1
|
Zheng Y, Nützl M, Schackel T, Chen J, Weidner N, Müller R, Puttagunta R. Biomaterial scaffold stiffness influences the foreign body reaction, tissue stiffness, angiogenesis and neuroregeneration in spinal cord injury. Bioact Mater 2025; 46:134-149. [PMID: 39760066 PMCID: PMC11700269 DOI: 10.1016/j.bioactmat.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Biomaterial scaffold engineering presents great potential in promoting axonal regrowth after spinal cord injury (SCI), yet persistent challenges remain, including the surrounding host foreign body reaction and improper host-implant integration. Recent advances in mechanobiology spark interest in optimizing the mechanical properties of biomaterial scaffolds to alleviate the foreign body reaction and facilitate seamless integration. The impact of scaffold stiffness on injured spinal cords has not been thoroughly investigated. Herein, we introduce stiffness-varied alginate anisotropic capillary hydrogel scaffolds implanted into adult rat C5 spinal cords post-lateral hemisection. Four weeks post-implantation, scaffolds with a stiffness approaching that of the spinal cord effectively minimize the host foreign body reaction via yes-associated protein (YAP) nuclear translocation. Concurrently, the softest scaffolds maximize cell infiltration and angiogenesis, fostering significant axonal regrowth but limiting the rostral-caudal linear growth. Furthermore, as measured by atomic force microscopy (AFM), the surrounding spinal cord softens when in contact with the stiffest scaffold while maintaining a physiological level in contact with the softest one. In conclusion, our findings underscore the pivotal role of stiffness in scaffold engineering for SCI in vivo, paving the way for the optimal development of efficacious biomaterial scaffolds for tissue engineering in the central nervous system.
Collapse
Affiliation(s)
- Yifeng Zheng
- Laboratory of Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, 69118, Heidelberg, Germany
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, 350005, Fuzhou, China
| | - Maximilian Nützl
- Department of Physical and Theoretical Chemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Thomas Schackel
- Laboratory of Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, 69118, Heidelberg, Germany
| | - Jing Chen
- Laboratory of Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, 69118, Heidelberg, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, 69118, Heidelberg, Germany
| | - Rainer Müller
- Department of Physical and Theoretical Chemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Radhika Puttagunta
- Laboratory of Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, 69118, Heidelberg, Germany
| |
Collapse
|
2
|
Ahmed AA, Alegret N, Almeida B, Alvarez-Puebla R, Andrews AM, Ballerini L, Barrios-Capuchino JJ, Becker C, Blick RH, Bonakdar S, Chakraborty I, Chen X, Cheon J, Chilla G, Coelho Conceicao AL, Delehanty J, Dulle M, Efros AL, Epple M, Fedyk M, Feliu N, Feng M, Fernández-Chacón R, Fernandez-Cuesta I, Fertig N, Förster S, Garrido JA, George M, Guse AH, Hampp N, Harberts J, Han J, Heekeren HR, Hofmann UG, Holzapfel M, Hosseinkazemi H, Huang Y, Huber P, Hyeon T, Ingebrandt S, Ienca M, Iske A, Kang Y, Kasieczka G, Kim DH, Kostarelos K, Lee JH, Lin KW, Liu S, Liu X, Liu Y, Lohr C, Mailänder V, Maffongelli L, Megahed S, Mews A, Mutas M, Nack L, Nakatsuka N, Oertner TG, Offenhäusser A, Oheim M, Otange B, Otto F, Patrono E, Peng B, Picchiotti A, Pierini F, Pötter-Nerger M, Pozzi M, Pralle A, Prato M, Qi B, Ramos-Cabrer P, Genger UR, Ritter N, Rittner M, Roy S, Santoro F, Schuck NW, Schulz F, Şeker E, Skiba M, Sosniok M, Stephan H, Wang R, Wang T, Wegner KD, Weiss PS, Xu M, Yang C, Zargarian SS, Zeng Y, Zhou Y, Zhu D, Zierold R, Parak WJ. Interfacing with the Brain: How Nanotechnology Can Contribute. ACS NANO 2025; 19:10630-10717. [PMID: 40063703 PMCID: PMC11948619 DOI: 10.1021/acsnano.4c10525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 03/26/2025]
Abstract
Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain-machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain-machine interfaces and look forward in discussing perspectives and limitations based on the authors' expertise across a range of complementary disciplines─from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary.
Collapse
Affiliation(s)
- Abdullah
A. A. Ahmed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Department
of Physics, Faculty of Applied Science, Thamar University, Dhamar 87246, Yemen
| | - Nuria Alegret
- Biogipuzkoa
HRI, Paseo Dr. Begiristain
s/n, 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bethany Almeida
- Department
of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Ramón Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Anne M. Andrews
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- Neuroscience
Interdepartmental Program, University of
California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience
& Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Laura Ballerini
- Neuroscience
Area, International School for Advanced
Studies (SISSA/ISAS), Trieste 34136, Italy
| | | | - Charline Becker
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Robert H. Blick
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Shahin Bonakdar
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- National
Cell Bank Department, Pasteur Institute
of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Indranath Chakraborty
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Nano Science and Technology, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Xiaodong Chen
- Innovative
Center for Flexible Devices (iFLEX), Max Planck − NTU Joint
Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jinwoo Cheon
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
- Department
of Chemistry, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Gerwin Chilla
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - James Delehanty
- U.S. Naval
Research Laboratory, Washington, D.C. 20375, United States
| | - Martin Dulle
- JCNS-1, Forschungszentrum
Jülich, 52428 Jülich, Germany
| | | | - Matthias Epple
- Inorganic
Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Mark Fedyk
- Center
for Neuroengineering and Medicine, UC Davis, Sacramento, California 95817, United States
| | - Neus Feliu
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Miao Feng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Rafael Fernández-Chacón
- Instituto
de Biomedicina de Sevilla (IBiS), Hospital
Universitario Virgen del Rocío/Consejo Superior de Investigaciones
Científicas/Universidad de Sevilla, 41013 Seville, Spain
- Departamento
de Fisiología Médica y Biofísica, Facultad de
Medicina, Universidad de Sevilla, CIBERNED,
ISCIII, 41013 Seville, Spain
| | | | - Niels Fertig
- Nanion
Technologies GmbH, 80339 München, Germany
| | | | - Jose A. Garrido
- ICREA, 08010 Barcelona, Spain
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
| | | | - Andreas H. Guse
- The Calcium
Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Norbert Hampp
- Fachbereich
Chemie, Universität Marburg, 35032 Marburg, Germany
| | - Jann Harberts
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Drug Delivery,
Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node
of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Jili Han
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Hauke R. Heekeren
- Executive
University Board, Universität Hamburg, 20148 Hamburg Germany
| | - Ulrich G. Hofmann
- Section
for Neuroelectronic Systems, Department for Neurosurgery, University Medical Center Freiburg, 79108 Freiburg, Germany
- Faculty
