orygen, Parkville, VIC, Australia.
| | - Lu Zhang
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Divyangana Rakesh
- Neuroimaging Department, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
| |
Collapse
|
4
|
Yeung J, DeYoung T, Spring S, de Guzman AE, Elder MW, Beauchamp A, Wong CS, Palmert MR, Lerch JP, Nieman BJ. Sex chromosomes and hormones independently influence healthy brain development but act similarly after cranial radiation. Proc Natl Acad Sci U S A 2024; 121:e2404042121. [PMID: 39207735 PMCID: PMC11388377 DOI: 10.1073/pnas.2404042121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The course of normal development and response to pathology are strongly influenced by biological sex. For instance, female childhood cancer survivors who have undergone cranial radiation therapy (CRT) tend to display more pronounced cognitive deficits than their male counterparts. Sex effects can be the result of sex chromosome complement (XX vs. XY) and/or gonadal hormone influence. The contributions of each can be separated using the four-core genotype mouse model (FCG), where sex chromosome complement and gonadal sex are decoupled. While studies of FCG mice have evaluated brain differences in adulthood, it is still unclear how sex chromosome and sex hormone effects emerge through development in both healthy and pathological contexts. Our study utilizes longitudinal MRI with the FCG model to investigate sex effects in healthy development and after CRT in wildtype and immune-modified Ccl2-knockout mice. Our findings in normally developing mice reveal a relatively prominent chromosome effect prepubertally, compared to sex hormone effects which largely emerge later. Spatially, sex chromosome and hormone influences were independent of one another. After CRT in Ccl2-knockout mice, both male chromosomes and male hormones similarly improved brain outcomes but did so more separately than in combination. Our findings highlight the crucial role of sex chromosomes in early development and identify roles for sex chromosomes and hormones after CRT-induced inflammation, highlighting the influences of biological sex in both normal brain development and pathology.
Collapse
Affiliation(s)
- Jonas Yeung
- Mouse Imaging Centre, Hospital for Sick Children, TorontoONM5T 3H7, Canada
- Translational Medicine, Hospital for Sick Children, TorontoONM5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, TorontoONM5G 1L7, Canada
| | - Taylor DeYoung
- Mouse Imaging Centre, Hospital for Sick Children, TorontoONM5T 3H7, Canada
- Translational Medicine, Hospital for Sick Children, TorontoONM5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, TorontoONM5G 1L7, Canada
| | - Shoshana Spring
- Mouse Imaging Centre, Hospital for Sick Children, TorontoONM5T 3H7, Canada
| | - A. Elizabeth de Guzman
- Mouse Imaging Centre, Hospital for Sick Children, TorontoONM5T 3H7, Canada
- Translational Medicine, Hospital for Sick Children, TorontoONM5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, TorontoONM5G 1L7, Canada
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, RoveretoTN38068, Italy
| | - Madeline W. Elder
- Mouse Imaging Centre, Hospital for Sick Children, TorontoONM5T 3H7, Canada
| | - Antoine Beauchamp
- Mouse Imaging Centre, Hospital for Sick Children, TorontoONM5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, TorontoONM5G 1L7, Canada
| | - C. Shun Wong
- Department of Medical Biophysics, University of Toronto, TorontoONM5G 1L7, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Odette Cancer Centre, TorontoONM4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, TorontoONM5T 1P5, Canada
| | - Mark R. Palmert
- Division of Endocrinology, The Hospital for Sick Children, University of Toronto, TorontoONM5G 1X8, Canada
- Department of Pediatrics, University of Toronto, TorontoONM5S 1A8, Canada
- Department of Physiology, University of Toronto, TorontoONM5S 1A8, Canada
- Genetics and Genome Biology, Hospital for Sick Children, TorontoONM5G 1X8, Canada
| | - Jason P. Lerch
- Mouse Imaging Centre, Hospital for Sick Children, TorontoONM5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, TorontoONM5G 1L7, Canada
- Wellcome Centre for Integrative Neuroimaging, Medical Sciences Division, University of Oxford, Oxford, OXFOX3 9DU, United Kingdom
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, OXF OX3 9DU, United Kingdom
| | - Brian J. Nieman
- Mouse Imaging Centre, Hospital for Sick Children, TorontoONM5T 3H7, Canada
- Translational Medicine, Hospital for Sick Children, TorontoONM5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, TorontoONM5G 1L7, Canada
- Ontario Institute for Cancer Research, Toronto, ONM5G 0A3, Canada
| |
Collapse
|
5
|
Brown ER, Gettler LT, Rosenbaum S. Effects of social environments on male primate HPG and HPA axis developmental programming. Dev Psychobiol 2024; 66:e22491. [PMID: 38698633 DOI: 10.1002/dev.22491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/05/2024] [Accepted: 04/07/2024] [Indexed: 05/05/2024]
Abstract
Developmental plasticity is particularly important for humans and other primates because of our extended period of growth and maturation, during which our phenotypes adaptively respond to environmental cues. The hypothalamus-pituitary-gonadal (HPG) and hypothalamus-pituitary-adrenal (HPA) axes are likely to be principal targets of developmental "programming" given their roles in coordinating fitness-relevant aspects of the phenotype, including sexual development, adult reproductive and social strategies, and internal responses to the external environment. In social animals, including humans, the social environment is believed to be an important source of cues to which these axes may adaptively respond. The effects of early social environments on the HPA axis have been widely studied in humans, and to some extent, in other primates, but there are still major gaps in knowledge specifically relating to males. There has also been relatively little research examining the role that social environments play in developmental programming of the HPG axis or the HPA/HPG interface, and what does exist disproportionately focuses on females. These topics are likely understudied in males in part due to the difficulty of identifying developmental milestones in males relative to females and the general quiescence of the HPG axis prior to maturation. However, there are clear indicators that early life social environments matter for both sexes. In this review, we examine what is known about the impact of social environments on HPG and HPA axis programming during male development in humans and nonhuman primates, including the role that epigenetic mechanisms may play in this programming. We conclude by highlighting important next steps in this research area.
