1
|
Compton A, Sharma A, Hempel M, Aryan A, Biedler JK, Potters MB, Chandrasegaran K, Vinauger C, Tu Z. Differential elimination of marked sex chromosomes enables production of nontransgenic male mosquitoes in a single strain. Proc Natl Acad Sci U S A 2025; 122:e2412149122. [PMID: 40339129 PMCID: PMC12087967 DOI: 10.1073/pnas.2412149122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 03/25/2025] [Indexed: 05/10/2025] Open
Abstract
Diverse genetic strategies are being pursued to control mosquito-borne infectious diseases. These strategies often rely on the release of nonbiting males to either reduce the target mosquito population or render them resistant to pathogens. Male-only releases are important as any contaminating females can bite and potentially transmit pathogens. Despite significant efforts, it remains a major bottleneck to reliably and efficiently separate males from females, especially when nontransgenic males are preferred. In the yellow fever mosquito Aedes aegypti, sex is determined by a pair of homomorphic sex chromosomes, with the dominant male-determining locus (the M locus) and its counterpart (the m locus) embedded in an M-bearing and an m-bearing chromosome 1, respectively. We utilized both naturally occurring and engineered sex-linked recessive lethal alleles (RLAs) to create sex separation strains for Ae. aegypti on the basis of differential elimination of marked sex chromosomes (DeMark). DeMark strains are self-sustaining and produce nontransgenic males that are readily separated from individuals carrying RLA- and transgene-marked m chromosomes. For example, the marked m chromosome in the heterozygous mother in some strains was only inherited by her female progeny due to RLA-mediated incompatibility with the M-bearing chromosome in the father, producing nontransgenic males and transgenic females, generation after generation. We further explore strategies to conditionally eliminate females that contain marked sex chromosomes. We also discuss DeMark designs that are applicable for efficient sex separation in organisms with well-differentiated X and Y chromosomes, such as the Anopheles mosquitoes.
Collapse
Affiliation(s)
- Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Atashi Sharma
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Melanie Hempel
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Azadeh Aryan
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - James K. Biedler
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Mark B. Potters
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | | | - Clément Vinauger
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| |
Collapse
|
2
|
Boëte C. Gene drive: communication, hype, and the publics. JOURNAL OF MEDICAL ENTOMOLOGY 2025; 62:745-748. [PMID: 40055898 PMCID: PMC12076142 DOI: 10.1093/jme/tjaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/18/2024] [Accepted: 01/09/2025] [Indexed: 05/15/2025]
Abstract
Engineered gene drive (EGD) systems are probably the most high-tech approach considered for their potential role in the control of vector-borne diseases. Interestingly, the rhetoric around it often goes along with a negative presentation of the current "conventional" tools and exaggerated promises about EGD themselves, leading to a situation of hype.
Collapse
|
3
|
Sadeeq M, Li Y, Wang C, Hou F, Zuo J, Xiong P. Unlocking the power of antimicrobial peptides: advances in production, optimization, and therapeutics. Front Cell Infect Microbiol 2025; 15:1528583. [PMID: 40365533 PMCID: PMC12070195 DOI: 10.3389/fcimb.2025.1528583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/19/2025] [Indexed: 05/15/2025] Open
Abstract
Antimicrobial peptides (AMPs) are critical effectors of innate immunity, presenting a compelling alternative to conventional antibiotics amidst escalating antimicrobial resistance. Their broad-spectrum efficacy and inherent low resistance development are countered by production challenges, including limited yields and proteolytic degradation, which restrict their clinical translation. While chemical synthesis offers precise structural control, it is often prohibitively expensive and complex for large-scale production. Heterologous expression systems provide a scalable, cost-effective platform, but necessitate optimization. This review comprehensively examines established and emerging AMP production strategies, encompassing fusion protein technologies, molecular engineering approaches, rational peptide design, and post-translational modifications, with an emphasis on maximizing yield, bioactivity, stability, and safety. Furthermore, we underscore the transformative role of artificial intelligence, particularly machine learning algorithms, in accelerating AMP discovery and optimization, thereby propelling their expanded therapeutic application and contributing to the global fight against drug-resistant infections.
Collapse
Affiliation(s)
| | | | | | | | - Jia Zuo
- Biosynthesis and Bio Transformation Center, School of Life Sciences and Medicine,
Shandong University of Technology (SDUT), Zibo, China
| | - Peng Xiong
- Biosynthesis and Bio Transformation Center, School of Life Sciences and Medicine,
Shandong University of Technology (SDUT), Zibo, China
| |
Collapse
|
4
|
Gonzalez E, Anderson MAE, Ang JXD, Nevard K, Shackleford L, Larrosa-Godall M, Leftwich PT, Alphey L. Optimization of SgRNA expression with RNA pol III regulatory elements in Anopheles stephensi. Sci Rep 2025; 15:13408. [PMID: 40251402 PMCID: PMC12008393 DOI: 10.1038/s41598-025-98557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/14/2025] [Indexed: 04/20/2025] Open
Abstract
Anopheles stephensi, a major Asian malaria vector, is invading Africa and has been implicated in recent outbreaks of urban malaria. Control of this species is key to eliminating malaria in Africa. Genetic control strategies, and CRISPR/Cas9-based gene drives are emerging as promising species-specific, environmentally friendly, scalable, affordable methods for pest control. To implement these strategies, a key parameter to optimize for high efficiency is the spatiotemporal control of Cas9 and the gRNA. Here, we assessed the ability of four RNA Pol III promoters to bias the inheritance of a gene drive element inserted into the cd gene of An. stephensi. We determined the homing efficiency and examined eye phenotype as a proxy for non-homologous end joining (NHEJ) events in somatic tissue. We found all four promoters to be active, with mean inheritance rates up to 99.8%. We found a strong effect of the Cas9-bearing grandparent (grandparent genotype), likely due to maternally deposited Cas9.
Collapse
Affiliation(s)
- Estela Gonzalez
- Arthropod Genetics, The Pirbright Institute, GU24 0NF, Pirbright, UK
- Animal and Plant Health Agency, Woodham Lane, KT15 3NB, Addlestone, Surrey, UK
| | - Michelle A E Anderson
- Arthropod Genetics, The Pirbright Institute, GU24 0NF, Pirbright, UK
- Department of Biology, University of York, Wentworth Way, YO10 5DD, York, UK
| | - Joshua X D Ang
- Arthropod Genetics, The Pirbright Institute, GU24 0NF, Pirbright, UK
- Department of Biology, University of York, Wentworth Way, YO10 5DD, York, UK
| | - Katherine Nevard
- Arthropod Genetics, The Pirbright Institute, GU24 0NF, Pirbright, UK
| | - Lewis Shackleford
- Arthropod Genetics, The Pirbright Institute, GU24 0NF, Pirbright, UK
- Department of Biology, University of York, Wentworth Way, YO10 5DD, York, UK
| | - Mireia Larrosa-Godall
- Arthropod Genetics, The Pirbright Institute, GU24 0NF, Pirbright, UK
- Department of Biology, University of York, Wentworth Way, YO10 5DD, York, UK
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UK
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, GU24 0NF, Pirbright, UK.
- Department of Biology, University of York, Wentworth Way, YO10 5DD, York, UK.
| |
Collapse
|
5
|
Han Y, Champer J. A Comparative Assessment of Self-limiting Genetic Control Strategies for Population Suppression. Mol Biol Evol 2025; 42:msaf048. [PMID: 40036822 PMCID: PMC11934067 DOI: 10.1093/molbev/msaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Genetic control strategies are promising solutions for control of pest populations and invasive species. Methods utilizing repeated releases of males such as sterile insect technique (SIT), release of insects carrying a dominant lethal (RIDL), self-limiting gene drives, and gene disruptors are highly controllable methods, ensuring biosafety. Although models of these strategies have been built, detailed comparisons are lacking, particularly for some of the newer strategies. Here, we conducted a thorough comparative assessment of self-limiting genetic control strategies by individual-based simulation models. Specifically, we find that repeated releases greatly enhance suppression power of weak and self-limiting gene drives, enabling population elimination with even low efficiency and high fitness costs. Moreover, dominant female sterility further strengthens self-limiting systems that can either use gene drive or disruptors that target genes without a mechanism to bias their own inheritance. Some of these strategies are highly persistent, resulting in relatively low release ratios even when released males suffer high fitness costs. To quantitatively evaluate different strategies independent from ecological impact, we proposed constant-population genetic load, which achieves over 95% accuracy in predicting simulation outcomes for most strategies, though it is not as precise in a few frequency-dependent systems. Our results suggest that many new self-limiting strategies are safe, flexible, and more cost-effective than traditional SIT and RIDL, and thus have great potential for population suppression of insects and other pests.
Collapse
Affiliation(s)
- Yue Han
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
- CLS Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jackson Champer
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Smidler AL, Marrogi EA, Scott S, Mameli E, Abernathy D, Akbari OS, Church GM, Catteruccia F, Esvelt K. Engineering gene drive docking sites in a haplolethal locus in Anopheles gambiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641265. [PMID: 40093134 PMCID: PMC11908198 DOI: 10.1101/2025.03.03.641265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Gene drives are selfish genetic elements which promise to be powerful tools in the fight against vector-borne diseases such as malaria. We previously proposed population replacement gene drives designed to better withstand the evolution of resistance by homing through haplolethal loci. Because most mutations in the wild-type allele that would otherwise confer resistance are lethal, only successful drive homing permits the cell to survive. Here we outline the development and characterization of two ΦC31-Recombination mediated cassette exchange (RMCE) gene drive docking lines with these features in Anopheles gambiae, a first step towards construction of robust gene drives in this important malaria vector. We outline adaption of the technique HACK (Homology Assisted CRISPR knockin) to knock-in two docking site sequences into a paired haplolethal-haplosufficient (Ribosome-Proteasome) locus, and confirm that these docking lines permit insertion of drive-relevant transgenes. We report the first anopheline proteasome knockouts, and identify ribosome mutants that reveal a major hurdle that such designs must overcome to develop robust drives in the future. Although we do not achieve drive, this work provides a new tool for constructing future evolution-robust drive systems and reveals critical challenges that must be overcome for future development of gene drives designed to target haplolethal loci in anophelines and, potentially, other metazoans.
Collapse
Affiliation(s)
- Andrea L Smidler
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eryney A Marrogi
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sean Scott
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Enzo Mameli
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Daniel Abernathy
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kevin Esvelt
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Larrosa-Godall M, Ang JXD, Leftwich PT, Gonzalez E, Shackleford L, Nevard K, Noad R, Anderson MAE, Alphey L. Challenges in developing a split drive targeting dsx for the genetic control of the invasive malaria vector Anopheles stephensi. Parasit Vectors 2025; 18:46. [PMID: 39920845 PMCID: PMC11806748 DOI: 10.1186/s13071-025-06688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/26/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Anopheles stephensi is a competent malaria vector mainly present in southern Asia and the Arabian Peninsula. Since 2012, it has invaded several countries of eastern Africa, creating an emerging risk of urban transmission. Urgent efforts are required to develop novel and more efficient strategies for targeted vector control. CRISPR/Cas9-based homing gene drives have been proposed as attractive alternative strategies. Gene drives have the potential to spread a desired trait through a population at higher rates than via normal Mendelian inheritance, even in the presence of a fitness cost. Several target genes have been suggested and tested in different mosquito vector species such as Anopheles gambiae and Aedes aegypti. Several promising suppression drives have been developed in An. gambiae that target the sex determination gene doublesex (dsx). METHODS In this study, a geographically confineable gene drive system targeting dsx was developed (dsxgRNA). Here, a transgenic line which expresses Cas9 under the control of the endogenous zpg promoter was generated. Separately a transgenic line which expresses a gRNA targeting the female specific exon of dsx was inserted into that same target site. The reproductive fitness of males and females heterozygous and homozygous for this element was determined. A series of experimental crosses was performed to combine the two elements and assess the homing rate of the dsx element in a split drive system. RESULTS The drive was able to home in a super-Mendelian rate comparable to those obtained by an autonomous drive in this species. Although inheritance rates as high as 99.8% were observed, potentially providing very potent gene drive, dominant effects on male and female fertility were observed, which would be sufficient to hinder spread of such a drive. Molecular analysis indicated that the gRNA expressing insertion disrupted normal splicing of dsx. CONCLUSIONS These results should be considered when proposing the viability of dsx as a target gene for a population suppression gene drives in Anopheles stephensi. Although high homing rates were observed, the fitness defects found in both males and females carrying the transgene would likely prohibit this drive from functioning in the field.