of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Malte Holzapfel
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | | | - Yalan Huang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Patrick Huber
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, 21073 Hamburg, Germany
- Center
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Taeghwan Hyeon
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sven Ingebrandt
- Institute
of Materials in Electrical Engineering 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Marcello Ienca
- Institute
for Ethics and History of Medicine, School of Medicine and Health, Technische Universität München (TUM), 81675 München, Germany
| | - Armin Iske
- Fachbereich
Mathematik, Universität Hamburg, 20146 Hamburg, Germany
| | - Yanan Kang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Dae-Hyeong Kim
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kostas Kostarelos
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
- Centre
for Nanotechnology in Medicine, Faculty of Biology, Medicine &
Health and The National Graphene Institute, University of Manchester, Manchester M13 9PL, United
Kingdom
| | - Jae-Hyun Lee
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Kai-Wei Lin
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sijin Liu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yang Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Christian Lohr
- Fachbereich
Biologie, Universität Hamburg, 20146 Hamburg, Germany
| | - Volker Mailänder
- Department
of Dermatology, Center for Translational Nanomedicine, Universitätsmedizin der Johannes-Gutenberg,
Universität Mainz, 55131 Mainz, Germany
- Max Planck
Institute for Polymer Research, Ackermannweg 10, 55129 Mainz, Germany
| | - Laura Maffongelli
- Institute
of Medical Psychology, University of Lübeck, 23562 Lübeck, Germany
| | - Saad Megahed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Physics
Department, Faculty of Science, Al-Azhar
University, 4434104 Cairo, Egypt
| | - Alf Mews
- Fachbereich
Chemie, Universität Hamburg, 20146 Hamburg, Germany
| | - Marina Mutas
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Leroy Nack
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Nako Nakatsuka
- Laboratory
of Chemical Nanotechnology (CHEMINA), Neuro-X
Institute, École Polytechnique Fédérale de Lausanne
(EPFL), Geneva CH-1202, Switzerland
| | - Thomas G. Oertner
- Institute
for Synaptic Neuroscience, University Medical
Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Andreas Offenhäusser
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martin Oheim
- Université
Paris Cité, CNRS, Saints Pères
Paris Institute for the Neurosciences, 75006 Paris, France
| | - Ben Otange
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Ferdinand Otto
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Enrico Patrono
- Institute
of Physiology, Czech Academy of Sciences, Prague 12000, Czech Republic
| | - Bo Peng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Filippo Pierini
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Monika Pötter-Nerger
- Head and
Neurocenter, Department of Neurology, University
Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Pozzi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Arnd Pralle
- University
at Buffalo, Department of Physics, Buffalo, New York 14260, United States
| | - Maurizio Prato
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bing Qi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Life Sciences, Southern University of
Science and Technology, Shenzhen, 518055, China
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Ute Resch Genger
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Norbert Ritter
- Executive
Faculty Board, Faculty for Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20345 Hamburg, Germany
| | - Marten Rittner
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sathi Roy
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
- Department
of Mechanical Engineering, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Francesca Santoro
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
- Faculty
of Electrical Engineering and Information Technology, RWTH Aachen, 52074 Aachen, Germany
| | - Nicolas W. Schuck
- Institute
of Psychology, Universität Hamburg, 20146 Hamburg, Germany
- Max Planck
Research Group NeuroCode, Max Planck Institute
for Human Development, 14195 Berlin, Germany
- Max Planck
UCL Centre for Computational Psychiatry and Ageing Research, 14195 Berlin, Germany
| | - Florian Schulz
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Erkin Şeker
- University
of California, Davis, Davis, California 95616, United States
| | - Marvin Skiba
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Martin Sosniok
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Holger Stephan
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, 01328 Dresden, Germany
| | - Ruixia Wang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Ting Wang
- State Key
Laboratory of Organic Electronics and Information Displays & Jiangsu
Key Laboratory for Biosensors, Institute of Advanced Materials (IAM),
Jiangsu National Synergetic Innovation Center for Advanced Materials
(SICAM), Nanjing University of Posts and
Telecommunications, Nanjing 210023, China
| | - K. David Wegner
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Paul S. Weiss
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Ming Xu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Yang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Seyed Shahrooz Zargarian
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Yuan Zeng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yaofeng Zhou
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Dingcheng Zhu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- College
of Material, Chemistry and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education,
Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, China
| | - Robert Zierold
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | |
Collapse
|
3
|
Wu H, Xing C, Yu B, Guo L, Dou X, Gao L, Yang S, Zhang Y, Gao X, Li S, Xia B, Ma T, Hao Y, Yang Y, Gao X, Wei Y, Xue B, Zhang Q, Feng CL, Huang J. Metabolic Reprogramming of Neural Stem Cells by Chiral Nanofiber for Spinal Cord Injury. ACS NANO 2025; 19:4785-4801. [PMID: 39841801 PMCID: PMC11803919 DOI: 10.1021/acsnano.4c15770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025]
Abstract
Exogenous neural stem cells (NSCs) have great potential to reconstitute damage spinal neural circuitry. However, regulating the metabolic reprogramming of NSCs for reliable nerve regeneration has been challenging. This report discusses the biomimetic dextral hydrogel (DH) with right-handed nanofibers that specifically reprograms the lipid metabolism of NSCs, promoting their neural differentiation and rapid regeneration of damaged axons. The underlying mechanism is the intrinsic stereoselectivity between DH and fatty acid-binding protein 5 (FABP5), which facilitates the transportation of fatty acids bound to FABP5 into the mitochondria and endoplasmic reticulum, subsequently augmenting fatty acid oxidation (FAO) levels and enriching sphingosine biosynthesis. In the rat SCI model, DH significantly improved the Basso-Beattie-Bresnahan (BBB) locomotor scores (over 3-fold) and the hindlimbs' compound muscle action potential (over 4-fold) compared with the untreated group, conveying a significant return of functional recovery. This finding of nanoscale chirality-dependent NSCs metabolic reprogramming provides insights into understanding stem cell physiology and presents opportunities for regenerative medicine.