Collapse
Affiliation(s)
- Ella R Brown
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lee T Gettler
- Department of Anthropology, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Stacy Rosenbaum
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Toenders YJ, Green KH, Te Brinke LW, van der Cruijsen R, van de Groep S, Crone EA. From developmental neuroscience to policy: A novel framework based on participatory research. Dev Cogn Neurosci 2024; 67:101398. [PMID: 38850964 PMCID: PMC11200278 DOI: 10.1016/j.dcn.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/15/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
Insights from developmental neuroscience are not always translated to actionable policy decisions. In this review, we explore the potential of bridging the gap between developmental neuroscience and policy through youth participatory research approaches. As the current generation of adolescents lives in an increasingly complex and rapidly changing society, their lived experiences are crucial for both research and policy. Moreover, their active involvement holds significant promise, given their heightened creativity and need to contribute. We therefore advocate for a transdisciplinary framework that fosters collaboration between developmental scientists, adolescents, and policy makers in addressing complex societal challenges. We highlight the added value of adolescents' lived experiences in relation to two pressing societal issues affecting adolescents' mental health: performance pressure and social inequality. By integrating firsthand lived experiences with insights from developmental neuroscience, we provide a foundation for progress in informed policy decisions.
Collapse
Affiliation(s)
- Yara J Toenders
- Department of Psychology, Education & Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, the Netherlands.
| | - Kayla H Green
- Developmental Neuroscience in Society, Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, the Netherlands
| | - Lysanne W Te Brinke
- Department of Psychology, Education & Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, the Netherlands
| | | | - Suzanne van de Groep
- Department of Psychology, Education & Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, the Netherlands
| | - Eveline A Crone
- Developmental Neuroscience in Society, Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, the Netherlands
| |
Collapse
|
7
|
Merz EC, Myers B, Hansen M, Simon KR, Strack J, Noble KG. Socioeconomic Disparities in Hypothalamic-Pituitary-Adrenal Axis Regulation and Prefrontal Cortical Structure. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:83-96. [PMID: 38090738 PMCID: PMC10714216 DOI: 10.1016/j.bpsgos.2023.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 02/01/2024] Open
Abstract
Socioeconomic disadvantage during childhood predicts an increased risk for mental health problems across the life span. Socioeconomic disadvantage shapes multiple aspects of children's proximal environments and increases exposure to chronic stressors. Drawing from multiple literatures, we propose that childhood socioeconomic disadvantage may lead to adaptive changes in the regulation of stress response systems including the hypothalamic-pituitary-adrenal (HPA) axis. These changes, in turn, affect the development of prefrontal cortical (PFC) circuitry responsible for top-down control over cognitive and emotional processes. Translational findings indicate that chronic stress reduces dendritic complexity and spine density in the medial PFC and anterior cingulate cortex, in part through altered HPA axis regulation. Socioeconomic disadvantage has frequently been associated with reduced gray matter in the dorsolateral and ventrolateral PFC and anterior cingulate cortex and lower fractional anisotropy in the superior longitudinal fasciculus, cingulum bundle, and uncinate fasciculus during middle childhood and adolescence. Evidence of socioeconomic disparities in hair cortisol concentrations in children has accumulated, although null findings have been reported. Coupled with links between cortisol levels and reduced gray matter in the PFC and anterior cingulate cortex, these results support mechanistic roles for the HPA axis and these PFC circuits. Future longitudinal studies should simultaneously consider multiple dimensions of proximal factors, including cognitive stimulation, while focusing on epigenetic processes and genetic moderators to elucidate how socioeconomic context may influence the HPA axis and PFC circuitry involved in cognitive and emotional control. These findings, which point to modifiable factors, can be harnessed to inform policy and more effective prevention strategies.
Collapse
Affiliation(s)
- Emily C. Merz
- Department of Psychology, Colorado State University, Fort Collins, Colorado
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Melissa Hansen
- Department of Psychology, Colorado State University, Fort Collins, Colorado
| | - Katrina R. Simon
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York
| | - Jordan Strack
- Department of Psychology, Colorado State University, Fort Collins, Colorado
| | - Kimberly G. Noble
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York
| |
Collapse
|
8
|
Cohen JW, Ramphal B, DeSerisy M, Zhao Y, Pagliaccio D, Colcombe S, Milham MP, Margolis AE. Relative brain age is associated with socioeconomic status and anxiety/depression problems in youth. Dev Psychol 2024; 60:199-209. [PMID: 37747510 PMCID: PMC10993304 DOI: 10.1037/dev0001593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Brain age, a measure of biological aging in the brain, has been linked to psychiatric illness, principally in adult populations. Components of socioeconomic status (SES) associate with differences in brain structure and psychiatric risk across the lifespan. This study aimed to investigate the influence of SES on brain aging in childhood and adolescence, a period of rapid neurodevelopment and peak onset for many psychiatric disorders. We reanalyzed data from the Healthy Brain Network to examine the influence of SES components (occupational prestige, public assistance enrollment, parent education, and household income-to-needs ratio [INR]) on relative brain age (RBA). Analyses included 470 youth (5-17 years; 61.3% men), self-identifying as White (55%), African American (15%), Hispanic (9%), or multiracial (17.2%). Household income was 3.95 ± 2.33 (mean ± SD) times the federal poverty threshold. RBA quantified differences between chronological age and brain age using covariation patterns of morphological features and total volumes. We also examined associations between RBA and psychiatric symptoms (Child Behavior Checklist [CBCL]). Models covaried for sex, scan location, and parent psychiatric diagnoses. In a linear regression, lower RBA is associated with lower parent occupational prestige (p = .01), lower public assistance enrollment (p = .03), and more parent psychiatric diagnoses (p = .01), but not parent education or INR. Lower parent occupational prestige (p = .02) and lower RBA (p = .04) are associated with higher CBCL anxious/depressed scores. Our findings underscore the importance of including SES components in developmental brain research. Delayed brain aging may represent a potential biological pathway from SES to psychiatric risk. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Jacob W. Cohen
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University
| | - Bruce Ramphal
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University
- T.H. Chan School of Public Health, Harvard Medical School
| | - Mariah DeSerisy
- Department of Epidemiology, Mailman School of Public Health, Columbia University
| | - Yihong Zhao
- Columbia University School of Nursing
- Center for Biological Imaging and Neuromodulation, Nathan S. Kline Institute, Orangeburg, New York, United States
| | - David Pagliaccio
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University
| | - Stan Colcombe
- Center for Biological Imaging and Neuromodulation, Nathan S. Kline Institute, Orangeburg, New York, United States
| | - Michael P. Milham
- Child Mind Institute, New York, New York, United States
- Nathan S. Kline Institute, Orangeburg, New York, United States
| | - Amy E. Margolis
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University
| |
Collapse
|
9
|
Luo Q, Shao R. The positive and negative emotion functions related to loneliness: a systematic review of behavioural and neuroimaging studies. PSYCHORADIOLOGY 2023; 3:kkad029. [PMID: 38666115 PMCID: PMC10917374 DOI: 10.1093/psyrad/kkad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 04/28/2024]
Abstract
Loneliness is associated with high prevalences of major psychiatric illnesses such as major depression. However, the underlying emotional mechanisms of loneliness remained unclear. We hypothesized that loneliness originates from both decreases in positive emotional processing and increases in negative emotion processing. To test this, we conducted a systematic review of 29 previous studies (total participants n = 19 560, mean age = 37.16 years, female proportion = 59.7%), including 18 studies that included questionnaire measures of emotions only, and 11 studies that examined the brain correlates of emotions. The main findings were that loneliness was negatively correlated with general positive emotions and positively correlated with general negative emotions. Furthermore, limited evidence indicates loneliness exhibited negative and positive correlations with the brain positive (e.g. the striatum) and negative (e.g. insula) emotion systems, respectively, but the sign of correlation was not entirely consistent. Additionally, loneliness was associated with the structure and function of the brain emotion regulation systems, particularly the prefrontal cortex, but the direction of this relationship remained ambiguous. We concluded that the existing evidence supported a bivalence model of loneliness, but several critical gaps existed that could be addressed by future studies that include adolescent and middle-aged samples, use both questionnaire and task measures of emotions, distinguish between general emotion and social emotion as well as between positive and negative emotion regulation, and adopt a longitudinal design that allows us to ascertain the causal relationships between loneliness and emotion dysfunction. Our findings provide new insights into the underlying emotion mechanisms of loneliness that can inform interventions for lonely individuals.