Collapse
Affiliation(s)
- Mireia Larrosa-Godall
- Arthropod Genetics, The Pirbright Institute, Pirbright, GU24 0NF, UK
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
- Current Address: Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, Brookmans Park, Hatfield, AL9 7TA, UK
| | - Joshua X D Ang
- Arthropod Genetics, The Pirbright Institute, Pirbright, GU24 0NF, UK
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norfolk, Norwich, NRA 7TJ, UK
| | - Estela Gonzalez
- Arthropod Genetics, The Pirbright Institute, Pirbright, GU24 0NF, UK
- Current Address: Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Lewis Shackleford
- Arthropod Genetics, The Pirbright Institute, Pirbright, GU24 0NF, UK
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK
| | - Katherine Nevard
- Arthropod Genetics, The Pirbright Institute, Pirbright, GU24 0NF, UK
| | - Rob Noad
- Current Address: Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, Brookmans Park, Hatfield, AL9 7TA, UK
| | - Michelle A E Anderson
- Arthropod Genetics, The Pirbright Institute, Pirbright, GU24 0NF, UK.
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK.
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright, GU24 0NF, UK.
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK.
| |
Collapse
|
8
|
Abraham IC, Aboje JE, Ukoaka BM, Tom-Ayegunle K, Amjad M, Abdulkader A, Agbo CE, Akinruli OA, Akisanmi TR, Oyetola EO, Olatunji G, Kokori E, Aderinto N. Integrating malaria vaccine and CRISPR/Cas9 gene drive: a comprehensive strategy for accelerated malaria eradication. Malar J 2025; 24:17. [PMID: 39825389 PMCID: PMC11742230 DOI: 10.1186/s12936-025-05243-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025] Open
Abstract
Malaria remains a significant public health challenge, particularly in low- and middle-income countries, despite ongoing efforts to eradicate the disease. Recent advancements, including the rollout of malaria vaccines, such as RTS,S/AS01 and R21/Matrix-M™, offer new avenues for prevention. However, the rise of resistance to anti-malarial medications necessitates innovative strategies. This review explores the potential integration of CRISPR/Cas9 gene drive technology with malaria vaccination efforts to enhance vector control and reduce transmission. By employing gene drive mechanisms for population suppression and replacement of malaria-transmitting Anopheles mosquitoes, combined with the immunogenic properties of vaccines, a synergistic approach can be established. This paper discussed the need for integrated strategies to address the biological complexities of malaria and socio-economic factors influencing its prevalence. Challenges such as regulatory hurdles, community acceptance, ecological impacts, and sustainable funding are examined, alongside strategies for implementation within existing malaria control programmes. This integrated approach could significantly contribute to achieving the World Health Organization's targets for malaria reduction by 2030, ultimately enhancing public health outcomes and supporting broader socio-economic development.
Collapse
Affiliation(s)
| | - John Ehi Aboje
- Benue State University, College of Health Sciences, Makurdi, Nigeria
| | | | - Kehinde Tom-Ayegunle
- Dept of Epidemiology & Biostatistics, Johns Hopkins Bloomberg School of Public Health, Maryland, USA
| | - Maryam Amjad
- Liaquat National Hospital and Medical College Karachi, Karachi, Pakistan
| | - Anas Abdulkader
- College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | | | | | | | | | - Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Nicholas Aderinto
- Department of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
| |
Collapse
|
9
|
Naidoo K, Oliver SV. Gene drives: an alternative approach to malaria control? Gene Ther 2025; 32:25-37. [PMID: 39039203 PMCID: PMC11785527 DOI: 10.1038/s41434-024-00468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Genetic modification for the control of mosquitoes is frequently touted as a solution for a variety of vector-borne diseases. There has been some success using non-insecticidal methods like sterile or incompatible insect techniques to control arbovirus diseases. However, control by genetic modifications to reduce mosquito populations or create mosquitoes that are refractory to infection with pathogens are less developed. The advent of CRISPR-Cas9-mediated gene drives may advance this mechanism of control. In this review, use and progress of gene drives for vector control, particularly for malaria, is discussed. A brief history of population suppression and replacement gene drives in mosquitoes, rapid advancement of the field over the last decade and how genetic modification fits into the current scope of vector control are described. Mechanisms of alternative vector control by genetic modification to modulate mosquitoes' immune responses and anti-parasite effector molecules as part of a combinational strategy to combat malaria are considered. Finally, the limitations and ethics of using gene drives for mosquito control are discussed.
Collapse
Affiliation(s)
- Kubendran Naidoo
- SAMRC/Wits Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- National Health Laboratory Service, Johannesburg, South Africa.
- Wits Research Institute for Malaria, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa.
- Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Shüné V Oliver
- Wits Research Institute for Malaria, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
10
|
Wang GH, Hoffmann A, Champer J. Gene Drive and Symbiont Technologies for Control of Mosquito-Borne Diseases. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:229-249. [PMID: 39353088 DOI: 10.1146/annurev-ento-012424-011039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Mosquito-borne diseases, such as dengue and malaria, pose a significant burden to global health. Current control strategies with insecticides are only moderately effective. Scalable solutions are needed to reduce the transmission risk of these diseases. Symbionts and genome engineering-based mosquito control strategies have been proposed to address these problems. Bacterial, fungal, and viral symbionts affect mosquito reproduction, reduce mosquito lifespan, and block pathogen transmission. Field tests of endosymbiont Wolbachia-based methods have yielded promising results, but there are hurdles to overcome due to the large-scale rearing and accurate sex sorting required for Wolbachia-based suppression approaches and the ecological impediments to Wolbachia invasion in replacement approaches. Genome engineering-based methods, in which mosquitoes are genetically altered for the modification or suppression of wild populations, offer an additional approach for control of mosquito-borne diseases. In particular, the use of gene drive alleles that bias inheritance in their favor is a potentially powerful approach. Several drives are frequency dependent, potentially giving them broadly similar population dynamics to Wolbachia. However, public acceptance and the behavior of released drives in natural mosquito populations remain challenges. We summarize the latest developments and discuss the knowledge gaps in both symbiont- and gene drive-based methods.
Collapse
Affiliation(s)
- Guan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
| | - Ary Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia;
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China;
| |
Collapse
|
11
|
Ogoyi DO, Njagi J, Tonui W, Dass B, Quemada H, James S. Post-release monitoring pathway for the deployment of gene drive-modified mosquitoes for malaria control in Africa. Malar J 2024; 23:351. [PMID: 39567982 PMCID: PMC11580452 DOI: 10.1186/s12936-024-05179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Gene drive-modified mosquitoes (GDMMs) have been promoted as one of the innovative technologies that may control and eliminate malaria and other mosquito-borne diseases. Several products are in early stages of development, targeting either population suppression or population modification of the mosquito vector. However, there is no direct experience of conducting risk assessment for environmental releases and subsequent policies regarding conditions for post-release. This study was carried out to gain additional insights on the possible post-release concerns that may arise, as they may inform future risk assessment and planning for deployment. METHODS This study involved desktop reviews on post release monitoring experiences with previously released biological control products. Stakeholder consultations involving online surveys, and face to face workshop with experts from selected African countries from Eastern, Western, and Southern African regions was then carried out to establish post-release monitoring concerns for GDMMs. RESULTS Review of genetic biocontrol technologies showed only limited lessons from post-release monitoring regimes with a focus largely limited to efficacy. For genetically modified organisms general surveillance and case-specific monitoring is expected in some of the regions. A number of post-release monitoring concerns in relation to the protection goals of human and animal health, biodiversity, and water quality were identified. CONCLUSION Based on established- protection goals, several post-release monitoring concerns have been identified. Subject to a rigorous risk assessment process for future GDMMs products, the concerns may then be prioritized for post-release monitoring.
Collapse
Affiliation(s)
- Dorington O Ogoyi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O BOX 52428, Nairobi, 00200, Kenya.
| | - Julia Njagi
- National Biosafety Authority, P.O. BOX 28251, Nairobi, 00100, Kenya
| | - Willy Tonui
- African Genetic Biocontrol Consortium (AGBC), Nairobi, Kenya
| | - Brinda Dass
- GeneConvene Global Collaborative, Foundation for the National Institutes of Health (FNIH), North Bethesda, MD, USA
| | - Hector Quemada
- GeneConvene Global Collaborative, Foundation for the National Institutes of Health (FNIH), North Bethesda, MD, USA
| | - Stephanie James
- GeneConvene Global Collaborative, Foundation for the National Institutes of Health (FNIH), North Bethesda, MD, USA
| |
Collapse
|
12
|
Tushar T, Pham TB, Parker K, Crepeau M, Lanzaro GC, James AA, Carballar-Lejarazú R. Cas9/guide RNA-based gene-drive dynamics following introduction and introgression into diverse anopheline mosquito genetic backgrounds. BMC Genomics 2024; 25:1078. [PMID: 39533215 PMCID: PMC11558816 DOI: 10.1186/s12864-024-10977-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Novel technologies are needed to combat anopheline vectors of malaria parasites as the reductions in worldwide disease incidence has stalled in recent years. Gene drive-based approaches utilizing Cas9/guide RNA (gRNA) systems are being developed to suppress anopheline populations or modify them by increasing their refractoriness to the parasites. These systems rely on the successful cleavage of a chromosomal DNA target site followed by homology-directed repair (HDR) in germline cells to bias inheritance of the drive system. An optimal drive system should be highly efficient for HDR-mediated gene conversion with minimal error rates. A gene-drive system, AgNosCd-1, with these attributes has been developed in the Anopheles gambiae G3 strain and serves as a framework for further development of population modification strains. To validate AgNosCd-1 as a versatile platform, it must perform well in a variety of genetic backgrounds. RESULTS We introduced or introgressed AgNosCd-1 into different genetic backgrounds, three in geographically-diverse Anopheles gambiae strains, and one each in an An. coluzzii and An. arabiensis strain. The overall drive inheritance, determined by presence of a dominant marker gene in the F2 hybrids, far exceeded Mendelian inheritance ratios in all genetic backgrounds that produced viable progeny. Haldane's rule was confirmed for AgNosCd-1 introgression into the An. arabiensis Dongola strain and sterility of the F1 hybrid males prevented production of F2 hybrid offspring. Back-crosses of F1 hybrid females were not performed to keep the experimental design consistent across all the genetic backgrounds and to avoid maternally-generated mutant alleles that might confound the drive dynamics. DNA sequencing of the target site in F1 and F2 mosquitoes with exceptional phenotypes revealed drive system-generated mutations resulting from non-homologous end joining events (NHEJ), which formed at rates similar to AgNosCd-1 in the G3 genetic background and were generated via the same maternal-effect mechanism. CONCLUSIONS These findings support the conclusion that the AgNosCd-1 drive system is robust and has high drive inheritance and gene conversion efficiency accompanied by low NHEJ mutation rates in diverse An. gambiae s.l. laboratory strains.
Collapse
Affiliation(s)
- Taylor Tushar
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA
| | - Thai Binh Pham
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA
| | - Kiona Parker
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA
| | - Marc Crepeau
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA.
