1
|
Erić P, Veselinović MS, Patenković A, Tanasković M, Kenig B, Erić K, Inđić B, Stanovčić S, Jelić M. Mechanisms Maintaining Mitochondrial DNA Polymorphisms: The Role of Mito-Nuclear Interactions, Sex-Specific Selection, and Genotype-by-Environment Interactions in Drosophila subobscura. INSECTS 2025; 16:415. [PMID: 40332919 PMCID: PMC12027999 DOI: 10.3390/insects16040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025]
Abstract
Experimental mito-nuclear introgression lines (MNILs) were established by backcrossing isofemale lines of D. subobscura originating from the same populations. MNILs were subjected to a series of life-history experiments designed to test the fitness of the bearers of different combinations of two main mtDNA haplotypes on their own nuclear background, as well as on the background of the opposite haplotype. By having 11 replicas of the four mito-nuclear combinations, we could test not only the adaptive significance of the differences between the two main haplotypes but also the influence of additional variation present within each of the 11 combinations on fitness. Testing the fitness of individuals of both sexes enabled us to examine if sex-specific selection has a role in maintaining the frequencies of the two mtDNA haplotypes in nature. Conducting the fitness assays on two different temperatures enabled us to test whether different temperatures favor specific mtDNA haplotypes or mito-nuclear genotypes and consequently promote stable sympatric mtDNA variation. The results show weak signature of genotype-by-environment interactions, and no sex-specific selection regarding differences between the two main haplotypes. However, individual models across different life-history components showed these two mechanisms at play in promoting mtDNA variability present in specific mito-nuclear crosses. Our models show that mito-nuclear interactions are, in fact, more important as units of selection.
Collapse
Affiliation(s)
- Pavle Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (M.T.); (K.E.)
| | - Marija Savić Veselinović
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.S.V.); (M.J.)
| | - Aleksandra Patenković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (M.T.); (K.E.)
| | - Marija Tanasković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (M.T.); (K.E.)
| | - Bojan Kenig
- The Center for Promotion of Science, Kralja Petra 46, 11000 Belgrade, Serbia;
| | - Katarina Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.P.); (M.T.); (K.E.)
| | - Boris Inđić
- Forest Microbial Genomics Group, Faculty of Forestry, Institute of Forest and Natural Resource Management, University of Sopron, Bajcsy-Zsilinszky str. 4, H-9400 Sopron, Hungary;
| | - Stefan Stanovčić
- Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11000 Belgrade, Serbia;
| | - Mihailo Jelić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.S.V.); (M.J.)
| |
Collapse
|
2
|
Jiménez AG. Is There Hybrid Vigor in Dogs? Oxidative Stress and Cytokine Concentrations in Low- To Mid-Content Wolf-Dog Hybrids. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2025; 98:48-56. [PMID: 40197214 DOI: 10.1086/734630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
AbstractChanges of deleterious traits in mitochondria within hybrids of two different species are likely to be reflected across whole-animal phenotypes. Two processes linked to mitochondrial fitness are oxidative stress and inflammation. Here, plasma oxidative stress (lipid oxidative damage, total antioxidant capacity, and activities of catalase, glutathione peroxidase, and superoxide dismutase concentration) and cytokine concentrations (IL-1β, IL-6, and TNF-α) from wolf-dog hybrids of low to mid wolf content are presented and then compared with previously published values for similar-sized dogs and gray wolves. Results indicate that lipid oxidative damage and catalase activity were not significantly different across species and hybrids. Total antioxidant capacity and glutathione peroxidase were significantly lower in wolf-dog hybrids than in domestic dogs and wolves (although total antioxidant capacity significantly increased with wolf content), but superoxide dismutase concentration was higher in hybrids. Thus, it seems that a low percentage of wolf content decreases several aspects of antioxidants but without any accumulating lipid oxidative damage. Additionally, wolf-dog hybrids had higher IL-1β and IL-6 concentrations but lower TNF-α concentrations than domestic dogs. And there was a significantly positive correlation between percentage of wolf content and IL-1β. These data imply either a mitonuclear incompatibility or a nuclear-nuclear incompatibility within wolf-dog hybrids, a case that does not support heterosis.