Collapse
Affiliation(s)
- Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, P.R. China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Robin Shao
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 511370, P.R. China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 511436, P.R. China
| |
Collapse
|
10
|
Rakesh D, Whittle S, Sheridan MA, McLaughlin KA. Childhood socioeconomic status and the pace of structural neurodevelopment: accelerated, delayed, or simply different? Trends Cogn Sci 2023; 27:833-851. [PMID: 37179140 PMCID: PMC10524122 DOI: 10.1016/j.tics.2023.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023]
Abstract
Socioeconomic status (SES) is associated with children's brain and behavioral development. Several theories propose that early experiences of adversity or low SES can alter the pace of neurodevelopment during childhood and adolescence. These theories make contrasting predictions about whether adverse experiences and low SES are associated with accelerated or delayed neurodevelopment. We contextualize these predictions within the context of normative development of cortical and subcortical structure and review existing evidence on SES and structural brain development to adjudicate between competing hypotheses. Although none of these theories are fully consistent with observed SES-related differences in brain development, existing evidence suggests that low SES is associated with brain structure trajectories more consistent with a delayed or simply different developmental pattern than an acceleration in neurodevelopment.
Collapse
Affiliation(s)
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia
| | - Margaret A Sheridan
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
11
|
Radhakrishnan R, Pries LK, Erzin G, ten Have M, de Graaf R, van Dorsselaer S, Gunther N, Bak M, Rutten BPF, van Os J, Guloksuz S. Bidirectional relationships between cannabis use, anxiety and depressive symptoms in the mediation of the association with psychotic experience: further support for an affective pathway to psychosis. Psychol Med 2023; 53:5551-5557. [PMID: 36093677 PMCID: PMC10482707 DOI: 10.1017/s0033291722002756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/21/2022] [Accepted: 08/05/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Empirical evidence suggests that people use cannabis to ameliorate anxiety and depressive symptoms, yet cannabis also acutely worsens psychosis and affective symptoms. However, the temporal relationship between cannabis use, anxiety and depressive symptoms and psychotic experiences (PE) in longitudinal studies is unclear. This may be informed by examination of mutually mediating roles of cannabis, anxiety and depressive symptoms in the emergence of PE. METHODS Data were derived from the second longitudinal Netherlands Mental Health Survey and Incidence Study. Mediation analysis was performed to examine the relationship between cannabis use, anxiety/depressive symptoms and PE, using KHB logit in STATA while adjusting for age, sex and education status. RESULTS Cannabis use was found to mediate the relationship between preceding anxiety, depressive symptoms and later PE incidence, but the indirect contribution of cannabis use was small (for anxiety: % of total effect attributable to cannabis use = 1.00%; for depression: % of total effect attributable to cannabis use = 1.4%). Interestingly, anxiety and depressive symptoms were found to mediate the relationship between preceding cannabis use and later PE incidence to a greater degree (% of total effect attributable to anxiety = 17%; % of total effect attributable to depression = 37%). CONCLUSION This first longitudinal cohort study examining the mediational relationship between cannabis use, anxiety/depressive symptoms and PE, shows that there is a bidirectional relationship between cannabis use, anxiety/depressive symptoms and PE. However, the contribution of anxiety/depressive symptoms as a mediator was greater than that of cannabis.
Collapse
Affiliation(s)
- Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Lotta-Katrin Pries
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gamze Erzin
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Psychiatry, Ankara Diskapi Training and Research Hospital, Ankara, Turkey
| | - Margreet ten Have
- Department of Epidemiology, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands
| | - Ron de Graaf
- Department of Epidemiology, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands
| | - Saskia van Dorsselaer
- Department of Epidemiology, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands
| | - Nicole Gunther
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Maarten Bak
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Bart P. F. Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Psychiatry, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
- Department of Psychosis Studies, King's College London, King's Health Partners, Institute of Psychiatry, London, UK
| | - Sinan Guloksuz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
12
|
Andersen E, Prim J, Campbell A, Schiller C, Baresich K, Girdler S. Biobehavioral mechanisms underlying testosterone and mood relationships in peripubertal female adolescents. Dev Psychopathol 2023; 36:1-15. [PMID: 37529837 PMCID: PMC10834847 DOI: 10.1017/s0954579423000937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The pubertal transition is characterized by pronounced sex hormone fluctuation, refinement of affective neural circuitry, and an increased risk of depression in female adolescents. Sex hormones, including testosterone, exert modulatory effects on frontal-limbic brain networks and are associated with emotion dysregulation and depressive symptoms. Weekly changes in hormones predict affective symptoms in peripubertal female adolescents, particularly in the context of stress; however, the biobehavioral mechanisms underlying hormone change and mood relationships during the pubertal transition have yet to be determined and was the objective of the present study. Forty-three peripubertal female adolescents (ages 11-14) collected 8-weekly salivary hormone (estrone, testosterone) samples and mood assessments to evaluate hormone-mood relationships, followed by a biobehavioral testing session with psychosocial stress and EEG. Within-person correlations between weekly hormone changes and corresponding mood were performed to determine individual differences in mood sensitivity to weekly hormone change. Increased frontal theta activity indexing emotion reactivity, reduced cortisol reactivity, and reduced vagal efficiency predicted the strength of the relationship between testosterone and mood. Further, testosterone-sensitivity strength was associated with the enhancement of negative affect following stress testing. Results identify divergent frontal theta and stress responses as potential biobehavioral mechanisms underlying mood sensitivity to peripubertal testosterone fluctuation.