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA.
| | - Rebeca Carballar-Lejarazú
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA.
| |
Collapse
|
13
|
Chennuri PR, Zapletal J, Monfardini RD, Ndeffo-Mbah ML, Adelman ZN, Myles KM. Repeat mediated excision of gene drive elements for restoring wild-type populations. PLoS Genet 2024; 20:e1011450. [PMID: 39509462 PMCID: PMC11584131 DOI: 10.1371/journal.pgen.1011450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 11/22/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
Here, we demonstrate that single strand annealing (SSA) can be co-opted for the precise autocatalytic excision of a drive element. We have termed this technology Repeat Mediated Excision of a Drive Element (ReMEDE). By engineering direct repeats flanking the drive allele and inducing a double-strand DNA break (DSB) at a second endonuclease target site within the allele, we increased the utilization of SSA repair. ReMEDE was incorporated into the mutagenic chain reaction (MCR) gene drive targeting the yellow gene of Drosophila melanogaster, successfully replacing drive alleles with wild-type alleles. Sequencing across the Cas9 target site confirmed transgene excision by SSA after pair-mated outcrosses with yReMEDE females, revealing ~4% inheritance of an engineered silent TcG marker sequence. However, phenotypically wild-type flies with alleles of indeterminate biogenesis also were observed, retaining the TGG sequence (~16%) or harboring a silent gGG mutation (~0.5%) at the PAM site. Additionally, ~14% of alleles in the F2 flies were intact or uncut paternally inherited alleles, indicating limited maternal deposition of Cas9 RNP. Although ReMEDE requires further research and development, the technology has some promising features as a gene drive mitigation strategy, notably its potential to restore wild-type populations without additional transgenic releases or large-scale environmental modifications.
Collapse
Affiliation(s)
- Pratima R Chennuri
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, Texas, United States of America
| | - Josef Zapletal
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Raquel D Monfardini
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, Texas, United States of America
| | - Martial Loth Ndeffo-Mbah
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, Texas, United States of America
| | - Zach N Adelman
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, Texas, United States of America
| | - Kevin M Myles
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
14
|
Campos M, Rašić G, Viegas J, Cornel AJ, Pinto J, Lanzaro GC. Patterns of Gene Flow in Anopheles coluzzii Populations From Two African Oceanic Islands. Evol Appl 2024; 17:e70044. [PMID: 39600347 PMCID: PMC11589655 DOI: 10.1111/eva.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
The malaria vector Anopheles coluzzii is widespread across West Africa and is the sole vector species on the islands of São Tomé and Príncipe. Our interest in the population genetics of this species on these islands is part of an assessment of their suitability for a field trial involving the release of genetically engineered A. coluzzii. The engineered construct includes two genes that encode anti-Plasmodium peptides, along with a Cas9-based gene drive. We investigated gene flow among A. coluzzii subpopulations on each island to estimate dispersal rates between sites. Sampling covered the known range of A. coluzzii on both islands. Spatial autocorrelation suggests 7 km to be the likely extent of dispersal of this species, whereas estimates based on a convolutional neural network were roughly 3 km. This difference highlights the complexity of dispersal dynamics and the value of using multiple approaches. Our analysis also revealed weak heterogeneity among populations within each island but did identify areas weakly resistant or permissive of gene flow. Overall, A. coluzzii on each of the two islands exist as single Mendelian populations. We expect that a gene construct that includes a low-threshold gene drive and has minimal fitness impact should, once introduced, spread relatively unimpeded across each island.
Collapse
Affiliation(s)
- Melina Campos
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and ImmunologyUniversity of California—DavisDavisCaliforniaUSA
| | - Gordana Rašić
- Mosquito Genomics, QIMR Berghofer Medical Research InstituteHerstonQueenslandAustralia
| | - João Viegas
- Centro Nacional de Endemias, Ministério da Saúde, Trabalho e Assuntos SociaisSão ToméSao Tome and Principe
| | - Anthony J. Cornel
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and ImmunologyUniversity of California—DavisDavisCaliforniaUSA
- Mosquito Control Research Laboratory, Department of Entomology and NematologyUniversity of CaliforniaParlierCaliforniaUSA
| | - João Pinto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina TropicalUniversidade Nova de LisboaLisboaPortugal
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and ImmunologyUniversity of California—DavisDavisCaliforniaUSA
| |
Collapse
|
15
|
Faber NR, Xu X, Chen J, Hou S, Du J, Pannebakker BA, Zwaan BJ, van den Heuvel J, Champer J. Improving the suppressive power of homing gene drive by co-targeting a distant-site female fertility gene. Nat Commun 2024; 15:9249. [PMID: 39461949 PMCID: PMC11513003 DOI: 10.1038/s41467-024-53631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Gene drive technology has the potential to address major biological challenges. Well-studied homing suppression drives have been shown to be highly efficient in Anopheles mosquitoes, but for other organisms, lower rates of drive conversion prevent elimination of the target population. To tackle this issue, we propose a gene drive design that has two targets: a drive homing site where drive conversion takes place, and a distant site where cleavage induces population suppression. We model this design and find that the two-target system allows suppression to occur over a much wider range of drive conversion efficiency. Specifically, the cutting efficiency now determines the suppressive power of the drive, rather than the conversion efficiency as in standard suppression drives. We construct a two-target drive in Drosophila melanogaster and show that both components of the gene drive function successfully. However, cleavage in the embryo from maternal deposition as well as fitness costs in female drive heterozygotes both remain significant challenges for both two-target and standard suppression drives. Overall, our improved gene drive design has the potential to ease problems associated with homing suppression gene drives for many species where drive conversion is less efficient.
Collapse
Affiliation(s)
- Nicky R Faber
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands.
| | - Xuejiao Xu
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Jingheng Chen
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Shibo Hou
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Jie Du
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Bart A Pannebakker
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Joost van den Heuvel
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
16
|
Hancock PA, North A, Leach AW, Winskill P, Ghani AC, Godfray HCJ, Burt A, Mumford JD. The potential of gene drives in malaria vector species to control malaria in African environments. Nat Commun 2024; 15:8976. [PMID: 39419965 PMCID: PMC11486997 DOI: 10.1038/s41467-024-53065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Gene drives are a promising means of malaria control with the potential to cause sustained reductions in transmission. In real environments, however, their impacts will depend on local ecological and epidemiological factors. We develop a data-driven model to investigate the impacts of gene drives that causes vector population suppression. We simulate gene drive releases in sixteen ~ 12,000 km2 areas of west Africa that span variation in vector ecology and malaria prevalence, and estimate reductions in vector abundance, malaria prevalence and clinical cases. Average reductions in vector abundance ranged from 71.6-98.4% across areas, while impacts on malaria depended strongly on which vector species were targeted. When other new interventions including RTS,S vaccination and pyrethroid-PBO bednets were in place, at least 60% more clinical cases were averted when gene drives were added, demonstrating the benefits of integrated interventions. Our results show that different strategies for gene drive implementation may be required across different African settings.
Collapse
Affiliation(s)
- Penelope A Hancock
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK.
| | - Ace North
- Department of Biology, University of Oxford, Oxford, UK
| | - Adrian W Leach
- Centre for Environmental Policy, Imperial College London, Ascot, UK
| | - Peter Winskill
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Azra C Ghani
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - H Charles J Godfray
- Department of Biology, University of Oxford, Oxford, UK
- Oxford Martin School, University of Oxford, Oxford, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - John D Mumford
- Centre for Environmental Policy, Imperial College London, Ascot, UK
| |
Collapse
|
17
|
Zhao Y, Li L, Wei L, Wang Y, Han Z. Advancements and Future Prospects of CRISPR-Cas-Based Population Replacement Strategies in Insect Pest Management. INSECTS 2024; 15:653. [PMID: 39336621 PMCID: PMC11432399 DOI: 10.3390/insects15090653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Population replacement refers to the process by which a wild-type population of insect pests is replaced by a population possessing modified traits or abilities. Effective population replacement necessitates a gene drive system capable of spreading desired genes within natural populations, operating under principles akin to super-Mendelian inheritance. Consequently, releasing a small number of genetically edited insects could potentially achieve population control objectives. Currently, several gene drive approaches are under exploration, including the newly adapted CRISPR-Cas genome editing system. Multiple studies are investigating methods to engineer pests that are incapable of causing crop damage or transmitting vector-borne diseases, with several notable successful examples documented. This review summarizes the recent advancements of the CRISPR-Cas system in the realm of population replacement and provides insights into research methodologies, testing protocols, and implementation strategies for gene drive techniques. The review also discusses emerging trends and prospects for establishing genetic tools in pest management.
Collapse
Affiliation(s)
- Yu Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Longfeng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Liangzi Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yifan Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhilin Han
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
18
|
Kormos A, Nazaré L, dos Santos AA, Lanzaro GC. Practical Application of a Relationship-Based Model to Engagement for Gene-Drive Vector Control Programs. Am J Trop Med Hyg 2024; 111:341-360. [PMID: 38889708 PMCID: PMC11310621 DOI: 10.4269/ajtmh.23-0862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/19/2024] [Indexed: 06/20/2024] Open
Abstract
Engagement is an important component in the advancement of gene-drive vector control research programs as developers look to transition the technology from the laboratory to the field. As research advances and engagement surrounding this novel technology is put into practice, knowledge can be gained from practical experiences and applications in the field. A relationship-based model (RBM) provides a framework for end-user development of engagement programs and strategies. The model places end users at the center of the engagement decision-making processes rather than as recipients of predetermined strategies, methods, and definitions. Successful RBM application for healthcare delivery has previously been demonstrated, and the University of California Malaria Initiative (UCMI) has applied this model to its gene-drive program in the Democratic Republic of São Tomé and Príncipe. The model emphasizes the importance of local leadership in the planning, development, and implementation of all phases of project engagement. The primary aim of this paper is to translate the model from paper to practice and provide a transparent description, using practical examples, of the UCMI program implementation of RBM at its field site. End-user development of the UCMI engagement program provides a unique approach to the development of ethical, transparent, and effective engagement strategies for malaria control programs. This paper may also serve as a reference and example for projects looking to establish an engagement program model that integrates end-user groups in the decision-making processes surrounding engagement.
Collapse
Affiliation(s)
- Ana Kormos
- Vector Genetics Laboratory, University of California, Davis, California
| | - Lodney Nazaré
- University of California Malaria Initiative, University of California, Davis, California
| | | | | |
Collapse
|
19
|
Ibnidris A, Liaskos N, Eldem E, Gunn A, Streffer J, Gold M, Rea M, Teipel S, Gardiol A, Boccardi M. Facilitating the use of the target product profile in academic research: a systematic review. J Transl Med 2024; 22:693. [PMID: 39075460 PMCID: PMC11288132 DOI: 10.1186/s12967-024-05476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The Target Product Profile (TPP) is a tool used in industry to guide development strategies by addressing user needs and fostering effective communication among stakeholders. However, they are not frequently used in academic research, where they may be equally useful. This systematic review aims to extract the features of accessible TPPs, to identify commonalities and facilitate their integration in academic research methodology. METHODS We searched peer-reviewed papers published in English developing TPPs for different products and health conditions in four biomedical databases. Interrater agreement, computed on random abstract and paper sets (Cohen's Kappa; percentage agreement with zero tolerance) was > 0.91. We interviewed experts from industry contexts to gain insight on the process of TPP development, and extracted general and specific features on TPP use and structure. RESULTS 138 papers were eligible for data extraction. Of them, 92% (n = 128) developed a new TPP, with 41.3% (n = 57) focusing on therapeutics. The addressed disease categories were diverse; the largest (47.1%, n = 65) was infectious diseases. Only one TPP was identified for several fields, including global priorities like dementia. Our analyses found that 56.5% of papers (n = 78) was authored by academics, and 57.8% of TPPs (n = 80) featured one threshold level of product performance. The number of TPP features varied widely across and within product types (n = 3-44). Common features included purpose/context of use, shelf life for drug stability and validation aspects. Most papers did not describe the methods used to develop the TPP. We identified aspects to be taken into account to build and report TPPs, as a starting point for more focused initiatives guiding use by academics. DISCUSSION TPPs are used in academic research mostly for infectious diseases and have heterogeneous features. Our extraction of key features and common structures helps to understand the tool and widen its use in academia. This is of particular relevance for areas of notable unmet needs, like dementia. Collaboration between stakeholders is key for innovation. Tools to streamline communication such as TPPs would support the development of products and services in academia as well as industry.
