1
|
Pan X, de Souza MO, Figueiras FM, Huang A, Banach BB, Wolfe JR, Pirhanov A, Madan B, DeKosky BJ. Optimized single-cell gates for yeast display screening. Protein Eng Des Sel 2025; 38:gzae018. [PMID: 39667035 PMCID: PMC11723770 DOI: 10.1093/protein/gzae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024] Open
Abstract
Yeast display is a widely used technology in antibody discovery and protein engineering. The cell size of yeast enables fluorescence-activated cell sorting (FACS) to precisely screen gene libraries, including for multi-parameter selection of protein phenotypes. However, yeast cells show a broader size distribution than mammalian cells that complicates single-cell gate determination for FACS. In this report, we analyze several yeast display gating options in detail and present an optimized strategy to select single yeast cells via flow cytometry. These data reveal optimized single-cell gating strategies to support robust and high-efficiency yeast display studies.
Collapse
Affiliation(s)
- Xiaoli Pan
- The Ragon Institute of Mass General, MIT, and Harvard, 600 Main St, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 66-350, Cambridge, MA 02139, USA
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Ave, Lawrence, KS 66045, USA
| | - Matheus O de Souza
- The Ragon Institute of Mass General, MIT, and Harvard, 600 Main St, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 66-350, Cambridge, MA 02139, USA
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Ave, Lawrence, KS 66045, USA
| | - Francisco M Figueiras
- The Ragon Institute of Mass General, MIT, and Harvard, 600 Main St, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 66-350, Cambridge, MA 02139, USA
| | - Aric Huang
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Ave, Lawrence, KS 66045, USA
| | - Bailey B Banach
- Bioengineering Graduate Program, The University of Kansas, 1530 W 15th St., Lawrence, KS 66045, USA
| | - Jacy R Wolfe
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Ave, Lawrence, KS 66045, USA
| | - Azady Pirhanov
- The Ragon Institute of Mass General, MIT, and Harvard, 600 Main St, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 66-350, Cambridge, MA 02139, USA
| | - Bharat Madan
- The Ragon Institute of Mass General, MIT, and Harvard, 600 Main St, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 66-350, Cambridge, MA 02139, USA
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Ave, Lawrence, KS 66045, USA
| | - Brandon J DeKosky
- The Ragon Institute of Mass General, MIT, and Harvard, 600 Main St, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 66-350, Cambridge, MA 02139, USA
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Ave, Lawrence, KS 66045, USA
- Bioengineering Graduate Program, The University of Kansas, 1530 W 15th St., Lawrence, KS 66045, USA
| |
Collapse
|
2
|
Fahad AS, Gutiérrez-Gonzalez MF, Madan B, DeKosky BJ. Clonal Variant Analysis of Antibody Engineering Libraries. Cold Spring Harb Protoc 2025; 2025:pdb.prot108626. [PMID: 39586683 PMCID: PMC12043017 DOI: 10.1101/pdb.prot108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
In vitro antibody evolution is a powerful technique for improving monoclonal antibodies. This can be achieved by generating artificial diversity on an antibody template, which can be done using different in vitro diversification techniques. The resulting libraries consist of single- or multimutant variants of a defined antibody template that are screened for improved function using antibody display. Here, we describe a bioinformatic protocol for tracking synthetic antibody variants using high-throughput sequencing across screening rounds, enabling efficient high-throughput interpretation of the function of individual mutations in sorted antibody display libraries. The protocol enables a user to achieve precision analysis and interpretation of clonal antibody variant data for discovery purposes, especially for high-throughput antibody engineering or optimization against target antigens.
Collapse
Affiliation(s)
- Ahmed S Fahad
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Matías F Gutiérrez-Gonzalez
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bharat Madan
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Brandon J DeKosky
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
3
|
Fahad AS, Gutiérrez-Gonzalez MF, Madan B, DeKosky BJ. Antibody Data Analysis from Diverse Immune Libraries. Cold Spring Harb Protoc 2025; 2025:pdb.prot108627. [PMID: 39586680 PMCID: PMC12043016 DOI: 10.1101/pdb.prot108627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Antibody functional screening studies and next-generation sequencing require careful processing and interpretation of sequence data for optimal results. Here, we provide a detailed protocol for the functional analysis of antibody gene data, including antibody repertoire quantification and functional mapping of high-throughput screening data based on enrichment ratio values, which are a simple way to determine the enrichment of each sequenced antibody after sorting a display library against desired antigens. This protocol enables a user to apply a set of simple yet powerful bioinformatic tools for high-throughput analysis and interpretation of antibody data that is especially well suited for display library screening and for antibody discovery applications.
Collapse
Affiliation(s)
- Ahmed S Fahad
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Matías F Gutiérrez-Gonzalez
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bharat Madan
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Brandon J DeKosky
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
4
|
Fahad AS, Gutiérrez-Gonzalez MF, Madan B, DeKosky BJ. Beyond Single Clones: High-Throughput Sequencing in Antibody Discovery. Cold Spring Harb Protoc 2025; 2025:pdb.top107772. [PMID: 39586681 DOI: 10.1101/pdb.top107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Antibody repertoire sequencing and display library screening are powerful approaches for antibody discovery and engineering that can connect DNA sequence with antibody function. Antibody display and screening studies have made a tremendous impact on immunology and biotechnology over the last decade, accelerated by technological advances in high-throughput DNA sequencing techniques. Indeed, bioinformatic analysis of antibody DNA library data has now taken a central role in modern antibody drug discovery, and is also critical for many ongoing studies of human immune development. Here, we describe current trends in antibody DNA library screening and analysis, and introduce a selection of protocols describing fundamental bioinformatic techniques to enable scientists to efficiently study antibody DNA libraries.