Collapse
Affiliation(s)
- Elizabeth Andersen
- University of North Carolina, Department of Psychiatry. CB#7167, Chapel Hill, NC 27617
| | - Julianna Prim
- University of North Carolina, Department of Psychiatry. CB#7167, Chapel Hill, NC 27617
| | - Alana Campbell
- University of North Carolina, Department of Psychiatry. CB#7167, Chapel Hill, NC 27617
| | - Crystal Schiller
- University of North Carolina, Department of Psychiatry. CB#7167, Chapel Hill, NC 27617
| | - Kayla Baresich
- University of North Carolina, Department of Psychiatry. CB#7167, Chapel Hill, NC 27617
| | - Susan Girdler
- University of North Carolina, Department of Psychiatry. CB#7167, Chapel Hill, NC 27617
| |
Collapse
|
13
|
Vannucci A, Fields A, Hansen E, Katz A, Kerwin J, Tachida A, Martin N, Tottenham N. Interpersonal early adversity demonstrates dissimilarity from early socioeconomic disadvantage in the course of human brain development: A meta-analysis. Neurosci Biobehav Rev 2023; 150:105210. [PMID: 37141961 PMCID: PMC10247458 DOI: 10.1016/j.neubiorev.2023.105210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
It has been established that early-life adversity impacts brain development, but the role of development itself has largely been ignored. We take a developmentally-sensitive approach to examine the neurodevelopmental sequelae of early adversity in a preregistered meta-analysis of 27,234 youth (birth to 18-years-old), providing the largest group of adversity-exposed youth to date. Findings demonstrate that early-life adversity does not have an ontogenetically uniform impact on brain volumes, but instead exhibits age-, experience-, and region-specific associations. Relative to non-exposed comparisons, interpersonal early adversity (e.g., family-based maltreatment) was associated with initially larger volumes in frontolimbic regions until ∼10-years-old, after which these exposures were linked to increasingly smaller volumes. By contrast, socioeconomic disadvantage (e.g., poverty) was associated with smaller volumes in temporal-limbic regions in childhood, which were attenuated at older ages. These findings advance ongoing debates regarding why, when, and how early-life adversity shapes later neural outcomes.
Collapse
Affiliation(s)
- Anna Vannucci
- Department of Psychology, Developmental Affective Neuroscience Laboratory, Columbia University, New York, NY 10027, USA.
| | - Andrea Fields
- Department of Psychology, Developmental Affective Neuroscience Laboratory, Columbia University, New York, NY 10027, USA.
| | - Eleanor Hansen
- Department of Psychology, Developmental Affective Neuroscience Laboratory, Columbia University, New York, NY 10027, USA
| | - Ariel Katz
- Department of Psychology, Developmental Affective Neuroscience Laboratory, Columbia University, New York, NY 10027, USA
| | - John Kerwin
- Department of Psychology, Developmental Affective Neuroscience Laboratory, Columbia University, New York, NY 10027, USA
| | - Ayumi Tachida
- Department of Psychology, Developmental Affective Neuroscience Laboratory, Columbia University, New York, NY 10027, USA
| | - Nathan Martin
- Department of Psychology, Developmental Affective Neuroscience Laboratory, Columbia University, New York, NY 10027, USA
| | - Nim Tottenham
- Department of Psychology, Developmental Affective Neuroscience Laboratory, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
14
|
Chen H, Kan Q, Zhao L, Ye G, He X, Tang H, Shi F, Zou Y, Liang X, Song X, Liu R, Luo J, Li Y. Prophylactic effect of Tongxieyaofang polysaccharide on depressive behavior in adolescent male mice with chronic unpredictable stress through the microbiome-gut-brain axis. Biomed Pharmacother 2023; 161:114525. [PMID: 36921537 DOI: 10.1016/j.biopha.2023.114525] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Major depression disorder is more common among adolescents and is a primary reason for suicide in adolescents. Some antidepressants are ineffective and may possess side effects. Therefore, developing an adolescent antidepressant is the need of the hour. We designed the stress model of adolescent male mice induced by chronic unpredictable stress (CUS). The mice were treated using Tongxieyaofang neutral polysaccharide (TXYF-NP), Tongxieyaofang acidic polysaccharide (TXYF-AP), TXYF-AP + TXYF-NP and fructooligosaccharide + galactooligosaccharides to determine their body weight, behavior, and serum hormone levels. RT-qPCR was used to detect the gene expression of Crhr1, Nr3c1, and Nr3c2 in the hypothalamus and hippocampus and the gene expression of glutamic acid and γ-aminobutyric acid-related receptors in the hippocampus. RT-qPCR, Western blot, and ELISA detected tryptophan metabolism in the colon, serum, and hippocampus. 16s rDNA helped sequence colon microflora, and non-targeted metabolomics enabled the collection of metabolic profiles of colon microflora. In adolescent male mice, CUS induced depression-like behavior, hypothalamic-pituitary-adrenal axis hyperactivity, hippocampal tissue damage, abnormal expression of its related receptors, and dysregulation of tryptophan metabolism. The 16s rDNA and non-targeted metabolomics revealed that CUS led to colon microflora disorder and bile acid metabolism abnormality. Tongxieyaofang polysaccharide could improve the bacterial community and bile acid metabolism disorder by upregulating the relative abundance of Lactobacillus gasseri, Lachnospiraceae bacterium 28-4, Bacteroides and Ruminococcaceae UCG-014 while preventing CUS-induced changes. TXYF-P can inhibit depression-like behavior due to CUS by regulating colonic microflora and restoring bile acid metabolism disorder. Thus, based on the different comparisons, TXYF-NP possessed the best effect.
Collapse
Affiliation(s)
- Helin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Qibin Kan
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Xiaoli He
- College of Science, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Xiaoxia Liang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Xu Song
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Rui Liu
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China
| | - Jie Luo
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China.