Collapse
|
3
|
Edmands S, Denova JR, Flanagan BA, Jah M, Applebaum SL. Mitonuclear effects on sex ratio persist across generations in interpopulation hybrids. J Evol Biol 2024; 37:1386-1393. [PMID: 39324636 PMCID: PMC11531650 DOI: 10.1093/jeb/voae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/08/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
Eukaryotic energy production requires tight coordination between nuclear and mitochondrial gene products. Because males and females often have different energetic strategies, optimal mitonuclear coordination may be sex-specific. Previous work found evidence for sex-specific mitonuclear effects in the copepod Tigriopus californicus by comparing two parental lines and their reciprocal F1 crosses. However, an alternative hypothesis is that the patterns were driven by the parental source of nuclear alleles. Here, we test this alternative hypothesis by extending the same cross to F2 hybrids, which receive both maternal and paternal nuclear alleles from F1 hybrids. Results confirm mitonuclear effects on sex ratio, with distorted ratios persisting from the F1 to F2 generations, despite reduced fitness in F2 hybrids. No sex-by-cross interactions were found for other phenotypic traits measured. Mitochondrial DNA content was higher in females. Both routine metabolic rate and oxidative DNA damage were lower in F2 hybrids than in parentals. The persistence of sex-specific mitonuclear effects, even in the face of F2 hybrid breakdown, attests to the magnitude of these effects, which contribute to the maintenance of within-population mitochondrial DNA polymorphisms.
Collapse
Affiliation(s)
- Suzanne Edmands
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Jacob R Denova
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Ben A Flanagan
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Murad Jah
- Environmental Studies Program, University of Southern California, Los Angeles, CA, United States
| | - Scott L Applebaum
- Environmental Studies Program, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Estes S, Dietz ZP, Katju V, Bergthorsson U. Evolutionary codependency: insights into the mitonuclear interaction landscape from experimental and wild Caenorhabditis nematodes. Curr Opin Genet Dev 2023; 81:102081. [PMID: 37421904 PMCID: PMC11684519 DOI: 10.1016/j.gde.2023.102081] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 07/10/2023]
Abstract
Aided by new technologies, the upsurgence of research into mitochondrial genome biology during the past 15 years suggests that we have misunderstood, and perhaps dramatically underestimated, the ongoing biological and evolutionary significance of our long-time symbiotic partner. While we have begun to scratch the surface of several topics, many questions regarding the nature of mutation and selection in the mitochondrial genome, and the nature of its relationship to the nuclear genome, remain unanswered. Although best known for their contributions to studies of developmental and aging biology, Caenorhabditis nematodes are increasingly recognized as excellent model systems to advance understanding in these areas. We review recent discoveries with relevance to mitonuclear coevolution and conflict and offer several fertile areas for future work.
Collapse
Affiliation(s)
- Suzanne Estes
- Portland State University, Department of Biology, Portland, OR, USA.
| | - Zachary P Dietz
- Portland State University, Department of Biology, Portland, OR, USA
| | - Vaishali Katju
- Uppsala University, Department of Ecology and Genetics, 752 36 Uppsala, Sweden
| | - Ulfar Bergthorsson
- Uppsala University, Department of Ecology and Genetics, 752 36 Uppsala, Sweden
| |
Collapse
|
5
|
Barros S, Ribeiro M, Coimbra AM, Pinheiro M, Morais H, Alves N, Montes R, Rodil R, Quintana JB, Santos MM, Neuparth T. Metformin disrupts Danio rerio metabolism at environmentally relevant concentrations: A full life-cycle study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157361. [PMID: 35843324 DOI: 10.1016/j.scitotenv.2022.157361] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 05/20/2023]
Abstract
Metformin (MET), an anti-diabetic pharmaceutical of large-scale consumption, is increasingly detected in surface waters. However, current knowledge on the long-term effects of MET on non-target organisms is limited. The present study aimed to investigate the effects of MET in the model freshwater teleost Danio rerio, following a full life-cycle exposure to environmentally relevant concentrations (390 to 14 423 ng/L). Considering that the mode of action (MoA) of MET on non-target organisms remains underexplored and that MET may act through similar human pathways, i.e., lipid and energy metabolisms, biochemical markers were used to determine cholesterol and triglycerides levels, as well as mitochondrial complex I activity in zebrafish liver. Also, the hepatosomatic index as an indication of metabolic disruption, and the expression levels of genes involved in MET's putative MoA, i.e. acaca, acadm, cox5aa, idh3a, hmgcra, prkaa1, were determined, the last by qRT-PCR. A screening of mRNA transcripts, associated with lipid and energy metabolisms, and other signaling pathways potentially involved in MET-induced toxicity were also assessed using an exploratory RNA-seq analysis. The findings here reported indicate that MET significantly disrupted critical biochemical and molecular processes involved in zebrafish metabolism, such as cholesterol and fatty acid biosynthesis, mitochondrial electron transport chain and tricarboxylic acid cycle, concomitantly to changes on the hepatosomatic index. Likewise, MET impacted other relevant pathways mainly associated with cell cycle, DNA repair and steroid hormone biosynthesis, here reported for the first time in a non-target aquatic organism. Non-monotonic dose response curves were frequently detected in biochemical and qRT-PCR data, with higher effects observed at 390 and 2 929 ng/L MET treatments. Collectively, the results suggest that environmentally relevant concentrations of MET severely disrupt D. rerio metabolism and other important biological processes, supporting the need to revise the proposed environmental quality standard (EQS) and predicted no-effect concentration (PNEC) for MET.
