1
|
Li H, Si D, Wang H, Jiang H, Li P, He Y. Cascading microbial regulation of autochthonous DOM stability in a picocyanobacteria-dominated estuarine reservoir. WATER RESEARCH 2025; 283:123752. [PMID: 40359894 DOI: 10.1016/j.watres.2025.123752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/22/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Estuaries serve as vital interfaces in the global carbon cycle by mediating land-ocean exchange and regulating dissolved organic matter (DOM) dynamics. However, the role of microbial communities in regulating autochthonous DOM under phosphorus-limited estuarine conditions remains insufficiently understood. This study explored the biogeochemical parameters, inorganic carbon dynamics, DOM optical properties, and algal-bacterial community composition in a picocyanobacteria-dominated estuarine reservoir subject to seasonal salinity and nutrient fluctuations. Samples were classified into three groups based on DOM compositional features: pristine autochthonous group (PG), high allochthonous group (HG), and balanced group (BG). In BG, picocyanobacteria, particularly Cyanobium PCC-6307, promoted the accumulation of labile tryptophan-like DOM (component C4), which was associated with the lowest autochthonous DOM stability ratios (AuSR). In HG, terrestrial runoff led to a decline in C4 and an increase in DOM stability, reflecting rapid microbial degradation and partial transformation. In BG, colder temperatures and elevated microbial α-diversity facilitated the conversion of DOM into more humified forms, as indicated by higher proportions of humic-like components and AuSR. Key microbial taxa showed substrate-specific metabolic traits related to amino acid, polysaccharide, and one-carbon compound processing. By integrating DOM-defined groupings, fluorescence-derived stability metrics, and microbial marker analysis, this study reveals a sequential cascade of microbial regulation in DOM production, transformation, and stabilization. These findings offer the first detailed evidence of such processes in a phosphorus-limited estuarine system and provide a new framework for linking DOM properties with microbial ecological functions in dynamic aquatic environments.
Collapse
Affiliation(s)
- Huimin Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Duanmiao Si
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Haoyan Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Haixia Jiang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Peng Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
2
|
Lu X, Liu J, Xiao X, Xue J, Cheng D, Zhang L. The influence of 2,6-Di-tert-butyl-p-cresol stress on the microalga Phaeodactylum tricornutum and phycosphere bacteria community. World J Microbiol Biotechnol 2025; 41:150. [PMID: 40289175 DOI: 10.1007/s11274-025-04372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
The emerging contaminant 2, 6-di-tert-butyl-p-cresol (BHT) is a kind of synthetic phenolic antioxidant and can pose negative effects on the aquatic organism. However, the mechanism of phycosphere bacteria coordinating with microalgae in response to BHT stress remains poorly understood. Herein, the effect of BHT on the microalgae Phaeodactylum tricornutum was comprehensively analyzed. BHT exposure led to a dose-dependent inhibition of P. tricornutum growth and the photosynthetic pigment biosynthesis. BHT also led to an increase in the content of malondialdehyde, therefore microalgae responded to the oxidative stress by enhancing activities of antioxidant enzymes, including superoxide dismutase, catalase and peroxidase, to eliminate excess reactive oxygen species in the cells. Furthermore, transcriptome analysis revealed that genes related to photosynthesis, TCA cycle, oxidative phosphorylation, and indole-3-acetic acid (IAA) synthesis were up-regulated in response to BHT stress, which are crucial for the microalgae's adaptation to stresses. In addition, high-throughput Illumina MiSeq sequencing results demonstrated a significant increase in the relative abundance of bacteria affiliated with Halomonas, Marivita and Oceanicaulis. Microbiological assays demonstrated that Halomonas can thrive by using BHT as the sole energy source and exhibit a chemotactic response to IAA. Therefore, we conclude that the increased content of IAA secreted by microalgae in the phycosphere environment promoted the enrichment of BHT-tolerant bacterium Halomonas, thereby it is helpful for environmental pressures adaptability of P. tricornutum. Overall, this study provided a comprehensive understanding of the physiological and biochemical effects of BHT on microalgae, and we highlight the potential functional significance of IAA in establishing an interaction between microalgae and algae-associated bacteria in adverse environments.
Collapse
Affiliation(s)
- Xiao Lu
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Jie Liu
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Xinfeng Xiao
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Jianliang Xue
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Dongle Cheng
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China.
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China.
| | - Linlin Zhang
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China.
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China.
| |
Collapse
|
3
|
Sher D, George EE, Wietz M, Gifford S, Zoccarato L, Weissberg O, Koedooder C, Valiya Kalladi WB, Barreto Filho MM, Mireles R, Malavin S, Liddor Naim M, Idan T, Shrivastava V, Itelson L, Sade D, Abu Hamoud A, Soussan-Farhat Y, Barak N, Karp P, Moore LR. Collaborative metabolic curation of an emerging model marine bacterium, Alteromonas macleodii ATCC 27126. PLoS One 2025; 20:e0321141. [PMID: 40273159 PMCID: PMC12021255 DOI: 10.1371/journal.pone.0321141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/28/2025] [Indexed: 04/26/2025] Open
Abstract
Inferring the metabolic capabilities of an organism from its genome is a challenging process, relying on computationally-derived or manually curated metabolic networks. Manual curation can correct mistakes in the draft network and add missing reactions based on the literature, but requires significant expertise and is often the bottleneck for high-quality metabolic reconstructions. Here, we present a synopsis of a community curation workshop for the model marine bacterium Alteromonas macleodii ATCC 27126 and its genome database in BioCyc, focusing on pathways for utilizing organic carbon and nitrogen sources. Due to the scarcity of biochemical information or gene knock-outs, the curation process relied primarily on published growth phenotypes and bioinformatic analyses, including comparisons with related Alteromonas strains. We report full pathways for the utilization of the algal polysaccharides alginate and pectin in contrast to inconclusive evidence for one-carbon metabolism and mixed acid fermentation, in accordance with the lack of growth on methanol and formate. Pathways for amino acid degradation are ubiquitous across Alteromonas macleodii strains, yet enzymes in the pathways for the degradation of threonine, tryptophan and tyrosine were not identified. Nucleotide degradation pathways are also partial in ATCC 27126. We postulate that demonstrated growth on nitrate as sole nitrogen source proceeds via a nitrate reductase pathway that is a hybrid of known pathways. Our evidence highlights the value of joint and interactive curation efforts, but also shows major knowledge gaps regarding Alteromonas metabolism. The manually-curated metabolic reconstruction is available as a "Tier-2" database on BioCyc.
Collapse
Affiliation(s)
- Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Emma E. George
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Matthias Wietz
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Scott Gifford
- Department of Earth, Marine and Environmental Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Luca Zoccarato
- Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- Core Facility Bioinformatics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Osnat Weissberg
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Coco Koedooder
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Israel Oceanographic and Limnological Research, Haifa, Israel
| | | | | | - Raul Mireles
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel,
| | - Stas Malavin
- Israel Oceanographic and Limnological Research, Haifa, Israel
- Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Beer-Sheba, Israel
| | - Michal Liddor Naim
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tal Idan
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Vibhaw Shrivastava
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Lynne Itelson
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Dagan Sade
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Alhan Abu Hamoud
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Yara Soussan-Farhat
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Noga Barak
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Peter Karp
- Bioinformatics Research Group, SRI International, Menlo Park, California, United States of America.
| | - Lisa R. Moore
- Bioinformatics Research Group, SRI International, Menlo Park, California, United States of America.
| |
Collapse
|
4
|
Yang S, Williams SJ, Courtney M, Burchill L. Warfare under the waves: a review of bacteria-derived algaecidal natural products. Nat Prod Rep 2025; 42:681-719. [PMID: 39749862 DOI: 10.1039/d4np00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Covering: 1960s to 2024Harmful algal blooms pose a major threat to aquatic ecosystems and can impact human health. The frequency and intensity of these blooms has increased over recent decades, driven primarily by climate change and an increase in nutrient runoff. Algal blooms often produce toxins that contaminate water sources, disrupt fisheries, and harm human health. These blooms may also result in oxygen-deprived environments leading to mass fish deaths that threaten the survival of other aquatic life. In freshwater and estuarine ecosystems, traditional chemical strategies to mitigate algal blooms include the use of herbicides, metal salts, or oxidants. Though effective, these agents are non-selective, toxic to other species, and cause loss of biodiversity. They can persist in ecosystems, contaminating the food web and providing an impetus for cost-effective, targeted algal-control methods that protect ecosystems. In marine ecosystems, harmful algal blooms are even more challenging to treat due to the lack of scalable solutions and the challenge of dispersal of algal control agents in open ocean settings. Natural products derived from algae-bacteria interactions have led to the evolution of diverse bacteria-derived algaecidal natural products, which are highly potent, species specific and have potential for combating harmful algal blooms. They provide valuable starting points for the development of eco-friendly algae control methods. This review provides a comprehensive overview of all bacterial algaecides and their activities, categorized into two major groups: (1) algaecides produced in ecologically significant associations between bacteria and algae, and (2) algaecides with potentially coincidental activity but without an ecological role in specific bacteria-algae interactions. This review contributes to a better understanding of the chemical ecology of parasitic algal-bacterial interactions, "the warfare under the waves", and highlights the potential applications of bacteria-derived algaecides to provide solutions to harmful algal blooms.
Collapse
Affiliation(s)
- Shuxin Yang
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Myles Courtney
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Laura Burchill
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
5
|
Coolahan M, Whalen KE. A review of quorum-sensing and its role in mediating interkingdom interactions in the ocean. Commun Biol 2025; 8:179. [PMID: 39905218 PMCID: PMC11794697 DOI: 10.1038/s42003-025-07608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025] Open
Abstract
Quorum sensing, first described in marine systems five decades ago, is a well-characterized chemical communication system used to coordinate bacterial gene expression and behavior; however, the impact of quorum sensing on interkingdom interactions has been vastly understudied. In this review, we examine how these molecules mediate communication between bacteria and marine eukaryotes; influencing processes such as development, disease pathogenesis, and microbiome regulation within marine ecosystems. We describe the varied mechanisms eukaryotes have evolved to interfere with bacterial quorum sensing signaling, the crucial role these signals play in host-virus interactions, and how their exchange may be governed by outer membrane vesicles, prevalent in marine systems. Here, we present a dynamic portrayal of the impact of quorum sensing signals beyond bacterial communication, laying the groundwork for future investigations on their roles in shaping marine ecosystem structure and function.
Collapse
Affiliation(s)
- Megan Coolahan
- Department of Biology, Haverford College, Haverford, PA, USA
| | | |
Collapse
|
6
|
Ganley JG, Seyedsayamdost MR. Iron limitation triggers roseoceramide biosynthesis and membrane remodeling in marine roseobacter. Proc Natl Acad Sci U S A 2025; 122:e2414434122. [PMID: 39847340 PMCID: PMC11789144 DOI: 10.1073/pnas.2414434122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025] Open
Abstract
Chemical communication between marine bacteria and their algal hosts drives population dynamics and ultimately determines the fate of major biogeochemical cycles in the ocean. To gain deeper insights into this small molecule exchange, we screened niche-specific metabolites as potential modulators of the secondary metabolome of the roseobacter, Roseovarius tolerans. Metabolomic analysis led to the identification of a group of cryptic lipids that we have termed roseoceramides. The roseoceramides are elicited by iron-binding algal flavonoids, which are produced by macroalgae that Roseovarius species associate with. Investigations into the mechanism of elicitation show that iron limitation in R. tolerans initiates a stress response that results in lowered oxidative phosphorylation, increased import and catabolism of algal exudates, and reconfiguration of lipid ynthesis to prioritize production of roseoceramides over phospholipids, likely to fortify membrane integrity as well as promote a sessile and symbiotic lifestyle. Our findings add new small molecule words and their "meanings" to the algal-bacterial lexicon and have implications for the initiation of these interactions.
Collapse
Affiliation(s)
- Jack G. Ganley
- Department of Chemistry, Princeton University, Princeton, NJ08544
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ08544
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| |
Collapse
|
7
|
Santoro EP, Cárdenas A, Villela HDM, Vilela CLS, Ghizelini AM, Duarte GAS, Perna G, Saraiva JP, Thomas T, Voolstra CR, Peixoto RS. Inherent differential microbial assemblages and functions associated with corals exhibiting different thermal phenotypes. SCIENCE ADVANCES 2025; 11:eadq2583. [PMID: 39823335 PMCID: PMC11740947 DOI: 10.1126/sciadv.adq2583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
Certain coral individuals exhibit enhanced resistance to thermal bleaching, yet the specific microbial assemblages and their roles in these phenotypes remain unclear. We compared the microbial communities of thermal bleaching-resistant (TBR) and thermal bleaching-sensitive (TBS) corals using metabarcoding and metagenomics. Our multidomain approach revealed stable distinct microbial compositions between thermal phenotypes. Notably, TBR corals were inherently enriched with microbial eukaryotes, particularly Symbiodiniaceae, linked to photosynthesis, and the biosynthesis of antibiotic and antitumor compounds and glycosylphosphatidylinositol-anchor proteins, crucial for cell wall regulation and metabolite exchange. In contrast, TBS corals were dominated by bacterial metabolic genes related to nitrogen, amino acid, and lipid metabolism. The inherent microbiome differences between TBR and TBS corals, already observed before thermal stress, point to distinct holobiont phenotypes associated to thermal bleaching resistance, offering insights into mechanisms underlying coral response to climate-induced stress.