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China.
| |
Collapse
|
15
|
Ladouceur CD, Henry T, Ojha A, Shirtcliff EA, Silk JS. Fronto-amygdala resting state functional connectivity is associated with anxiety symptoms among adolescent girls more advanced in pubertal maturation. Dev Cogn Neurosci 2023; 60:101236. [PMID: 36996571 PMCID: PMC10063408 DOI: 10.1016/j.dcn.2023.101236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Early adolescence, with the onset of puberty, is an important period when sex differences in anxiety emerge, with girls reporting significantly higher anxiety symptoms than boys. This study examined the role of puberty on fronto-amygdala functional connectivity and risk of anxiety symptoms in 70 girls (age 11-13) who completed a resting state fMRI scan, self-report measures of anxiety symptoms and pubertal status, and provided basal testosterone levels (64 girls). Resting state fMRI data were preprocessed using fMRIPrep and connectivity indices were extracted from ventromedial prefrontal cortex (vmPFC) and amygdala regions-of-interest. We tested moderated mediation models and hypothesized that vmPFC-amygdala would mediate the relation between three indices of puberty (testosterone and adrenarcheal/gonadarcheal development) and anxiety, with puberty moderating the relation between connectivity and anxiety. Results showed a significant moderation effect of testosterone and adrenarcheal development in the right amygdala and a rostral/dorsal area of the vmPFC and of gonadarcheal development in the left amygdala and a medial area of the vmPFC on anxiety symptoms. Simple slope analyses showed that vmPFC-amygdala connectivity was negatively associated with anxiety only in girls more advanced in puberty suggesting that sensitivity to the effects of puberty on fronto-amygdala function could contribute to risk for anxiety disorders among adolescent girls.
Collapse
|
16
|
Vannucci A, Fields A, Hansen E, Katz A, Kerwin J, Tachida A, Martin N, Tottenham N. Interpersonal early adversity demonstrates dissimilarity from early socioeconomic disadvantage in the course of human brain development: A meta-analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528877. [PMID: 36824818 PMCID: PMC9949158 DOI: 10.1101/2023.02.16.528877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
It has been established that early-life adversity impacts brain development, but the role of development itself has largely been ignored. We take a developmentally-sensitive approach to examine the neurodevelopmental sequelae of early adversity in a preregistered meta-analysis of 27,234 youth (birth to 18-years-old), providing the largest group of adversity-exposed youth to date. Findings demonstrate that early-life adversity does not have an ontogenetically uniform impact on brain volumes, but instead exhibits age-, experience-, and region-specific associations. Relative to non-exposed comparisons, interpersonal early adversity (e.g., family-based maltreatment) was associated with initially larger volumes in frontolimbic regions until ~10-years-old, after which these exposures were linked to increasingly smaller volumes. By contrast, socioeconomic disadvantage (e.g., poverty) was associated with smaller volumes in temporal-limbic regions in childhood, which were attenuated at older ages. These findings advance ongoing debates regarding why, when, and how early-life adversity shapes later neural outcomes.
Collapse
Affiliation(s)
- Anna Vannucci
- Columbia University, Department of Psychology, Developmental Affective Neuroscience Laboratory (409A Schermerhorn Hall), 1190 Amsterdam Avenue, MC 5501, New York, NY, USA 10027
| | - Andrea Fields
- Columbia University, Department of Psychology, Developmental Affective Neuroscience Laboratory (409A Schermerhorn Hall), 1190 Amsterdam Avenue, MC 5501, New York, NY, USA 10027
| | - Eleanor Hansen
- Columbia University, Department of Psychology, Developmental Affective Neuroscience Laboratory (409A Schermerhorn Hall), 1190 Amsterdam Avenue, MC 5501, New York, NY, USA 10027
| | - Ariel Katz
- Columbia University, Department of Psychology, Developmental Affective Neuroscience Laboratory (409A Schermerhorn Hall), 1190 Amsterdam Avenue, MC 5501, New York, NY, USA 10027
| | - John Kerwin
- Columbia University, Department of Psychology, Developmental Affective Neuroscience Laboratory (409A Schermerhorn Hall), 1190 Amsterdam Avenue, MC 5501, New York, NY, USA 10027
| | - Ayumi Tachida
- Columbia University, Department of Psychology, Developmental Affective Neuroscience Laboratory (409A Schermerhorn Hall), 1190 Amsterdam Avenue, MC 5501, New York, NY, USA 10027
| | - Nathan Martin
- Columbia University, Department of Psychology, Developmental Affective Neuroscience Laboratory (409A Schermerhorn Hall), 1190 Amsterdam Avenue, MC 5501, New York, NY, USA 10027
| | - Nim Tottenham
- Columbia University, Department of Psychology, Developmental Affective Neuroscience Laboratory (409A Schermerhorn Hall), 1190 Amsterdam Avenue, MC 5501, New York, NY, USA 10027
| |
Collapse
|
17
|
Gettler LT, Rosenbaum S, Kuo PX, Sarma MS, Bechayda SA, McDade TW, Kuzawa CW. Evidence for an adolescent sensitive period to family experiences influencing adult male testosterone production. Proc Natl Acad Sci U S A 2022; 119:e2202874119. [PMID: 35639692 PMCID: PMC9191637 DOI: 10.1073/pnas.2202874119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Across vertebrates, testosterone is an important mediator of reproductive trade-offs, shaping how energy and time are devoted to parenting versus mating/competition. Based on early environments, organisms often calibrate adult hormone production to adjust reproductive strategies. For example, favorable early nutrition predicts higher adult male testosterone in humans, and animal models show that developmental social environments can affect adult testosterone. In humans, fathers’ testosterone often declines with caregiving, yet these patterns vary within and across populations. This may partially trace to early social environments, including caregiving styles and family relationships, which could have formative effects on testosterone production and parenting behaviors. Using data from a multidecade study in the Philippines (n = 966), we tested whether sons’ developmental experiences with their fathers predicted their adult testosterone profiles, including after they became fathers themselves. Sons had lower testosterone as parents if their own fathers lived with them and were involved in childcare during adolescence. We also found a contributing role for adolescent father–son relationships: sons had lower waking testosterone, before and after becoming fathers, if they credited their own fathers with their upbringing and resided with them as adolescents. These findings were not accounted for by the sons’ own parenting and partnering behaviors, which could influence their testosterone. These effects were limited to adolescence: sons’ infancy or childhood experiences did not predict their testosterone as fathers. Our findings link adolescent family experiences to adult testosterone, pointing to a potential pathway related to the intergenerational transmission of biological and behavioral components of reproductive strategies.