Collapse
Affiliation(s)
- Ahmed S Fahad
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Matías F Gutiérrez-Gonzalez
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Bharat Madan
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Brandon J DeKosky
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
5
|
Ornelas MY, Ouyang WO, Wu NC. A library-on-library screen reveals the breadth expansion landscape of a broadly neutralizing betacoronavirus antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597810. [PMID: 38915656 PMCID: PMC11195093 DOI: 10.1101/2024.06.06.597810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Broadly neutralizing antibodies (bnAbs) typically evolve cross-reactivity breadth through acquiring somatic hypermutations. While evolution of breadth requires improvement of binding to multiple antigenic variants, most experimental evolution platforms select against only one antigenic variant at a time. In this study, a yeast display library-on-library approach was applied to delineate the affinity maturation of a betacoronavirus bnAb, S2P6, against 27 spike stem helix peptides in a single experiment. Our results revealed that the binding affinity landscape of S2P6 varies among different stem helix peptides. However, somatic hypermutations that confer general improvement in binding affinity across different stem helix peptides could also be identified. We further showed that a key somatic hypermutation for breadth expansion involves long-range interaction. Overall, our work not only provides a proof-of-concept for using a library-on-library approach to analyze the evolution of antibody breadth, but also has important implications for the development of broadly protective vaccines.
Collapse
Affiliation(s)
- Marya Y. Ornelas
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenhao O. Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Banach BB, Pletnev S, Olia AS, Xu K, Zhang B, Rawi R, Bylund T, Doria-Rose NA, Nguyen TD, Fahad AS, Lee M, Lin BC, Liu T, Louder MK, Madan B, McKee K, O'Dell S, Sastry M, Schön A, Bui N, Shen CH, Wolfe JR, Chuang GY, Mascola JR, Kwong PD, DeKosky BJ. Antibody-directed evolution reveals a mechanism for enhanced neutralization at the HIV-1 fusion peptide site. Nat Commun 2023; 14:7593. [PMID: 37989731 PMCID: PMC10663459 DOI: 10.1038/s41467-023-42098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 09/25/2023] [Indexed: 11/23/2023] Open
Abstract
The HIV-1 fusion peptide (FP) represents a promising vaccine target, but global FP sequence diversity among circulating strains has limited anti-FP antibodies to ~60% neutralization breadth. Here we evolve the FP-targeting antibody VRC34.01 in vitro to enhance FP-neutralization using site saturation mutagenesis and yeast display. Successive rounds of directed evolution by iterative selection of antibodies for binding to resistant HIV-1 strains establish a variant, VRC34.01_mm28, as a best-in-class antibody with 10-fold enhanced potency compared to the template antibody and ~80% breadth on a cross-clade 208-strain neutralization panel. Structural analyses demonstrate that the improved paratope expands the FP binding groove to accommodate diverse FP sequences of different lengths while also recognizing the HIV-1 Env backbone. These data reveal critical antibody features for enhanced neutralization breadth and potency against the FP site of vulnerability and accelerate clinical development of broad HIV-1 FP-targeting vaccines and therapeutics.
Collapse
Affiliation(s)
- Bailey B Banach
- Bioengineering Graduate Program, The University of Kansas, Lawrence, KS, 66045, USA
| | - Sergei Pletnev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Thuy Duong Nguyen
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Ahmed S Fahad
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Myungjin Lee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Arne Schön
- Department of Biology, John Hopkins University, Baltimore, MD, 21218, USA
| | - Natalie Bui
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Jacy R Wolfe
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA.
| | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA.
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS, 66045, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA.
| |
Collapse
|
7
|
Erasmus MF, Ferrara F, D'Angelo S, Spector L, Leal-Lopes C, Teixeira AA, Sørensen J, Nagpal S, Perea-Schmittle K, Choudhary A, Honnen W, Calianese D, Antonio Rodriguez Carnero L, Cocklin S, Greiff V, Pinter A, Bradbury ARM. Insights into next generation sequencing guided antibody selection strategies. Sci Rep 2023; 13:18370. [PMID: 37884618 PMCID: PMC10603065 DOI: 10.1038/s41598-023-45538-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Therapeutic antibody discovery often relies on in-vitro display methods to identify lead candidates. Assessing selected output diversity traditionally involves random colony picking and Sanger sequencing, which has limitations. Next-generation sequencing (NGS) offers a cost-effective solution with increased read depth, allowing a comprehensive understanding of diversity. Our study establishes NGS guidelines for antibody drug discovery, demonstrating its advantages in expanding the number of unique HCDR3 clusters, broadening the number of high affinity antibodies, expanding the total number of antibodies recognizing different epitopes, and improving lead prioritization. Surprisingly, our investigation into the correlation between NGS-derived frequencies of CDRs and affinity revealed a lack of association, although this limitation could be moderately mitigated by leveraging NGS clustering, enrichment and/or relative abundance across different regions to enhance lead prioritization. This study highlights NGS benefits, offering insights, recommendations, and the most effective approach to leverage NGS in therapeutic antibody discovery.