Collapse
Affiliation(s)
- Erika P. Santoro
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- IMPPG, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Biology, American University, Washington, D.C. 20016, USA
| | - Helena D. M. Villela
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | | - Gustavo A. S. Duarte
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gabriela Perna
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - João P. Saraiva
- Department of Environmental Microbiology, Helmholtz Center for Environmental Research – UFZ, Leipzig, Germany
| | - Torsten Thomas
- Center for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | | | - Raquel S. Peixoto
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
8
|
White PS, Broe TY, Kuijpers MCM, Dickey JR, Jackrel SL. Host identity drives the assembly of phytoplankton microbiomes across a continental-scale environmental gradient. THE ISME JOURNAL 2025; 19:wraf083. [PMID: 40302044 DOI: 10.1093/ismejo/wraf083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/03/2025] [Accepted: 04/28/2025] [Indexed: 05/01/2025]
Abstract
Host-associated microbiomes often promote host health, yet the key drivers of microbiome assembly and its consequences for host fitness remain unclear. We aimed to determine the relative roles of host identity versus the environment in driving host-microbiome assembly and the consequences of this variation in assembly for host fitness, which may help predict the resilience of host-associated microbiomes and host health amidst fluctuating environmental conditions. Here, we tracked microbiome assembly in association with initially axenic phytoplankton when incubated in seawater originating from four nearshore locations along a continental-scale environmental gradient of North America. Microbiome assembly was highly deterministic. Unexpectedly, host species identity was the overwhelming driver of microbiome community assembly despite continental-scale variation in the environment. Although secondary to host identity, the environment was a significant driver of microbiome assembly for each species evaluated, which, in turn, conferred cascading effects on host fitness as shown by thermal tolerance growth assays. We also found that host-specific microbiomes had host-specific fitness effects, particularly under thermally stressful conditions. Overall, our results advance our understanding of microbiome assembly by empirically demonstrating that although variation among host microbiomes imparted by the local environment has significant implications for host health, the host species is the overwhelming driver of microbiome assembly regardless of wide-scale variation in the environment.
Collapse
Affiliation(s)
- Patricia Signe White
- Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA 92093-0116, United States
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720-2284, United States
| | - Taryn Y Broe
- Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA 92093-0116, United States
| | - Mirte C M Kuijpers
- Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA 92093-0116, United States
| | - Jonathan R Dickey
- Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA 92093-0116, United States
| | - Sara L Jackrel
- Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA 92093-0116, United States
| |
Collapse
|
9
|
Costas-Selas C, Martínez-García S, Pinhassi J, Fernández E, Teira E. Unveiling interactions mediated by B vitamins between diatoms and their associated bacteria from cocultures. JOURNAL OF PHYCOLOGY 2024; 60:1456-1470. [PMID: 39413213 DOI: 10.1111/jpy.13515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/13/2024] [Accepted: 09/14/2024] [Indexed: 10/18/2024]
Abstract
Unveiling the interactions among phytoplankton and bacteria at the level of species requires axenic isolates to experimentally demonstrate their mutual effects. In this study, we describe the interactions among the diatoms Pseudo-nitzschia granii and Chaetoceros tenuissimus and their associated bacterial species, isolated from surface water of a coastal upwelling system using coculture experiments. Microalgae growth was assessed in axenic monocultures or in coculture with each of their co-isolated bacteria in the presence or absence of B vitamins. Pseudo-nitzschia granii growth was limited by B-vitamin supply, except when cultured with the bacteria Jannaschia cystaugens, which seemed to provide adequate levels of B vitamins to the diatom. Chaetoceros tenuissimus growth was reduced in the absence of B vitamins. Moreover, the growth of C. tenuissimus was stimulated by Alteromonas sp. and Celeribacter baekdonensis during the exponential growth. These results show a diversity of specific interactions between the diatoms and co-isolated bacteria, ranging from allelopathy to commensalism. Understanding how interactions between phytoplankton and bacteria modulate the structure and function of marine microbial plankton communities will contribute to a greater knowledge of plankton ecology and improve our ability to predict nutrient fluxes in marine ecosystems or the formation of blooms in a context of global change.
Collapse
Affiliation(s)
- Cecilia Costas-Selas
- Departamento de Ecoloxía e Bioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Sandra Martínez-García
- Departamento de Ecoloxía e Bioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems-EEMiS, Linnaeus University, Kalmar, Sweden
| | - Emilio Fernández
- Departamento de Ecoloxía e Bioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Eva Teira
- Departamento de Ecoloxía e Bioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
10
|
Liu S, Chen Q, Liu L, Dong C, Qiu X, Tang K. Organic matter composition fluctuations disrupt free-living bacterial communities more than particle-associated bacterial communities in coastal waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174845. [PMID: 39053558 DOI: 10.1016/j.scitotenv.2024.174845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Marine organic matter fuels the growth of microbial communities, shaping the composition of bacteria that specialize in its breakdown. However, responses of free-living (FL) and particle-associated (PA) bacterial communities to the changing pools of dissolved organic matter (DOM) and particulate organic matter (POM) remained unclear. This study investigates the composition of size-fractionated bacterial communities, DOM and POM in coastal waters over a 22-day period that includes a diatom bloom. Co-occurrence analysis showed that the FL bacterial communities were significantly less stable than PA communities. During the diatom bloom, we observed a significant increase in DOM molecules, particularly those derived from amino acids and peptides. In contrast, the relative intensities of major POM molecule classes remained stable despite the algal bloom's influence. Our study revealed a strong negative correlation between bacterial alpha-diversity and the amount of molecules in the organic matter pool. Similarly, bacterial community beta-diversity was found to be related to the composition of organic matter pool. However, the composition of organic matter was more strongly related to the composition of FL bacterial communities compared to PA communities. This suggests that FL bacteria exhibit greater variations in temporal dynamics and higher sensitivity to the specific structure of organic matter molecules.
Collapse
Affiliation(s)
- Shujing Liu
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, China
| | - Quanrui Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, China
| | - Le Liu
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, China
| | - Changjie Dong
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, China
| | - Xuanyun Qiu
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, China.
| |
Collapse
|
11
|
Guo L, Li S, Cheng D, Lu X, Gao X, Zhang L, Lu J. Integrated proteome and pangenome analysis revealed the variation of microalga Isochrysis galbana and associated bacterial community to 2,6-Di-tert-butyl-p-cresol (BHT) stress. World J Microbiol Biotechnol 2024; 40:364. [PMID: 39446252 DOI: 10.1007/s11274-024-04171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
The phenolic antioxidant 2,6-Di-tert-butyl-p-cresol (BHT) has been detected in various environments and is considered a potential threat to aquatic organisms. Algal-bacterial interactions are crucial for maintaining ecosystem balance and elemental cycling, but their response to BHT remains to be investigated. This study analyzed the physiological and biochemical responses of the microalga Isochrysis galbana and the changes of associated bacterial communities under different concentrations of BHT stress. Results showed that the biomass of I. galbana exhibited a decreasing trend with increasing BHT concentrations up to 40 mg/L. The reduction in chlorophyll, carotenoid, and soluble protein content of microalgal cells was also observed under BHT stress. The production of malondialdehyde and the activities of superoxide dismutase, peroxidase, and catalase were further determined. Scanning electron microscopy analysis revealed that BHT caused surface rupture of the algal cells and loss of intracellular nutrients. Proteomic analysis demonstrated the upregulation of photosynthesis and citric acid cycle pathways as a response to BHT stress. Additionally, BHT significantly increased the relative abundance of specific bacteria in the phycosphere, including Marivita, Halomonas, Marinobacter, and Alteromonas. Further experiments confirmed that these bacteria had the ability to utilize BHT as the sole carbon resource for growth, and genes related to the degradation of phenolic compounds were detected through pangenome analysis.
Collapse
Affiliation(s)
- Linke Guo
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Shuangwei Li
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Dongle Cheng
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Xiao Lu
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Xinying Gao
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Linlin Zhang
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China.
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China.
| | - Jianjiang Lu
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China.
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China.
| |
Collapse
|
12
|
Khalil A, Bramucci AR, Focardi A, Le Reun N, Willams NLR, Kuzhiumparambil U, Raina JB, Seymour JR. Widespread production of plant growth-promoting hormones among marine bacteria and their impacts on the growth of a marine diatom. MICROBIOME 2024; 12:205. [PMID: 39420440 PMCID: PMC11487934 DOI: 10.1186/s40168-024-01899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/01/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Reciprocal exchanges of metabolites between phytoplankton and bacteria influence the fitness of these microorganisms which ultimately shapes the productivity of marine ecosystems. Recent evidence suggests that plant growth-promoting hormones may be key metabolites within mutualistic phytoplankton-bacteria partnerships, but very little is known about the diversity of plant growth-promoting hormones produced by marine bacteria and their specific effects on phytoplankton growth. Here, we aimed to investigate the capacity of marine bacteria to produce 7 plant growth-promoting hormones and the effects of these hormones on Actinocyclus sp. growth. RESULTS We examined the plant growth-promoting hormone synthesis capabilities of 14 bacterial strains that enhance the growth of the common diatom Actinocyclus. Plant growth-promoting hormone biosynthesis was ubiquitous among the bacteria tested. Indeed all 14 strains displayed the genomic potential to synthesise multiple hormones, and mass-spectrometry confirmed that each strain produced at least 6 out of the 7 tested plant growth-promoting hormones. Some of the plant growth-promoting hormones identified here, such as brassinolide and trans-zeatin, have never been reported in marine microorganisms. Importantly, all strains produced the hormone indole-3 acetic acid (IAA) in high concentrations and released it into their surroundings. Furthermore, indole-3 acetic acid extracellular concentrations were positively correlated with the ability of each strain to promote Actinocyclus growth. When inoculated with axenic Actinocyclus cultures, only indole-3 acetic acid and gibberellic acid enhanced the growth of the diatom, with cultures exposed to indole-3 acetic acid exhibiting a two-fold increase in cell numbers. CONCLUSION Our results reveal that marine bacteria produce a much broader range of plant growth-promoting hormones than previously suspected and that some of these compounds enhance the growth of a marine diatom. These findings suggest plant growth-promoting hormones play a large role in microbial communication and broaden our knowledge of their fuctions in the marine environment. Video Abstract.
Collapse
Affiliation(s)
- Abeeha Khalil
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Anna R Bramucci
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amaranta Focardi
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Nine Le Reun
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | | | | | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
13
|
Duchin Rapp Y, Lipsman V, Yuda L, Kublanov IV, Matsliyah D, Segev E. Algal exudates promote conjugation in marine Roseobacters. mBio 2024; 15:e0106224. [PMID: 39189747 PMCID: PMC11481893 DOI: 10.1128/mbio.01062-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Horizontal gene transfer (HGT) is a pivotal mechanism driving bacterial evolution, conferring adaptability within dynamic marine ecosystems. Among HGT mechanisms, conjugation mediated by type IV secretion systems (T4SSs) plays a central role in the ecological success of marine bacteria. However, the conditions promoting conjugation events in the marine environment are not well-understood. Roseobacters, abundant marine bacteria commonly associated with algae, possess a multitude of T4SSs. Many Roseobacters are heterotrophic bacteria that rely on algal secreted compounds to support their growth. These compounds attract bacteria, facilitating colonization and attachment to algal cells. Algae and their metabolites bring bacteria into close proximity, potentially promoting bacterial HGT. Investigation across various Roseobacters revealed that algal exudates indeed enhance plasmid transfer through conjugation. While algal exudates do not influence the transcription of bacterial conjugative machinery genes, they promote bacterial attachment, potentially stabilizing proximity and facilitating HGT. Notably, under conditions where attachment is less advantageous, the impact of algal exudates on conjugation is reduced. These findings suggest that algae enhance bacterial conjugation primarily by fostering attachment and highlight the importance of studying bacterial HGT within the context of algal-bacterial interactions. IMPORTANCE This study explores how algal-bacterial interactions influence horizontal gene transfer (HGT) among marine bacteria. HGT, a key driver of bacterial evolution, is facilitated by conjugation mediated by type IV secretion systems (T4SSs). Through investigating Roseobacters, abundant marine bacteria often found to be associated with algae, the study reveals that algal exudates enhance plasmid transfer via conjugation. This enhancement is attributed to the promotion of bacterial attachment by algal compounds, emphasizing the role of algal-bacterial interactions in shaping genetic exchange within dynamic marine ecosystems. Understanding these mechanisms is crucial for elucidating bacterial adaptability and evolution in the marine environment.