Collapse
Affiliation(s)
- Haining Wu
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
- Department
of Biochemistry and Molecular Biology, Fourth
Military Medical University, Xi’an 710032, China
| | - Chao Xing
- State
Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular
Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beibei Yu
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
- Department
of Neurosurgery, The Second Affiliated Hospital
of Xi’an Jiao Tong University, Xi’an 710032, China
| | - Lingli Guo
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Xiaoqiu Dou
- State
Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular
Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Laiben Gao
- State
Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular
Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shijie Yang
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
- Department
of Neurosurgery, The Second Affiliated Hospital
of Xi’an Jiao Tong University, Xi’an 710032, China
| | - Yongfeng Zhang
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
- Department
of Neurosurgery, The Second Affiliated Hospital
of Xi’an Jiao Tong University, Xi’an 710032, China
| | - Xue Gao
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Shengyou Li
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Bing Xia
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Teng Ma
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Yiming Hao
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Yujie Yang
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Xueli Gao
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Yitao Wei
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Borui Xue
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Qing Zhang
- Key
Laboratory of Shaanxi Province for Craniofacial Precision Medicine
Research, College of Stomatology, Xi’an
Jiaotong University, Xi’an 710032, China
| | - Chuan-liang Feng
- State
Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular
Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinghui Huang
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| |
Collapse
|
4
|
Guo J, Cao J, Wu J, Gao J. Electrical stimulation and conductive materials: electrophysiology-based treatment for spinal cord injury. Biomater Sci 2024; 12:5704-5721. [PMID: 39403758 DOI: 10.1039/d4bm00959b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Spinal cord injury is a serious disease of the central nervous system. The electrophysiological properties of the spinal cord that are essential to maintaining neurotransmission can be impaired after the injury. Therefore, electrophysiological evaluation is becoming an important indicator of the injury extent or the therapeutic outcomes by reflecting the potential propagation of neural pathways. On the other hand, the repair of damaged nerves is one of the main goals of spinal cord injury treatment. Growing research interest has been concentrated on developing effective therapeutic solutions to restore the normal electrophysiological function of the injured spinal cord by using conductive materials and/or exerting the merits of electrical stimulation. Accordingly, this review introduces the current common electrophysiological evaluation in spinal cord injury. Then the cutting-edge therapeutic strategies aiming at electrophysiological improvement in spinal cord injury are summarized. Finally, the challenges and future prospects of neural restoration after spinal cord injury are presented.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jian Cao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jiahe Wu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China.
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321000, China
| |
Collapse
|
5
|
Gao Y, Wang Y, Wu Y, Liu S. Biomaterials targeting the microenvironment for spinal cord injury repair: progression and perspectives. Front Cell Neurosci 2024; 18:1362494. [PMID: 38784712 PMCID: PMC11111957 DOI: 10.3389/fncel.2024.1362494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Spinal cord injury (SCI) disrupts nerve pathways and affects sensory, motor, and autonomic function. There is currently no effective treatment for SCI. SCI occurs within three temporal periods: acute, subacute, and chronic. In each period there are different alterations in the cells, inflammatory factors, and signaling pathways within the spinal cord. Many biomaterials have been investigated in the treatment of SCI, including hydrogels and fiber scaffolds, and some progress has been made in the treatment of SCI using multiple materials. However, there are limitations when using individual biomaterials in SCI treatment, and these limitations can be significantly improved by combining treatments with stem cells. In order to better understand SCI and to investigate new strategies for its treatment, several combination therapies that include materials combined with cells, drugs, cytokines, etc. are summarized in the current review.
Collapse
Affiliation(s)
- Yating Gao
- Department of Neurosurgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yu Wang
- Department of Neurosurgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Bianco A, Bonchio M, Bonifazi D, Da Ros T, Maggini M, Mateo-Alonso A, Tecilla P. Celebrating Maurizio Prato's Passion, Talent and Imagination. Chemistry 2024; 30:e202400127. [PMID: 38446047 DOI: 10.1002/chem.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 03/07/2024]
Abstract
This Editorial introduces a Special Collection of papers dedicated to Maurizio Prato, featuring prominent examples of his team's efforts to integrate complex frontier research with pioneering achievements in the field of carbon nanostructures and molecular nanoscience.
Collapse
Affiliation(s)
- Alberto Bianco
- CNRS, UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Marcella Bonchio
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131, Padova, Italy
| | - Davide Bonifazi
- Institut für Organische Chemie, Universität Wien, Währinger Strasse 38, 1090, Wien, Austria
| | - Tatiana Da Ros
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Michele Maggini
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131, Padova, Italy
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU Avenida de, Tolosa 72, 20018, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Paolo Tecilla
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
7
|
Daou B, Silvestri A, Lasa H, Mancino D, Prato M, Alegret N. Organic Functional Group on Carbon Nanotube Modulates the Maturation of SH-SY5Y Neuronal Models. Macromol Biosci 2023; 23:e2300173. [PMID: 37392465 DOI: 10.1002/mabi.202300173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
Carbon nanotubes (CNT) have proven to be excellent substrates for neuronal cultures, showing high affinity and greatly boosting their synaptic functionality. Therefore, growing cells on CNT offers an opportunity to perform a large variety of neuropathology studies in vitro. To date, the interactions between neurons and chemical functional groups have not been studied extensively. To this end, multiwalled CNT (f-CNT) is functionalized with various functional groups, including sulfonic (-SO3 H), nitro (-NO2 ), amino (-NH2 ), and oxidized moieties. f-CNTs are spray-coated onto untreated glass substrates and are used as substrates for the incubation of neuroblastoma cells (SH-SY5Y). After 7 d, its effect is evaluated in terms of cell attachment, survival, growth, and spontaneous differentiation. Cell viability assays show quite increased proliferation on various f-CNT substrates (CNTs-NO2 > ox-CNTs ≈ CNTs-SO3 H > CNTs ≈ CNTs-NH2 ). Additionally, SH-SY5Y cells show selectively better differentiation and maturation with -SO3 H substrates, where an increased expression of β-III tubulin is seen. In all cases, intricate cell-CNT networks are observed and the morphology of the cells adopts longer and thinner cellular processes, suggesting that the type of functionalization may have an effect of the length and thickness. Finally, a possible correlation is determined between conductivity of f-CNTs and cell-processes lengths.