Collapse
Affiliation(s)
| | | | - Sara D'Angelo
- Specifica LLC, a Q2 Solutions Company, Santa Fe, USA
| | - Laura Spector
- Specifica LLC, a Q2 Solutions Company, Santa Fe, USA
| | | | | | | | | | | | - Alok Choudhary
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - William Honnen
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - David Calianese
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | | | - Simon Cocklin
- Specifica LLC, a Q2 Solutions Company, Santa Fe, USA
| | | | - Abraham Pinter
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | | |
Collapse
|
8
|
Pan X, López Acevedo SN, Cuziol C, De Tavernier E, Fahad AS, Longjam PS, Rao SP, Aguilera-Rodríguez D, Rezé M, Bricault CA, Gutiérrez-González MF, de Souza MO, DiNapoli JM, Vigne E, Shahsavarian MA, DeKosky BJ. Large-scale antibody immune response mapping of splenic B cells and bone marrow plasma cells in a transgenic mouse model. Front Immunol 2023; 14:1137069. [PMID: 37346047 PMCID: PMC10280637 DOI: 10.3389/fimmu.2023.1137069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/30/2023] [Indexed: 06/23/2023] Open
Abstract
Molecular characterization of antibody immunity and human antibody discovery is mainly carried out using peripheral memory B cells, and occasionally plasmablasts, that express B cell receptors (BCRs) on their cell surface. Despite the importance of plasma cells (PCs) as the dominant source of circulating antibodies in serum, PCs are rarely utilized because they do not express surface BCRs and cannot be analyzed using antigen-based fluorescence-activated cell sorting. Here, we studied the antibodies encoded by the entire mature B cell populations, including PCs, and compared the antibody repertoires of bone marrow and spleen compartments elicited by immunization in a human immunoglobulin transgenic mouse strain. To circumvent prior technical limitations for analysis of plasma cells, we applied single-cell antibody heavy and light chain gene capture from the entire mature B cell repertoires followed by yeast display functional analysis using a cytokine as a model immunogen. We performed affinity-based sorting of antibody yeast display libraries and large-scale next-generation sequencing analyses to follow antibody lineage performance, with experimental validation of 76 monoclonal antibodies against the cytokine antigen that identified three antibodies with exquisite double-digit picomolar binding affinity. We observed that spleen B cell populations generated higher affinity antibodies compared to bone marrow PCs and that antigen-specific splenic B cells had higher average levels of somatic hypermutation. A degree of clonal overlap was also observed between bone marrow and spleen antibody repertoires, indicating common origins of certain clones across lymphoid compartments. These data demonstrate a new capacity to functionally analyze antigen-specific B cell populations of different lymphoid organs, including PCs, for high-affinity antibody discovery and detailed fundamental studies of antibody immunity.
Collapse
Affiliation(s)
- Xiaoli Pan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Sheila N. López Acevedo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
| | - Camille Cuziol
- Large Molecule Research, Sanofi, Vitry sur Seine, France
| | | | - Ahmed S. Fahad
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | | | | | - Mathilde Rezé
- Large Molecule Research, Sanofi, Vitry sur Seine, France
| | | | - Matías F. Gutiérrez-González
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Matheus Oliveira de Souza
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | | | | | - Brandon J. DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS, United States
| |
Collapse
|
9
|
Sheng Z, Bimela JS, Wang M, Li Z, Guo Y, Ho DD. An optimized thermodynamics integration protocol for identifying beneficial mutations in antibody design. Front Immunol 2023; 14:1190416. [PMID: 37275896 PMCID: PMC10235760 DOI: 10.3389/fimmu.2023.1190416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/28/2023] [Indexed: 06/07/2023] Open
Abstract
Accurate identification of beneficial mutations is central to antibody design. Many knowledge-based (KB) computational approaches have been developed to predict beneficial mutations, but their accuracy leaves room for improvement. Thermodynamic integration (TI) is an alchemical free energy algorithm that offers an alternative technique for identifying beneficial mutations, but its performance has not been evaluated. In this study, we developed an efficient TI protocol with high accuracy for predicting binding free energy changes of antibody mutations. The improved TI method outperforms KB methods at identifying both beneficial and deleterious mutations. We observed that KB methods have higher accuracies in predicting deleterious mutations than beneficial mutations. A pipeline using KB methods to efficiently exclude deleterious mutations and TI to accurately identify beneficial mutations was developed for high-throughput mutation scanning. The pipeline was applied to optimize the binding affinity of a broadly sarbecovirus neutralizing antibody 10-40 against the circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant. Three identified beneficial mutations show strong synergy and improve both binding affinity and neutralization potency of antibody 10-40. Molecular dynamics simulation revealed that the three mutations improve the binding affinity of antibody 10-40 through the stabilization of an altered binding mode with increased polar and hydrophobic interactions. Above all, this study presents an accurate and efficient TI-based approach for optimizing antibodies and other biomolecules.