Collapse
Affiliation(s)
- Yemima Duchin Rapp
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Valeria Lipsman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lilach Yuda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ilya V. Kublanov
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dor Matsliyah
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Einat Segev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
14
|
Malla MA, Ansari FA, Bux F, Kumari S. Re-vitalizing wastewater: Nutrient recovery and carbon capture through microbe-algae synergy using omics-biology. ENVIRONMENTAL RESEARCH 2024; 259:119439. [PMID: 38901811 DOI: 10.1016/j.envres.2024.119439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Increasing amounts of wastewater is the most pervasive and challenging environmental problem globally. Conventional treatment methods are costly and entail huge energy, carbon consumption and greenhouse gas emissions. Owing to their unique ability of carbon capturing and resource recovery, microalgae-microbiome based treatment is a potential approach and is widely used for carbon-neutral wastewater treatment. Microalgae-bacteria synergy (i.e., the functionally beneficial microbial synthetic communities) performs better and enhances carbon-sequestration and nutrient recovery from wastewater treatment plants. This review presents a comprehensive information regarding the potential of microalgae-microbiome as a sustainable agent for wastewater and discusses synergistic approaches for effective nutrient removal. Moreover, this review discusses, the role of omics-biology and Insilco approaches in unravelling and understanding the algae-microbe synergism and their response toward wastewater treatment. Finally, it discusses various microbiome engineering approaches for developing the effective microalgae-bacteria partners for carbon sequestration and nutrient recovery from wastewater, and summarizes future research perspectives on microalgae-microbiome based bioremediation.
Collapse
Affiliation(s)
- Muneer Ahmad Malla
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faiz Ahmad Ansari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa.
| |
Collapse
|
15
|
Saha M, Dittami SM, Chan CX, Raina JB, Stock W, Ghaderiardakani F, Valathuparambil Baby John AM, Corr S, Schleyer G, Todd J, Cardini U, Bengtsson MM, Prado S, Skillings D, Sonnenschein EC, Engelen AH, Wang G, Wichard T, Brodie J, Leblanc C, Egan S. Progress and future directions for seaweed holobiont research. THE NEW PHYTOLOGIST 2024; 244:364-376. [PMID: 39137959 DOI: 10.1111/nph.20018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
In the marine environment, seaweeds (i.e. marine macroalgae) provide a wide range of ecological services and economic benefits. Like land plants, seaweeds do not provide these services in isolation, rather they rely on their associated microbial communities, which together with the host form the seaweed holobiont. However, there is a poor understanding of the mechanisms shaping these complex seaweed-microbe interactions, and of the evolutionary processes underlying these interactions. Here, we identify the current research challenges and opportunities in the field of seaweed holobiont biology. We argue that identifying the key microbial partners, knowing how they are recruited, and understanding their specific function and their relevance across all seaweed life history stages are among the knowledge gaps that are particularly important to address, especially in the context of the environmental challenges threatening seaweeds. We further discuss future approaches to study seaweed holobionts, and how we can apply the holobiont concept to natural or engineered seaweed ecosystems.
Collapse
Affiliation(s)
- Mahasweta Saha
- Plymouth Marine Laboratory, Marine Ecology and Biodiversity, Prospect Place, Plymouth, PL1 3DH, UK
| | - Simon M Dittami
- CNRS, Integrative Biology of Marine Models Laboratory (LBI2M, UMR 8227), Station Biologique de Roscoff, Place Georges Teissier, Sorbonne Université, Roscoff, 29680, France
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Willem Stock
- Phycology Research Group, Ghent University, Krijgslaan 281 Sterre S8, Ghent, 9000, Belgium
| | - Fatemeh Ghaderiardakani
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, Jena, 07743, Germany
| | | | - Shauna Corr
- Plymouth Marine Laboratory, Marine Ecology and Biodiversity, Prospect Place, Plymouth, PL1 3DH, UK
| | - Guy Schleyer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, Jena, 07745, Germany
| | - Jonathan Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ulisse Cardini
- Department of Integrative Marine Ecology (EMI), Genoa Marine Centre, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Genoa, 16126, Italy
| | - Mia M Bengtsson
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, Greifswald, 17489, Germany
| | - Soizic Prado
- National Museum of Natural History, Unit Molecules of Communication and Adaptation of Microorganisms (UMR 7245), Paris, France
| | - Derek Skillings
- Department of Philosophy, University of North Carolina Greensboro, Greensboro, NC, 27402, USA
| | - Eva C Sonnenschein
- Department of Biosciences, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | | | - Gaoge Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- MoE Key Laboratory of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, Jena, 07743, Germany
| | - Juliet Brodie
- Natural History Museum, Research, Cromwell Road, London, SW7 5BD, UK
| | - Catherine Leblanc
- CNRS, Integrative Biology of Marine Models Laboratory (LBI2M, UMR 8227), Station Biologique de Roscoff, Place Georges Teissier, Sorbonne Université, Roscoff, 29680, France
| | - Suhelen Egan
- Centre for Marine Science and Innovation (CMSI), School of Biological, Earth and Environmental Sciences (BEES), UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
16
|
Selivanova EA, Yakimov MM, Kataev VY, Khlopko YA, Balkin AS, Plotnikov AO. The Cultivation of Halophilic Microalgae Shapes the Structure of Their Prokaryotic Assemblages. Microorganisms 2024; 12:1947. [PMID: 39458257 PMCID: PMC11509377 DOI: 10.3390/microorganisms12101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
The influence of microalgae on the formation of associated prokaryotic assemblages in halophilic microbial communities is currently underestimated. The aim of this study was to characterize shifts in prokaryotic assemblages of halophilic microalgae upon their transition to laboratory cultivation. Monoalgal cultures belonging to the classes Chlorodendrophyceae, Bacillariophyceae, Trebouxiophyceae, and Chlorophyceae were isolated from habitats with intermediate salinity, about 100 g/L, nearby Elton Lake (Russia). Significant changes were revealed in the structure of algae-associated prokaryotic assemblages, indicating that microalgae supported sufficiently diverse and even communities of prokaryotes. Despite some similarities in their prokaryotic assemblages, taxon-specific complexes of dominant genera were identified for each microalga species. These complexes were most different among Alphaproteobacteria, likely due to their close association with microalgae. Other taxon-specific bacteria included members of phylum Verrucomicrobiota (Coraliomargarita in assemblages of Navicula sp.) and class Gammaproteobacteria (Salinispirillum in microbiomes of A. gracilis). After numerous washings of algal cells, only alphaproteobacteria Marivibrio remained in all assemblages of T. indica, likely due to a firm attachment to the microalgae cells. Our results may be useful for further efforts to develop technologies applied for industrial cultivation of halophilic microalgae and for developing approaches to obtain new prokaryotes with a microalgae-associated lifestyle.
Collapse
Affiliation(s)
- Elena A. Selivanova
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of Russian Academy of Sciences, Orenburg Federal Research Center of the Ural Branch of Russian Academy of Sciences, 460000 Orenburg, Russia; (V.Y.K.); (Y.A.K.); (A.S.B.)
| | - Michail M. Yakimov
- Extreme Microbiology, Biotechnology and Astrobiology Group, Institute of Polar Research, The Institute of Polar Sciences of the National Research Council (ISP-CNR), 98122 Messina, Italy;
| | - Vladimir Y. Kataev
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of Russian Academy of Sciences, Orenburg Federal Research Center of the Ural Branch of Russian Academy of Sciences, 460000 Orenburg, Russia; (V.Y.K.); (Y.A.K.); (A.S.B.)
| | - Yuri A. Khlopko
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of Russian Academy of Sciences, Orenburg Federal Research Center of the Ural Branch of Russian Academy of Sciences, 460000 Orenburg, Russia; (V.Y.K.); (Y.A.K.); (A.S.B.)
| | - Alexander S. Balkin
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of Russian Academy of Sciences, Orenburg Federal Research Center of the Ural Branch of Russian Academy of Sciences, 460000 Orenburg, Russia; (V.Y.K.); (Y.A.K.); (A.S.B.)
| | - Andrey O. Plotnikov
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of Russian Academy of Sciences, Orenburg Federal Research Center of the Ural Branch of Russian Academy of Sciences, 460000 Orenburg, Russia; (V.Y.K.); (Y.A.K.); (A.S.B.)
| |
Collapse
|
17
|
Abate R, Oon YL, Oon YS, Bi Y, Mi W, Song G, Gao Y. Diverse interactions between bacteria and microalgae: A review for enhancing harmful algal bloom mitigation and biomass processing efficiency. Heliyon 2024; 10:e36503. [PMID: 39286093 PMCID: PMC11402748 DOI: 10.1016/j.heliyon.2024.e36503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
The interactions between bacteria and microalgae play pivotal roles in resource allocation, biomass accumulation, nutrient recycling, and species succession in aquatic systems, offering ample opportunities to solve several social problems. The escalating threat of harmful algal blooms (HABs) in the aquatic environment and the lack of cheap and eco-friendly algal-biomass processing methods have been among the main problems, demanding efficient and sustainable solutions. In light of this, the application of algicidal bacteria to control HABs and enhance algal biomass processing has been promoted in the past few decades as potentially suitable mechanisms to solve those problems. Hence, this comprehensive review aims to explore the diverse interaction modes between bacteria and microalgae, ranging from synergistic to antagonistic, and presents up-to-date information and in-depth analysis of their potential biotechnological applications, particularly in controlling HABs and enhancing microalgal biomass processing. For instance, several studies revealed that algicidal bacteria can effectively inhibit the growth of Microcystis aeruginosa, a notorious freshwater HAB species, with an antialgal efficiency of 24.87 %-98.8 %. The review begins with an overview of the mechanisms behind algae-bacteria interactions, including the environmental factors influencing these dynamics and their broader implications for aquatic ecosystems. It then provides a detailed analysis of the role of algicidal bacteria in controlling harmful algal blooms, as well as their role in bioflocculation and the pretreatment of microalgal biomass. Additionally, the review identifies and discusses the constraints and challenges in the biotechnological application of these interactions. By exploring the strategic use of algicidal bacteria, this review not only underscores their importance in maintaining aquatic environmental health but also in enhancing biomass processing efficiency. It offers valuable insights into future research avenues and the potential scalability of these applications, both in situ and at an industrial level.
Collapse
Affiliation(s)
- Rediat Abate
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Natural and Computatinal Science, Arba Minch University, Ethiopia
| | - Yoong-Ling Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yoong-Sin Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yonghong Bi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wujuan Mi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gaofei Song
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yahui Gao
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
18
|
Zhu J, Yu Z, He L, Cao X, Wang W, Song X. Phycosphere bacterial composition and function in colony and solitary Phaeocystis globosa strains providing novel insights into the algal blooms. MARINE POLLUTION BULLETIN 2024; 206:116700. [PMID: 39002214 DOI: 10.1016/j.marpolbul.2024.116700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Phycosphere bacteria can regulate the dynamics of different algal blooms that impact marine ecosystems. Phaeocystis globosa can alternate between solitary free-living cells and colonies and the latter morphotype is dominate during blooms. The mechanisms underlying the formation of these blooms have received much attention. High throughput sequencing results showed that the bacterial community composition differed significantly between colony and solitary strains in bacterial composition and function. It was found that the genera SM1A02 and Haliea were detected only among the colony strains and contribute to ammonium accumulation in colonies, and the genus Sulfitobacter was abundant among the colony strains that were excellent at producing DMS. In addition, the bacterial communities of the two colony strains exhibited stronger abilities for carbon and sulfur metabolism, energy metabolism, vitamin B synthesis, and signal transduction, providing inorganic and organic nutrients and facilitating tight communication with the host algae, thereby promoting growth and bloom development.
Collapse
Affiliation(s)
- Jianan Zhu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Liyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xihua Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wentao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiuxian Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Martínez-Pérez C, Zweifel ST, Pioli R, Stocker R. Space, the final frontier: The spatial component of phytoplankton-bacterial interactions. Mol Microbiol 2024; 122:331-346. [PMID: 38970428 DOI: 10.1111/mmi.15293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Microscale interactions between marine phytoplankton and bacteria shape the microenvironment of individual cells, impacting their physiology and ultimately influencing global-scale biogeochemical processes like carbon and nutrient cycling. In dilute environments such as the ocean water column, metabolic exchange between microorganisms likely requires close proximity between partners. However, the biological strategies to achieve this physical proximity remain an understudied aspect of phytoplankton-bacterial associations. Understanding the mechanisms by which these microorganisms establish and sustain spatial relationships and the extent to which spatial proximity is necessary for interactions to occur, is critical to learning how spatial associations influence the ecology of phytoplankton and bacterial communities. Here, we provide an overview of current knowledge on the role of space in shaping interactions among ocean microorganisms, encompassing behavioural and metabolic evidence. We propose that characterising phytoplankton-bacterial interactions from a spatial perspective can contribute to a mechanistic understanding of the establishment and maintenance of these associations and, consequently, an enhanced ability to predict the impact of microscale processes on ecosystem-wide phenomena.