Collapse
Affiliation(s)
- Bahaa Daou
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, Donostia/San Sebastián, 20014, Spain
| | - Alessandro Silvestri
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
| | - Haizpea Lasa
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, Donostia/San Sebastián, 20014, Spain
| | - Donato Mancino
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
- Department of Chemical and Pharmaceutical Sciences, Universitá Degli Studi di Trieste, Trieste, 34127, Italy
| | - Nuria Alegret
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
| |
Collapse
|
8
|
Rahmanian M, Ghahremani A, Kesharwani P, Oroojalian F, Sahebkar A. Nanomedicine innovations in spinal cord injury management: Bridging the gap. ENVIRONMENTAL RESEARCH 2023; 235:116563. [PMID: 37423366 DOI: 10.1016/j.envres.2023.116563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Spinal cord injury (SCI) has devastating effects on a person's physical, social, and professional well-being. It is a life-altering neurological condition that significantly impacts individuals and their caregivers on a socioeconomic level. Recent advancements in medical therapy have greatly improved the diagnosis, stability, survival rates, and overall well-being of SCI patients. However, there are still limited options available for enhancing neurological outcomes in these patients. The complex pathophysiology of SCI, along with the numerous biochemical and physiological changes that occur in the damaged spinal cord, contribute to this gradual improvement. Currently, there are no therapies that offer the possibility of recovery for SCI, although several therapeutic approaches are being developed. However, these therapies are still in the early stages and have not yet demonstrated effectiveness in repairing the damaged fibers, which hinders cellular regeneration and the full restoration of motor and sensory functions. Considering the importance of nanotechnology and tissue engineering in treating neural tissue injuries, this review focuses on the latest advancements in nanotechnology for SCI therapy and tissue healing. It examines research articles from the PubMed database that specifically address SCI in the field of tissue engineering, with an emphasis on nanotechnology as a therapeutic approach. The review evaluates the biomaterials used for treating this condition and the techniques employed to create nanostructured biomaterials.
Collapse
Affiliation(s)
- Mohsen Rahmanian
- School of Medicine, North Khorasan University of Medical Sciences, Bojnord, Iran
| | - Amirali Ghahremani
- Department of Neurology, North Khorasan University of Medical Sciences, Bojnord, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Gao Y, Zhang X, Zhou H. Biomimetic Hydrogel Applications and Challenges in Bone, Cartilage, and Nerve Repair. Pharmaceutics 2023; 15:2405. [PMID: 37896165 PMCID: PMC10609742 DOI: 10.3390/pharmaceutics15102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Tissue engineering and regenerative medicine is a highly sought-after field for researchers aiming to compensate and repair defective tissues. However, the design and development of suitable scaffold materials with bioactivity for application in tissue repair and regeneration has been a great challenge. In recent years, biomimetic hydrogels have shown great possibilities for use in tissue engineering, where they can tune mechanical properties and biological properties through functional chemical modifications. Also, biomimetic hydrogels provide three-dimensional (3D) network spatial structures that can imitate normal tissue microenvironments and integrate cells, scaffolds, and bioactive substances for tissue repair and regeneration. Despite the growing interest in various hydrogels for biomedical use in previous decades, there are still many aspects of biomimetic hydrogels that need to be understood for biomedical and clinical trial applications. This review systematically describes the preparation of biomimetic hydrogels and their characteristics, and it details the use of biomimetic hydrogels in bone, cartilage, and nerve tissue repair. In addition, this review outlines the application of biomimetic hydrogels in bone, cartilage, and neural tissues regarding drug delivery. In particular, the advantages and shortcomings of biomimetic hydrogels in biomaterial tissue engineering are highlighted, and future research directions are proposed.
Collapse
Affiliation(s)
- Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China;
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, China
| | - Xiaobo Zhang
- Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710000, China
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China;
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
10
|
Affiliation(s)
- Fred Wudl
- Department of Materials, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
11
|
Vera A, Martínez I, Enger LG, Guillet B, Guerrero R, Diez JM, Rousseau O, Lam Chok Sing M, Pierron V, Perna P, Hernández JJ, Rodríguez I, Calaresu I, Meier A, Huck C, Domínguez-Bajo A, González-Mayorga A, López-Dolado E, Serrano MC, Ballerini L, Pérez L, Miranda R, Flament S, González MT, Méchin L, Camarero J. High-Performance Implantable Sensors based on Anisotropic Magnetoresistive La 0.67Sr 0.33MnO 3 for Biomedical Applications. ACS Biomater Sci Eng 2023; 9:1020-1029. [PMID: 36720461 PMCID: PMC9930082 DOI: 10.1021/acsbiomaterials.2c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We present the design, fabrication, and characterization of an implantable neural interface based on anisotropic magnetoresistive (AMR) magnetic-field sensors that combine reduced size and high performance at body temperature. The sensors are based on La0.67Sr0.33MnO3 (LSMO) as a ferromagnetic material, whose epitaxial growth has been suitably engineered to get uniaxial anisotropy and large AMR output together with low noise even at low frequencies. The performance of LSMO sensors of different film thickness and at different temperatures close to 37 °C has to be explored to find an optimum sensitivity of ∼400%/T (with typical detectivity values of 2 nT·Hz-1/2 at a frequency of 1 Hz and 0.3 nT·Hz-1/2 at 1 kHz), fitted for the detection of low magnetic signals coming from neural activity. Biocompatibility tests of devices consisting of submillimeter-size LSMO sensors coated by a thin poly(dimethyl siloxane) polymeric layer, both in vitro and in vivo, support their high suitability as implantable detectors of low-frequency biological magnetic signals emerging from heterogeneous electrically active tissues.
Collapse
Affiliation(s)
- Arturo Vera
- Fundación
IMDEA Nanociencia, Calle
Faraday 9, Madrid 28049, Spain
| | - Isidoro Martínez
- Fundación
IMDEA Nanociencia, Calle
Faraday 9, Madrid 28049, Spain,Faculty
of Experimental Sciences, Universidad Francisco
de Vitoria, Pozuelo de Alarcón, Madrid 28223, Spain
| | | | - Bruno Guillet
- Normandie
University, UNICAEN, ENSICAEN, CNRS, GREYC, Caen 14000, France
| | - Rubén Guerrero
- Fundación
IMDEA Nanociencia, Calle
Faraday 9, Madrid 28049, Spain
| | - José Manuel Diez
- Fundación
IMDEA Nanociencia, Calle
Faraday 9, Madrid 28049, Spain,Departamento
Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Olivier Rousseau
- Normandie
University, UNICAEN, ENSICAEN, CNRS, GREYC, Caen 14000, France
| | - Marc Lam Chok Sing
- Normandie
University, UNICAEN, ENSICAEN, CNRS, GREYC, Caen 14000, France
| | - Victor Pierron
- Normandie
University, UNICAEN, ENSICAEN, CNRS, GREYC, Caen 14000, France
| | - Paolo Perna
- Fundación
IMDEA Nanociencia, Calle
Faraday 9, Madrid 28049, Spain
| | | | - Isabel Rodríguez
- Fundación
IMDEA Nanociencia, Calle
Faraday 9, Madrid 28049, Spain
| | - Ivo Calaresu
- International
School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, Trieste 34136, Italy
| | - Anja Meier
- mfd-Diagnostics
GmbH, Mikroforum Ring
5, Wendelsheim 55234, Germany
| | - Carmen Huck
- mfd-Diagnostics
GmbH, Mikroforum Ring
5, Wendelsheim 55234, Germany
| | - Ana Domínguez-Bajo
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | | | - Elisa López-Dolado
- Hospital
Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, Toledo 45071, Spain,Research
Unit of “Design and Development of Biomaterials for Neural
Regeneration”, Hospital Nacional de Parapléjicos, Joint
Research Unit with CSIC, Toledo 45071, Spain
| | - María C. Serrano
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Laura Ballerini
- International
School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, Trieste 34136, Italy
| | - Lucas Pérez
- Fundación
IMDEA Nanociencia, Calle
Faraday 9, Madrid 28049, Spain,Dept.