Collapse
Affiliation(s)
- Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Jude S. Bimela
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Maple Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Zhiteng Li
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
10
|
Pennell M, Rodriguez OL, Watson CT, Greiff V. The evolutionary and functional significance of germline immunoglobulin gene variation. Trends Immunol 2023; 44:7-21. [PMID: 36470826 DOI: 10.1016/j.it.2022.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022]
Abstract
The recombination between immunoglobulin (IG) gene segments determines an individual's naïve antibody repertoire and, consequently, (auto)antigen recognition. Emerging evidence suggests that mammalian IG germline variation impacts humoral immune responses associated with vaccination, infection, and autoimmunity - from the molecular level of epitope specificity, up to profound changes in the architecture of antibody repertoires. These links between IG germline variants and immunophenotype raise the question on the evolutionary causes and consequences of diversity within IG loci. We discuss why the extreme diversity in IG loci remains a mystery, why resolving this is important for the design of more effective vaccines and therapeutics, and how recent evidence from multiple lines of inquiry may help us do so.
Collapse
Affiliation(s)
- Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA; Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Oscar L Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
11
|
de Souza MO, Madan B, Teng IT, Huang A, Liu L, Fahad AS, Lopez Acevedo SN, Pan X, Sastry M, Gutierrez-Gonzalez M, Yin MT, Zhou T, Ho DD, Kwong PD, DeKosky BJ. Mapping monoclonal anti-SARS-CoV-2 antibody repertoires against diverse coronavirus antigens. Front Immunol 2022; 13:977064. [PMID: 36119018 PMCID: PMC9478573 DOI: 10.3389/fimmu.2022.977064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged continuously, challenging the effectiveness of vaccines, diagnostics, and treatments. Moreover, the possibility of the appearance of a new betacoronavirus with high transmissibility and high fatality is reason for concern. In this study, we used a natively paired yeast display technology, combined with next-generation sequencing (NGS) and massive bioinformatic analysis to perform a comprehensive study of subdomain specificity of natural human antibodies from two convalescent donors. Using this screening technology, we mapped the cross-reactive responses of antibodies generated by the two donors against SARS-CoV-2 variants and other betacoronaviruses. We tested the neutralization potency of a set of the cross-reactive antibodies generated in this study and observed that most of the antibodies produced by these patients were non-neutralizing. We performed a comparison of the specific and non-specific antibodies by somatic hypermutation in a repertoire-scale for the two individuals and observed that the degree of somatic hypermutation was unique for each patient. The data from this study provide functional insights into cross-reactive antibodies that can assist in the development of strategies against emerging SARS-CoV-2 variants and divergent betacoronaviruses.
Collapse
Affiliation(s)
- Matheus Oliveira de Souza
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Aric Huang
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
| | - Lihong Liu
- Aaron Diamond acquired immunodeficiency syndrome (AIDS) Research Center, Columbia University Irving Medical Center, New York, NY, United States
| | - Ahmed S. Fahad
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
| | - Sheila N. Lopez Acevedo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
| | - Xiaoli Pan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Matias Gutierrez-Gonzalez
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
| | - Michael T. Yin
- Department of Medicine , Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY, United States
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - David D. Ho
- Aaron Diamond acquired immunodeficiency syndrome (AIDS) Research Center, Columbia University Irving Medical Center, New York, NY, United States
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| | - Brandon J. DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
12
|
Banach BB, Tripathi P, Da Silva Pereira L, Gorman J, Nguyen TD, Dillon M, Fahad AS, Kiyuka PK, Madan B, Wolfe JR, Bonilla B, Flynn B, Francica JR, Hurlburt NK, Kisalu NK, Liu T, Ou L, Rawi R, Schön A, Shen CH, Teng IT, Zhang B, Pancera M, Idris AH, Seder RA, Kwong PD, DeKosky BJ. Highly protective antimalarial antibodies via precision library generation and yeast display screening. J Exp Med 2022; 219:e20220323. [PMID: 35736810 PMCID: PMC9242090 DOI: 10.1084/jem.20220323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/03/2023] Open
Abstract
The monoclonal antibody CIS43 targets the Plasmodium falciparum circumsporozoite protein (PfCSP) and prevents malaria infection in humans for up to 9 mo following a single intravenous administration. To enhance the potency and clinical utility of CIS43, we used iterative site-saturation mutagenesis and DNA shuffling to screen precise gene-variant yeast display libraries for improved PfCSP antigen recognition. We identified several mutations that improved recognition, predominately in framework regions, and combined these to produce a panel of antibody variants. The most improved antibody, CIS43_Var10, had three mutations and showed approximately sixfold enhanced protective potency in vivo compared to CIS43. Co-crystal and cryo-electron microscopy structures of CIS43_Var10 with the peptide epitope or with PfCSP, respectively, revealed functional roles for each of these mutations. The unbiased site-directed mutagenesis and screening pipeline described here represent a powerful approach to enhance protective potency and to enable broader clinical use of antimalarial antibodies.