Collapse
Affiliation(s)
- Aliaa Ibnidris
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
- Neuroscience Institute, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Nektarios Liaskos
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
- European Infrastructure for Translational Medicine (EATRIS), Amsterdam, The Netherlands
| | - Ece Eldem
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | | | - Johannes Streffer
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Michael Gold
- AriLex Life Sciences LLC, 780 Elysian Way, Deerfield, IL, 60015, USA
| | | | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
- Department of Psychosomatic Medicine and Psychotherapy, University of Medicine Rostock, Rostock, Germany
| | - Alejandra Gardiol
- European Infrastructure for Translational Medicine (EATRIS), Amsterdam, The Netherlands
- Queen Mary University of London, London, UK
| | - Marina Boccardi
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, University of Medicine Rostock, Rostock, Germany.
| |
Collapse
|
20
|
Collier TC, Lee Y, Mathias DK, López Del Amo V. CRISPR-Cas9 and Cas12a target site richness reflects genomic diversity in natural populations of Anopheles gambiae and Aedes aegypti mosquitoes. BMC Genomics 2024; 25:700. [PMID: 39020310 PMCID: PMC11253549 DOI: 10.1186/s12864-024-10597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024] Open
Abstract
Due to limitations in conventional disease vector control strategies including the rise of insecticide resistance in natural populations of mosquitoes, genetic control strategies using CRISPR gene drive systems have been under serious consideration. The identification of CRISPR target sites in mosquito populations is a key aspect for developing efficient genetic vector control strategies. While genome-wide Cas9 target sites have been explored in mosquitoes, a precise evaluation of target sites focused on coding sequence (CDS) is lacking. Additionally, target site polymorphisms have not been characterized for other nucleases such as Cas12a, which require a different DNA recognition site (PAM) and would expand the accessibility of mosquito genomes for genetic engineering. We undertook a comprehensive analysis of potential target sites for both Cas9 and Cas12a nucleases within the genomes of natural populations of Anopheles gambiae and Aedes aegypti from multiple continents. We demonstrate that using two nucleases increases the number of targets per gene. Also, we identified differences in nucleotide diversity between North American and African Aedes populations, impacting the abundance of good target sites with a minimal degree of polymorphisms that can affect the binding of gRNA. Lastly, we screened for gRNAs targeting sex-determination genes that could be widely applicable for developing field genetic control strategies. Overall, this work highlights the utility of employing both Cas9 and Cas12a nucleases and underscores the importance of designing universal genetic strategies adaptable to diverse mosquito populations.
Collapse
Affiliation(s)
| | - Yoosook Lee
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32962, USA
| | - Derrick K Mathias
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32962, USA
| | - Víctor López Del Amo
- Center for Infectious Diseases, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Wudarski J, Aliabadi S, Gulia-Nuss M. Arthropod promoters for genetic control of disease vectors. Trends Parasitol 2024; 40:619-632. [PMID: 38824066 PMCID: PMC11223965 DOI: 10.1016/j.pt.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 06/03/2024]
Abstract
Vector-borne diseases (VBDs) impose devastating effects on human health and a heavy financial burden. Malaria, Lyme disease, and dengue fever are just a few examples of VBDs that cause severe illnesses. The current strategies to control VBDs consist mainly of environmental modification and chemical use, and to a small extent, genetic approaches. The genetic approaches, including transgenesis/genome modification and gene-drive technologies, provide the basis for developing new tools for VBD prevention by suppressing vector populations or reducing their capacity to transmit pathogens. The regulatory elements such as promoters are required for a robust sex-, tissue-, and stage-specific transgene expression. As discussed in this review, information on the regulatory elements is available for mosquito vectors but is scant for other vectors.
Collapse
Affiliation(s)
- Jakub Wudarski
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Simindokht Aliabadi
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA.
| |
Collapse
|
22
|
Kefi M, Cardoso-Jaime V, Saab SA, Dimopoulos G. Curing mosquitoes with genetic approaches for malaria control. Trends Parasitol 2024; 40:487-499. [PMID: 38760256 DOI: 10.1016/j.pt.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the past decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in 'curing' Anopheles vectors of the malaria parasite.
Collapse
Affiliation(s)
- Mary Kefi
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Victor Cardoso-Jaime
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Sally A Saab
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
23
|
Du J, Chen W, Jia X, Xu X, Yang E, Zhou R, Zhang Y, Metzloff M, Messer PW, Champer J. Germline Cas9 promoters with improved performance for homing gene drive. Nat Commun 2024; 15:4560. [PMID: 38811556 PMCID: PMC11137117 DOI: 10.1038/s41467-024-48874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
Gene drive systems could be a viable strategy to prevent pathogen transmission or suppress vector populations by propagating drive alleles with super-Mendelian inheritance. CRISPR-based homing gene drives convert wild type alleles into drive alleles in heterozygotes with Cas9 and gRNA. It is thus desirable to identify Cas9 promoters that yield high drive conversion rates, minimize the formation rate of resistance alleles in both the germline and the early embryo, and limit somatic Cas9 expression. In Drosophila, the nanos promoter avoids leaky somatic expression, but at the cost of high embryo resistance from maternally deposited Cas9. To improve drive efficiency, we test eleven Drosophila melanogaster germline promoters. Some achieve higher drive conversion efficiency with minimal embryo resistance, but none completely avoid somatic expression. However, such somatic expression often does not carry detectable fitness costs for a rescue homing drive targeting a haplolethal gene, suggesting somatic drive conversion. Supporting a 4-gRNA suppression drive, one promoter leads to a low drive equilibrium frequency due to fitness costs from somatic expression, but the other outperforms nanos, resulting in successful suppression of the cage population. Overall, these Cas9 promoters hold advantages for homing drives in Drosophila species and may possess valuable homologs in other organisms.
Collapse
Affiliation(s)
- Jie Du
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China.
| | - Weizhe Chen
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xihua Jia
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Xuejiao Xu
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Emily Yang
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ruizhi Zhou
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Yuqi Zhang
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Matt Metzloff
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
24
|
Chae K, Contreras B, Romanowski JS, Dawson C, Myles KM, Adelman ZN. Transgene removal using an in cis programmed homing endonuclease via single-strand annealing in the mosquito Aedes aegypti. Commun Biol 2024; 7:660. [PMID: 38811748 PMCID: PMC11137009 DOI: 10.1038/s42003-024-06348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
While gene drive strategies have been proposed to aid in the control of mosquito-borne diseases, additional genome engineering technologies may be required to establish a defined end-of-product-life timeline. We previously demonstrated that single-strand annealing (SSA) was sufficient to program the scarless elimination of a transgene while restoring a disrupted gene in the disease vector mosquito Aedes aegypti. Here, we extend these findings by establishing that complete transgene removal (four gene cassettes comprising ~8-kb) can be programmed in cis. Reducing the length of the direct repeat from 700-bp to 200-bp reduces, but does not eliminate, SSA activity. In contrast, increasing direct repeat length to 1.5-kb does not increase SSA rates, suggesting diminishing returns above a certain threshold size. Finally, we show that while the homing endonuclease Y2-I-AniI triggered both SSA and NHEJ at significantly higher rates than I-SceI at one genomic locus (P5-EGFP), repair events are heavily skewed towards NHEJ at another locus (kmo), suggesting the nuclease used and the genomic region targeted have a substantial influence on repair outcomes. Taken together, this work establishes the feasibility of engineering temporary transgenes in disease vector mosquitoes, while providing critical details concerning important operational parameters.
Collapse
Affiliation(s)
- Keun Chae
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Bryan Contreras
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Joseph S Romanowski
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Chanell Dawson
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Kevin M Myles
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Zach N Adelman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
25
|
Ambrose L, Allen SL, Iro'ofa C, Butafa C, Beebe NW. Genetic and geographic population structure in the malaria vector, Anopheles farauti, provides a candidate system for pioneering confinable gene-drive releases. Heredity (Edinb) 2024; 132:232-246. [PMID: 38494530 PMCID: PMC11074138 DOI: 10.1038/s41437-024-00677-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Indoor insecticide applications are the primary tool for reducing malaria transmission in the Solomon Archipelago, a region where Anopheles farauti is the only common malaria vector. Due to the evolution of behavioural resistance in some An. farauti populations, these applications have become less effective. New malaria control interventions are therefore needed in this region, and gene-drives provide a promising new technology. In considering developing a population-specific (local) gene-drive in An. farauti, we detail the species' population genetic structure using microsatellites and whole mitogenomes, finding many spatially confined populations both within and between landmasses. This strong population structure suggests that An. farauti would be a useful system for developing a population-specific, confinable gene-drive for field release, where private alleles can be used as Cas9 targets. Previous work on Anopheles gambiae has used the Cardinal gene for the development of a global population replacement gene-drive. We therefore also analyse the Cardinal gene to assess whether it may be a suitable target to engineer a gene-drive for the modification of local An. farauti populations. Despite the extensive population structure observed in An. farauti for microsatellites, only one remote island population from Vanuatu contained fixed and private alleles at the Cardinal locus. Nonetheless, this study provides an initial framework for further population genomic investigations to discover high-frequency private allele targets in localized An. farauti populations. This would enable the development of gene-drive strains for modifying localised populations with minimal chance of escape and may provide a low-risk route to field trial evaluations.
Collapse
Affiliation(s)
- Luke Ambrose
- School of the Environment, University of Queensland, St Lucia, Brisbane, QLD, Australia.
| | - Scott L Allen
- School of the Environment, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Charlie Iro'ofa
- Solomon Islands Ministry of Health, Honiara, Guadalcanal, Solomon Islands
| | - Charles Butafa
- Solomon Islands Ministry of Health, Honiara, Guadalcanal, Solomon Islands
| | - Nigel W Beebe
- School of the Environment, University of Queensland, St Lucia, Brisbane, QLD, Australia.
| |
Collapse
|
26
|
Sánchez C. HM, Smith DL, Marshall JM. MGSurvE: A framework to optimize trap placement for genetic surveillance of mosquito populations. PLoS Comput Biol 2024; 20:e1012046. [PMID: 38709820 PMCID: PMC11098508 DOI: 10.1371/journal.pcbi.1012046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/16/2024] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
Genetic surveillance of mosquito populations is becoming increasingly relevant as genetics-based mosquito control strategies advance from laboratory to field testing. Especially applicable are mosquito gene drive projects, the potential scale of which leads monitoring to be a significant cost driver. For these projects, monitoring will be required to detect unintended spread of gene drive mosquitoes beyond field sites, and the emergence of alternative alleles, such as drive-resistant alleles or non-functional effector genes, within intervention sites. This entails the need to distribute mosquito traps efficiently such that an allele of interest is detected as quickly as possible-ideally when remediation is still viable. Additionally, insecticide-based tools such as bednets are compromised by insecticide-resistance alleles for which there is also a need to detect as quickly as possible. To this end, we present MGSurvE (Mosquito Gene SurveillancE): a computational framework that optimizes trap placement for genetic surveillance of mosquito populations such that the time to detection of an allele of interest is minimized. A key strength of MGSurvE is that it allows important biological features of mosquitoes and the landscapes they inhabit to be accounted for, namely: i) resources required by mosquitoes (e.g., food sources and aquatic breeding sites) can be explicitly distributed through a landscape, ii) movement of mosquitoes may depend on their sex, the current state of their gonotrophic cycle (if female) and resource attractiveness, and iii) traps may differ in their attractiveness profile. Example MGSurvE analyses are presented to demonstrate optimal trap placement for: i) an Aedes aegypti population in a suburban landscape in Queensland, Australia, and ii) an Anopheles gambiae population on the island of São Tomé, São Tomé and Príncipe. Further documentation and use examples are provided in project's documentation. MGSurvE is intended as a resource for both field and computational researchers interested in mosquito gene surveillance.
Collapse
Affiliation(s)
- Héctor M. Sánchez C.