Física de Materiales, Universidad
Complutense, Madrid 28040, Spain
| | - Rodolfo Miranda
- Fundación
IMDEA Nanociencia, Calle
Faraday 9, Madrid 28049, Spain,Departamento
Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid 28049, Spain,Instituto
“Nicolás Cabrera” and Condensed Matter
Physics Center (IFIMAC), Universidad Autónoma
de Madrid, Madrid 28049, Spain
| | - Stéphane Flament
- Normandie
University, UNICAEN, ENSICAEN, CNRS, GREYC, Caen 14000, France
| | | | - Laurence Méchin
- Normandie
University, UNICAEN, ENSICAEN, CNRS, GREYC, Caen 14000, France
| | - Julio Camarero
- Fundación
IMDEA Nanociencia, Calle
Faraday 9, Madrid 28049, Spain,Departamento
Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid 28049, Spain,Instituto
“Nicolás Cabrera” and Condensed Matter
Physics Center (IFIMAC), Universidad Autónoma
de Madrid, Madrid 28049, Spain
| |
Collapse
|
12
|
Suzuki H, Imajo Y, Funaba M, Ikeda H, Nishida N, Sakai T. Current Concepts of Biomaterial Scaffolds and Regenerative Therapy for Spinal Cord Injury. Int J Mol Sci 2023; 24:ijms24032528. [PMID: 36768846 PMCID: PMC9917245 DOI: 10.3390/ijms24032528] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
Spinal cord injury (SCI) is a catastrophic condition associated with significant neurological deficit and social and financial burdens. It is currently being managed symptomatically, with no real therapeutic strategies available. In recent years, a number of innovative regenerative strategies have emerged and have been continuously investigated in preclinical research and clinical trials. In the near future, several more are expected to come down the translational pipeline. Among ongoing and completed trials are those reporting the use of biomaterial scaffolds. The advancements in biomaterial technology, combined with stem cell therapy or other regenerative therapy, can now accelerate the progress of promising novel therapeutic strategies from bench to bedside. Various types of approaches to regeneration therapy for SCI have been combined with the use of supportive biomaterial scaffolds as a drug and cell delivery system to facilitate favorable cell-material interactions and the supportive effect of neuroprotection. In this review, we summarize some of the most recent insights of preclinical and clinical studies using biomaterial scaffolds in regenerative therapy for SCI and summarized the biomaterial strategies for treatment with simplified results data. One hundred and sixty-eight articles were selected in the present review, in which we focused on biomaterial scaffolds. We conducted our search of articles using PubMed and Medline, a medical database. We used a combination of "Spinal cord injury" and ["Biomaterial", or "Scaffold"] as search terms and searched articles published up until 30 April 2022. Successful future therapies will require these biomaterial scaffolds and other synergistic approaches to address the persistent barriers to regeneration, including glial scarring, the loss of a structural framework, and biocompatibility. This database could serve as a benchmark to progress in future clinical trials for SCI using biomaterial scaffolds.
Collapse
|
13
|
Barrejón M, Zummo F, Mikhalchan A, Vilatela JJ, Fontanini M, Scaini D, Ballerini L, Prato M. TEGylated Double-Walled Carbon Nanotubes as Platforms to Engineer Neuronal Networks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:77-90. [PMID: 36270018 PMCID: PMC9837783 DOI: 10.1021/acsami.2c16808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/12/2022] [Indexed: 05/27/2023]
Abstract
In the past two decades, important results have been obtained on the application of carbon nanotubes (CNTs) as components of smart interfaces promoting neuronal growth and differentiation. Different forms of CNTs have been employed as scaffolds, including raw CNTs and functionalized CNTs, characterized by a different number of walls, mainly single-walled CNTs (SWCNTs) or multiwalled CNTs (MWCNTs). However, double-walled carbon nanotubes (DWCNTs), which present interesting electronic and transport properties, have barely been studied in the field. Apart from the electrical conductivity, the morphology, shape, porosity, and corresponding mechanical properties of the scaffold material are important parameters when dealing with neuronal cells. Thus, the presence of open porous and interconnected networks is essential for cell growth and differentiation. Here, we present an easy methodology to prepare porous self-standing and electrically conductive DWCNT-based scaffolds and study the growth of neuro/glial networks and their synaptic activity. A cross-linking approach with triethylene glycol (TEG) derivatives is applied to improve the tensile performance of the scaffolds while neuronal growth and differentiation are promoted. By testing different DWCNT-based constructs, we confirm that the manufactured structures guarantee a biocompatible scaffold, while favoring the design of artificial networks with high complexity.
Collapse
Affiliation(s)
- Myriam Barrejón
- Department
of Chemical and Pharmaceutical Sciences, INSTM, UdR Trieste, University of Trieste, Via L. Giorgieri 1, Trieste34127, Italy
- Neural
Repair and Biomaterials Laboratory, Hospital
Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, Toledo45071, Spain
| | - Francesca Zummo
- International
School for Advanced Studies (SISSA/ISAS), Trieste34136, Italy
| | | | | | - Mario Fontanini
- International
School for Advanced Studies (SISSA/ISAS), Trieste34136, Italy
| | - Denis Scaini
- International
School for Advanced Studies (SISSA/ISAS), Trieste34136, Italy
- Basque
Foundation for Science, Ikerbasque, Bilbao48013, Spain
- University
of Basque Country, Faculty of Pharmacy, Paseo de la Universidad 7, Vitoria-Gasteiz01006, Spain
| | - Laura Ballerini
- International
School for Advanced Studies (SISSA/ISAS), Trieste34136, Italy
| | - Maurizio Prato
- Department
of Chemical and Pharmaceutical Sciences, INSTM, UdR Trieste, University of Trieste, Via L. Giorgieri 1, Trieste34127, Italy
- Basque
Foundation for Science, Ikerbasque, Bilbao48013, Spain
- Center for
Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, Donostia
San Sebastián20014, Spain
| |
Collapse
|
14
|
Wang SX, Lu YB, Wang XX, Wang Y, Song YJ, Wang X, Nyamgerelt M. Graphene and graphene-based materials in axonal repair of spinal cord injury. Neural Regen Res 2022; 17:2117-2125. [PMID: 35259817 PMCID: PMC9083163 DOI: 10.4103/1673-5374.335822] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/08/2021] [Accepted: 09/16/2021] [Indexed: 02/05/2023] Open
Abstract
Graphene and graphene-based materials have the ability to induce stem cells to differentiate into neurons, which is necessary to overcome the current problems faced in the clinical treatment of spinal cord injury. This review summarizes the advantages of graphene and graphene-based materials (in particular, composite materials) in axonal repair after spinal cord injury. These materials have good histocompatibility, and mechanical and adsorption properties that can be targeted to improve the environment of axonal regeneration. They also have good conductivity, which allows them to make full use of electrical nerve signal stimulation in spinal cord tissue to promote axonal regeneration. Furthermore, they can be used as carriers of seed cells, trophic factors, and drugs in nerve tissue engineering scaffolds to provide a basis for constructing a local microenvironment after spinal cord injury. However, to achieve clinical adoption of graphene and graphene-based materials for the repair of spinal cord injury, further research is needed to reduce their toxicity.