Collapse
Affiliation(s)
- Clara Martínez-Pérez
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Sophie T Zweifel
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Roberto Pioli
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Cameron ES, Sanchez S, Goldman N, Blaxter ML, Finn RD. Diversity and specificity of molecular functions in cyanobacterial symbionts. Sci Rep 2024; 14:18658. [PMID: 39134591 PMCID: PMC11319675 DOI: 10.1038/s41598-024-69215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Cyanobacteria are globally occurring photosynthetic bacteria notable for their contribution to primary production and production of toxins which have detrimental ecosystem impacts. Furthermore, cyanobacteria can form mutualistic symbiotic relationships with a diverse set of eukaryotes, including land plants, aquatic plankton and fungi. Nevertheless, not all cyanobacteria are found in symbiotic associations suggesting symbiotic cyanobacteria have evolved specializations that facilitate host-interactions. Photosynthetic capabilities, nitrogen fixation, and the production of complex biochemicals are key functions provided by host-associated cyanobacterial symbionts. To explore if additional specializations are associated with such lifestyles in cyanobacteria, we have conducted comparative phylogenomics of molecular functions and of biosynthetic gene clusters (BGCs) in 984 cyanobacterial genomes. Cyanobacteria with host-associated and symbiotic lifestyles were concentrated in the family Nostocaceae, where eight monophyletic clades correspond to specific host taxa. In agreement with previous studies, symbionts are likely to provide fixed nitrogen to their eukaryotic partners, through multiple different nitrogen fixation pathways. Additionally, our analyses identified chitin metabolising pathways in cyanobacteria associated with specific host groups, while obligate symbionts had fewer BGCs. The conservation of molecular functions and BGCs between closely related symbiotic and free-living cyanobacteria suggests the potential for additional cyanobacteria to form symbiotic relationships than is currently known.
Collapse
Affiliation(s)
- Ellen S Cameron
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, UK
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Santiago Sanchez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, UK
| | - Nick Goldman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, UK
| | - Mark L Blaxter
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|
21
|
Lin T, Feng Y, Miao W, Wang S, Bao Z, Shao Z, Zhang D, Wang X, Jiang H, Zhang H. Elevated temperature alters bacterial community from mutualism to antagonism with Skeletonema costatum: insights into the role of a novel species, Tamlana sp. MS1. mSphere 2024; 9:e0019824. [PMID: 38940599 PMCID: PMC11288006 DOI: 10.1128/msphere.00198-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/15/2024] [Indexed: 06/29/2024] Open
Abstract
Skeletonema costatum, a cosmopolitan diatom primarily inhabiting coastal ecosystems, exhibits a typically close yet variable relationship with heterotrophic bacteria. The increasing temperature of surface seawater is expected to substantially affect the viability and ecological dynamics of S. costatum, potentially altering its relationship with bacteria. However, it remains unclear to what extent the elevated temperature could change these relationships. Here, the relationship between axenic S. costatum and natural seawater bacteria underwent a dramatic shift from mutualism to antagonism as the co-culture temperature increased from 20°C to 25°C. The co-occurrence network indicated significantly increased complexity of interaction between S. costatum and bacteria community after temperature elevation, especially with Flavobacteriaceae, implying their potential role in eliminating S. costatum under higher temperatures. Additionally, a Flavobacteriaceae isolate, namely MS1 identified as Tamlana genus, was isolated from the co-culture system at 25°C. MS1 had a remarkable ability to eliminate S. costatum, with the mortality rate at 25°C steadily rising from 30.2% at 48 h to 92.4% at 120 h. However, it promoted algal growth to some extent at 20°C. These results demonstrated that increased temperature promotes MS1 shifts from mutualism to antagonism with S. costatum. According to the comparative genomics analysis, changes in the lifestyle of MS1 were attributed to the increased gliding motility and attachment of MS1 under elevated temperature, enabling it to exert an algicidal effect through direct contact with alga. This investigation provided an advanced understanding of interactions between phytoplankton and bacteria in future warming oceanic ecosystems. IMPORTANCE Ocean warming profoundly influences the growth and metabolism of phytoplankton and bacteria, thereby significantly reshaping their interactions. Previous studies have shown that warming can change bacterial lifestyle from mutualism to antagonism with phytoplankton, but the underlying mechanism remains unclear. In this study, we found that high temperature promotes Tamlana sp. MS1 adhesion to Skeletonema costatum, leading to algal lysis through direct contact, demonstrating a transition in lifestyle from mutualism to antagonism with increasing temperature. Furthermore, the gliding motility of MS1 appears to be pivotal in mediating the transition of its lifestyle. These findings not only advance our understanding of the phytoplankton-bacteria relationship under ocean warming but also offer valuable insights for predicting the impact of warming on phytoplankton carbon sequestration.
Collapse
Affiliation(s)
- Tenghui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yumeng Feng
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wenfei Miao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Shuqi Wang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhen Bao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zeyuan Shao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Xinwei Wang
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Haibo Jiang
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Huajun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| |
Collapse
|
22
|
Wilde J, Slack E, Foster KR. Host control of the microbiome: Mechanisms, evolution, and disease. Science 2024; 385:eadi3338. [PMID: 39024451 DOI: 10.1126/science.adi3338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
Many species, including humans, host communities of symbiotic microbes. There is a vast literature on the ways these microbiomes affect hosts, but here we argue for an increased focus on how hosts affect their microbiomes. Hosts exert control over their symbionts through diverse mechanisms, including immunity, barrier function, physiological homeostasis, and transit. These mechanisms enable hosts to shape the ecology and evolution of microbiomes and generate natural selection for microbial traits that benefit the host. Our microbiomes result from a perpetual tension between host control and symbiont evolution, and we can leverage the host's evolved abilities to regulate the microbiota to prevent and treat disease. The study of host control will be central to our ability to both understand and manipulate microbiotas for better health.
Collapse
Affiliation(s)
- Jacob Wilde
- Department of Biology, University of Oxford, Oxford, UK
| | - Emma Slack
- Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Basel Institute for Child Health, Basel, Switzerland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Isaac A, Mohamed AR, Amin SA. Rhodobacteraceae are key players in microbiome assembly of the diatom Asterionellopsis glacialis. Appl Environ Microbiol 2024; 90:e0057024. [PMID: 38809046 PMCID: PMC11218658 DOI: 10.1128/aem.00570-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024] Open
Abstract
The complex interactions between bacterioplankton and phytoplankton have prompted numerous studies that investigate phytoplankton microbiomes with the aim of characterizing beneficial or opportunistic taxa and elucidating core bacterial members. Oftentimes, this knowledge is garnered through 16S rRNA gene profiling of microbiomes from phytoplankton isolated across spatial and temporal scales, yet these studies do not offer insight into microbiome assembly and structuring. In this study, we aimed to identify taxa central to structuring and establishing the microbiome of the ubiquitous diatom Asterionellopsis glacialis. We introduced a diverse environmental bacterial community to A. glacialis in nutrient-rich or nutrient-poor media in a continuous dilution culture setup and profiled the bacterial community over 7 days. 16S rRNA amplicon sequencing showed that cyanobacteria (Coleofasciculaceae) and Rhodobacteraceae dominate the microbiome early on and maintain a persistent association throughout the experiment. Differential abundance, co-abundance networks, and differential association analyses revealed that specific members of the family Rhodobacteraceae, particularly Sulfitobacter amplicon sequence variants, become integral members in microbiome assembly. In the presence of the diatom, Sulfitobacter species and other Rhodobacteraceae developed positive associations with taxa that are typically in high abundance in marine ecosystems (Pelagibacter and Synechococcus), leading to restructuring of the microbiome compared to diatom-free controls. These positive associations developed predominantly under oligotrophic conditions, highlighting the importance of investigating phytoplankton microbiomes in as close to natural conditions as possible to avoid biases that develop under routine laboratory conditions. These findings offer further insight into phytoplankton-bacteria interactions and illustrate the importance of Rhodobacteraceae, not merely as phytoplankton symbionts but as key taxa involved in microbiome assembly. IMPORTANCE Most, if not all, microeukaryotic organisms harbor an associated microbial community, termed the microbiome. The microscale interactions that occur between these partners have global-scale consequences, influencing marine primary productivity, carbon cycling, and harmful algal blooms to name but a few. Over the last decade, there has been a growing interest in the study of phytoplankton microbiomes, particularly within the context of bloom dynamics. However, long-standing questions remain regarding the process of phytoplankton microbiome assembly. The significance of our research is to tease apart the mechanism of microbiome assembly with a particular focus on identifying bacterial taxa, which may not merely be symbionts but architects of the phytoplankton microbiome. Our results strengthen the understanding of the ecological mechanisms that underpin phytoplankton-bacteria interactions in order to accurately predict marine ecosystem responses to environmental perturbations.
Collapse
Affiliation(s)
- Ashley Isaac
- Marine Microbiomics Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Amin R. Mohamed
- Marine Microbiomics Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Shady A. Amin
- Marine Microbiomics Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Mubadala ACCESS Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
24
|
Perotti O, Esparza GV, Booth DS. A red algal polysaccharide influences the multicellular development of the choanoflagellate Salpingoeca rosetta. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594265. [PMID: 38798503 PMCID: PMC11118467 DOI: 10.1101/2024.05.14.594265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
We uncovered an interaction between a choanoflagellate and alga, in which porphyran, a polysaccharide produced by the red alga Porphyra umbilicalis, induces multicellular development in the choanoflagellate Salpingoeca rosetta. We first noticed this possible interaction when we tested the growth of S. rosetta in media that was steeped with P. umbilicalis as a nutritional source. Under those conditions, S. rosetta formed multicellular rosette colonies even in the absence of any bacterial species that can induce rosette development. In biochemical purifications, we identified porphyran, a extracellular polysaccharide produced by red algae, as the rosette inducing factor The response of S. rosetta to porphyran provides a biochemical insight for associations between choanoflagellates and algae that have been observed since the earliest descriptions of choanoflagellates. Moreover, this work provides complementary evidence to ecological and geochemical studies that show the profound impact algae have exerted on eukaryotes and their evolution, including a rise in algal productivity that coincided with the origin of animals, the closest living relatives of choanoflagellates.
Collapse
Affiliation(s)
- Olivia Perotti
- Chan Zuckerberg Biohub, University of California, San Francisco School of Medicine Genentech Hall, 600 16 St, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine Genentech Hall, 600 16 St, San Francisco, CA 94143
- Present address: Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Gabriel Viramontes Esparza
- Chan Zuckerberg Biohub, University of California, San Francisco School of Medicine Genentech Hall, 600 16 St, San Francisco, CA 94143
- Tetrad Graduate Group, University of California, San Francisco School of Medicine Genentech Hall, 600 16 St, San Francisco, CA 94143
| | - David S. Booth
- Chan Zuckerberg Biohub, University of California, San Francisco School of Medicine Genentech Hall, 600 16 St, San Francisco, CA 94143
- Tetrad Graduate Group, University of California, San Francisco School of Medicine Genentech Hall, 600 16 St, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine Genentech Hall, 600 16 St, San Francisco, CA 94143
| |
Collapse
|
25
|
Kim KH, Kim JM, Baek JH, Jeong SE, Kim H, Yoon HS, Jeon CO. Metabolic relationships between marine red algae and algae-associated bacteria. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:298-314. [PMID: 38827136 PMCID: PMC11136935 DOI: 10.1007/s42995-024-00227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/28/2023] [Indexed: 06/04/2024]
Abstract
Mutualistic interactions between marine phototrophs and associated bacteria are an important strategy for their successful survival in the ocean, but little is known about their metabolic relationships. Here, bacterial communities in the algal sphere (AS) and bulk solution (BS) of nine marine red algal cultures were analyzed, and Roseibium and Phycisphaera were identified significantly more abundantly in AS than in BS. The metabolic features of Roseibium RMAR6-6 (isolated and genome-sequenced), Phycisphaera MAG 12 (obtained by metagenomic sequencing), and a marine red alga, Porphyridium purpureum CCMP1328 (from GenBank), were analyzed bioinformatically. RMAR6-6 has the genetic capability to fix nitrogen and produce B vitamins (B1, B2, B5, B6, B9, and B12), bacterioferritin, dimethylsulfoniopropionate (DMSP), and phenylacetate that may enhance algal growth, whereas MAG 12 may have a limited metabolic capability, not producing vitamins B9 and B12, DMSP, phenylacetate, and siderophores, but with the ability to produce bacitracin, possibly modulating algal microbiome. P. purpureum CCMP1328 lacks the genetic capability to fix nitrogen and produce vitamin B12, DMSP, phenylacetate, and siderophore. It was shown that the nitrogen-fixing ability of RMAR6-6 promoted the growth of P. purpureum, and DMSP reduced the oxidative stress of P. purpureum. The metabolic interactions between strain RMAR6-6 and P. purpureum CCMP1328 were also investigated by the transcriptomic analyses of their monoculture and co-culture. Taken together, potential metabolic relationships between Roseibium and P. purpureum were proposed. This study provides a better understanding of the metabolic relationships between marine algae and algae-associated bacteria for successful growth. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00227-z.