Collapse
Affiliation(s)
- Susana Barros
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Pavilhão 2, 5000-801 Vila Real, Portugal
| | - Marta Ribeiro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Ana M Coimbra
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Pavilhão 2, 5000-801 Vila Real, Portugal; Inov4Agro -Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal
| | - Marlene Pinheiro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Hugo Morais
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Nélson Alves
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rosa Montes
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Miguel M Santos
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Teresa Neuparth
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
6
|
Rodriguez AK, Krug PJ. Ecological speciation by sympatric host shifts in a clade of herbivorous sea slugs, with introgression and localized mitochondrial capture between species. Mol Phylogenet Evol 2022; 174:107523. [PMID: 35589054 DOI: 10.1016/j.ympev.2022.107523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
Abstract
Host shifting in insect-plant systems was historically important to the development of ecological speciation theory, yet surprisingly few studies have examined whether host shifting drives diversification of marine herbivores. When small-bodied consumers feed and also mate on a preferred host, disruptive selection can split a population into host races despite gene flow. Support for host shifts is notably lacking for invertebrates associated with macroalgae, where the scale of dispersal by planktonic larvae often far exceeds the grain of host patchiness, and adults are typically less specialized than terrestrial herbivores. Here, we present a candidate example of ecological speciation in a clade of sea slugs that primarily consume green algae in the genus Caulerpa, including highly invasive species. Ancestral character state reconstructions supported 'sea grapes' (C. racemosa, C. lentillifera) as the ancestral host for a tropical radiation of 12 Elysia spp., with one shift onto alternative Caulerpa spp. in the Indo-Pacific. A Caribbean radiation of three species included symaptric host shifts to Rhipocephalus brevicaulis in the ancestor of E. pratensis Ortea & Espinosa, 1996, and to C. prolifera in E. hamanni Krug, Vendetti & Valdes 2016, plus a niche expansion to a range of Caulerpa spp. in E. subornata Verrill, 1901. All three species are broadly sympatric across the Caribbean but are host-partitioned at a fine grain, and distinct by morphology and at nuclear loci. However, non-recombining mtDNA revealed a history of gene flow between E. pratensis and E. subornata: COI haplotypes from E. subornata were 10.4% divergent from E. pratensis haplotypes from four sites, but closely related to all E. pratensis haplotypes sampled from six Bahamian islands, indicating historical introgression and localized "mitochondrial capture." Disruptive selective likely fueled divergence and adaptation to distinct host environments, indicating ecological speciation may be an under-appreciated driver of diversification for marine herbivores as well as epibionts and other resource specialists.
Collapse
Affiliation(s)
- Albert K Rodriguez
- Department of Biological Sciences, California State University, Los Angeles, CA 90032-8201, U.S.A
| | - Patrick J Krug
- Department of Biological Sciences, California State University, Los Angeles, CA 90032-8201, U.S.A.