Collapse
Affiliation(s)
- Bailey B. Banach
- Bioengineering Graduate Program, The University of Kansas, Lawrence, KS
| | - Prabhanshu Tripathi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Lais Da Silva Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Thuy Duong Nguyen
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS
| | - Marlon Dillon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Ahmed S. Fahad
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS
| | - Patience K. Kiyuka
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS
| | - Jacy R. Wolfe
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS
| | - Brian Bonilla
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Barbara Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Joseph R. Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Nicholas K. Hurlburt
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA
| | - Neville K. Kisalu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA
| | - Azza H. Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Robert A. Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Brandon J. DeKosky
- Bioengineering Graduate Program, The University of Kansas, Lawrence, KS
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| |
Collapse
|
13
|
Patrick C, Upadhyay V, Lucas A, Mallela KM. Biophysical Fitness Landscape of the SARS-CoV-2 Delta Variant Receptor Binding Domain. J Mol Biol 2022; 434:167622. [PMID: 35533762 PMCID: PMC9076029 DOI: 10.1016/j.jmb.2022.167622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 12/16/2022]
Abstract
Among the five known SARS-CoV-2 variants of concern, Delta is the most virulent leading to severe symptoms and increased mortality among infected people. Our study seeks to examine how the biophysical parameters of the Delta variant correlate to the clinical observations. Receptor binding domain (RBD) is the first point of contact with the human host cells and is the immunodominant form of the spike protein. Delta variant RBD contains two novel mutations L452R and T478K. We examined the effect of single as well as the double mutations on RBD expression in human Expi293 cells, RBD stability using urea and thermal denaturation, and RBD binding to angiotensin converting enzyme 2 (ACE2) receptor and to neutralizing antibodies using isothermal titration calorimetry. Delta variant RBD showed significantly higher expression compared to the wild-type RBD, and the increased expression is due to L452R mutation. Despite their non-conservative nature, none of the mutations significantly affected RBD structure and stability. All mutants showed similar binding affinity to ACE2 and to Class 1 antibodies (CC12.1 and LY-CoV016) as that of the wild-type. Delta double mutant L452R/T478K showed no binding to Class 2 antibodies (P2B-2F6 and LY-CoV555) and a hundred-fold weaker binding to a Class 3 antibody (REGN10987), and the decreased antibody binding is determined by the L452R mutation. These results indicate that the immune escape from neutralizing antibodies, rather than increased receptor binding, is the main biophysical parameter that determined the fitness landscape of the Delta variant RBD.
Collapse
Affiliation(s)
| | | | | | - Krishna M.G. Mallela
- Corresponding author at: Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd, MS C238-V20, Aurora, CO 80045, USA
| |
Collapse
|
14
|
Teng IT, Nazzari AF, Choe M, Liu T, Oliveira de Souza M, Petrova Y, Tsybovsky Y, Wang S, Zhang B, Artamonov M, Madan B, Huang A, Lopez Acevedo SN, Pan X, Ruckwardt TJ, DeKosky BJ, Mascola JR, Misasi J, Sullivan NJ, Zhou T, Kwong PD. Molecular probes of spike ectodomain and its subdomains for SARS-CoV-2 variants, Alpha through Omicron. PLoS One 2022; 17:e0268767. [PMID: 35609088 PMCID: PMC9129042 DOI: 10.1371/journal.pone.0268767] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
Since the outbreak of the COVID-19 pandemic, widespread infections have allowed SARS-CoV-2 to evolve in human, leading to the emergence of multiple circulating variants. Some of these variants show increased resistance to vaccine-elicited immunity, convalescent plasma, or monoclonal antibodies. In particular, mutations in the SARS-CoV-2 spike have drawn attention. To facilitate the isolation of neutralizing antibodies and the monitoring of vaccine effectiveness against these variants, we designed and produced biotin-labeled molecular probes of variant SARS-CoV-2 spikes and their subdomains, using a structure-based construct design that incorporated an N-terminal purification tag, a specific amino acid sequence for protease cleavage, the variant spike-based region of interest, and a C-terminal sequence targeted by biotin ligase. These probes could be produced by a single step using in-process biotinylation and purification. We characterized the physical properties and antigenicity of these probes, comprising the N-terminal domain (NTD), the receptor-binding domain (RBD), the RBD and subdomain 1 (RBD-SD1), and the prefusion-stabilized spike ectodomain (S2P) with sequences from SARS-CoV-2 variants of concern or of interest, including variants Alpha, Beta, Gamma, Epsilon, Iota, Kappa, Delta, Lambda, Mu, and Omicron. We functionally validated probes by using yeast expressing a panel of nine SARS-CoV-2 spike-binding antibodies and confirmed sorting capabilities of variant probes using yeast displaying libraries of plasma antibodies from COVID-19 convalescent donors. We deposited these constructs to Addgene to enable their dissemination. Overall, this study describes a matrix of SARS-CoV-2 variant molecular probes that allow for assessment of immune responses, identification of serum antibody specificity, and isolation and characterization of neutralizing antibodies.
Collapse
Affiliation(s)
- I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Alexandra F. Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Matheus Oliveira de Souza
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Yuliya Petrova
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, Maryland, United States of America
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Mykhaylo Artamonov
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Aric Huang
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Sheila N. Lopez Acevedo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Xiaoli Pan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Tracy J. Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Brandon J. DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- Department of Chemical Engineering, The University of Kansas, Lawrence, Kansas, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Nancy J. Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| |
Collapse
|
15
|
Bakerlee CW, Nguyen Ba AN, Shulgina Y, Rojas Echenique JI, Desai MM. Idiosyncratic epistasis leads to global fitness-correlated trends. Science 2022; 376:630-635. [PMID: 35511982 PMCID: PMC10124986 DOI: 10.1126/science.abm4774] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epistasis can markedly affect evolutionary trajectories. In recent decades, protein-level fitness landscapes have revealed extensive idiosyncratic epistasis among specific mutations. By contrast, other work has found ubiquitous and apparently nonspecific patterns of global diminishing-returns and increasing-costs epistasis among mutations across the genome. Here, we used a hierarchical CRISPR gene drive system to construct all combinations of 10 missense mutations from across the genome in budding yeast and measured their fitness in six environments. We show that the resulting fitness landscapes exhibit global fitness-correlated trends but that these trends emerge from specific idiosyncratic interactions. We thus provide experimental validation of recent theoretical work arguing that fitness-correlated trends can emerge as the generic consequence of idiosyncratic epistasis.