- Divisions of Epidemiology and Biostatistics, University of California Berkeley, Berkeley, California, United States of America
| | - David L. Smith
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - John M. Marshall
- Divisions of Epidemiology and Biostatistics, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
27
|
Erriah B, Shtukenberg AG, Aronin R, McCarthy D, Brázda P, Ward MD, Kahr B. ROY Crystallization on Poly(ethylene) Fibers, a Model for Bed Net Crystallography. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:2432-2440. [PMID: 38495899 PMCID: PMC10938503 DOI: 10.1021/acs.chemmater.3c03188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Many long-lasting insecticidal bed nets for protection against disease vectors consist of poly(ethylene) fibers in which insecticide is incorporated during manufacture. Insecticide molecules diffuse from within the supersaturated polymers to surfaces where they become bioavailable to insects and often crystallize, a process known as blooming. Recent studies revealed that contact insecticides can be highly polymorphic. Moreover, insecticidal activity is polymorph-dependent, with forms having a higher crystal free energy yielding faster insect knockdown and mortality. Consequently, the crystallographic characterization of insecticide crystals that form on fibers is critical to understanding net function and improving net performance. Structural characterization of insecticide crystals on bed net fiber surfaces, let alone their polymorphs, has been elusive owing to the minute size of the crystals, however. Using the highly polymorphous compound ROY (5-methyl-2-[(2-nitrophenyl)-amino]thiophene-3-carbonitrile) as a proxy for insecticide crystallization, we investigated blooming and crystal formation on the surface of extruded poly(ethylene) fibers containing ROY. The blooming rates, tracked from the time of extrusion, were determined by UV-vis spectroscopy after successive washes. Six crystalline polymorphs (of the 13 known) were observed on poly(ethylene) fiber surfaces, and they were identified and characterized by Raman microscopy, scanning electron microscopy, and 3D electron diffraction. These observations reveal that the crystallization and phase behavior of polymorphs forming on poly(ethylene) fibers is complex and dynamic. The characterization of blooming and microcrystals underscores the importance of bed net crystallography for the optimization of bed net performance.
Collapse
Affiliation(s)
- Bryan Erriah
- Department
of Chemistry and Molecular Design Institute, New York University, New York, 29 Washington Place, New York City, New York 10003, United States
| | - Alexander G. Shtukenberg
- Department
of Chemistry and Molecular Design Institute, New York University, New York, 29 Washington Place, New York City, New York 10003, United States
| | - Reese Aronin
- Department
of Chemistry and Molecular Design Institute, New York University, New York, 29 Washington Place, New York City, New York 10003, United States
| | - Derik McCarthy
- Department
of Chemistry and Molecular Design Institute, New York University, New York, 29 Washington Place, New York City, New York 10003, United States
| | - Petr Brázda
- Department
of Structure Analysis, Institute of Physics, Czech Academy of Sciences, Na Slovance 2/1999, Prague 8 18221, Czech Republic
| | - Michael D. Ward
- Department
of Chemistry and Molecular Design Institute, New York University, New York, 29 Washington Place, New York City, New York 10003, United States
| | - Bart Kahr
- Department
of Chemistry and Molecular Design Institute, New York University, New York, 29 Washington Place, New York City, New York 10003, United States
| |
Collapse
|
28
|
Coutinho-Abreu IV, Jamshidi O, Raban R, Atabakhsh K, Merriman JA, Akbari OS. Identification of human skin microbiome odorants that manipulate mosquito landing behavior. Sci Rep 2024; 14:1631. [PMID: 38238397 PMCID: PMC10796395 DOI: 10.1038/s41598-023-50182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/16/2023] [Indexed: 01/22/2024] Open
Abstract
The resident human skin microbiome is responsible for the production of most of the human scents that are attractive to mosquitoes. Hence, engineering the human skin microbiome to synthesize less of mosquito attractants or produce repellents could potentially reduce bites and prevent the transmission of deadly mosquito-borne pathogens. In order to further characterize the human skin volatilome, we quantified the major volatiles of 39 strains of skin commensals (Staphylococci and Corynebacterium). Importantly, to validate the behavioral activity of these volatiles, we first assessed landing behavior triggered by human skin volatiles. We demonstrated that landing behavior is gated by the presence of carbon dioxide and L-(+)-lactic acid. This is similar to the combinatorial coding triggering mosquito short range attraction. Repellency behavior to selected skin volatiles and terpenes was tested in the presence of carbon dioxide and L-(+)-lactic acid. In a 2-choice landing behavior context, the skin volatiles 2- and 3-methyl butyric acids reduced mosquito landing by 62.0-81.6% and 87.1-99.6%, respectively. Similarly, the terpene geraniol was capable of reducing mosquito landing behavior by 74.9%. We also tested the potential repellency effects of terpenes in mosquitoes at short-range using a 4-port olfactometer. In these assays, geraniol reduced mosquito attraction (69-78%) to a mixture of key human kairomones carbon dioxide, L-(+)-lactic acid, and ammonia. These findings demonstrate that carbon dioxide and L-(+)-lactic acid change the valence of other skin volatiles towards mosquito landing behavior. Moreover, this study offers candidate odorants to be targeted in a novel strategy to reduce attractants or produce repellents by the human skin microbiota that may curtail mosquito bites, and subsequent mosquito-borne disease.
Collapse
Affiliation(s)
- Iliano V Coutinho-Abreu
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Omid Jamshidi
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robyn Raban
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Katayoon Atabakhsh
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Joseph A Merriman
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Microbiome Therapies Initiative, Stanford University, Palo Alto, CA, 94305, USA
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
29
|
Meccariello A, Hou S, Davydova S, Fawcett JD, Siddall A, Leftwich PT, Krsticevic F, Papathanos PA, Windbichler N. Gene drive and genetic sex conversion in the global agricultural pest Ceratitis capitata. Nat Commun 2024; 15:372. [PMID: 38191463 PMCID: PMC10774415 DOI: 10.1038/s41467-023-44399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Homing-based gene drives are recently proposed interventions promising the area-wide, species-specific genetic control of harmful insect populations. Here we characterise a first set of gene drives in a tephritid agricultural pest species, the Mediterranean fruit fly Ceratitis capitata (medfly). Our results show that the medfly is highly amenable to homing-based gene drive strategies. By targeting the medfly transformer gene, we also demonstrate how CRISPR-Cas9 gene drive can be coupled to sex conversion, whereby genetic females are transformed into fertile and harmless XX males. Given this unique malleability of sex determination, we modelled gene drive interventions that couple sex conversion and female sterility and found that such approaches could be effective and tolerant of resistant allele selection in the target population. Our results open the door for developing gene drive strains for the population suppression of the medfly and related tephritid pests by co-targeting female reproduction and shifting the reproductive sex ratio towards males. They demonstrate the untapped potential for gene drives to tackle agricultural pests in an environmentally friendly and economical way.
Collapse
Affiliation(s)
- Angela Meccariello
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - Shibo Hou
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Serafima Davydova
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | | | - Alexandra Siddall
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Flavia Krsticevic
- Department of Entomology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Philippos Aris Papathanos
- Department of Entomology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
30
|
Terradas G, Macias VM, Peterson H, McKeand S, Krawczyk G, Rasgon JL. The Development and Expansion of in vivo Germline Editing Technologies in Arthropods: Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) and Beyond. Integr Comp Biol 2023; 63:1550-1563. [PMID: 37742320 PMCID: PMC10755176 DOI: 10.1093/icb/icad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023] Open
Abstract
In the past 20 years, sequencing technologies have led to easy access to genomic data from nonmodel organisms in all biological realms. Insect genetic manipulation, however, continues to be a challenge due to various factors, including technical and cost-related issues. Traditional techniques such as microinjection of gene-editing vectors into early stage embryos have been used for arthropod transgenesis and the discovery of Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR-Cas) technologies allowed for targeted mutagenesis and the creation of knockouts or knock-ins in arthropods. Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) acts as an alternative to embryonic microinjections, which require expensive equipment and extensive hands-on training. ReMOT Control's main advantage is its ease of use coupled with the ability to hypothetically target any vitellogenic species, as injections are administered to the egg-laying adult rather than embryos. After its initial application in the mosquito Aedes aegypti, ReMOT Control has successfully produced mutants not only for mosquitoes but for multiple arthropod species from diverse orders, such as ticks, mites, wasps, beetles, and true bugs, and is being extended to crustaceans, demonstrating the versatility of the technique. In this review, we discuss the current state of ReMOT Control from its proof-of-concept to the advances and challenges in the application across species after 5 years since its development, including novel extensions of the technique such as direct parental (DIPA)-CRISPR.
Collapse
Affiliation(s)
- Gerard Terradas
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Vanessa M Macias
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Hillary Peterson
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Sage McKeand
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Grzegorz Krawczyk
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| | - Jason L Rasgon
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park Pennsylvania, 16802, USA
| |
Collapse
|
31
|
Finda MF, Juma EO, Kahamba NF, Mthawanji RS, Sambo M, Emidi B, Wiener S, O'Brochta D, Santos M, James S, Okumu FO. Perspectives of African stakeholders on gene drives for malaria control and elimination: a multi-country survey. Malar J 2023; 22:384. [PMID: 38129897 PMCID: PMC10740233 DOI: 10.1186/s12936-023-04787-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Gene drive modified mosquitoes (GDMMs) have the potential to address Africa's persistent malaria problem, but are still in early stages of development and testing. Continuous engagement of African stakeholders is crucial for successful evaluation and implementation of these technologies. The aim of this multi-country study was, therefore, to explore the insights and recommendations of key stakeholders across Africa on the potential of GDMMs for malaria control and elimination in the continent. METHODS A concurrent mixed-methods study design was used, involving a structured survey administered to 180 stakeholders in 25 countries in sub-Saharan Africa, followed by 18 in-depth discussions with selected groups and individuals. Stakeholders were drawn from academia, research and regulatory institutions, government ministries of health and environment, media and advocacy groups. Thematic content analysis was used to identify key topics from the in-depth discussions, and descriptive analysis was done to summarize information from the survey data. RESULTS Despite high levels of awareness of GDMMs among the stakeholders (76.7%), there was a relatively low-level of understanding of their key attributes and potential for malaria control (28.3%). When more information about GDMMs was provided to the stakeholders, they readily discussed their insights and concerns, and offered several recommendations to ensure successful research and implementation of the technology. These included: (i) increasing relevant technical expertise within Africa, (ii) generating local evidence on safety, applicability, and effectiveness of GDMMs, and (iii) developing country-specific regulations for safe and effective governance of GDMMs. A majority of the respondents (92.9%) stated that they would support field trials or implementation of GDMMs in their respective countries. This study also identified significant misconceptions regarding the phase of GDMM testing in Africa, as several participants incorrectly asserted that GDMMs were already present in Africa, either within laboratories or released into the field. CONCLUSION Incorporating views and recommendations of African stakeholders in the ongoing research and development of GDMMs is crucial for instilling stakeholder confidence on their potential application. These findings will enable improved planning for GDMMs in Africa as well as improved target product profiles for the technologies to maximize their potential for solving Africa's enduring malaria challenge.