Collapse
Affiliation(s)
- Shi-Xin Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yu-Bao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, China
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xue-Xi Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, Gansu Province, China
| | - Yan Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yu-Jun Song
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Xiao Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Munkhtuya Nyamgerelt
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
15
|
Girão AF, Serrano MC, Completo A, Marques PAAP. Is Graphene Shortening the Path toward Spinal Cord Regeneration? ACS NANO 2022; 16:13430-13467. [PMID: 36000717 PMCID: PMC9776589 DOI: 10.1021/acsnano.2c04756] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Along with the development of the next generation of biomedical platforms, the inclusion of graphene-based materials (GBMs) into therapeutics for spinal cord injury (SCI) has potential to nourish topmost neuroprotective and neuroregenerative strategies for enhancing neural structural and physiological recovery. In the context of SCI, contemplated as one of the most convoluted challenges of modern medicine, this review first provides an overview of its characteristics and pathophysiological features. Then, the most relevant ongoing clinical trials targeting SCI, including pharmaceutical, robotics/neuromodulation, and scaffolding approaches, are introduced and discussed in sequence with the most important insights brought by GBMs into each particular topic. The current role of these nanomaterials on restoring the spinal cord microenvironment after injury is critically contextualized, while proposing future concepts and desirable outputs for graphene-based technologies aiming to reach clinical significance for SCI.
Collapse
Affiliation(s)
- André F. Girão
- Centre
for Mechanical Technology and Automation (TEMA), Department of Mechanical
Engineering, University of Aveiro (UA), Aveiro, 3810-193, Portugal
- Instituto
de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la
Cruz 3, Madrid, 28049, Spain
- (A.F.G.)
| | - María Concepcion Serrano
- Instituto
de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la
Cruz 3, Madrid, 28049, Spain
- (M.C.S.)
| | - António Completo
- Centre
for Mechanical Technology and Automation (TEMA), Department of Mechanical
Engineering, University of Aveiro (UA), Aveiro, 3810-193, Portugal
| | - Paula A. A. P. Marques
- Centre
for Mechanical Technology and Automation (TEMA), Department of Mechanical
Engineering, University of Aveiro (UA), Aveiro, 3810-193, Portugal
- (P.A.A.P.M.)
| |
Collapse
|
16
|
Liu T, Zhu W, Zhang X, He C, Liu X, Xin Q, Chen K, Wang H. Recent Advances in Cell and Functional Biomaterial Treatment for Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5079153. [PMID: 35978649 PMCID: PMC9377911 DOI: 10.1155/2022/5079153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is a devastating central nervous system disease caused by accidental events, resulting in loss of sensory and motor function. Considering the multiple effects of primary and secondary injuries after spinal cord injury, including oxidative stress, tissue apoptosis, inflammatory response, and neuronal autophagy, it is crucial to understand the underlying pathophysiological mechanisms, local microenvironment changes, and neural tissue functional recovery for preparing novel treatment strategies. Treatment based on cell transplantation has become the forefront of spinal cord injury therapy. The transplanted cells provide physical and nutritional support for the damaged tissue. At the same time, the implantation of biomaterials with specific biological functions at the site of the SCI has also been proved to improve the local inhibitory microenvironment and promote axonal regeneration, etc. The combined transplantation of cells and functional biomaterials for SCI treatment can result in greater neuroprotective and regenerative effects by regulating cell differentiation, enhancing cell survival, and providing physical and directional support for axon regeneration and neural circuit remodeling. This article reviews the pathophysiology of the spinal cord, changes in the microenvironment after injury, and the mechanisms and strategies for spinal cord regeneration and repair. The article will focus on summarizing and discussing the latest intervention models based on cell and functional biomaterial transplantation and the latest progress in combinational therapies in SCI repair. Finally, we propose the future prospects and challenges of current treatment regimens for SCI repair, to provide references for scientists and clinicians to seek better SCI repair strategies in the future.
Collapse
Affiliation(s)
- Tianyi Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Wenhao Zhu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Xiaoyu Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Chuan He
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Xiaolong Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Qiang Xin
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Kexin Chen
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Haifeng Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
17
|
Camponogara F, Zanotti F, Trentini M, Tiengo E, Zanolla I, Pishavar E, Soliani E, Scatto M, Gargiulo P, Zambito Y, De Luca S, Ferroni L, Zavan B. Biomaterials for Regenerative Medicine in Italy: Brief State of the Art of the Principal Research Centers. Int J Mol Sci 2022; 23:8245. [PMID: 35897825 PMCID: PMC9368060 DOI: 10.3390/ijms23158245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Regenerative medicine is the branch of medicine that effectively uses stem cell therapy and tissue engineering strategies to guide the healing or replacement of damaged tissues or organs. A crucial element is undoubtedly the biomaterial that guides biological events to restore tissue continuity. The polymers, natural or synthetic, find wide application thanks to their great adaptability. In fact, they can be used as principal components, coatings or vehicles to functionalize several biomaterials. There are many leading centers for the research and development of biomaterials in Italy. The aim of this review is to provide an overview of the current state of the art on polymer research for regenerative medicine purposes. The last five years of scientific production of the main Italian research centers has been screened to analyze the current advancement in tissue engineering in order to highlight inputs for the development of novel biomaterials and strategies.