| |
Collapse
|
7
|
Lee J, Willett CS. Frequent Paternal Mitochondrial Inheritance and Rapid Haplotype Frequency Shifts in Copepod Hybrids. J Hered 2022; 113:171-183. [PMID: 35575078 DOI: 10.1093/jhered/esab068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are assumed to be maternally inherited in most animal species, and this foundational concept has fostered advances in phylogenetics, conservation, and population genetics. Like other animals, mitochondria were thought to be solely maternally inherited in the marine copepod Tigriopus californicus, which has served as a useful model for studying mitonuclear interactions, hybrid breakdown, and environmental tolerance. However, we present PCR, Sanger sequencing, and Illumina Nextera sequencing evidence that extensive paternal mitochondrial DNA (mtDNA) transmission is occurring in inter-population hybrids of T. californicus. PCR on four types of crosses between three populations (total sample size of 376 F1 individuals) with 20% genome-wide mitochondrial divergence showed 2% to 59% of F1 hybrids with both paternal and maternal mtDNA, where low and high paternal leakage values were found in different cross directions of the same population pairs. Sequencing methods further verified nucleotide similarities between F1 mtDNA and paternal mtDNA sequences. Interestingly, the paternal mtDNA in F1s from some crosses inherited haplotypes that were uncommon in the paternal population. Compared to some previous research on paternal leakage, we employed more rigorous methods to rule out contamination and false detection of paternal mtDNA due to non-functional nuclear mitochondrial DNA fragments. Our results raise the potential that other animal systems thought to only inherit maternal mitochondria may also have paternal leakage, which would then affect the interpretation of past and future population genetics or phylogenetic studies that rely on mitochondria as uniparental markers.
Collapse
Affiliation(s)
- Jeeyun Lee
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher S Willett
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Fezza TJ, Siderhurst MS, Jang EB, Stacy EA, Price DK. Phenotypic disruption of cuticular hydrocarbon production in hybrids between sympatric species of Hawaiian picture-wing Drosophila. Sci Rep 2022; 12:4865. [PMID: 35318342 PMCID: PMC8941103 DOI: 10.1038/s41598-022-08635-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Interspecies hybrids can express phenotypic traits far outside the range of parental species. The atypical traits of hybrids provide insight into differences in the factors that regulate the expression of these traits in the parental species. In some cases, the unusual phenotypic traits of hybrids can lead to phenotypic dysfunction with hybrids experiencing reduced survival or reproduction. Cuticular hydrocarbons (CHCs) in insects are important phenotypic traits that serve several functions, including desiccation resistance and pheromones for mating. We used gas chromatography mass spectrometry to investigate the differences in CHC production between two closely related sympatric Hawaiian picture-wing Drosophila species, Drosophila heteroneura and D. silvestris, and their F1 and backcross hybrid offspring. CHC profiles differed between males of the two species, with substantial sexual dimorphism in D. silvestris but limited sexual dimorphism in D. heteroneura. Surprisingly, F1 hybrids did not produce three CHCs, and the abundances of several other CHCs occurred outside the ranges present in the two parental species. Backcross hybrids produced all CHCs with greater variation than observed in F1 or parental species. Overall, these results suggest that the production of CHCs was disrupted in F1 and backcross hybrids, which may have important consequences for their survival or reproduction.
Collapse
Affiliation(s)
- Thomas J Fezza
- Tropical Conservation Biology and Environmental Sciences, University of Hawaii at Hilo, 200 West Kawili St., Hilo, HI, 96720, USA
| | - Matthew S Siderhurst
- Department of Chemistry, Eastern Mennonite University, 1200 Park Rd, Harrisonburg, VA, 22802, USA
| | - Eric B Jang
- Tropical Crop and Commodity Protection Research, D.K.I, U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, 64 Nowelo Street, Hilo, HI, 96720, USA
| | - Elizabeth A Stacy
- Tropical Conservation Biology and Environmental Sciences, University of Hawaii at Hilo, 200 West Kawili St., Hilo, HI, 96720, USA.,School of Life Sciences, University of Nevada, Las Vegas, USA
| | - Donald K Price
- Tropical Conservation Biology and Environmental Sciences, University of Hawaii at Hilo, 200 West Kawili St., Hilo, HI, 96720, USA. .,School of Life Sciences, University of Nevada, Las Vegas, USA.