Collapse
Affiliation(s)
- Lee T. Gettler
- Department of Anthropology, University of Notre Dame, Notre Dame, IN 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
- William J. Shaw Center for Children and Families, University of Notre Dame, South Bend, IN 46635
| | - Stacy Rosenbaum
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109
| | - Patty X. Kuo
- Department of Child, Youth, and Family Studies, University of Nebraska, Lincoln, NE 68588
| | - Mallika S. Sarma
- Department of Otolaryngology, School of Medicine, The Johns Hopkins University, Baltimore, MD 21218
| | - Sonny Agustin Bechayda
- University of San Carlos Office of Population Studies Foundation, Department of Anthropology, Sociology, and History, University of San Carlos, 6016 Metro Cebu, Philippines
| | - Thomas W. McDade
- Department of Anthropology, Northwestern University, Evanston, IL 60208
- Institute for Policy Research, Northwestern University, Evanston, IL 60208
| | - Christopher W. Kuzawa
- Department of Anthropology, Northwestern University, Evanston, IL 60208
- Institute for Policy Research, Northwestern University, Evanston, IL 60208
| |
Collapse
|
18
|
Luking KR, Jirsaraie RJ, Tillman R, Luby JL, Barch DM, Sotiras A. Timing and Type of Early Psychopathology Symptoms Predict Longitudinal Change in Cortical Thickness From Middle Childhood Into Early Adolescence. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:397-405. [PMID: 34273555 PMCID: PMC9529372 DOI: 10.1016/j.bpsc.2021.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Early-life experiences have profound effects on functioning in adulthood. Altered cortical development may be one mechanism through which early-life experiences, including poverty and psychopathology symptoms, affect outcomes. However, there is little prospective research beginning early in development that combines clinician-rated psychopathology symptoms and multiwave magnetic resonance imaging to examine when these relationships emerge. METHODS Children from the Preschool Depression Study who completed diagnostic interviews at three different developmental stages (preschool, school age, early adolescent) and up to three magnetic resonance imaging scans beginning in middle childhood participated in this study (N = 138). Multilevel models were used to calculate intercepts and slopes of cortical thickness within a priori cortical regions of interest. Linear regressions probed how early-life poverty and psychopathology (depression, anxiety, and externalizing symptoms at separate developmental periods) related to intercept/slope. RESULTS Collectively, experiences during the preschool period predicted reduced cortical thickness, via either reduced intercept or accelerated thinning (slope). Early-life poverty predicted intercepts within sensory and sensory-motor integration regions. Beyond poverty, preschool anxiety symptoms predicted intercepts within the insula, subgenual cingulate, and inferior parietal cortex. Preschool externalizing symptoms predicted accelerated thinning within prefrontal and parietal cortices. Depression and anxiety/externalizing symptoms at later ages were not significant predictors. CONCLUSIONS Early childhood is a critical period of risk; experiences at this developmental stage specifically have the potential for prolonged influence on brain development. Negative early experiences collectively predicted reduced cortical thickness, but the specific neural systems affected aligned with those typically implicated in these individual disorders/experiences.
Collapse
Affiliation(s)
- Katherine R Luking
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri.
| | - Robert J Jirsaraie
- Division of Computational and Data Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Rebecca Tillman
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Deanna M Barch
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri; Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Aristeidis Sotiras
- Department of Radiology and Institute for Informatics, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
19
|
Barch DM, Donohue MR, Elsayed NM, Gilbert K, Harms MP, Hennefield L, Herzberg M, Kandala S, Karcher NR, Jackson JJ, Luking KR, Rappaport BI, Sanders A, Taylor R, Tillman R, Vogel AC, Whalen D, Luby JL. Early Childhood Socioeconomic Status and Cognitive and Adaptive Outcomes at the Transition to Adulthood: The Mediating Role of Gray Matter Development Across Five Scan Waves. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:34-44. [PMID: 34273554 PMCID: PMC8917509 DOI: 10.1016/j.bpsc.2021.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Early low socioeconomic status (SES) is associated with poor outcomes in childhood, many of which endure into adulthood. It is critical to determine how early low SES relates to trajectories of brain development and whether these mediate relationships to poor outcomes. We use data from a unique 17-year longitudinal study with five waves of structural brain imaging to prospectively examine relationships between preschool SES and cognitive, social, academic, and psychiatric outcomes in early adulthood. METHODS Children (n = 216, 50% female, 47.2% non-White) were recruited from a study of early onset depression and followed approximately annually. Family income-to-needs ratios (SES) were assessed when children were ages 3 to 5 years. Volumes of cortical gray and white matter and subcortical gray matter collected across five scan waves were processed using the FreeSurfer Longitudinal pipeline. When youth were ages 16+ years, cognitive function was assessed using the NIH Toolbox, and psychiatric diagnoses, high-risk behaviors, educational function, and social function were assessed using clinician administered and parent/youth report measures. RESULTS Lower preschool SES related to worse cognitive, high-risk, educational, and social outcomes (|standardized B| = 0.20-0.31, p values < .003). Lower SES was associated with overall lower cortical (standardized B = 0.12, p < .0001) and subcortical gray matter (standardized B = 0.17, p < .0001) volumes, as well as a shallower slope of subcortical gray matter growth over time (standardized B = 0.04, p = .012). Subcortical gray matter mediated the relationship of preschool SES to cognition and high-risk behaviors. CONCLUSIONS These novel longitudinal data underscore the key role of brain development in understanding the long-lasting relations of early low SES to outcomes in children.