Collapse
Affiliation(s)
- Francesca Camponogara
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Federica Zanotti
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Martina Trentini
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Elena Tiengo
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Ilaria Zanolla
- Medical Sciences Department, University of Ferrara, 44121 Ferrara, Italy;
| | - Elham Pishavar
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Elisa Soliani
- Bioengineering Department, Imperial College London, London SW7 2BX, UK;
| | - Marco Scatto
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venezia, Italy;
| | - Paolo Gargiulo
- Institute for Biomedical and Neural Engineering, Reykjavík University, 101 Reykjavík, Iceland;
- Department of Science, Landspítali, 101 Reykjavík, Iceland
| | - Ylenia Zambito
- Chemical Department, University of Pisa, 56124 Pisa, Italy;
| | - Stefano De Luca
- Unit of Naples, Institute of Applied Sciences and Intelligent Systems, National Research Council, Via P. Castellino 111, 80131 Napoli, Italy;
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy;
| | - Barbara Zavan
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| |
Collapse
|
18
|
Furlani F, Montanari M, Sangiorgi N, Saracino E, Campodoni E, Sanson A, Benfenati V, Tampieri A, Panseri S, Sandri M. Electroconductive and injectable hydrogels based on gelatin and PEDOT:PSS for a minimally invasive approach in nervous tissue regeneration. Biomater Sci 2022; 10:2040-2053. [PMID: 35302129 DOI: 10.1039/d2bm00116k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
This work describes the development of electroconductive hydrogels as injectable matrices for neural tissue regeneration by exploiting a biocompatible conductive polymer - poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) - combined with a biomimetic polymer network made of gelatin. Our approach involved also genipin - a natural cross-linking agent - to promote gelation of gelatin networks embedding PEDOT:PSS. The achieved results suggest that physical-chemical properties of the resulting hydrogels, like impedance, gelation time, mechanical properties, swelling and degradation in physiological conditions, can be finely tuned by the amount of PEDOT:PSS and genipin used in the formulation. Furthermore, the presence of PEDOT:PSS (i) enhances the electrical conductivity, (ii) improves the shear modulus of the resulting hydrogels though (iii) partially impairing their resistance to shear deformation, (iv) reduces gelation time and (v) reduces their swelling ability in physiological medium. Additionally, the resulting electroconductive hydrogels demonstrate enhanced adhesion and growth of primary rat cortical astrocytes. Given the permissive interaction of hydrogels with primary astrocytes, the presented biomimetic, electroconductive and injectable hydrogels display potential applications as minimally invasive systems for neurological therapies and damaged brain tissue repair.
Collapse
Affiliation(s)
- Franco Furlani
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Margherita Montanari
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Nicola Sangiorgi
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Emanuela Saracino
- National Research Council of Italy - Institute of Organic Synthesis and Photoreactivity (ISOF-CNR), via Gobetti, 101, I - 40129, Bologna, Italy
| | - Elisabetta Campodoni
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Alessandra Sanson
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Valentina Benfenati
- National Research Council of Italy - Institute of Organic Synthesis and Photoreactivity (ISOF-CNR), via Gobetti, 101, I - 40129, Bologna, Italy
| | - Anna Tampieri
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Silvia Panseri
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Monica Sandri
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| |
Collapse
|
19
|
Wertheim L, Edri R, Goldshmit Y, Kagan T, Noor N, Ruban A, Shapira A, Gat‐Viks I, Assaf Y, Dvir T. Regenerating the Injured Spinal Cord at the Chronic Phase by Engineered iPSCs-Derived 3D Neuronal Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105694. [PMID: 35128819 PMCID: PMC9008789 DOI: 10.1002/advs.202105694] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 05/08/2023]
Abstract
Cell therapy using induced pluripotent stem cell-derived neurons is considered a promising approach to regenerate the injured spinal cord (SC). However, the scar formed at the chronic phase is not a permissive microenvironment for cell or biomaterial engraftment or for tissue assembly. Engineering of a functional human neuronal network is now reported by mimicking the embryonic development of the SC in a 3D dynamic biomaterial-based microenvironment. Throughout the in vitro cultivation stage, the system's components have a synergistic effect, providing appropriate cues for SC neurogenesis. While the initial biomaterial supported efficient cell differentiation in 3D, the cells remodeled it to provide an inductive microenvironment for the assembly of functional SC implants. The engineered tissues are characterized for morphology and function, and their therapeutic potential is investigated, revealing improved structural and functional outcomes after acute and chronic SC injuries. Such technology is envisioned to be translated to the clinic to rewire human injured SC.
Collapse
Affiliation(s)
- Lior Wertheim
- Shmunis School of Biomedicine and Cancer ResearchFaculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
- The Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv6997801Israel
- The Department of Materials Science and EngineeringFaculty of EngineeringTel Aviv UniversityTel Aviv6997801Israel
| | - Reuven Edri
- Shmunis School of Biomedicine and Cancer ResearchFaculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Yona Goldshmit
- Shmunis School of Biomedicine and Cancer ResearchFaculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
- Steyer School of Health ProfessionsSackler Faculty of MedicineTel‐Aviv UniversityTel Aviv6997801Israel
| | - Tomer Kagan
- Shmunis School of Biomedicine and Cancer ResearchFaculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Nadav Noor
- Shmunis School of Biomedicine and Cancer ResearchFaculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Angela Ruban
- Steyer School of Health ProfessionsSackler Faculty of MedicineTel‐Aviv UniversityTel Aviv6997801Israel
| | - Assaf Shapira
- Shmunis School of Biomedicine and Cancer ResearchFaculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Irit Gat‐Viks
- Shmunis School of Biomedicine and Cancer ResearchFaculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Yaniv Assaf
- School of Neurobiology, Biochemistry and BiophysicsFaculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
- Sagol School of NeuroscienceTel Aviv UniversityTel Aviv6997801Israel
| | - Tal Dvir
- Shmunis School of Biomedicine and Cancer ResearchFaculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
- The Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv6997801Israel
- Sagol School of NeuroscienceTel Aviv UniversityTel Aviv6997801Israel
- The Department of Biomedical EngineeringFaculty of EngineeringTel Aviv UniversityTel Aviv6997801Israel
- Sagol Center for Regenerative BiotechnologyTel Aviv UniversityTel Aviv6997801Israel
| |
Collapse
|
20
|
Alzate-Correa D, Lawrence WR, Salazar-Puerta A, Higuita-Castro N, Gallego-Perez D. Nanotechnology-Driven Cell-Based Therapies in Regenerative Medicine. AAPS J 2022; 24:43. [PMID: 35292878 PMCID: PMC9074705 DOI: 10.1208/s12248-022-00692-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
The administration of cells as therapeutic agents has emerged as a novel approach to complement the use of small molecule drugs and other biologics for the treatment of numerous conditions. Although the use of cells for structural and/or functional tissue repair and regeneration provides new avenues to address increasingly complex disease processes, it also faces numerous challenges related to efficacy, safety, and translational potential. Recent advances in nanotechnology-driven cell therapies have the potential to overcome many of these issues through precise modulation of cellular behavior. Here, we describe several approaches that illustrate the use of different nanotechnologies for the optimization of cell therapies and discuss some of the obstacles that need to be overcome to allow for the widespread implementation of nanotechnology-based cell therapies in regenerative medicine.