Collapse
Affiliation(s)
- Kyung Hyun Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejon, 34054 Republic of Korea
| | - Jeong Min Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Sang Eun Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Hocheol Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974 Republic of Korea
| |
Collapse
|
26
|
Burgunter-Delamare B, Shetty P, Vuong T, Mittag M. Exchange or Eliminate: The Secrets of Algal-Bacterial Relationships. PLANTS (BASEL, SWITZERLAND) 2024; 13:829. [PMID: 38592793 PMCID: PMC10974524 DOI: 10.3390/plants13060829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Algae and bacteria have co-occurred and coevolved in common habitats for hundreds of millions of years, fostering specific associations and interactions such as mutualism or antagonism. These interactions are shaped through exchanges of primary and secondary metabolites provided by one of the partners. Metabolites, such as N-sources or vitamins, can be beneficial to the partner and they may be assimilated through chemotaxis towards the partner producing these metabolites. Other metabolites, especially many natural products synthesized by bacteria, can act as toxins and damage or kill the partner. For instance, the green microalga Chlamydomonas reinhardtii establishes a mutualistic partnership with a Methylobacterium, in stark contrast to its antagonistic relationship with the toxin producing Pseudomonas protegens. In other cases, as with a coccolithophore haptophyte alga and a Phaeobacter bacterium, the same alga and bacterium can even be subject to both processes, depending on the secreted bacterial and algal metabolites. Some bacteria also influence algal morphology by producing specific metabolites and micronutrients, as is observed in some macroalgae. This review focuses on algal-bacterial interactions with micro- and macroalgal models from marine, freshwater, and terrestrial environments and summarizes the advances in the field. It also highlights the effects of temperature on these interactions as it is presently known.
Collapse
Affiliation(s)
- Bertille Burgunter-Delamare
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
| | - Prateek Shetty
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
27
|
Kuhlisch C, Shemi A, Barak-Gavish N, Schatz D, Vardi A. Algal blooms in the ocean: hot spots for chemically mediated microbial interactions. Nat Rev Microbiol 2024; 22:138-154. [PMID: 37833328 DOI: 10.1038/s41579-023-00975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
The cycling of major nutrients in the ocean is affected by large-scale phytoplankton blooms, which are hot spots of microbial life. Diverse microbial interactions regulate bloom dynamics. At the single-cell level, interactions between microorganisms are mediated by small molecules in the chemical crosstalk that determines the type of interaction, ranging from mutualism to pathogenicity. Algae interact with viruses, bacteria, parasites, grazers and other algae to modulate algal cell fate, and these interactions are dependent on the environmental context. Recent advances in mass spectrometry and single-cell technologies have led to the discovery of a growing number of infochemicals - metabolites that convey information - revealing the ability of algal cells to govern biotic interactions in the ocean. The diversity of infochemicals seems to account for the specificity in cellular response during microbial communication. Given the immense impact of algal blooms on biogeochemical cycles and climate regulation, a major challenge is to elucidate how microscale interactions control the fate of carbon and the recycling of major elements in the ocean. In this Review, we discuss microbial interactions and the role of infochemicals in algal blooms. We further explore factors that can impact microbial interactions and the available tools to decipher them in the natural environment.
Collapse
Affiliation(s)
- Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Adva Shemi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Barak-Gavish
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
28
|
Doting EL, Jensen MB, Peter EK, Ellegaard-Jensen L, Tranter M, Benning LG, Hansen M, Anesio AM. The exometabolome of microbial communities inhabiting bare ice surfaces on the southern Greenland Ice Sheet. Environ Microbiol 2024; 26:e16574. [PMID: 38263628 DOI: 10.1111/1462-2920.16574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Microbial blooms colonize the Greenland Ice Sheet bare ice surface during the ablation season and significantly reduce its albedo. On the ice surface, microbes are exposed to high levels of irradiance, freeze-thaw cycles, and low nutrient concentrations. It is well known that microorganisms secrete metabolites to maintain homeostasis, communicate with other microorganisms, and defend themselves. Yet, the exometabolome of supraglacial microbial blooms, dominated by the pigmented glacier ice algae Ancylonema alaskanum and Ancylonema nordenskiöldii, remains thus far unstudied. Here, we use a high-resolution mass spectrometry-based untargeted metabolomics workflow to identify metabolites in the exometabolome of microbial blooms on the surface of the southern tip of the Greenland Ice Sheet. Samples were collected every 6 h across two diurnal cycles at 5 replicate sampling sites with high similarity in community composition, in terms of orders and phyla present. Time of sampling explained 46% (permutational multivariate analysis of variance [PERMANOVA], pseudo-F = 3.7771, p = 0.001) and 27% (PERMANOVA, pseudo-F = 1.8705, p = 0.001) of variance in the exometabolome across the two diurnal cycles. Annotated metabolites included riboflavin, lumichrome, tryptophan, and azelaic acid, all of which have demonstrated roles in microbe-microbe interactions in other ecosystems and should be tested for potential roles in the development of microbial blooms on bare ice surfaces.
Collapse
Affiliation(s)
- Eva L Doting
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marie B Jensen
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
| | - Elisa K Peter
- Interface Geochemistry Section, German Research Centre for Geosciences, Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - Lea Ellegaard-Jensen
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
| | - Martyn Tranter
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
| | - Liane G Benning
- Interface Geochemistry Section, German Research Centre for Geosciences, Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - Martin Hansen
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
| | - Alexandre M Anesio
- Department of Environmental Science, iClimate, Aarhus University, Roskilde, Denmark
| |
Collapse
|
29
|
Lian C, Xiang J, Cai H, Ke J, Ni H, Zhu J, Zheng Z, Lu K, Yang W. Microalgae Inoculation Significantly Shapes the Structure, Alters the Assembly Process, and Enhances the Stability of Bacterial Communities in Shrimp-Rearing Water. BIOLOGY 2024; 13:54. [PMID: 38275730 PMCID: PMC10813777 DOI: 10.3390/biology13010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Intensive shrimp farming may lead to adverse environmental consequences due to discharged water effluent. Inoculation of microalgae can moderate the adverse effect of shrimp-farming water. However, how bacterial communities with different lifestyles (free-living (FL) and particle-attached (PA)) respond to microalgal inoculation is unclear. In the present study, we investigated the effects of two microalgae (Nannochloropsis oculata and Thalassiosira weissflogii) alone or in combination in regulating microbial communities in shrimp-farmed water and their potential applications. PERMANOVA revealed significant differences among treatments in terms of time and lifestyle. Community diversity analysis showed that PA bacteria responded more sensitively to different microalgal treatments than FL bacteria. Redundancy analysis (RDA) indicated that the bacterial community was majorly influenced by environmental factors, compared to microalgal direct influence. Moreover, the neutral model analysis and the average variation degree (AVD) index indicated that the addition of microalgae affected the bacterial community structure and stability during the stochastic process, and the PA bacterial community was the most stable with the addition of T. weissflogii. Therefore, the present study revealed the effects of microalgae and nutrient salts on bacterial communities in shrimp aquaculture water by adding microalgae to control the process of community change. This study is important for understanding the microbial community assembly and interpreting complex interactions among zoo-, phyto-, and bacterioplankton in shrimp aquaculture ecosystems. Additionally, these findings may contribute to the sustainable development of shrimp aquaculture and ecosystem conservation.
Collapse
Affiliation(s)
- Chen Lian
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Jie Xiang
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Huifeng Cai
- Fishery Technical Management Service Station of Yinzhou District, Ningbo 315100, China;
| | - Jiangdong Ke
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Heng Ni
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Jinyong Zhu
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Zhongming Zheng
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Kaihong Lu
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Wen Yang
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| |
Collapse
|
30
|
Calatrava V, Hom EF, Guan Q, Llamas A, Fernández E, Galván A. Genetic evidence for algal auxin production in Chlamydomonas and its role in algal-bacterial mutualism. iScience 2024; 27:108762. [PMID: 38269098 PMCID: PMC10805672 DOI: 10.1016/j.isci.2023.108762] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
Interactions between algae and bacteria are ubiquitous and play fundamental roles in nutrient cycling and biomass production. Recent studies have shown that the plant auxin indole acetic acid (IAA) can mediate chemical crosstalk between algae and bacteria, resembling its role in plant-bacterial associations. Here, we report a mechanism for algal extracellular IAA production from L-tryptophan mediated by the enzyme L-amino acid oxidase (LAO1) in the model Chlamydomonas reinhardtii. High levels of IAA inhibit algal cell multiplication and chlorophyll degradation, and these inhibitory effects can be relieved by the presence of the plant-growth-promoting bacterium (PGPB) Methylobacterium aquaticum, whose growth is mutualistically enhanced by the presence of the alga. These findings reveal a complex interplay of microbial auxin production and degradation by algal-bacterial consortia and draws attention to potential ecophysiological roles of terrestrial microalgae and PGPB in association with land plants.
Collapse
Affiliation(s)
- Victoria Calatrava
- Departamento de Bioquímica y Biología Molecular. Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Erik F.Y. Hom
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, MS 38677-1848, USA
| | - Qijie Guan
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, MS 38677-1848, USA
| | - Angel Llamas
- Departamento de Bioquímica y Biología Molecular. Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Emilio Fernández
- Departamento de Bioquímica y Biología Molecular. Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Aurora Galván
- Departamento de Bioquímica y Biología Molecular. Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
31
|
Shibl AA, Ochsenkühn MA, Mohamed AR, Isaac A, Coe LSY, Yun Y, Skrzypek G, Raina JB, Seymour JR, Afzal AJ, Amin SA. Molecular mechanisms of microbiome modulation by the eukaryotic secondary metabolite azelaic acid. eLife 2024; 12:RP88525. [PMID: 38189382 PMCID: PMC10945470 DOI: 10.7554/elife.88525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Photosynthetic eukaryotes, such as microalgae and plants, foster fundamentally important relationships with their microbiome based on the reciprocal exchange of chemical currencies. Among these, the dicarboxylate metabolite azelaic acid (Aze) appears to play an important, but heterogeneous, role in modulating these microbiomes, as it is used as a carbon source for some heterotrophs but is toxic to others. However, the ability of Aze to promote or inhibit growth, as well as its uptake and assimilation mechanisms into bacterial cells are mostly unknown. Here, we use transcriptomics, transcriptional factor coexpression networks, uptake experiments, and metabolomics to unravel the uptake, catabolism, and toxicity of Aze on two microalgal-associated bacteria, Phycobacter and Alteromonas, whose growth is promoted or inhibited by Aze, respectively. We identify the first putative Aze transporter in bacteria, a 'C4-TRAP transporter', and show that Aze is assimilated through fatty acid degradation, with further catabolism occurring through the glyoxylate and butanoate metabolism pathways when used as a carbon source. Phycobacter took up Aze at an initial uptake rate of 3.8×10-9 nmol/cell/hr and utilized it as a carbon source in concentrations ranging from 10 μM to 1 mM, suggesting a broad range of acclimation to Aze availability. For growth-impeded bacteria, we infer that Aze inhibits the ribosome and/or protein synthesis and that a suite of efflux pumps is utilized to shuttle Aze outside the cytoplasm. We demonstrate that seawater amended with Aze becomes enriched in bacterial families that can catabolize Aze, which appears to be a different mechanism from that in soil, where modulation by the host plant is required. This study enhances our understanding of carbon cycling in the oceans and how microscale chemical interactions can structure marine microbial populations. In addition, our findings unravel the role of a key chemical currency in the modulation of eukaryote-microbiome interactions across diverse ecosystems.