Collapse
Affiliation(s)
- Deanna M Barch
- Departments of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington University in St. Louis, St. Louis, Missouri; Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Radiology, Washington University in St. Louis, St. Louis, Missouri.
| | - Meghan Rose Donohue
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Nourhan M Elsayed
- Departments of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Kirsten Gilbert
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Michael P Harms
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Laura Hennefield
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Max Herzberg
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Sridhar Kandala
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Nicole R Karcher
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Joshua J Jackson
- Departments of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Katherine R Luking
- Departments of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Brent I Rappaport
- Departments of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Ashley Sanders
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Rita Taylor
- Departments of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Rebecca Tillman
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Alecia C Vogel
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Diana Whalen
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Joan L Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
20
|
Ramphal B, Pagliaccio D, Dworkin JD, Herbstman J, Noble KG, Margolis AE. Timing-specific associations between income-to-needs ratio and hippocampal and amygdala volumes in middle childhood: A preliminary study. Dev Psychobiol 2021; 63:e22153. [PMID: 34674248 DOI: 10.1002/dev.22153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 01/23/2023]
Abstract
It is well known that financial disadvantage is associated with alterations in brain development in regions critical to socioemotional well-being such as the hippocampus and the amygdala. Yet little is known about whether family income at different points in development is differentially associated with these structures. Furthermore, little is known about which environmental factors statistically mediate associations between income and subcortical structure. Using a longitudinal birth cohort and linear mixed-effects models, we identified associations between income-to-needs ratio (INR) at 6 timepoints throughout childhood and hippocampal and amygdala volumes at age 7-9 years (n = 41; 236 INR measurements; 41 brain measurements). Mediation analysis identified environmental sequelae of income that statistically accounted for INR-brain associations. Lower INR prior to age 4 was associated with smaller hippocampal volumes, whereas lower INR prior to age 2 was associated with smaller right amygdala volume. These associations were mediated by unmet basic needs (e.g., food, housing). These findings delineate the temporal specificity of associations between income and hippocampal and amygdala structures.
Collapse
Affiliation(s)
- Bruce Ramphal
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - David Pagliaccio
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jordan D Dworkin
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Julie Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Kimberly G Noble
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA
| | - Amy E Margolis
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
21
|
Rakesh D, Cropley V, Zalesky A, Vijayakumar N, Allen NB, Whittle S. Neighborhood disadvantage and longitudinal brain-predicted-age trajectory during adolescence. Dev Cogn Neurosci 2021; 51:101002. [PMID: 34411954 PMCID: PMC8377545 DOI: 10.1016/j.dcn.2021.101002] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/25/2021] [Accepted: 08/08/2021] [Indexed: 01/16/2023] Open
Abstract
Neighborhood disadvantage has consistently been linked to alterations in brain structure; however, positive environmental (e.g., positive parenting) and psychological factors (e.g., temperament) may buffer these effects. We aimed to investigate associations between neighborhood disadvantage and deviations from typical neurodevelopmental trajectories during adolescence, and examine the moderating role of positive parenting and temperamental effortful control (EC). Using a large dataset (n = 1313), a normative model of brain morphology was established, which was then used to predict the age of youth from a longitudinal dataset (n = 166, three time-points at age 12, 16, and 19). Using linear mixed models, we investigated whether trajectories of the difference between brain-predicted-age and chronological age (brainAGE) were associated with neighborhood disadvantage, and whether positive parenting (positive behavior during a problem-solving task) and EC moderated these associations. We found that neighborhood disadvantage was associated with positive brainAGE during early adolescence and a deceleration (decreasing brainAGE) thereafter. EC moderated this association such that in disadvantaged adolescents, low EC was associated with delayed development (negative brainAGE) during late adolescence. Findings provide evidence for complex associations between environmental and psychological factors, and brain maturation. They suggest that neighborhood disadvantage may have long-term effects on neurodevelopment during adolescence, but high EC could buffer these effects.
Collapse
Affiliation(s)
- Divyangana Rakesh
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia.
| | - Vanessa Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia; Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
| | | | | | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia.
| |
Collapse
|
22
|
Rakesh D, Whittle S. Socioeconomic status and the developing brain - A systematic review of neuroimaging findings in youth. Neurosci Biobehav Rev 2021; 130:379-407. [PMID: 34474050 DOI: 10.1016/j.neubiorev.2021.08.027] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023]
Abstract
A growing literature has shown associations between socioeconomic disadvantage and neural properties (such as brain structure and function). In this review, we aimed to synthesize findings on the neural correlates of socioeconomic status (SES) in youth samples across neuroimaging modalities. We also aimed to disentangle the effects of different SES measures (e.g., parent income and education) in our synthesis. We found relatively consistent patterns of positive associations between SES and both volume and cortical surface area of frontal regions, and amygdala, hippocampal, and striatal volume (with most consistent results for composite SES indices). Despite limited longitudinal work, results suggest that SES is associated with developmental trajectories of gray matter structure. Higher SES was also found to be associated with increased fractional anisotropy of some white matter tracts, although there were more null than positive findings. Finally, methodological heterogeneity in brain function and connectivity studies prevented us from making strong inferences. Based on our findings, we make recommendations for future research, discuss the role of mitigating factors, and implications for policy.
Collapse
Affiliation(s)
- Divyangana Rakesh
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia.
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia
| |
Collapse
|
23
|
The effects of puberty and its hormones on subcortical brain development. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2021; 7:100074. [PMID: 35757051 PMCID: PMC9216456 DOI: 10.1016/j.cpnec.2021.100074] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/26/2023] Open
Abstract
Puberty triggers a period of structural “re-organization” in the brain, when rising hormone levels act via receptors to influence morphology. However, our understanding of these neuroendocrine processes in humans remains poor. As such, the current longitudinal study characterized development of the human subcortex during puberty, including changes in relation to pubertal (Tanner) stage and hormone (testosterone, dehydroepiandrosterone [DHEA]) levels. Beyond normative group-level patterns of development, we also examined whether individual differences in the rate of pubertal maturation (i.e., “pubertal/hormonal tempo”) were associated with variations in subcortical trajectories. Participants (N = 192; scans = 366) completed up to three waves of MRI assessments between 8.5 and 14.5 years of age. Parents completed questionnaire assessments of pubertal stage at each wave, and adolescents provided hormone samples on a subset of waves. Generalized additive mixture models were used to characterize trajectories of subcortical development. Results showed that development of most subcortical structures was related to pubertal stage, although findings were mostly non-significant when controlling for age. Testosterone and DHEA levels were related to development of the amygdala, hippocampus and pallidum in both sexes, and findings in the amygdala remained significant when controlling for age. Additionally, we found that variability in hormonal (specifically testosterone) tempo was related to right hippocampal development in males, with an accelerated pattern of hippocampal development in those with greater increases in testosterone levels. Overall, our findings suggest prominent hormonal influences on the amygdala and hippocampus, consistent with the prevalence of androgen and estrogen receptors in these regions. We speculate that these findings are most likely reflective of the important role of adrenarcheal processes on adolescent brain development. There are widespread associations between physical and hormonal indices of puberty and subcortical development. Effects of testosterone and DHEA are strongest in the amygdala, hippocampus and pallidum. Individual differences in the tempo of rising testosterone are related to variability in hippocampal development in males.