Collapse
Affiliation(s)
- D Alzate-Correa
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA
| | - W R Lawrence
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA.,Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, 43210, USA
| | - A Salazar-Puerta
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA
| | - N Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio, 43210, USA.,Department of Surgery, The Ohio State University, 140 W. 19th Ave, room 3018, Columbus, Ohio, 43210, USA
| | - D Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA. .,Department of Surgery, The Ohio State University, 140 W. 19th Ave, room 3018, Columbus, Ohio, 43210, USA.
| |
Collapse
|
21
|
Kiyotake EA, Martin MD, Detamore MS. Regenerative rehabilitation with conductive biomaterials for spinal cord injury. Acta Biomater 2022; 139:43-64. [PMID: 33326879 DOI: 10.1016/j.actbio.2020.12.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
The individual approaches of regenerative medicine efforts alone and rehabilitation efforts alone have not yet fully restored function after severe spinal cord injury (SCI). Regenerative rehabilitation may be leveraged to promote regeneration of the spinal cord tissue, and promote reorganization of the regenerated neural pathways and intact spinal circuits for better functional recovery for SCI. Conductive biomaterials may be a linchpin that empowers the synergy between regenerative medicine and rehabilitation approaches, as electrical stimulation applied to the spinal cord could facilitate neural reorganization. In this review, we discuss current regenerative medicine approaches in clinical trials and the rehabilitation, or neuromodulation, approaches for SCI, along with their respective translational limitations. Furthermore, we review the translational potential, in a surgical context, of conductive biomaterials (e.g., conductive polymers, carbon-based materials, metallic nanoparticle-based materials) as they pertain to SCI. While pre-formed scaffolds may be difficult to translate to human contusion SCIs, injectable composites that contain blended conductive components and can form within the injury may be more translational. However, given that there are currently no in vivo SCI studies that evaluated conductive materials combined with rehabilitation approaches, we discuss several limitations of conductive biomaterials, including demonstrating safety and efficacy, that will need to be addressed in the future for conductive biomaterials to become SCI therapeutics. Even so, the use of conductive biomaterials creates a synergistic opportunity to merge the fields of regenerative medicine and rehabilitation and redefine what regenerative rehabilitation means for the spinal cord. STATEMENT OF SIGNIFICANCE: For spinal cord injury (SCI), the individual approaches of regenerative medicine and rehabilitation are insufficient to fully restore functional recovery; however, the goal of regenerative rehabilitation is to combine these two disparate fields to maximize the functional outcomes. Concepts similar to regenerative rehabilitation for SCI have been discussed in several reviews, but for the first time, this review considers how conductive biomaterials may synergize the two approaches. We cover current regenerative medicine and rehabilitation approaches for SCI, and the translational advantages and disadvantages, in a surgical context, of conductive biomaterials used in biomedical applications that may be additionally applied to SCI. Furthermore, we identify the current limitations and translational challenges for conductive biomaterials before they may become therapeutics for SCI.
Collapse
|
22
|
Vázquez-Arias A, Pérez-Juste J, Pastoriza-Santos I, Bodelon G. Prospects and applications of synergistic noble metal nanoparticle-bacterial hybrid systems. NANOSCALE 2021; 13:18054-18069. [PMID: 34726220 DOI: 10.1039/d1nr04961e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hybrid systems composed of living cells and nanomaterials have been attracting great interest in various fields of research ranging from materials science to biomedicine. In particular, the interfacing of noble metal nanoparticles and bacterial cells in a single architecture aims to generate hybrid systems that combine the unique physicochemical properties of the metals and biological attributes of the microbial cells. While the bacterial cells provide effector and scaffolding functions, the metallic component endows the hybrid system with multifunctional capabilities. This synergistic effort seeks to fabricate living materials with improved functions and new properties that surpass their individual components. Herein, we provide an overview of this research field and the strategies for obtaining hybrid systems, and we summarize recent biological applications, challenges and current prospects in this exciting new arena.
Collapse
Affiliation(s)
- Alba Vázquez-Arias
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Gustavo Bodelon
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| |
Collapse
|
23
|
Wang XH, Jiang C, Zhang YY, Chen Z, Wang ZY, Yang H, Hao DJ. Analysis and comparison of a spinal cord injury model with a single-axle-lever clip or a parallel-moving clip compression in rats. Spinal Cord 2021; 60:332-338. [PMID: 34628476 DOI: 10.1038/s41393-021-00720-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Experimental animal study. OBJECTIVES To assess the feasibility of a custom-designed parallel-moving (PM) clip, compared with a single-axle-lever (SAL) clip, for the development of a compressional spinal cord injury (SCI) model in rats. SETTING Hospital laboratory in China. METHODS We used a PM clip and a SAL clip with same compression rate, to develop a SCI model in rats, and set a sham group as a blank control. Within 3 weeks, each group of rats was evaluated for behavioral (Basso-Beattie-Bresnahan locomotor rating score, BBB), and electrophysiological changes (somatosensory evoked potential), and historical staining to observe the differences between the three groups. In particular, the mechanical results of the PM group were calculated. RESULTS The BBB scores for the SAL and PM groups were significantly lower than those for the sham group (P < 0.05), no significant difference between the two methods (P > 0.05), but the values corresponding to the PM group had smaller standard deviations. The interpeak-latency (IPL) was significantly prolonged (P < 0.0001) and the peak-peak amplitude (PPA) was significantly reduced (P < 0.01) in SAL and PM groups than those in the sham group, but there was no statistical difference in both IPL and PPA between the two SCI groups (P > 0.05). Histological staining showed obvious pathological changes in two SCI groups, and the shape of the lesion zone in the PM group was more symmetrical than that in the SAL groups. CONCLUSIONS The use of a compressional SCI model in rats with the PM clip we designed is an appropriate method to quantify the injury. The degree of the injury caused by this clip is more stable and uniform than those with classical methods.
Collapse
Affiliation(s)
- Xiao-Hui Wang
- Department of Orthopedic, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Chao Jiang
- Department of Orthopedic, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Yong-Yuan Zhang
- Department of Orthopedic, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Zhe Chen
- Department of Orthopedic, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Zhi-Yuan Wang
- Department of Orthopedic, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Hao Yang
- Department of Orthopedic, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Ding-Jun Hao
- Department of Orthopedic, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|