Collapse
Affiliation(s)
- Christopher W Bakerlee
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Quantitative Biology Initiative, Harvard University, Cambridge, MA, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Alex N Nguyen Ba
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Quantitative Biology Initiative, Harvard University, Cambridge, MA, USA.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Yekaterina Shulgina
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Jose I Rojas Echenique
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Quantitative Biology Initiative, Harvard University, Cambridge, MA, USA.,NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, MA, USA.,Department of Physics, Harvard University, Cambridge, MA, USA
| |
Collapse
|
16
|
Ding D, Green AG, Wang B, Lite TLV, Weinstein EN, Marks DS, Laub MT. Co-evolution of interacting proteins through non-contacting and non-specific mutations. Nat Ecol Evol 2022; 6:590-603. [PMID: 35361892 PMCID: PMC9090974 DOI: 10.1038/s41559-022-01688-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/31/2022] [Indexed: 01/08/2023]
Abstract
Proteins often accumulate neutral mutations that do not affect current functions but can profoundly influence future mutational possibilities and functions. Understanding such hidden potential has major implications for protein design and evolutionary forecasting but has been limited by a lack of systematic efforts to identify potentiating mutations. Here, through the comprehensive analysis of a bacterial toxin-antitoxin system, we identified all possible single substitutions in the toxin that enable it to tolerate otherwise interface-disrupting mutations in its antitoxin. Strikingly, the majority of enabling mutations in the toxin do not contact and promote tolerance non-specifically to many different antitoxin mutations, despite covariation in homologues occurring primarily between specific pairs of contacting residues across the interface. In addition, the enabling mutations we identified expand future mutational paths that both maintain old toxin-antitoxin interactions and form new ones. These non-specific mutations are missed by widely used covariation and machine learning methods. Identifying such enabling mutations will be critical for ensuring continued binding of therapeutically relevant proteins, such as antibodies, aimed at evolving targets.
Collapse
Affiliation(s)
- David Ding
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Anna G Green
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Boyuan Wang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Thuy-Lan Vo Lite
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | | | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
17
|
Fahad AS, Chung CY, Lopez Acevedo SN, Boyle N, Madan B, Gutiérrez-González MF, Matus-Nicodemos R, Laflin AD, Ladi RR, Zhou J, Wolfe J, Llewellyn-Lacey S, Koup RA, Douek DC, Balfour Jr HH, Price DA, DeKosky BJ. Immortalization and functional screening of natively paired human T cell receptor repertoires. Protein Eng Des Sel 2022; 35:gzab034. [PMID: 35174859 PMCID: PMC9005053 DOI: 10.1093/protein/gzab034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Functional analyses of the T cell receptor (TCR) landscape can reveal critical information about protection from disease and molecular responses to vaccines. However, it has proven difficult to combine advanced next-generation sequencing technologies with methods to decode the peptide-major histocompatibility complex (pMHC) specificity of individual TCRs. We developed a new high-throughput approach to enable repertoire-scale functional evaluations of natively paired TCRs. In particular, we leveraged the immortalized nature of physically linked TCRα:β amplicon libraries to analyze binding against multiple recombinant pMHCs on a repertoire scale, and to exemplify the utility of this approach, we also performed affinity-based functional mapping in conjunction with quantitative next-generation sequencing to track antigen-specific TCRs. These data successfully validated a new immortalization and screening platform to facilitate detailed molecular analyses of disease-relevant antigen interactions with human TCRs.