Collapse
Affiliation(s)
- Ahmed A Shibl
- Biology Program, New York University Abu DhabiAbu DhabiUnited Arab Emirates
| | | | - Amin R Mohamed
- Biology Program, New York University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Ashley Isaac
- Biology Program, New York University Abu DhabiAbu DhabiUnited Arab Emirates
- Max Planck Institute for Marine MicrobiologyBremenGermany
| | - Lisa SY Coe
- Biology Program, New York University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Yejie Yun
- Biology Program, New York University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Grzegorz Skrzypek
- West Australian Biogeochemistry Centre, School of Biological Sciences, The University of Western AustraliaPerthAustralia
| | - Jean-Baptiste Raina
- Climate Change Cluster, Faculty of Science, University of Technology SydneyUltimoAustralia
| | - Justin R Seymour
- Climate Change Cluster, Faculty of Science, University of Technology SydneyUltimoAustralia
| | - Ahmed J Afzal
- Biology Program, New York University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Shady A Amin
- Biology Program, New York University Abu DhabiAbu DhabiUnited Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu DhabiAbu DhabiUnited Arab Emirates
- Arabian Center for Climate and Environmental Sciences (ACCESS), New York University Abu DhabiAbu DhabiUnited Arab Emirates
| |
Collapse
|
32
|
Daille LK, Spear JR, Beech I, Vargas IT, De la Iglesia R. Seasonal variation in the biological succession of marine diatoms over 316L stainless steel in a coastal environment of Chile. BIOFOULING 2024; 40:1-13. [PMID: 38213232 DOI: 10.1080/08927014.2023.2300150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Characterizing seasonal changes in diatom community profiles in coastal environments is scarce worldwide. Despite diatoms being prevalent in microfouling, their role in microbially influenced corrosion of metallic materials remains poorly understood. This study reports the effect of seasonal variations on the settlement of marine diatoms and corrosion of 316 L stainless steel surfaces exposed to Chilean coastal seawater. Electron microscopy imaging revealed a diverse assembly of diatoms, exhibiting pronounced differences at genus level between summer and winter seasons, with a significant delay in diatom settlement during winter. Electrochemical measurements indicated an active role of diatoms in increasing corrosion current during biofilm development. While the final diatom composition was similar irrespective of the season, the analyses of diatom assemblages over time differed, showing faster colonization when silicate and nitrate were available. This study lays the foundation for future research on the dominant season-specific genera of diatoms to unveil the microbial interactions that could contribute to corrosion and to evaluate their potential as bioindicators for alternative surveillance strategies.
Collapse
Affiliation(s)
- Leslie K Daille
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, RM, Chile
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, RM, Chile
| | - John R Spear
- Department of Civil and Environmental Engineering, CO School of Mines, Golden, CO, USA
| | - Iwona Beech
- Center for Biofilm Engineering, MT State University, Bozeman, MT, USA
| | - Ignacio T Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, RM, Chile
- Marine Energy Research & Innovation Center (MERIC), Santiago, RM, Chile
| | - Rodrigo De la Iglesia
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, RM, Chile
- Marine Energy Research & Innovation Center (MERIC), Santiago, RM, Chile
| |
Collapse
|
33
|
Costas-Selas C, Martínez-García S, Delgadillo-Nuño E, Justel-Díez M, Fuentes-Lema A, Fernández E, Teira E. Linking the impact of bacteria on phytoplankton growth with microbial community composition and co-occurrence patterns. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106262. [PMID: 38035521 DOI: 10.1016/j.marenvres.2023.106262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
The interactions between microalgae and bacteria have recently emerged as key control factors which might contribute to a better understanding on how phytoplankton communities assemble and respond to environmental disturbances. We analyzed partial 16S rRNA and 18S rRNA genes from a total of 42 antibiotic bioassays, where phytoplankton growth was assessed in the presence or absence of an active bacterial community. A significant negative impact of bacteria was observed in 18 bioassays, a significant positive impact was detected in 5 of the cases, and a non-detectable effect occurred in 19 bioassays. Thalasiossira spp., Chlorophytes, Vibrionaceae and Alteromonadales were relatively more abundant in the samples where a positive effect of bacteria was observed compared to those where a negative impact was observed. Phytoplankton diversity was lower when bacteria negatively affect their growth than when the effect was beneficial. The phytoplankton-bacteria co-occurrence subnetwork included many significant Chlorophyta-Alteromonadales and Bacillariophyceae-Alteromonadales positive associations. Phytoplankton-bacteria co-exclusions were not detected in the network, which contrasts with the negative effect of bacteria on phytoplankton growth frequently detected in the bioassays, suggesting strong competitive interactions. Overall, this study adds strong evidence supporting the key role of phytoplankton-bacteria interactions in the microbial communities.
Collapse
Affiliation(s)
- Cecilia Costas-Selas
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Sandra Martínez-García
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Erick Delgadillo-Nuño
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Maider Justel-Díez
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Antonio Fuentes-Lema
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Emilio Fernández
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Eva Teira
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| |
Collapse
|
34
|
Cram JA, Hollins A, McCarty AJ, Martinez G, Cui M, Gomes ML, Fuchsman CA. Microbial diversity and abundance vary along salinity, oxygen, and particle size gradients in the Chesapeake Bay. Environ Microbiol 2024; 26:e16557. [PMID: 38173306 DOI: 10.1111/1462-2920.16557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Marine snow and other particles are abundant in estuaries, where they drive biogeochemical transformations and elemental transport. Particles range in size, thereby providing a corresponding gradient of habitats for marine microorganisms. We used standard normalized amplicon sequencing, verified with microscopy, to characterize taxon-specific microbial abundances, (cells per litre of water and per milligrams of particles), across six particle size classes, ranging from 0.2 to 500 μm, along the main stem of the Chesapeake Bay estuary. Microbial communities varied in salinity, oxygen concentrations, and particle size. Many taxonomic groups were most densely packed on large particles (in cells/mg particles), yet were primarily associated with the smallest particle size class, because small particles made up a substantially larger portion of total particle mass. However, organisms potentially involved in methanotrophy, nitrite oxidation, and sulphate reduction were found primarily on intermediately sized (5-180 μm) particles, where species richness was also highest. All abundant ostensibly free-living organisms, including SAR11 and Synecococcus, appeared on particles, albeit at lower abundance than in the free-living fraction, suggesting that aggregation processes may incorporate them into particles. Our approach opens the door to a more quantitative understanding of the microscale and macroscale biogeography of marine microorganisms.
Collapse
Affiliation(s)
- Jacob A Cram
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
| | - Ashley Hollins
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
| | - Alexandra J McCarty
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
- Marine Advisory Program, Virginia Institute of Marine Science, Gloucester, Virginia, USA
| | | | - Minming Cui
- Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Maya L Gomes
- Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Clara A Fuchsman
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
| |
Collapse
|
35
|
Di Costanzo F, Di Dato V, Romano G. Diatom-Bacteria Interactions in the Marine Environment: Complexity, Heterogeneity, and Potential for Biotechnological Applications. Microorganisms 2023; 11:2967. [PMID: 38138111 PMCID: PMC10745847 DOI: 10.3390/microorganisms11122967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Diatom-bacteria interactions evolved during more than 200 million years of coexistence in the same environment. In this time frame, they established complex and heterogeneous cohorts and consortia, creating networks of multiple cell-to-cell mutualistic or antagonistic interactions for nutrient exchanges, communication, and defence. The most diffused type of interaction between diatoms and bacteria is based on a win-win relationship in which bacteria benefit from the organic matter and nutrients released by diatoms, while these last rely on bacteria for the supply of nutrients they are not able to produce, such as vitamins and nitrogen. Despite the importance of diatom-bacteria interactions in the evolutionary history of diatoms, especially in structuring the marine food web and controlling algal blooms, the molecular mechanisms underlying them remain poorly studied. This review aims to present a comprehensive report on diatom-bacteria interactions, illustrating the different interplays described until now and the chemical cues involved in the communication and exchange between the two groups of organisms. We also discuss the potential biotechnological applications of molecules and processes involved in those fascinating marine microbial networks and provide information on novel approaches to unveiling the molecular mechanisms underlying diatom-bacteria interactions.
Collapse
Affiliation(s)
| | - Valeria Di Dato
- Stazione Zoologica Anton Dohrn Napoli, Ecosustainable Marine Biotechnology Department, Via Ammiraglio Ferdinando Acton 55, 80133 Napoli, Italy; (F.D.C.); (G.R.)
| | | |
Collapse
|
36
|
Bruto M, Oger PM, Got P, Bernard C, Melayah D, Cloarec LA, Duval C, Escalas A, Duperron S, Guigard L, Leboulanger C, Ader M, Sarazin G, Jézéquel D, Agogué H, Troussellier M, Hugoni M. Phytoplanktonic species in the haloalkaline Lake Dziani Dzaha select their archaeal microbiome. Mol Ecol 2023; 32:6824-6838. [PMID: 37901963 DOI: 10.1111/mec.17179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023]
Abstract
Microorganisms are key contributors of aquatic biogeochemical cycles but their microscale ecology remains largely unexplored, especially interactions occurring between phytoplankton and microorganisms in the phycosphere, that is the region immediately surrounding phytoplankton cells. The current study aimed to provide evidence of the phycosphere taking advantage of a unique hypersaline, hyperalkaline ecosystem, Lake Dziani Dzaha (Mayotte), where two phytoplanktonic species permanently co-dominate: a cyanobacterium, Arthrospira fusiformis, and a green microalga, Picocystis salinarum. To assay phycospheric microbial diversity from in situ sampling, we set up a flow cytometry cell-sorting methodology for both phytoplanktonic populations, coupled with metabarcoding and comparative microbiome diversity. We focused on archaeal communities as they represent a non-negligible part of the phycospheric diversity, however their role is poorly understood. This work is the first which successfully explores in situ archaeal diversity distribution showing contrasted phycospheric compositions, with P. salinarum phycosphere notably enriched in Woesearchaeales OTUs while A. fusiformis phycosphere was enriched in methanogenic lineages affiliated OTUs such as Methanomicrobiales or Methanofastidiosales. Most archaeal OTUs, including Woesearchaeales considered in literature as symbionts, were either ubiquitous or specific of the free-living microbiome (i.e. present in the 3-0.2 μm fraction). Seminally, several archaeal OTUs were enriched from the free-living microbiome to the phytoplankton phycospheres, suggesting (i) either the inhibition or decrease of other OTUs, or (ii) the selection of specific OTUs resulting from the physical influence of phytoplanktonic species on surrounding Archaea.
Collapse
Affiliation(s)
- Maxime Bruto
- VetAgro Sup, Anses, UMR Mycoplasmoses Animales, Marcy l'Etoile, France
| | - Philippe M Oger
- Universite Claude Bernard Lyon 1, INSA Lyon, CNRS, UMR 5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| | - Patrice Got
- MARBEC, Univ Montpellier, IRD, CNRS, Ifremer, Sète, France
| | - Cécile Bernard
- UMR 7245 Molécules de Communication et Adaptations des Microorganismes (MCAM) MNHN-CNRS, Muséum National d'Histoire Naturelle, Paris Cedex 05, France
| | - Delphine Melayah
- Universite Claude Bernard Lyon 1, INSA Lyon, CNRS, UMR 5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| | - Lilian A Cloarec
- Universite Claude Bernard Lyon 1, INSA Lyon, CNRS, UMR 5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| | - Charlotte Duval
- UMR 7245 Molécules de Communication et Adaptations des Microorganismes (MCAM) MNHN-CNRS, Muséum National d'Histoire Naturelle, Paris Cedex 05, France
| | - Arthur Escalas
- MARBEC, Univ Montpellier, IRD, CNRS, Ifremer, Sète, France
| | - Sébastien Duperron
- UMR 7245 Molécules de Communication et Adaptations des Microorganismes (MCAM) MNHN-CNRS, Muséum National d'Histoire Naturelle, Paris Cedex 05, France
| | - Ludivine Guigard
- Universite Claude Bernard Lyon 1, INSA Lyon, CNRS, UMR 5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| | | | - Magali Ader
- Institut de Physique du Globe de Paris, Université Paris Cité, Paris, France
| | - Gerard Sarazin
- Institut de Physique du Globe de Paris, Université Paris Cité, Paris, France
| | - Didier Jézéquel
- Institut de Physique du Globe de Paris, Université Paris Cité, Paris, France
- UMR CARRTEL, INRAE-USMB, Thonon, France
| | - Hélène Agogué
- LIENSs, UMR7266, La Rochelle Université - CNRS, La Rochelle, France
| | | | - Mylène Hugoni
- Universite Claude Bernard Lyon 1, INSA Lyon, CNRS, UMR 5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
37
|
Câmara Dos Reis M, Romac S, Le Gall F, Marie D, Frada MJ, Koplovitz G, Cariou T, Henry N, de Vargas C, Jeanthon C. Exploring the phycosphere of Emiliania huxleyi: From bloom dynamics to microbiome assembly experiments. Mol Ecol 2023; 32:6507-6522. [PMID: 36541038 DOI: 10.1111/mec.16829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 10/11/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Coccolithophores have global ecological and biogeochemical significance as the most important calcifying marine phytoplankton group. The structure and selection of prokaryotic communities associated with the most abundant coccolithophore and bloom-forming species, Emiliania huxleyi, are still poorly known. In this study, we assessed the diversity of bacterial communities associated with an E. huxleyi bloom in the Celtic Sea (Eastern North Atlantic), exposed axenic E. huxleyi cultures to prokaryotic communities derived from bloom and non-bloom conditions, and followed the dynamics of their microbiome composition over one year. Bloom-associated prokaryotic communities were dominated by SAR11, Marine group II Euryarchaeota and Rhodobacterales and contained substantial proportions of known indicators of phytoplankton bloom demises such as Flavobacteriaceae and Pseudoalteromonadaceae. The taxonomic richness of bacteria derived from natural communities associated with axenic E. huxleyi rapidly shifted and then stabilized over time. The succession of microorganisms recruited from the environment was consistently dependent on the composition of the initial bacterioplankton community. Phycosphere-associated communities derived from the E. huxleyi bloom were highly similar to one another, suggesting deterministic processes, whereas cultures from non-bloom conditions show an effect of stochasticity. Overall, this work sheds new light on the importance of the initial inoculum composition in microbiome recruitment and elucidates the temporal dynamics of its composition and long-term stability.