| |
Collapse
|
9
|
Bever BW, Dietz ZP, Sullins JA, Montoya AM, Bergthorsson U, Katju V, Estes S. Mitonuclear Mismatch is Associated With Increased Male Frequency, Outcrossing, and Male Sperm Size in Experimentally-Evolved C. elegans. Front Genet 2022; 13:742272. [PMID: 35360860 PMCID: PMC8961728 DOI: 10.3389/fgene.2022.742272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
We provide a partial test of the mitonuclear sex hypothesis with the first controlled study of how male frequencies and rates of outcrossing evolve in response to mitonuclear mismatch by allowing replicate lineages of C. elegans nematodes containing either mitochondrial or nuclear mutations of electron transport chain (ETC) genes to evolve under three sexual systems: facultatively outcrossing (wildtype), obligately selfing, and obligately outcrossing. Among facultatively outcrossing lines, we found evolution of increased male frequency in at least one replicate line of all four ETC mutant backgrounds tested—nuclear isp-1, mitochondrial cox-1 and ctb-1, and an isp-1 IV; ctb-1M mitonuclear double mutant—and confirmed for a single line set (cox-1) that increased male frequency also resulted in successful outcrossing. We previously found the same result for lines evolved from another nuclear ETC mutant, gas-1. For several lines in the current experiment, however, male frequency declined to wildtype levels (near 0%) in later generations. Male frequency did not change in lines evolved from a wildtype control strain. Additional phenotypic assays of lines evolved from the mitochondrial cox-1 mutant indicated that evolution of high male frequency was accompanied by evolution of increased male sperm size and mating success with tester females, but that it did not translate into increased mating success with coevolved hermaphrodites. Rather, hermaphrodites’ self-crossed reproductive fitness increased, consistent with sexually antagonistic coevolution. In accordance with evolutionary theory, males and sexual outcrossing may be most beneficial to populations evolving from a state of low ancestral fitness (gas-1, as previously reported) and less beneficial or deleterious to those evolving from a state of higher ancestral fitness (cox-1). In support of this idea, the obligately outcrossing fog-2 V; cox-1 M lines exhibited no fitness evolution compared to their ancestor, while facultatively outcrossing lines showed slight upward evolution of fitness, and all but one of the obligately selfing xol-1 X; cox-1 M lines evolved substantially increased fitness—even beyond wildtype levels. This work provides a foundation to directly test the effect of reproductive mode on the evolutionary dynamics of mitonuclear genomes, as well as whether compensatory mutations (nuclear or mitochondrial) can rescue populations from mitochondrial dysfunction.
Collapse
Affiliation(s)
- Brent W. Bever
- Department of Biology, Portland State University, Portland, OR, United States
| | - Zachary P. Dietz
- Department of Biology, Portland State University, Portland, OR, United States
| | - Jennifer A. Sullins
- Department of Biology, Portland State University, Portland, OR, United States
| | - Ariana M. Montoya
- Department of Biology, Portland State University, Portland, OR, United States
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Suzanne Estes
- Department of Biology, Portland State University, Portland, OR, United States
- *Correspondence: Suzanne Estes,
| |
Collapse
|
10
|
Xu S, Huynh TV, Snyman M. The transcriptomic signature of obligate parthenogenesis. Heredity (Edinb) 2022; 128:132-138. [PMID: 35039663 PMCID: PMC8814003 DOI: 10.1038/s41437-022-00498-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 02/03/2023] Open
Abstract
Investigating the origin of parthenogenesis through interspecific hybridization can provide insight into how meiosis may be altered by genetic incompatibilities, which is fundamental for our understanding of the formation of reproductive barriers. Yet the genetic mechanisms giving rise to obligate parthenogenesis in eukaryotes remain understudied. In the microcrustacean Daphnia pulex species complex, obligately parthenogenetic (OP) isolates emerged as backcrosses of two cyclically parthenogenetic (CP) parental species, D. pulex and D. pulicaria, two closely related but ecologically distinct species. We examine the genome-wide expression in OP females at the early resting egg production stage, a life-history stage distinguishing OP and CP reproductive strategies, in comparison to CP females of the same stage from the two parental species. Our analyses of the expression data reveal that underdominant and overdominant genes are abundant in OP isolates, suggesting widespread regulatory incompatibilities between the parental species. More importantly, underdominant genes (i.e., genes with expression lower than both parentals) in the OP isolates are enriched in meiosis and cell-cycle pathways, indicating an important role of underdominance in the origin of obligate parthenogenesis. Furthermore, metabolic and biosynthesis pathways enriched with overdominant genes (i.e., expression higher than both parentals) are another genomic signature of OP isolates.