Collapse
Affiliation(s)
- Ahmed S Fahad
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Cheng-Yu Chung
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Sheila N Lopez Acevedo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Nicoleen Boyle
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | | | - Rodrigo Matus-Nicodemos
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy D Laflin
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Rukmini R Ladi
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - John Zhou
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Jacy Wolfe
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Henry H Balfour Jr
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
| | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS 66044, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
18
|
Teng IT, Nazzari AF, Choe M, Liu T, Oliveira de Souza M, Petrova Y, Tsybovsky Y, Wang S, Zhang B, Artamonov M, Madan B, Huang A, Lopez Acevedo SN, Pan X, Ruckwardt TJ, DeKosky BJ, Mascola JR, Misasi J, Sullivan NJ, Zhou T, Kwong PD. Molecular probes of spike ectodomain and its subdomains for SARS-CoV-2 variants, Alpha through Omicron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.29.474491. [PMID: 35018379 PMCID: PMC8750702 DOI: 10.1101/2021.12.29.474491] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since the outbreak of the COVID-19 pandemic, widespread infections have allowed SARS-CoV-2 to evolve in human, leading to the emergence of multiple circulating variants. Some of these variants show increased resistance to vaccines, convalescent plasma, or monoclonal antibodies. In particular, mutations in the SARS-CoV-2 spike have drawn attention. To facilitate the isolation of neutralizing antibodies and the monitoring the vaccine effectiveness against these variants, we designed and produced biotin-labeled molecular probes of variant SARS-CoV-2 spikes and their subdomains, using a structure-based construct design that incorporated an N-terminal purification tag, a specific amino acid sequence for protease cleavage, the variant spike-based region of interest, and a C-terminal sequence targeted by biotin ligase. These probes could be produced by a single step using in-process biotinylation and purification. We characterized the physical properties and antigenicity of these probes, comprising the N-terminal domain (NTD), the receptor-binding domain (RBD), the RBD and subdomain 1 (RBD-SD1), and the prefusion-stabilized spike ectodomain (S2P) with sequences from SARS-CoV-2 variants of concern or of interest, including variants Alpha, Beta, Gamma, Epsilon, Iota, Kappa, Delta, Lambda, Mu, and Omicron. We functionally validated probes by using yeast expressing a panel of nine SARS-CoV-2 spike-binding antibodies and confirmed sorting capabilities of variant probes using yeast displaying libraries of plasma antibodies from COVID-19 convalescent donors. We deposited these constructs to Addgene to enable their dissemination. Overall, this study describes a matrix of SARS-CoV-2 variant molecular probes that allow for assessment of immune responses, identification of serum antibody specificity, and isolation and characterization of neutralizing antibodies.
Collapse
Affiliation(s)
- I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Alexandra F. Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Matheus Oliveira de Souza
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Yuliya Petrova
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, United States of America
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Mykhaylo Artamonov
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Aric Huang
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Sheila N. Lopez Acevedo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Xiaoli Pan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Tracy J. Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Brandon J. DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- Department of Chemical Engineering, The University of Kansas, Lawrence, Kansas, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Nancy J. Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| |
Collapse
|
19
|
Teng IT, Nazzari AF, Choe M, Liu T, Oliveira de Souza M, Petrova Y, Tsybovsky Y, Wang S, Zhang B, Artamonov M, Madan B, Huang A, Lopez Acevedo SN, Pan X, Ruckwardt TJ, DeKosky BJ, Mascola JR, Misasi J, Sullivan NJ, Zhou T, Kwong PD. Molecular probes of spike ectodomain and its subdomains for SARS-CoV-2 variants, Alpha through Omicron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.29.474491. [PMID: 35018379 DOI: 10.1101/2021.01.18.426999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Since the outbreak of the COVID-19 pandemic, widespread infections have allowed SARS-CoV-2 to evolve in human, leading to the emergence of multiple circulating variants. Some of these variants show increased resistance to vaccines, convalescent plasma, or monoclonal antibodies. In particular, mutations in the SARS-CoV-2 spike have drawn attention. To facilitate the isolation of neutralizing antibodies and the monitoring the vaccine effectiveness against these variants, we designed and produced biotin-labeled molecular probes of variant SARS-CoV-2 spikes and their subdomains, using a structure-based construct design that incorporated an N-terminal purification tag, a specific amino acid sequence for protease cleavage, the variant spike-based region of interest, and a C-terminal sequence targeted by biotin ligase. These probes could be produced by a single step using in-process biotinylation and purification. We characterized the physical properties and antigenicity of these probes, comprising the N-terminal domain (NTD), the receptor-binding domain (RBD), the RBD and subdomain 1 (RBD-SD1), and the prefusion-stabilized spike ectodomain (S2P) with sequences from SARS-CoV-2 variants of concern or of interest, including variants Alpha, Beta, Gamma, Epsilon, Iota, Kappa, Delta, Lambda, Mu, and Omicron. We functionally validated probes by using yeast expressing a panel of nine SARS-CoV-2 spike-binding antibodies and confirmed sorting capabilities of variant probes using yeast displaying libraries of plasma antibodies from COVID-19 convalescent donors. We deposited these constructs to Addgene to enable their dissemination. Overall, this study describes a matrix of SARS-CoV-2 variant molecular probes that allow for assessment of immune responses, identification of serum antibody specificity, and isolation and characterization of neutralizing antibodies.
Collapse
Affiliation(s)
- I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Matheus Oliveira de Souza
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Yuliya Petrova
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, United States of America
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Mykhaylo Artamonov
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Aric Huang
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Sheila N Lopez Acevedo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Xiaoli Pan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- Department of Chemical Engineering, The University of Kansas, Lawrence, Kansas, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| |
Collapse
|
20
|
Madan B, Reddem ER, Wang P, Casner RG, Nair MS, Huang Y, Fahad AS, de Souza MO, Banach BB, López Acevedo SN, Pan X, Nimrania R, Teng I, Bahna F, Zhou T, Zhang B, Yin MT, Ho DD, Kwong PD, Shapiro L, DeKosky BJ. Antibody screening at reduced pH enables preferential selection of potently neutralizing antibodies targeting SARS-CoV-2. AIChE J 2021; 67:e17440. [PMID: 34898670 PMCID: PMC8646896 DOI: 10.1002/aic.17440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/28/2022]
Abstract
Antiviral monoclonal antibody (mAb) discovery enables the development of antibody-based antiviral therapeutics. Traditional antiviral mAb discovery relies on affinity between antibody and a viral antigen to discover potent neutralizing antibodies, but these approaches are inefficient because many high affinity mAbs have no neutralizing activity. We sought to determine whether screening for anti-SARS-CoV-2 mAbs at reduced pH could provide more efficient neutralizing antibody discovery. We mined the antibody response of a convalescent COVID-19 patient at both physiological pH (7.4) and reduced pH (4.5), revealing that SARS-CoV-2 neutralizing antibodies were preferentially enriched in pH 4.5 yeast display sorts. Structural analysis revealed that a potent new antibody called LP5 targets the SARS-CoV-2 N-terminal domain supersite via a unique binding recognition mode. Our data combine with evidence from prior studies to support antibody screening at pH 4.5 to accelerate antiviral neutralizing antibody discovery.