Collapse
Affiliation(s)
- Mariana Câmara Dos Reis
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Sarah Romac
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
| | - Florence Le Gall
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
| | - Dominique Marie
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
| | - Miguel J Frada
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Department of Ecology, Evolution and Behavior, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gil Koplovitz
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Thierry Cariou
- Sorbonne Université, Centre National de la Recherche Scientifique, FR2424, Station Biologique de Roscoff, Roscoff, France
| | - Nicolas Henry
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Colomban de Vargas
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Christian Jeanthon
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| |
Collapse
|
38
|
Thukral M, Allen AE, Petras D. Progress and challenges in exploring aquatic microbial communities using non-targeted metabolomics. THE ISME JOURNAL 2023; 17:2147-2159. [PMID: 37857709 PMCID: PMC10689791 DOI: 10.1038/s41396-023-01532-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Advances in bioanalytical technologies are constantly expanding our insights into complex ecosystems. Here, we highlight strategies and applications that make use of non-targeted metabolomics methods in aquatic chemical ecology research and discuss opportunities and remaining challenges of mass spectrometry-based methods to broaden our understanding of environmental systems.
Collapse
Affiliation(s)
- Monica Thukral
- University of California San Diego, Scripps Institution of Oceanography, La Jolla, CA, USA
- J. Craig Venter Institute, Microbial and Environmental Genomics Group, La Jolla, CA, USA
| | - Andrew E Allen
- University of California San Diego, Scripps Institution of Oceanography, La Jolla, CA, USA
- J. Craig Venter Institute, Microbial and Environmental Genomics Group, La Jolla, CA, USA
| | - Daniel Petras
- University of Tuebingen, CMFI Cluster of Excellence, Tuebingen, Germany.
- University of California Riverside, Department of Biochemistry, Riverside, CA, USA.
| |
Collapse
|
39
|
Patwari P, Pruckner F, Fabris M. Biosensors in microalgae: A roadmap for new opportunities in synthetic biology and biotechnology. Biotechnol Adv 2023; 68:108221. [PMID: 37495181 DOI: 10.1016/j.biotechadv.2023.108221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/22/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Biosensors are powerful tools to investigate, phenotype, improve and prototype microbial strains, both in fundamental research and in industrial contexts. Genetic and biotechnological developments now allow the implementation of synthetic biology approaches to novel different classes of microbial hosts, for example photosynthetic microalgae, which offer unique opportunities. To date, biosensors have not yet been implemented in phototrophic eukaryotic microorganisms, leaving great potential for novel biological and technological advancements untapped. Here, starting from selected biosensor technologies that have successfully been implemented in heterotrophic organisms, we project and define a roadmap on how these could be applied to microalgae research. We highlight novel opportunities for the development of new biosensors, identify critical challenges, and finally provide a perspective on the impact of their eventual implementation to tackle research questions and bioengineering strategies. From studying metabolism at the single-cell level to genome-wide screen approaches, and assisted laboratory evolution experiments, biosensors will greatly impact the pace of progress in understanding and engineering microalgal metabolism. We envision how this could further advance the possibilities for unraveling their ecological role, evolutionary history and accelerate their domestication, to further drive them as resource-efficient production hosts.
Collapse
Affiliation(s)
- Payal Patwari
- SDU Biotechnology, Faculty of Engineering, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Florian Pruckner
- SDU Biotechnology, Faculty of Engineering, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Michele Fabris
- SDU Biotechnology, Faculty of Engineering, University of Southern Denmark, Odense M DK-5230, Denmark.
| |
Collapse
|
40
|
Makaranga A, Jutur PP. Dynamic metabolomic crosstalk between Chlorella saccharophila and its new symbiotic bacteria enhances lutein production in microalga without compromising its biomass. Enzyme Microb Technol 2023; 170:110291. [PMID: 37481992 DOI: 10.1016/j.enzmictec.2023.110291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/29/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
The microalgae Chlorella saccharophila UTEX247 was co-cultured with its symbiotic indigenous isolated bacterial strain, Exiguobacterium sp., to determine the possible effects of bacteria on microalgae growth and lutein productivity. Under optimal conditions, the lutein productivity of co-culture was 298.97 µg L-1 d-1, which was nearly 1.45-fold higher compared to monocultures i.e., 103.3 µg L-1 d-1. The highest lutein productivities were obtained in co-cultures, accompanied by a significant increase in cell biomass up to 0.84-fold. These conditions were analyzed using an untargeted metabolomics approach to identify metabolites enhancing valuable renewables, i.e., lutein, without compromising growth. Our qualitative metabolomic analysis identified nearly 30 (microalgae alone), 41 (bacteria alone), and 75 (co-cultures) metabolites, respectively. Among these, 46 metabolites were unique in the co-culture alone. The co-culture interactions significantly altered the role of metabolites such as thiamine precursors, reactive sugar anomers like furanose and branched-chain amino acids (BCAA). Nevertheless, the central metabolism cycle upregulation depicted increased availability of carbon skeletons, leading to increased cell biomass and pigments. In conclusion, the co-cultures induce the production of relevant metabolites which regulate growth and lutein simultaneously in C. saccharophila UTEX247, which paves the way for a new perspective in microalgal biorefineries.
Collapse
Affiliation(s)
- Abdalah Makaranga
- Omics of Algae Group and DBT-ICGEB Centre for Advanced Bioenergy Research, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pannaga Pavan Jutur
- Omics of Algae Group and DBT-ICGEB Centre for Advanced Bioenergy Research, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
41
|
Coe LSY, Fei C, Weston J, Amin SA. Phycobacter azelaicus gen. nov. sp. nov., a diatom symbiont isolated from the phycosphere of Asterionellopsis glacialis. Int J Syst Evol Microbiol 2023; 73. [PMID: 37889154 DOI: 10.1099/ijsem.0.006104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
A diatom-associated bacterium, designated as strain F10T, was isolated from a pure culture of the pennate diatom Asterionellopsis glacialis A3 and has since been used to characterize molecular mechanisms of symbiosis between phytoplankton and bacteria, including interactions using diatom-derived azelaic acid. Its origin from a hypersaline environment, combined with its capacity for quorum sensing, biofilm formation, and potential for dimethylsulfoniopropionate methylation/cleavage, suggest it is within the family Roseobacteraceae. Initial phylogenetic analysis of the 16S rRNA gene sequence placed this isolate within the Phaeobacter genus, but recent genomic and phylogenomic analyses show strain F10T is a separate lineage diverging from the genus Pseudophaeobacter. The genomic DNA G+C content is 60.0 mol%. The predominant respiratory quinone is Q-10. The major fatty acids are C18 : 1 ω7c and C16 : 0. Strain F10T also contains C10 : 03-OH and the furan-containing fatty acid 10,13-epoxy-11-methyl-octadecadienoate (9-(3-methyl-5-pentylfuran-2-yl)nonanoic acid). The major polar lipids are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Based on genomic, phylogenomic, phenotypic and chemotaxonomic characterizations, strain F10T represents a novel genus and species with the proposed name, Phycobacter azelaicus gen. nov. sp. nov. The type strain is F10T (=NCMA B37T=NCIMB 15470T=NRIC 2002T).
Collapse
Affiliation(s)
- Lisa S Y Coe
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, UAE
| | - Cong Fei
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, UAE
| | - James Weston
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, UAE
| | - Shady A Amin
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, UAE
- Arabian Center for Climate and Environmental Sciences (ACCESS), New York University Abu Dhabi, Abu Dhabi, PO Box 129188, UAE
| |
Collapse
|
42
|
Beiralas R, Ozer N, Segev E. Abundant Sulfitobacter marine bacteria protect Emiliania huxleyi algae from pathogenic bacteria. ISME COMMUNICATIONS 2023; 3:100. [PMID: 37740057 PMCID: PMC10517135 DOI: 10.1038/s43705-023-00311-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
Emiliania huxleyi is a unicellular micro-alga that forms massive oceanic blooms and plays key roles in global biogeochemical cycles. Mounting studies demonstrate various stimulatory and inhibitory influences that bacteria have on the E. huxleyi physiology. To investigate these algal-bacterial interactions, laboratory co-cultures have been established by us and by others. Owing to these co-cultures, various mechanisms of algal-bacterial interactions have been revealed, many involving bacterial pathogenicity towards algae. However, co-cultures represent a significantly simplified system, lacking the complexity of bacterial communities. In order to investigate bacterial pathogenicity within an ecologically relevant context, it becomes imperative to enhance the microbial complexity of co-culture setups. Phaeobacter inhibens bacteria are known pathogens that cause the death of E. huxleyi algae in laboratory co-culture systems. The bacteria depend on algal exudates for growth, but when algae senesce, bacteria switch to a pathogenic state and induce algal death. Here we investigate whether P. inhibens bacteria can induce algal death in the presence of a complex bacterial community. We show that an E. huxleyi-associated bacterial community protects the alga from the pathogen, although the pathogen occurs within the community. To study how the bacterial community regulates pathogenicity, we reduced the complex bacterial community to a five-member synthetic community (syncom). The syncom is comprised of a single algal host and five isolated bacterial species, which represent major bacterial groups that are naturally associated with E. huxleyi. We discovered that a single bacterial species in the reduced community, Sulfitobacter pontiacus, protects the alga from the pathogen. We further found that algal protection from P. inhibens pathogenicity is a shared trait among several Sulfitobacter species. Algal protection by bacteria might be a common phenomenon with ecological significance, which is overlooked in reduced co-culture systems.
Collapse
Affiliation(s)
- Roni Beiralas
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Noy Ozer
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Einat Segev
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
43
|
Jia Y, Lu J, Wang M, Qin W, Chen B, Xu H, Ma Z. Algicidal bacteria in phycosphere regulate free-living Symbiodinium fate via triggering oxidative stress and photosynthetic system damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115369. [PMID: 37586194 DOI: 10.1016/j.ecoenv.2023.115369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Free-living Symbiodinium, which forms symbiotic relationships with many marine invertebrates, plays an important role in the vast ocean. Nutrient levels have been shown to significantly impact microbial community structure and regulate algal communities. In this study, the bacterial community structure within the phycosphere of free-living Symbiodinium underwent significant changes in response to nutrient stimulation. Alteromonas exhibited dominance in Zobell 2216E broth nutrient stimulation concomitant with the demise of algal cells. Alteromonas abrolhosensis JY-JZ1, a marine bacterium isolated from the phycosphere of Symbiodinium, demonstrated an algicidal effect on Symbiodinium cells. Optical and scanning electron microscopy revealed that the algal cell membrane structure was disrupted, leading to intracellular leakage. Strain JY-JZ1 exerted its cytotoxicity by producing and secreting bioactive compounds into the supernatant. The marked declines in the chlorophyll a content, photosynthetic efficiency (Fv/Fm) and the electron transport rate (rETR) indicated that the photosynthetic system of Symbiodinium was damaged by JY-JZ1 supernatant. The observed elevation in levels of malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) content suggested that the algal cells experienced oxidative stress. Moreover, the supernatant exhibited remarkable adaptability to temperature and pH. Additionally, it displayed exceptional algicidal efficacy against various harmful algae species. To the best of our knowledge, this study represents the first successful isolation of an algicidal bacterial strain from the phycosphere of free-living Symbiodinium and subsequent investigation into its mechanism for controlling Symbiodinium growth, thereby providing novel insights into algae-bacteria interactions. The remarkable algicidal efficacy exhibited by strain JY-JZ1 against other harmful algae species suggests its significant potential for harmful algal blooms (HABs) control.