Collapse
Affiliation(s)
- Sen Xu
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA.
| | - Trung V Huynh
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Marelize Snyman
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
11
|
Moran BM, Payne C, Langdon Q, Powell DL, Brandvain Y, Schumer M. The genomic consequences of hybridization. eLife 2021; 10:e69016. [PMID: 34346866 PMCID: PMC8337078 DOI: 10.7554/elife.69016] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 12/29/2022] Open
Abstract
In the past decade, advances in genome sequencing have allowed researchers to uncover the history of hybridization in diverse groups of species, including our own. Although the field has made impressive progress in documenting the extent of natural hybridization, both historical and recent, there are still many unanswered questions about its genetic and evolutionary consequences. Recent work has suggested that the outcomes of hybridization in the genome may be in part predictable, but many open questions about the nature of selection on hybrids and the biological variables that shape such selection have hampered progress in this area. We synthesize what is known about the mechanisms that drive changes in ancestry in the genome after hybridization, highlight major unresolved questions, and discuss their implications for the predictability of genome evolution after hybridization.
Collapse
Affiliation(s)
- Benjamin M Moran
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Cheyenne Payne
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Quinn Langdon
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Daniel L Powell
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Yaniv Brandvain
- Department of Ecology, Evolution & Behavior and Plant and Microbial Biology, University of MinnesotaMinneapolisUnited States
| | - Molly Schumer
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
- Hanna H. Gray Fellow, Howard Hughes Medical InstituteStanfordUnited States
| |
Collapse
|
12
|
Prieto-Benítez S, Morente-López J, Rubio Teso ML, Lara-Romero C, García-Fernández A, Torres E, Iriondo JM. Evaluating Assisted Gene Flow in Marginal Populations of a High Mountain Species. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.638837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many species cannot either migrate or adapt at the rate of temperature increases due to climate warming. Therefore, they need active conservation strategies to avoid extinction. Facilitated adaptation actions, such assisted gene flow, aim at the increase of the evolutionary resilience of species affected by global change. In elevational gradients, marginal populations at the lower elevation edges are experiencing earlier snowmelt and higher temperatures, which force them to adapt to the new conditions by modifying their phenology. In this context, advancing the onset of flowering and seed germination times are crucial to ensure reproductive success and increase seedling survival prior to summer drought. Assisted gene flow may bring adaptive alleles and increase genetic diversity that can help throughout ontogeny. The main aim of this work is to assess the effects that different gene flow treatments could have on the desired trait changes in marginal populations. Accordingly, we established a common garden experiment in which we assayed four different gene flow treatments between Silene ciliata Pourr. (Caryophyllaceae) populations located in similar and different elevation edges, belonging to the same and different mountains. As a control treatment, within-population crosses of low elevation edge populations were performed. The resulting seeds were sown and the germination and flowering onset dates of the resulting plants recorded, as well as the seedling survival. Gene flow between populations falling on the same mountain and same elevation and gene flow from high-elevation populations from a different mountain to low-elevation populations advanced seed germination time with respect to control crosses. No significant effects of gene flow on seedling survival were found. All the gene flow treatments delayed the onset of flowering with respect to control crosses and this effect was more pronounced in among-mountain gene flows. The results of this study highlight two important issues that should be thoroughly studied before attempting to apply assisted gene flow in practical conservation situations. Firstly, among-populations gene flow can trigger different responses in crucial traits throughout the ontogeny of plant species. Secondly, the population provenance of gene flow is determinant and plays a significant role on the effects of gene flow.
Collapse
|
13
|
Moy I, Green M, Pham TP, Luu D, Xu S. The life-history fitness of F 1 hybrids of the microcrustacean Daphnia pulex and D. pulicaria (Crustacea, Anomopoda). INVERTEBRATE BIOLOGY : A QUARTERLY JOURNAL OF THE AMERICAN MICROSCOPICAL SOCIETY AND THE DIVISION OF INVERTEBRATE ZOOLOGY/ASZ 2021; 140:e12333. [PMID: 34366655 PMCID: PMC8341403 DOI: 10.1111/ivb.12333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Negative interaction between alleles that arise independently in diverging populations (i.e., Dobzhansky-Muller incompatibilities) can cause reduction of fitness in their hybrids. However, heterosis in hybrids can emerge if hybridization breaks down detrimental epistatic interaction within parental lineages. In this study, we examined the life-history fitness of the inter-specific F1s of two recently diverged microcrustacean species Daphnia pulex and D. pulicaria as well as intra-specific crosses of D. pulex. We identified heterosis in two out of five life-history traits in the inter-specific F1s. According to theories that heterosis can transiently emerge in early speciation, the observation of heterosis in these life-history traits suggests that there are no major genetic incompatibilities between these two species affecting these traits and that D. pulex and D. pulicaria are at an early stage of speciation.