Collapse
Affiliation(s)
- Marceline F Finda
- Environmental Health and Ecological Sciences, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
| | - Elijah O Juma
- Pan-African Mosquito Control Association (PAMCA), Off Mbagathi Road, PO Box 44455-00100, Nairobi, Kenya
| | - Najat F Kahamba
- Environmental Health and Ecological Sciences, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania
| | - Rhosheen S Mthawanji
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre 3, PO Box 30096, Chichiri, Malawi
| | - Maganga Sambo
- Environmental Health and Ecological Sciences, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania
| | - Basiliana Emidi
- National Institute for Medical Research, PO Box 1462, Mwanza, Tanzania
| | - Susan Wiener
- Foundation for the National Institutes of Health, 11400 Rockville Pike, Suite 600, North Bethesda, MD, 20852, USA
| | - David O'Brochta
- Foundation for the National Institutes of Health, 11400 Rockville Pike, Suite 600, North Bethesda, MD, 20852, USA
| | - Michael Santos
- Foundation for the National Institutes of Health, 11400 Rockville Pike, Suite 600, North Bethesda, MD, 20852, USA
| | - Stephanie James
- Foundation for the National Institutes of Health, 11400 Rockville Pike, Suite 600, North Bethesda, MD, 20852, USA
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G128QQ, UK
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 1 Smuts Avenue, Braamofontein, 2000, South Africa
| |
Collapse
|
32
|
Green EI, Jaouen E, Klug D, Proveti Olmo R, Gautier A, Blandin S, Marois E. A population modification gene drive targeting both Saglin and Lipophorin impairs Plasmodium transmission in Anopheles mosquitoes. eLife 2023; 12:e93142. [PMID: 38051195 PMCID: PMC10786457 DOI: 10.7554/elife.93142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
Lipophorin is an essential, highly expressed lipid transport protein that is secreted and circulates in insect hemolymph. We hijacked the Anopheles coluzzii Lipophorin gene to make it co-express a single-chain version of antibody 2A10, which binds sporozoites of the malaria parasite Plasmodium falciparum. The resulting transgenic mosquitoes show a markedly decreased ability to transmit Plasmodium berghei expressing the P. falciparum circumsporozoite protein to mice. To force the spread of this antimalarial transgene in a mosquito population, we designed and tested several CRISPR/Cas9-based gene drives. One of these is installed in, and disrupts, the pro-parasitic gene Saglin and also cleaves wild-type Lipophorin, causing the anti-malarial modified Lipophorin version to replace the wild type and hitch-hike together with the Saglin drive. Although generating drive-resistant alleles and showing instability in its gRNA-encoding multiplex array, the Saglin-based gene drive reached high levels in caged mosquito populations and efficiently promoted the simultaneous spread of the antimalarial Lipophorin::Sc2A10 allele. This combination is expected to decrease parasite transmission via two different mechanisms. This work contributes to the design of novel strategies to spread antimalarial transgenes in mosquitoes, and illustrates some expected and unexpected outcomes encountered when establishing a population modification gene drive.
Collapse
Affiliation(s)
- Emily I Green
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| | - Etienne Jaouen
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| | - Dennis Klug
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| | | | - Amandine Gautier
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| | - Stéphanie Blandin
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| | - Eric Marois
- Inserm U1257, CNRS UPR9022, University of StrasbourgStrasbourgFrance
| |
Collapse
|
33
|
Raban R, Marshall JM, Hay BA, Akbari OS. Manipulating the Destiny of Wild Populations Using CRISPR. Annu Rev Genet 2023; 57:361-390. [PMID: 37722684 PMCID: PMC11064769 DOI: 10.1146/annurev-genet-031623-105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Genetic biocontrol aims to suppress or modify populations of species to protect public health, agriculture, and biodiversity. Advancements in genome engineering technologies have fueled a surge in research in this field, with one gene editing technology, CRISPR, leading the charge. This review focuses on the current state of CRISPR technologies for genetic biocontrol of pests and highlights the progress and ongoing challenges of using these approaches.
Collapse
Affiliation(s)
- Robyn Raban
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - John M Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, California, USA
| | - Omar S Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
34
|
Chennuri PR, Zapletal J, Monfardini RD, Ndeffo-Mbah ML, Adelman ZN, Myles KM. Repeat mediated excision of gene drive elements for restoring wild-type populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568397. [PMID: 38045402 PMCID: PMC10690251 DOI: 10.1101/2023.11.23.568397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
We demonstrate here that single strand annealing (SSA) repair can be co-opted for the precise autocatalytic excision of a drive element. Although SSA is not the predominant form of DNA repair in eukaryotic organisms, we increased the likelihood of its use by engineering direct repeats at sites flanking the drive allele, and then introducing a double-strand DNA break (DSB) at a second endonuclease target site encoded within the drive allele. We have termed this technology Repeat Mediated Excision of a Drive Element (ReMEDE). Incorporation of ReMEDE into the previously described mutagenic chain reaction (MCR) gene drive, targeting the yellow gene of Drosophila melanogaster, replaced drive alleles with wild-type alleles demonstrating proof-of-principle. Although the ReMEDE system requires further research and development, the technology has a number of attractive features as a gene drive mitigation strategy, chief among these the potential to restore a wild-type population without releasing additional transgenic organisms or large-scale environmental engineering efforts.
Collapse
Affiliation(s)
- Pratima R Chennuri
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX 77843, USA
| | - Josef Zapletal
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Raquel D Monfardini
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX 77843, USA
| | - Martial Loth Ndeffo-Mbah
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Zach N Adelman
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX 77843, USA
| | - Kevin M Myles
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
35
|
Harvey-Samuel T, Feng X, Okamoto EM, Purusothaman DK, Leftwich PT, Alphey L, Gantz VM. CRISPR-based gene drives generate super-Mendelian inheritance in the disease vector Culex quinquefasciatus. Nat Commun 2023; 14:7561. [PMID: 37985762 PMCID: PMC10662442 DOI: 10.1038/s41467-023-41834-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/21/2023] [Indexed: 11/22/2023] Open
Abstract
Culex mosquitoes pose a significant public health threat as vectors for a variety of diseases including West Nile virus and lymphatic filariasis, and transmit pathogens threatening livestock, companion animals, and endangered birds. Rampant insecticide resistance makes controlling these mosquitoes challenging and necessitates the development of new control strategies. Gene drive technologies have made significant progress in other mosquito species, although similar advances have been lagging in Culex. Here we test a CRISPR-based homing gene drive for Culex quinquefasciatus, and show that the inheritance of two split-gene-drive transgenes, targeting different loci, are biased in the presence of a Cas9-expressing transgene although with modest efficiencies. Our findings extend the list of disease vectors where engineered homing gene drives have been demonstrated to include Culex alongside Anopheles and Aedes, and pave the way for future development of these technologies to control Culex mosquitoes.
Collapse
Affiliation(s)
- Tim Harvey-Samuel
- Arthropod Genetics Group, The Pirbright Institute, Woking, GU24 0NF, UK
| | - Xuechun Feng
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangdong, 518106, Shenzhen, China.
| | - Emily M Okamoto
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Deepak-Kumar Purusothaman
- Arthropod Genetics Group, The Pirbright Institute, Woking, GU24 0NF, UK
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Luke Alphey
- Arthropod Genetics Group, The Pirbright Institute, Woking, GU24 0NF, UK.
- Biology Department, University of York, York, YO10 5DD, UK.
| | - Valentino M Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
36
|
Kormos A, Dimopoulos G, Bier E, Lanzaro GC, Marshall JM, James AA. Conceptual risk assessment of mosquito population modification gene-drive systems to control malaria transmission: preliminary hazards list workshops. Front Bioeng Biotechnol 2023; 11:1261123. [PMID: 37965050 PMCID: PMC10641379 DOI: 10.3389/fbioe.2023.1261123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
The field-testing and eventual adoption of genetically-engineered mosquitoes (GEMs) to control vector-borne pathogen transmission will require them meeting safety criteria specified by regulatory authorities in regions where the technology is being considered for use and other locales that might be impacted. Preliminary risk considerations by researchers and developers may be useful for planning the baseline data collection and field research used to address the anticipated safety concerns. Part of this process is to identify potential hazards (defined as the inherent ability of an entity to cause harm) and their harms, and then chart the pathways to harm and evaluate their probability as part of a risk assessment. The University of California Malaria Initiative (UCMI) participated in a series of workshops held to identify potential hazards specific to mosquito population modification strains carrying gene-drive systems coupled to anti-parasite effector genes and their use in a hypothetical island field trial. The hazards identified were placed within the broader context of previous efforts discussed in the scientific literature. Five risk areas were considered i) pathogens, infections and diseases, and the impacts of GEMs on human and animal health, ii) invasiveness and persistence of GEMs, and interactions of GEMs with target organisms, iii) interactions of GEMs with non-target organisms including horizontal gene transfer, iv) impacts of techniques used for the management of GEMs and v) evolutionary and stability considerations. A preliminary hazards list (PHL) was developed and is made available here. This PHL is useful for internal project risk evaluation and is available to regulators at prospective field sites. UCMI project scientists affirm that the subsequent processes associated with the comprehensive risk assessment for the application of this technology should be driven by the stakeholders at the proposed field site and areas that could be affected by this intervention strategy.
Collapse
Affiliation(s)
- Ana Kormos
- Vector Genetics Laboratory, University of California, Davis, Davis, CA, United States
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Malaria Research Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Ethan Bier
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, United States
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, University of California, Davis, Davis, CA, United States
| | - John M. Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Anthony A. James
- Departments of Microbiology and Molecular Genetics and Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
37
|
Sanz Juste S, Okamoto EM, Nguyen C, Feng X, López Del Amo V. Next-generation CRISPR gene-drive systems using Cas12a nuclease. Nat Commun 2023; 14:6388. [PMID: 37821497 PMCID: PMC10567717 DOI: 10.1038/s41467-023-42183-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
One method for reducing the impact of vector-borne diseases is through the use of CRISPR-based gene drives, which manipulate insect populations due to their ability to rapidly propagate desired genetic traits into a target population. However, all current gene drives employ a Cas9 nuclease that is constitutively active, impeding our control over their propagation abilities and limiting the generation of alternative gene drive arrangements. Yet, other nucleases such as the temperature sensitive Cas12a have not been explored for gene drive designs in insects. To address this, we herein present a proof-of-concept gene-drive system driven by Cas12a that can be regulated via temperature modulation. Furthermore, we combined Cas9 and Cas12a to build double gene drives capable of simultaneously spreading two independent engineered alleles. The development of Cas12a-mediated gene drives provides an innovative option for designing next-generation vector control strategies to combat disease vectors and agricultural pests.
Collapse
Affiliation(s)
- Sara Sanz Juste
- Department of Epigenetics & Molecular Carcinogenesis at MD Anderson, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
- Center for Cancer Epigenetics, MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Emily M Okamoto
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christina Nguyen
- University of Texas Health Science Center, School of Public Health, Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, Houston, TX, 77030, USA
| | - Xuechun Feng
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518106, China.
| | - Víctor López Del Amo
- University of Texas Health Science Center, School of Public Health, Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, Houston, TX, 77030, USA.
| |
Collapse
|
38
|
Bennett JB, Wu SL, Chennuri PR, Myles KM, Ndeffo-Mbah ML. Expansions to the MGDrivE suite for simulating the efficacy of novel gene-drive constructs in the control of mosquito-borne diseases. BMC Res Notes 2023; 16:258. [PMID: 37798614 PMCID: PMC10557238 DOI: 10.1186/s13104-023-06533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
OBJECTIVE The MGDrivE (MGDrivE 1 and MGDrivE 2) modeling framework provides a flexible and expansive environment for testing the efficacy of novel gene-drive constructs for the control of mosquito-borne diseases. However, the existing model framework did not previously support several features necessary to simulate some types of intervention strategies. Namely, current MGDrivE versions do not permit modeling of small molecule inducible systems for controlling gene expression in gene drive designs or the inheritance patterns of self-eliminating gene drive mechanisms. RESULTS Here, we demonstrate a new MGDrivE 2 module that permits the simulation of gene drive strategies incorporating small molecule-inducible systems and self-eliminating gene drive mechanisms. Additionally, we also implemented novel sparsity-aware sampling algorithms for improved computational efficiency in MGDrivE 2 and supplied an analysis and plotting function applicable to the outputs of MGDrivE 1 and MGDrivE 2.