Collapse
Affiliation(s)
- Bharat Madan
- Department of Pharmaceutical ChemistryThe University of KansasLawrenceKansasUSA
| | - Eswar R. Reddem
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkNew YorkUSA
- Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew YorkNew YorkUSA
| | - Pengfei Wang
- Aaron Diamond AIDS Research CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Ryan G. Casner
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkNew YorkUSA
- Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew YorkNew YorkUSA
| | - Manoj S. Nair
- Aaron Diamond AIDS Research CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Ahmed S. Fahad
- Department of Pharmaceutical ChemistryThe University of KansasLawrenceKansasUSA
| | | | - Bailey B. Banach
- Department of Pharmaceutical ChemistryThe University of KansasLawrenceKansasUSA
| | | | - Xiaoli Pan
- Department of Pharmaceutical ChemistryThe University of KansasLawrenceKansasUSA
| | - Rajani Nimrania
- Department of Pharmaceutical ChemistryThe University of KansasLawrenceKansasUSA
| | - I‐Ting Teng
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesBethesdaMarylandUSA
| | - Fabiana Bahna
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkNew YorkUSA
- Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew YorkNew YorkUSA
| | - Tongqing Zhou
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesBethesdaMarylandUSA
| | - Baoshan Zhang
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesBethesdaMarylandUSA
| | - Michael T. Yin
- Department of Medicine, Division of Infectious DiseasesColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - David D. Ho
- Aaron Diamond AIDS Research CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Peter D. Kwong
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkNew YorkUSA
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesBethesdaMarylandUSA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkNew YorkUSA
- Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew YorkNew YorkUSA
- Aaron Diamond AIDS Research CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Brandon J. DeKosky
- Department of Pharmaceutical ChemistryThe University of KansasLawrenceKansasUSA
- Department of Chemical EngineeringThe University of KansasLawrenceKansasUSA
- The Ragon Institute of MGHMIT, and Harvard, Cambridge, MA
- Department of Chemical EngineeringMassachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
21
|
Phillips AM, Lawrence KR, Moulana A, Dupic T, Chang J, Johnson MS, Cvijovic I, Mora T, Walczak AM, Desai MM. Binding affinity landscapes constrain the evolution of broadly neutralizing anti-influenza antibodies. eLife 2021; 10:71393. [PMID: 34491198 PMCID: PMC8476123 DOI: 10.7554/elife.71393] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past two decades, several broadly neutralizing antibodies (bnAbs) that confer protection against diverse influenza strains have been isolated. Structural and biochemical characterization of these bnAbs has provided molecular insight into how they bind distinct antigens. However, our understanding of the evolutionary pathways leading to bnAbs, and thus how best to elicit them, remains limited. Here, we measure equilibrium dissociation constants of combinatorially complete mutational libraries for two naturally isolated influenza bnAbs (CR9114, 16 heavy-chain mutations; CR6261, 11 heavy-chain mutations), reconstructing all possible evolutionary intermediates back to the unmutated germline sequences. We find that these two libraries exhibit strikingly different patterns of breadth: while many variants of CR6261 display moderate affinity to diverse antigens, those of CR9114 display appreciable affinity only in specific, nested combinations. By examining the extensive pairwise and higher order epistasis between mutations, we find key sites with strong synergistic interactions that are highly similar across antigens for CR6261 and different for CR9114. Together, these features of the binding affinity landscapes strongly favor sequential acquisition of affinity to diverse antigens for CR9114, while the acquisition of breadth to more similar antigens for CR6261 is less constrained. These results, if generalizable to other bnAbs, may explain the molecular basis for the widespread observation that sequential exposure favors greater breadth, and such mechanistic insight will be essential for predicting and eliciting broadly protective immune responses.
Collapse
Affiliation(s)
- Angela M Phillips
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Katherine R Lawrence
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, United States.,Quantitative Biology Initiative, Harvard University, Cambridge, United States.,Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
| | - Alief Moulana
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Thomas Dupic
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Jeffrey Chang
- Department of Physics, Harvard University, Cambridge, United States
| | - Milo S Johnson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Ivana Cvijovic
- Department of Applied Physics, Stanford University, Stanford, United States
| | - Thierry Mora
- Laboratoire de physique de ÍÉcole Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Aleksandra M Walczak
- Laboratoire de physique de ÍÉcole Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, United States.,Quantitative Biology Initiative, Harvard University, Cambridge, United States.,Department of Physics, Harvard University, Cambridge, United States
| |
Collapse
|