Collapse
Affiliation(s)
- Yang Jia
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Jiazhan Lu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Min Wang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Wenli Qin
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Binbin Chen
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Hanqing Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Zengling Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
44
|
Griesemer M, Navid A. Uses of Multi-Objective Flux Analysis for Optimization of Microbial Production of Secondary Metabolites. Microorganisms 2023; 11:2149. [PMID: 37763993 PMCID: PMC10536367 DOI: 10.3390/microorganisms11092149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Secondary metabolites are not essential for the growth of microorganisms, but they play a critical role in how microbes interact with their surroundings. In addition to this important ecological role, secondary metabolites also have a variety of agricultural, medicinal, and industrial uses, and thus the examination of secondary metabolism of plants and microbes is a growing scientific field. While the chemical production of certain secondary metabolites is possible, industrial-scale microbial production is a green and economically attractive alternative. This is even more true, given the advances in bioengineering that allow us to alter the workings of microbes in order to increase their production of compounds of interest. This type of engineering requires detailed knowledge of the "chassis" organism's metabolism. Since the resources and the catalytic capacity of enzymes in microbes is finite, it is important to examine the tradeoffs between various bioprocesses in an engineered system and alter its working in a manner that minimally perturbs the robustness of the system while allowing for the maximum production of a product of interest. The in silico multi-objective analysis of metabolism using genome-scale models is an ideal method for such examinations.
Collapse
Affiliation(s)
| | - Ali Navid
- Lawrence Livermore National Laboratory, Biosciences & Biotechnology Division, Physical & Life Sciences Directorate, Livermore, CA 94550, USA
| |
Collapse
|
45
|
Le Reun N, Bramucci A, Ajani P, Khalil A, Raina JB, Seymour JR. Temporal variability in the growth-enhancing effects of different bacteria within the microbiome of the diatom Actinocyclus sp. Front Microbiol 2023; 14:1230349. [PMID: 37608955 PMCID: PMC10440540 DOI: 10.3389/fmicb.2023.1230349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023] Open
Abstract
Reciprocal metabolite exchanges between diatoms and bacteria can enhance the growth of both partners and therefore fundamentally influence aquatic ecosystem productivity. Here, we examined the growth-promoting capabilities of 15 different bacterial isolates from the bacterial community associated with the marine diatom Actinocyclus sp. and investigated the magnitude and timing of their effect on the growth of this diatom. In the presence of its microbiome, Actinocyclus sp. growth was significantly enhanced relative to axenic cultures. Co-culture with each of the 15 bacterial isolates examined here (seven Rhodobacteraceae, four Vibrionaceae, two Pseudoalteromonadaceae, one Oceanospirillaceae and one Alteromonadaceae) increased the growth of the diatom host, with four isolates inducing rates of growth that were similar to those delivered by the diatom's full microbiome. However, the timing and duration of this effect differed between the different bacteria tested. Indeed, one Rhodobacteraceae and one Alteromonadaceae enhanced Actinocyclus sp. cell numbers between days 0-6 after co-incubation, five other Rhodobacteraceae promoted diatom cell numbers the most between days 8-12, whilst four Vibrionaceae, one Oceanospirillaceae and one Rhodobacteraceae enhanced Actinocyclus sp. cell abundance between days 14-16. These results are indicative of a succession of the growth-enhancing effects delivered by diverse bacteria throughout the Actinocyclus sp. life cycle, which will likely deliver sustained growth benefits to the diatom when its full microbiome is present.
Collapse
Affiliation(s)
- Nine Le Reun
- Climate Change Cluster, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Anna Bramucci
- Climate Change Cluster, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Penelope Ajani
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Abeeha Khalil
- Climate Change Cluster, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Justin R. Seymour
- Climate Change Cluster, University of Technology Sydney (UTS), Sydney, NSW, Australia
| |
Collapse
|
46
|
Ren H, Guo H, Shafiqul Islam M, Zaki HEM, Wang Z, Wang H, Qi X, Guo J, Sun L, Wang Q, Li B, Li G, Radwan KSA. Improvement effect of biochar on soil microbial community structure and metabolites of decline disease bayberry. Front Microbiol 2023; 14:1154886. [PMID: 37333636 PMCID: PMC10275294 DOI: 10.3389/fmicb.2023.1154886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 06/20/2023] Open
Abstract
Decline disease is a new disease that has recently caused severe damage in bayberry industry. The effect of biochar on decline disease was determined by investigating the changes in the vegetative growth and fruit quality of bayberry trees as well as soil physical and chemical properties, microbial community structure, and metabolites. Results indicated that the application of biochar could improve the vigor and fruit quality of diseased trees, and rhizosphere soil microbial diversity at the levels of phyla, orders, and genera. The relative abundance of Mycobacterium, Crossiella, Geminibasidium, and Fusarium were significantly increased, while Acidothermus, Bryobacter, Acidibacter, Cladophialophora, Mycena, and Rickenella were significantly decreased by biochar in rhizosphere soil of decline diseased bayberry. Analysis of redundancies (RDA) of microbial communities and soil characteristics revealed that the composition of bacterial and fungal communities was significantly affected by the pH, organic matter, alkali hydrolyzable nitrogen, available phosphorus, available potassium, exchangeable calcium and exchangeable magnesium in bayberry rhizosphere soil, and the contribution rates to fungi were larger than those to bacteria at the genus level. Biochar greatly influenced the metabolomics distribution of rhizosphere soils of decline disease bayberry. One hundred and nine different metabolites from both the presence and absence of biochar, mainly include acid, alcohol, ester, amine, amino acid, sterol, sugar, and other secondary metabolites, of which the contents of 52 metabolites were increased significantly such as aconitic acid, threonic acid, pimelic acid, epicatechin, and lyxose. The contents of 57 metabolites decreased significantly, such as conduritol β-expoxide, zymosterol, palatinitol, quinic acid, and isohexoic acid. There was a great difference between the absence and presence of biochar in 10 metabolic pathways, including thiamine metabolism, arginine and proline metabolism, glutathione metabolism, ATP-binding cassette (ABC) transporters, butanoate metabolism, cyanoamino acid metabolism, tyrosine metabolism, phenylalanine metabolism, phosphotransferase system (pts), and lysine degradation. There was a significant correlation between the relative content of microbial species and the content of secondary metabolites in rhizosphere soil at the levels of bacterial and fungal phyla, order, and genus. Overall, this study highlighted the significant influence of biochar in decline disease by regulating soil microbial community, physical and chemical properties, and secondary metabolites in rhizosphere soil, which provided a novel strategy for managing bayberry decline disease.
Collapse
Affiliation(s)
- Haiying Ren
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
| | - Hao Guo
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | | | - Haitham E. M. Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur, Oman
| | - Zhenshuo Wang
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hongyan Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xingjiang Qi
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
| | - Junning Guo
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Li Sun
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qi Wang
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Gang Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
| | - Khlode S. A. Radwan
- Plant Pathology Department, Faculty of Agriculture, Minia University, El-Minia, Egypt
| |
Collapse
|
47
|
Schroer WF, Kepner HE, Uchimiya M, Mejia C, Rodriguez LT, Reisch CR, Moran MA. Functional annotation and importance of marine bacterial transporters of plankton exometabolites. ISME COMMUNICATIONS 2023; 3:37. [PMID: 37185952 PMCID: PMC10130141 DOI: 10.1038/s43705-023-00244-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Metabolite exchange within marine microbial communities transfers carbon and other major elements through global cycles and forms the basis of microbial interactions. Yet lack of gene annotations and concern about the quality of existing ones remain major impediments to revealing currencies of carbon flux. We employed an arrayed mutant library of the marine bacterium Ruegeria pomeroyi DSS-3 to experimentally annotate substrates of organic compound transporter systems, using mutant growth and compound drawdown analyses to link transporters to their cognate substrates. Mutant experiments verified substrates for thirteen R. pomeroyi transporters. Four were previously hypothesized based on gene expression data (taurine, glucose/xylose, isethionate, and cadaverine/putrescine/spermidine); five were previously hypothesized based on homology to experimentally annotated transporters in other bacteria (citrate, glycerol, N-acetylglucosamine, fumarate/malate/succinate, and dimethylsulfoniopropionate); and four had no previous annotations (thymidine, carnitine, cysteate, and 3-hydroxybutyrate). These bring the total number of experimentally-verified organic carbon influx transporters to 18 of 126 in the R. pomeroyi genome. In a longitudinal study of a coastal phytoplankton bloom, expression patterns of the experimentally annotated transporters linked them to different stages of the bloom, and also led to the hypothesis that citrate and 3-hydroxybutyrate were among the most highly available bacterial substrates. Improved functional annotation of the gatekeepers of organic carbon uptake is critical for deciphering carbon flux and fate in microbial ecosystems.
Collapse
Affiliation(s)
- William F Schroer
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Hannah E Kepner
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Mario Uchimiya
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Catalina Mejia
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | | | - Christopher R Reisch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
48
|
Cremin K, Duxbury SJN, Rosko J, Soyer OS. Formation and emergent dynamics of spatially organized microbial systems. Interface Focus 2023; 13:20220062. [PMID: 36789239 PMCID: PMC9912014 DOI: 10.1098/rsfs.2022.0062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 02/12/2023] Open
Abstract
Spatial organization is the norm rather than the exception in the microbial world. While the study of microbial physiology has been dominated by studies in well-mixed cultures, there is now increasing interest in understanding the role of spatial organization in microbial physiology, coexistence and evolution. Where studied, spatial organization has been shown to influence all three of these aspects. In this mini review and perspective article, we emphasize that the dynamics within spatially organized microbial systems (SOMS) are governed by feedbacks between local physico-chemical conditions, cell physiology and movement, and evolution. These feedbacks can give rise to emergent dynamics, which need to be studied through a combination of spatio-temporal measurements and mathematical models. We highlight the initial formation of SOMS and their emergent dynamics as two open areas of investigation for future studies. These studies will benefit from the development of model systems that can mimic natural ones in terms of species composition and spatial structure.
Collapse
Affiliation(s)
- Kelsey Cremin
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | - Jerko Rosko
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Orkun S. Soyer
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
49
|
Mohamed AR, Ochsenkühn MA, Kazlak AM, Moustafa A, Amin SA. The coral microbiome: towards an understanding of the molecular mechanisms of coral-microbiota interactions. FEMS Microbiol Rev 2023; 47:fuad005. [PMID: 36882224 PMCID: PMC10045912 DOI: 10.1093/femsre/fuad005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Corals live in a complex, multipartite symbiosis with diverse microbes across kingdoms, some of which are implicated in vital functions, such as those related to resilience against climate change. However, knowledge gaps and technical challenges limit our understanding of the nature and functional significance of complex symbiotic relationships within corals. Here, we provide an overview of the complexity of the coral microbiome focusing on taxonomic diversity and functions of well-studied and cryptic microbes. Mining the coral literature indicate that while corals collectively harbour a third of all marine bacterial phyla, known bacterial symbionts and antagonists of corals represent a minute fraction of this diversity and that these taxa cluster into select genera, suggesting selective evolutionary mechanisms enabled these bacteria to gain a niche within the holobiont. Recent advances in coral microbiome research aimed at leveraging microbiome manipulation to increase coral's fitness to help mitigate heat stress-related mortality are discussed. Then, insights into the potential mechanisms through which microbiota can communicate with and modify host responses are examined by describing known recognition patterns, potential microbially derived coral epigenome effector proteins and coral gene regulation. Finally, the power of omics tools used to study corals are highlighted with emphasis on an integrated host-microbiota multiomics framework to understand the underlying mechanisms during symbiosis and climate change-driven dysbiosis.
Collapse
Affiliation(s)
- Amin R Mohamed
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Michael A Ochsenkühn
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Ahmed M Kazlak
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Moustafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
- Department of Biology, American University in Cairo, New Cairo 11835, Egypt
| | - Shady A Amin
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
50
|
Tan LT. Impact of Marine Chemical Ecology Research on the Discovery and Development of New Pharmaceuticals. Mar Drugs 2023; 21:174. [PMID: 36976223 PMCID: PMC10055925 DOI: 10.3390/md21030174] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Diverse ecologically important metabolites, such as allelochemicals, infochemicals and volatile organic chemicals, are involved in marine organismal interactions. Chemically mediated interactions between intra- and interspecific organisms can have a significant impact on community organization, population structure and ecosystem functioning. Advances in analytical techniques, microscopy and genomics are providing insights on the chemistry and functional roles of the metabolites involved in such interactions. This review highlights the targeted translational value of several marine chemical ecology-driven research studies and their impact on the sustainable discovery of novel therapeutic agents. These chemical ecology-based approaches include activated defense, allelochemicals arising from organismal interactions, spatio-temporal variations of allelochemicals and phylogeny-based approaches. In addition, innovative analytical techniques used in the mapping of surface metabolites as well as in metabolite translocation within marine holobionts are summarized. Chemical information related to the maintenance of the marine symbioses and biosyntheses of specialized compounds can be harnessed for biomedical applications, particularly in microbial fermentation and compound production. Furthermore, the impact of climate change on the chemical ecology of marine organisms-especially on the production, functionality and perception of allelochemicals-and its implications on drug discovery efforts will be presented.
Collapse
Affiliation(s)
- Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| |
Collapse
|