Collapse
|
24
|
Peng R, Li D, Mei SQ, Li Y. The Association Among Serum Growth Differentiation Factor 15 Level and Suicidal Ideation is Dependent on Testosterone Deficiency in Depressive Patients. J Inflamm Res 2021; 14:2723-2730. [PMID: 34194235 PMCID: PMC8238534 DOI: 10.2147/jir.s313200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/02/2021] [Indexed: 11/23/2022] Open
Abstract
Background Elevated levels of growth differentiation factor (GDF)-15 and reduced levels of testosterone have been linked to depressive disorder, but whether they are also linked to suicidal ideation in patients with depression is unclear. Methods This retrospective study involved 301 patients ≥22 years old hospitalized for depression between July 2018 and November 2020 at Renmin Hospital of Wuhan University, of whom 120 had suicidal ideation. Serum levels of GDF-15 and testosterone were compared between patients with or without suicidal ideation. Results GDF-15 levels were significantly higher among patients with suicidal ideation than among those without, regardless of whether testosterone levels were above or below the median of 314 ng/dL. In multivariate logistic regression involving all patients, serum GDF-15 level was associated with low testosterone level (P=0.001). Among patients with testosterone <314 ng/dL, an increase of 1 standard deviation in serum GDF-15 level translated to a 1.3-fold increase in the risk of suicidal ideation (P=0.007). This relationship was not observed in all population or patients with testosterone levels ≥314 ng/dL. Conclusion High serum GDF-15 level may be associated with an increased risk of suicidal ideation in patients with depression, and this association appears to be partly mediated by low testosterone levels.
Collapse
Affiliation(s)
- Rui Peng
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Di Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Si-Qing Mei
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| |
Collapse
|
25
|
Bogin B. Fear, violence, inequality, and stunting in Guatemala. Am J Hum Biol 2021; 34:e23627. [PMID: 34125987 DOI: 10.1002/ajhb.23627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Stunting is defined by the public health community as a length- or height-for-age <-2 SD of a growth standard or reference and is claimed to be caused by poor nutrition, repeated infection, and inadequate psychosocial stimulation. MATERIAL AND METHODS Stunting is common at all income levels in middle- and low-income countries. At the higher income levels, stunting is unlikely to be caused by nutrient deficiency or infectious disease. RESULTS In Guatemala, 17% of <5-year-olds in the highest family income quintile are stunted. Guatemala has a history of violence from armed conflict, current-day social and economic inequalities, government corruption, and threat of kidnapping for the wealthiest families. DISCUSSION AND CONCLUSION The high level of persistent violence creates an ecology of fear, an extreme range of inequalities in Social-Economic-Political-Emotional resources, and biosocial stress that inhibits skeletal growth and causes stunting for people of all income levels.
Collapse
Affiliation(s)
- Barry Bogin
- School of Sport, Exercise & Health Sciences, Loughborough University, Loughborough, UK.,UCSD/Salk Center for Academic Research and Training in Anthropogeny (CARTA), University of California San Diego, USA
| |
Collapse
|
26
|
Borráz-León JI, Rantala MJ, Luoto S, Krams I, Contreras-Garduño J, Cerda-Molina AL, Krama T. Toxoplasma gondii and Psychopathology: Latent Infection Is Associated with Interpersonal Sensitivity, Psychoticism, and Higher Testosterone Levels in Men, but Not in Women. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2021. [DOI: 10.1007/s40750-020-00160-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Objective
The ability of parasites to hijack the nervous system, manipulating the host’s physiology and behavior in ways that enhance the parasite’s fitness while damaging host fitness, is a topic of ongoing research interest in evolutionary biology, but is largely overlooked in mental health research. Nevertheless, recent evidence has shown that Toxoplasma gondii infection can change host testosterone levels and influence the development of some psychiatric disorders. Here, we tested this hypothesis in a mixed sample of 213 non-clinical subjects.
Methods
Participants (nmales = 108, nfemales = 105) provided 5 ml of blood to quantify testosterone levels and Toxoplasma gondii antibodies. The Symptom Checklist-90-Revised was used to assess psychopathological symptoms.
Results
The results showed that Toxoplasma-infected men had higher testosterone levels and scored higher in Interpersonal Sensitivity and Psychoticism symptoms than non-infected men. Toxoplasma-infected women did not differ from control women.
Conclusions
Framed in an evolutionary framework, the findings suggest that the elevated testosterone levels and the expression of psychopathological symptoms can be seen as the result of the manipulation exerted by Toxoplasma gondii either to reach its definitive host or to increase its spread. Future research can benefit from integrating insights from evolutionary biology and parasite-host interactions with physiology, immunology, and mental health to develop a better understanding of mental health etiology.
Collapse
|
27
|
Duan L, Qiu W, Bai G, Qiao Y, Su S, Lo PC, Lu Y, Xu G, Wang Q, Li M, Mo Y. Metabolomics Analysis on Mice With Depression Ameliorated by Acupoint Catgut Embedding. Front Psychiatry 2021; 12:703516. [PMID: 34413798 PMCID: PMC8369062 DOI: 10.3389/fpsyt.2021.703516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/09/2021] [Indexed: 12/28/2022] Open
Abstract
Depression is a prevalent mental disease characterized by persistent low mood, lack of pleasure, and exhaustion. Acupoint catgut embedding (ACE) is a kind of modern acupuncture treatment, which has been widely used for the treatment of a variety of neuropsychiatric diseases. To investigate the effects and underlying mechanism of ACE on depression, in this study, we applied ACE treatment at the Baihui (GV20) and Dazhui (GV14) acupoints of corticosterone (CORT)-induced depression model mice. The results showed that ACE treatment significantly attenuated the behavioral deficits of depression model mice in the open field test (OFT), elevated-plus-maze test (EPMT), tail suspension test (TST), and forced swimming test (FST). Moreover, ACE treatment reduced the serum level of adreno-cortico-tropic-hormone (ACTH), enhanced the serum levels of 5-hydroxytryptamine (5-HT), and noradrenaline (NE). Furthermore, metabolomics analysis revealed that 23 differential metabolites in the brain of depression model mice were regulated by ACE treatment for its protective effect. These findings suggested that ACE treatment ameliorated depression-related manifestations in mice with depression through the attenuation of metabolic dysfunction in brain.
Collapse
Affiliation(s)
- Lining Duan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhui Qiu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guiqin Bai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiqi Qiao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shiyu Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Po-Chieh Lo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yantong Lu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial People's Hospital, Guangzhou, China
| | - Guofeng Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yousheng Mo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|