Collapse
Affiliation(s)
| | - Sean L Wu
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, 98121, USA
| | - Pratima R Chennuri
- Department of Entomology, Texas A & M University, College Station, TX, 77843, USA
- Future Fields, Edmonton, AB, T5H 0L5, Canada
| | - Kevin M Myles
- Department of Entomology, Texas A & M University, College Station, TX, 77843, USA
| | - Martial L Ndeffo-Mbah
- Department of Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
39
|
Pan M, Champer J. Making waves: Comparative analysis of gene drive spread characteristics in a continuous space model. Mol Ecol 2023; 32:5673-5694. [PMID: 37694511 DOI: 10.1111/mec.17131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
With their ability to rapidly increase in frequency, gene drives can be used to modify or suppress target populations after an initial release of drive individuals. Recent advances have revealed many possibilities for different types of drives, and several of these have been realized in experiments. These drives have advantages and disadvantages related to their ease of construction, confinement and capacity to be used for modification or suppression. Though characteristics of these drives have been explored in modelling studies, assessment in continuous space environments has been limited, often focusing on outcomes rather than fundamental properties. Here, we conduct a comparative analysis of many different gene drive types that have the capacity to form a wave of advance in continuous space using individual-based simulations in continuous space. We evaluate the drive wave speed as a function of drive performance and ecological parameters, which reveals substantial differences between drive performance in panmictic versus spatial environments. In particular, we find that suppression drive waves are uniquely vulnerable to fitness costs and undesired CRISPR cleavage activity in embryos by maternal deposition. Some drives, however, retain robust performance even with widely varying efficiency parameters. To gain a better understanding of drive waves, we compare their panmictic performance and find that the rate of wild-type allele removal is correlated with drive wave speed, though this is also affected by other factors. Overall, our results provide a useful resource for understanding the performance of drives in spatially continuous environments, which may be most representative of potential drive deployment in many relevant scenarios.
Collapse
Affiliation(s)
- Mingzuyu Pan
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
40
|
Wolf S, Collatz J, Enkerli J, Widmer F, Romeis J. Assessing potential hybridization between a hypothetical gene drive-modified Drosophila suzukii and nontarget Drosophila species. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:1921-1932. [PMID: 36693350 DOI: 10.1111/risa.14096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Genetically engineered gene drives (geGD) are potentially powerful tools for suppressing or even eradicating populations of pest insects. Before living geGD insects can be released into the environment, they must pass an environmental risk assessment to ensure that their release will not cause unacceptable harm to non-targeted entities of the environment. A key research question concerns the likelihood that nontarget species will acquire the functional GD elements; such acquisition could lead to reduced abundance or loss of those species and to a disruption of the ecosystem services they provide. The main route for gene flow is through hybridization between the geGD insect strain and closely related species that co-occur in the area of release and its expected dispersal. Using the invasive spotted-wing drosophila, Drosophila suzukii, as a case study, we provide a generally applicable strategy on how a combination of interspecific hybridization experiments, behavioral observations, and molecular genetic analyses can be used to assess the potential for hybridization.
Collapse
Affiliation(s)
- Sarah Wolf
- Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland
- Institute for Plant Sciences, University of Bern, Bern, Switzerland
| | - Jana Collatz
- Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland
| | - Jürg Enkerli
- Molecular Ecology, Agroscope, Zürich, Switzerland
| | | | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland
| |
Collapse
|
41
|
Williams AE, Sanchez-Vargas I, Martin LE, Martin-Martin I, Bennett S, Olson KE, Calvo E. Quantifying Fitness Costs in Transgenic Aedes aegypti Mosquitoes. J Vis Exp 2023:10.3791/65136. [PMID: 37782092 PMCID: PMC11531664 DOI: 10.3791/65136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Transgenic mosquitoes often display fitness costs compared to their wild-type counterparts. In this regard, fitness cost studies involve collecting life parameter data from genetically modified mosquitoes and comparing them to mosquitoes lacking transgenes from the same genetic background. This manuscript illustrates how to measure common life history traits in the mosquito Aedes aegypti, including fecundity, wing size and shape, fertility, sex ratio, viability, development times, male contribution, and adult longevity. These parameters were chosen because they reflect reproductive success, are simple to measure, and are commonly reported in the literature. The representative results quantify fitness costs associated with either a gene knock-out or a single insertion of a gene drive element. Standardizing how life parameter data are collected is important because such data may be used to compare the health of transgenic mosquitoes generated across studies or to model the transgene fixation rate in a simulated wild-type mosquito population. Although this protocol is specific for transgenic Aedes aegypti, the protocol may also be used for other mosquito species or other experimental treatment conditions, with the caveat that certain biological contexts may require special adaptations.
Collapse
Affiliation(s)
- Adeline E Williams
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University; Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health;
| | - Irma Sanchez-Vargas
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University
| | - Lindsay E Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Department of Biological Sciences, Vanderbilt University
| | - Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; National Center for Microbiology, Instituto de Salud Carlos III
| | - Susi Bennett
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University
| | - Ken E Olson
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University;
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health;
| |
Collapse
|
42
|
Menchaca A. Assisted Reproductive Technologies (ART) and genome editing to support a sustainable livestock. Anim Reprod 2023; 20:e20230074. [PMID: 37720722 PMCID: PMC10503885 DOI: 10.1590/1984-3143-ar2023-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/21/2023] [Indexed: 09/19/2023] Open
Abstract
This article provides an overview of assisted reproductive technologies (ART) and genome engineering to improve livestock production systems for the contribution of global sustainability. Most ruminant production systems are conducted on grassland conditions, as is the case of South American countries that are leaders in meat and milk production worldwide with a well-established grass-feed livestock. These systems have many strengths from an environmental perspective and consumer preferences but requires certain improvements to enhance resource efficiency. Reproductive performance is one of the main challenges particularly in cow-calf operations that usually are conducted under adverse conditions and thus ART can make a great contribution. Fixed-time artificial insemination is applied in South America in large scale programs as 20 to 30% of cows receive this technology every year in each country, with greater calving rate and significant herd genetic gain occurred in this region. Sexed semen has also been increasingly implemented, enhancing resource efficiency by a) obtaining desired female replacement and improving animal welfare by avoiding newborn male sacrifice in dairy industry, or b) alternatively producing male calves for beef industry. In vitro embryo production has been massively applied, with this region showing the greatest number of embryos produced worldwide leading to significant improvement in herd genetics and productivity. Although the contribution of these technologies is considerable, further improvements will be required for a significant livestock transformation and novel biotechnologies such as genome editing are already available. Through the CRISPR/Cas-based system it is possible to enhance food yield and quality, avoid animal welfare concerns, overcome animal health threats, and control pests and invasive species harming food production. In summary, a significant enhancement in livestock productivity and resource efficiency can be made through reproductive technologies and genome editing, improving at the same time profitability for farmers, and global food security and sustainability.
Collapse
Affiliation(s)
- Alejo Menchaca
- Plataforma de Salud Animal, Instituto Nacional de Investigación Agropecuaria, Montevideo, Uruguay
- Fundación Instituto de Reproducción Animal Uruguay, Montevideo, Uruguay
| |
Collapse
|
43
|
Coutinho-Abreu IV, Jamshidi O, Raban R, Atabakhsh K, Merriman JA, Fischbach MA, Akbari OS. Identification of human skin microbiome odorants that manipulate mosquito landing behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553996. [PMID: 37662338 PMCID: PMC10473644 DOI: 10.1101/2023.08.19.553996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The resident human skin microbiome is responsible for the production of most of the human scents that are attractive to mosquitoes. Hence, engineering the human skin microbiome to synthesize less of mosquito attractants or produce repellents could potentially reduce bites and prevent the transmission of deadly mosquito-borne pathogens. In order to further characterize the human skin volatilome, we quantified the major volatiles of 39 strains of skin commensals (Staphylococci and Corynebacterium). Importantly, to validate the behavioral activity of these volatiles, we first assessed landing behavior triggered by human skin bacteria volatiles. We demonstrated that this behavioral step is gated by the presence of carbon dioxide and L-(+)-lactic acid, similar to the combinatorial coding triggering short range attraction. Repellency behavior to selected skin volatiles and the geraniol terpene was tested in the presence of carbon dioxide and L-(+)-lactic acid. In a 2-choice landing behavior context, the skin volatiles 2- and 3-methyl butyric acids reduced mosquito landing by 62.0-81.6% and 87.1-99.6%, respectively. Similarly, geraniol was capable of reducing mosquito landing behavior by 74.9%. We also tested the potential repellency effects of geraniol on mosquitoes at short-range using a 4-port olfactometer. In these assays, geraniol reduced mosquito attraction (69-78%) to a mixture of key human kairomones carbon dioxide, L-(+)-lactic acid, and ammonia. These findings demonstrate that carbon dioxide and L-(+)-lactic acid changes the valence of other skin volatiles towards mosquito landing behavior. Moreover, this study offers candidate odorants to be targeted in a novel strategy to reduce attractants or produce repellents by the human skin microbiota that may curtail mosquito bites, and subsequent mosquito-borne disease.
Collapse
Affiliation(s)
- Iliano V. Coutinho-Abreu
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Omid Jamshidi
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Robyn Raban
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Katayoon Atabakhsh
- Department of Bioengineering Stanford University, Stanford, CA 94305, USA
| | - Joseph A. Merriman
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Microbiome Therapies Initiative, Stanford University, Palo Alto, CA 94305, USA
| | - Michael A. Fischbach
- Department of Bioengineering Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Microbiome Therapies Initiative, Stanford University, Palo Alto, CA 94305, USA
| | - Omar S. Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
44
|
Page N, Taxiarchi C, Tonge D, Kuburic J, Chesters E, Kriezis A, Kyrou K, Game L, Nolan T, Galizi R. Single-cell profiling of Anopheles gambiae spermatogenesis defines the onset of meiotic silencing and premeiotic overexpression of the X chromosome. Commun Biol 2023; 6:850. [PMID: 37582841 PMCID: PMC10427639 DOI: 10.1038/s42003-023-05224-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
Understanding development and genetic regulation in the Anopheles gambiae germline is essential to engineer effective genetic control strategies targeting this malaria mosquito vector. These include targeting the germline to induce sterility or using regulatory sequences to drive transgene expression for applications such as gene drive. However, only very few germline-specific regulatory elements have been characterised with the majority showing leaky expression. This has been shown to considerably reduce the efficiency of current genetic control strategies, which rely on regulatory elements with more tightly restricted spatial and/or temporal expression. Meiotic silencing of the sex chromosomes limits the flexibility of transgene expression to develop effective sex-linked genetic control strategies. Here, we build on our previous study, dissecting gametogenesis into four distinct cell populations, using single-cell RNA sequencing to define eight distinct cell clusters and associated germline cell-types using available marker genes. We reveal overexpression of X-linked genes in a distinct cluster of pre-meiotic cells and document the onset of meiotic silencing of the X chromosome in a subcluster of cells in the latter stages of spermatogenesis. This study provides a comprehensive dataset, characterising the expression of distinct cell types through spermatogenesis and widening the toolkit for genetic control of malaria mosquitoes.
Collapse
Affiliation(s)
- Nicole Page
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Daniel Tonge
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK
| | - Jasmina Kuburic
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK
| | - Emily Chesters
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK
| | - Antonios Kriezis
- Department of Life Sciences, Imperial College London, London, UK
| | - Kyros Kyrou
- Department of Life Sciences, Imperial College London, London, UK
| | - Laurence Game
- Genomics Facility, MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - Tony Nolan
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Roberto Galizi
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK.
| |
Collapse
|
45
|
Carballar-Lejarazú R, Dong Y, Pham TB, Tushar T, Corder RM, Mondal A, Sánchez C. HM, Lee HF, Marshall JM, Dimopoulos G, James AA. Dual effector population modification gene-drive strains of the African malaria mosquitoes, Anopheles gambiae and Anopheles coluzzii. Proc Natl Acad Sci U S A 2023; 120:e2221118120. [PMID: 37428915 PMCID: PMC10629562 DOI: 10.1073/pnas.2221118120] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023] Open
Abstract
Proposed genetic approaches for reducing human malaria include population modification, which introduces genes into vector mosquitoes to reduce or prevent parasite transmission. We demonstrate the potential of Cas9/guide RNA (gRNA)-based gene-drive systems linked to dual antiparasite effector genes to spread rapidly through mosquito populations. Two strains have an autonomous gene-drive system coupled to dual anti-Plasmodium falciparum effector genes comprising single-chain variable fragment monoclonal antibodies targeting parasite ookinetes and sporozoites in the African malaria mosquitoes Anopheles gambiae (AgTP13) and Anopheles coluzzii (AcTP13). The gene-drive systems achieved full introduction within 3 to 6 mo after release in small cage trials. Life-table analyses revealed no fitness loads affecting AcTP13 gene-drive dynamics but AgTP13 males were less competitive than wild types. The effector molecules reduced significantly both parasite prevalence and infection intensities. These data supported transmission modeling of conceptual field releases in an island setting that shows meaningful epidemiological impacts at different sporozoite threshold levels (2.5 to 10 k) for human infection by reducing malaria incidence in optimal simulations by 50 to 90% within as few as 1 to 2 mo after a series of releases, and by ≥90% within 3 mo. Modeling outcomes for low sporozoite thresholds are sensitive to gene-drive system fitness loads, gametocytemia infection intensities during parasite challenges, and the formation of potentially drive-resistant genome target sites, extending the predicted times to achieve reduced incidence. TP13-based strains could be effective for malaria control strategies following validation of sporozoite transmission threshold numbers and testing field-derived parasite strains. These or similar strains are viable candidates for future field trials in a malaria-endemic region.
Collapse
Affiliation(s)
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Malaria Research Institute, Johns Hopkins University, Baltimore, MD21205
| | - Thai Binh Pham
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA92697-4025
| | - Taylor Tushar
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA92697-4025
| | - Rodrigo M. Corder
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA94720
| | - Agastya Mondal
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA94720
| | - Héctor M. Sánchez C.
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA94720
| | - Hsu-Feng Lee
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA92697-4025
| | - John M. Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA94720
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Malaria Research Institute, Johns Hopkins University, Baltimore, MD21205
| | - Anthony A. James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA92697-4025
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA92697-3900
| |
Collapse
|
46
|
Jia Z, Hasi S, Zhan D, Hou B, Vogl C, Burger PA. Genome and Transcriptome Analyses Facilitate Genetic Control of Wohlfahrtia magnifica, a Myiasis-Causing Flesh Fly. INSECTS 2023; 14:620. [PMID: 37504626 PMCID: PMC10380434 DOI: 10.3390/insects14070620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Myiasis caused by Wohlfahrtia magnifica is a widespread parasitic infestation in mammals. The infested host suffers from damage as the developing larvae feed on its tissues. For the control of myiasis infestation, genetic methods have been shown to be effective and promising as an alternative to insecticides. Combining genome, isoform sequencing (Iso-Seq), and RNA sequencing (RNA-seq) data, we isolated and characterized two sex-determination genes, W. magnifica transformer (Wmtra) and W. magnifica transformer2 (Wmtra2), whose orthologs in a number of insect pests have been utilized to develop genetic control approaches. Wmtra transcripts are sex-specifically spliced; only the female transcript encodes a full-length functional protein, while the male transcript encodes a truncated and non-functional polypeptide due to the presence of the male-specific exon containing multiple in-frame stop codons. The existence of five predicted TRA/TRA2 binding sites in the male-specific exon and the surrounding intron of Wmtra, as well as the presence of an RNA-recognition motif in WmTRA2 may suggest the auto-regulation of Wmtra by its own protein interacting with WmTRA2. This results in the skipping of the male-specific exon and translation of the full-length functional protein only in females. Our comparative study in dipteran species showed that both the WmTRA and WmTRA2 proteins exhibit a high degree of similarity to their orthologs in the myiasis-causing blow flies. Additionally, transcriptome profiling performed between adult females and adult males reported 657 upregulated and 365 downregulated genes. Functional analysis showed that among upregulated genes those related to meiosis and mitosis Gene Ontology (GO) terms were enriched, while, among downregulated genes, those related to muscle cell development and aerobic metabolic processes were enriched. Among the female-biased gene set, we detected five candidate genes, vasa (vas), nanos (nanos), bicoid (bcd), Bicaudal C (BicC), and innexin5 (inx5). The promoters of these genes may be able to upregulate Cas9 expression in the germline in Cas9-based homing gene drive systems as established in some flies and mosquitoes. The isolation and characterization of these genes is an important step toward the development of genetic control programs against W. magnifica infestation.
Collapse
Affiliation(s)
- Zhipeng Jia
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160 Vienna, Austria
| | - Surong Hasi
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Deng Zhan
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bin Hou
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160 Vienna, Austria
| |
Collapse
|
47
|
Sánchez C. HM, Smith DL, Marshall JM. MGSurvE: A framework to optimize trap placement for genetic surveillance of mosquito population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546301. [PMID: 37425729 PMCID: PMC10327167 DOI: 10.1101/2023.06.26.546301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Genetic surveillance of mosquito populations is becoming increasingly relevant as genetics-based mosquito control strategies advance from laboratory to field testing. Especially applicable are mosquito gene drive projects, the potential scale of which leads monitoring to be a significant cost driver. For these projects, monitoring will be required to detect unintended spread of gene drive mosquitoes beyond field sites, and the emergence of alternative alleles, such as drive-resistant alleles or non-functional effector genes, within intervention sites. This entails the need to distribute mosquito traps efficiently such that an allele of interest is detected as quickly as possible - ideally when remediation is still viable. Additionally, insecticide-based tools such as bednets are compromised by insecticide-resistance alleles for which there is also a need to detect as quickly as possible. To this end, we present MGSurvE (Mosquito Gene SurveillancE): a computational framework that optimizes trap placement for genetic surveillance of mosquito populations such that the time to detection of an allele of interest is minimized. A key strength of MGSurvE is that it allows important biological features of mosquitoes and the landscapes they inhabit to be accounted for, namely: i) resources required by mosquitoes (e.g., food sources and aquatic breeding sites) can be explicitly distributed through a landscape, ii) movement of mosquitoes may depend on their sex, the current state of their gonotrophic cycle (if female) and resource attractiveness, and iii) traps may differ in their attractiveness profile. Example MGSurvE analyses are presented to demonstrate optimal trap placement for: i) an Aedes aegypti population in a suburban landscape in Queensland, Australia, and ii) an Anopheles gambiae population on the island of São Tomé, São Tomé and Príncipe. Further documentation and use examples are provided in project's documentation. MGSurvE is freely available as an open-source Python package on pypi (https://pypi.org/project/MGSurvE/). It is intended as a resource for both field and computational researchers interested in mosquito gene surveillance.
Collapse
Affiliation(s)
- Héctor M. Sánchez C.
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
| | - David L. Smith
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - John M. Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
| |
Collapse
|
48
|
Harvey-Samuel T, Feng X, Okamoto EM, Purusothaman DK, Leftwich PT, Alphey L, Gantz VM. CRISPR-based gene drives generate super-Mendelian inheritance in the disease vector Culex quinquefasciatus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544656. [PMID: 37398284 PMCID: PMC10312623 DOI: 10.1101/2023.06.12.544656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Culex mosquitoes pose a significant public health threat as vectors for a variety of diseases including West Nile virus and lymphatic filariasis, and transmit pathogens threatening livestock, companion animals, and endangered birds. Rampant insecticide resistance makes controlling these mosquitoes challenging and necessitates the development of new control strategies. Gene drive technologies have made significant progress in other mosquito species, although similar advances have been lagging in Culex. Here we test the first CRISPR-based homing gene drive for Culex quinquefasciatus, demonstrating the possibility of using this technology to control Culex mosquitoes. Our results show that the inheritance of two split-gene-drive transgenes, targeting different loci, are biased in the presence of a Cas9-expressing transgene although with modest efficiencies. Our findings extend the list of disease vectors where engineered homing gene drives have been demonstrated to include Culex alongside Anopheles and Aedes, and pave the way for future development of these technologies to control Culex mosquitoes.
Collapse
Affiliation(s)
- Tim Harvey-Samuel
- Arthropod Genetics Group, The Pirbright Institute, Woking, UK, GU24 0NF
| | - Xuechun Feng
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA 92093
| | - Emily M Okamoto
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA 92093
| | - Deepak-Kumar Purusothaman
- Arthropod Genetics Group, The Pirbright Institute, Woking, UK, GU24 0NF
- Present address: MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK G12 8QQ
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK, NR4 7TJ
| | - Luke Alphey
- Present address: Biology Department, University of York, York, UK, YO10 5DD
| | - Valentino M Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA 92093
| |
Collapse
|
49
|
James SL, Quemada H, Benedict MQ, Dass B. Requirements for market entry of gene drive-modified mosquitoes for control of vector-borne diseases: analogies to other biologic and biotechnology products. Front Bioeng Biotechnol 2023; 11:1205865. [PMID: 37362219 PMCID: PMC10285705 DOI: 10.3389/fbioe.2023.1205865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Gene drive-modified mosquitoes (GDMMs) are proposed as new tools for control and elimination of malaria and other mosquito-borne diseases, and promising results have been observed from testing conducted in containment. Although still at an early stage of development, it is important to begin now to consider approval procedures and market entry strategies for the eventual implementation of GDMMs in the context of disease control programs, as these could impact future research plans. It is expected that, as for other types of new products, those seeking to bring GDMMs to market will be required to provide sufficient information to allow the regulator(s) to determine whether the product is safe and effective for its proposed use. There already has been much emphasis on developing requirements for the biosafety components of the "safe and effective" benchmark, largely concerned with their regulation as genetically modified organisms. Other potential approval requirements have received little attention, however. Although GDMMs are expected to be implemented primarily in the context of public health programs, any regulatory analogies to other public health products, such as pharmaceuticals, vaccines, or chemical pesticides, must take into account the characteristics of live mosquito products. Typical manufacturing standards related to product identity, potency or quality will need to be adapted to GDMMs. Valuable lessons can be drawn from the regulatory approval processes for other whole organism and genetically modified (GM) organism products. Supply chain requirements, such as scale of production, location and design of production facilities, and methods of distribution and delivery, will be dependent upon the characteristics of the particular GDMM product, the conditions of use, and the region to be served. Plans for fulfilling supply chain needs can build upon experience in the development of other live insect products for use in public health and agriculture. Implementation of GDMMs would benefit from additional research on enabling technologies for long-term storage of mosquito life stages, efficient mass production, and area-wide delivery of GDMMs. Early consideration of these practical requirements for market entry will help to mitigate downstream delays in the development of these promising new technologies.
Collapse
Affiliation(s)
- Stephanie L. James
- GeneConvene Global Collaborative, Foundation for the NIH, Bethesda, MD, United States
| | | | | | - Brinda Dass
- GeneConvene Global Collaborative, Foundation for the NIH, Bethesda, MD, United States
| |
Collapse
|
50
|
Nourani L, Mehrizi AA, Pirahmadi S, Pourhashem Z, Asadollahi E, Jahangiri B. CRISPR/Cas advancements for genome editing, diagnosis, therapeutics, and vaccine development for Plasmodium parasites, and genetic engineering of Anopheles mosquito vector. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 109:105419. [PMID: 36842543 DOI: 10.1016/j.meegid.2023.105419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
Malaria as vector-borne disease remains important health concern with over 200 million cases globally. Novel antimalarial medicines and more effective vaccines must be developed to eliminate and eradicate malaria. Appraisal of preceding genome editing approaches confirmed the CRISPR/Cas nuclease system as a novel proficient genome editing system and a tool for species-specific diagnosis, and drug resistance researches for Plasmodium species, and gene drive to control Anopheles population. CRISPR/Cas technology, as a handy tool for genome editing can be justified for the production of transgenic malaria parasites like Plasmodium transgenic lines expressing Cas9, chimeric Plasmodium transgenic lines, knockdown and knockout transgenic parasites, and transgenic parasites expressing alternative alleles, and also mutant strains of Anopheles such as only male mosquito populations, generation of wingless mosquitoes, and creation of knock-out/ knock-in mutants. Though, the incorporation of traditional methods and novel molecular techniques could noticeably enhance the quality of results. The striking development of a CRISPR/Cas-based diagnostic kit that can specifically diagnose the Plasmodium species or drug resistance markers is highly required in malaria settings with affordable cost and high-speed detection. Furthermore, the advancement of genome modifications by CRISPR/Cas technologies resolves contemporary restrictions to culturing, maintaining, and analyzing these parasites, and the aptitude to investigate parasite genome functions opens up new vistas in the better understanding of pathogenesis.
Collapse
Affiliation(s)
- Leila Nourani
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Zeinab Pourhashem
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Elahe Asadollahi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Babak Jahangiri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|