Collapse
Affiliation(s)
| | | | | | | | - Sen Xu
- Correspondence: 501 S. Nedderman Dr, Arlington, TX, 76019.
| |
Collapse
|
14
|
Han KL, Barreto FS. Pervasive Mitonuclear Coadaptation Underlies Fast Development in Interpopulation Hybrids of a Marine Crustacean. Genome Biol Evol 2021; 13:6121088. [PMID: 33502469 PMCID: PMC7947751 DOI: 10.1093/gbe/evab004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2021] [Indexed: 12/21/2022] Open
Abstract
Cellular energy production requires coordinated interactions between genetic components from the nuclear and mitochondrial genomes. This coordination results in coadaptation of interacting elements within populations. Interbreeding between divergent gene pools can disrupt coadapted loci and result in hybrid fitness breakdown. While specific incompatible loci have been detected in multiple eukaryotic taxa, the extent of the nuclear genome that is influenced by mitonuclear coadaptation is not clear in any species. Here, we used F2 hybrids between two divergent populations of the copepod Tigriopus californicus to examine mitonuclear coadaptation across the nuclear genome. Using developmental rate as a measure of fitness, we found that fast-developing copepods had higher ATP synthesis capacity than slow developers, suggesting variation in developmental rates is at least partly associated with mitochondrial dysfunction. Using Pool-seq, we detected strong biases for maternal alleles across 7 (of 12) chromosomes in both reciprocal crosses in high-fitness hybrids, whereas low-fitness hybrids showed shifts toward the paternal population. Comparison with previous results on a different hybrid cross revealed largely different patterns of strong mitonuclear coadaptation associated with developmental rate. Our findings suggest that functional coadaptation between interacting nuclear and mitochondrial components is reflected in strong polygenic effects on this life-history phenotype, and reveal that molecular coadaptation follows independent evolutionary trajectories among isolated populations.
Collapse
Affiliation(s)
- Kin-Lan Han
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA.,Department of Biology, University of Washington, Seattle, Washington, USA
| | - Felipe S Barreto
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
15
|
Nesbit KT, Hamdoun A. Embryo, larval, and juvenile staging of Lytechinus pictus from fertilization through sexual maturation. Dev Dyn 2020; 249:1334-1346. [PMID: 32644271 DOI: 10.1002/dvdy.223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sea urchin embryos have been used for more than a century in the study of fertilization and early development. However, several of the species used, such as Strongylocentrotus purpuratus, have long generation times making them suboptimal for transgenerational studies. RESULTS Here, we present an overview of the development of a rapidly developing echinoderm species, Lytechinus pictus, from fertilization through sexual maturation. When grown at room temperature (20°C) embryos complete the first cell cycle in 90 minutes, followed by subsequent cleavages every 45 minutes, leading to hatching at 9 hours postfertilization (hpf). The swimming embryos gastrulate from 12 to 36 hpf and produce the cells which subsequently give rise to the larval skeleton and immunocytes. Larvae begin to feed at 2 days and metamorphose by 3 weeks. Juveniles reach sexual maturity at 4 to 6 months of age, depending on individual growth rate. CONCLUSIONS This staging scheme lays a foundation for future studies in L. pictus, which share many of the attractive features of other urchins but have the key advantage of rapid development to sexual maturation. This is significant for multigenerational and genetic studies newly enabled by CRISPR-CAS mediated gene editing.
Collapse
Affiliation(s)
- Katherine T Nesbit
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Amro Hamdoun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
16
|
Gangloff EJ, Schwartz TS, Klabacka R, Huebschman N, Liu AY, Bronikowski AM. Mitochondria as central characters in a complex narrative: Linking genomics, energetics, pace-of-life, and aging in natural populations of garter snakes. Exp Gerontol 2020; 137:110967. [DOI: 10.1016/j.exger.2020.110967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/11/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022]
|
17
|
Strong selective effects of mitochondrial DNA on the nuclear genome. Proc Natl Acad Sci U S A 2020; 117:6616-6621. [PMID: 32156736 DOI: 10.1073/pnas.1910141117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Oxidative phosphorylation, the primary source of cellular energy in eukaryotes, requires gene products encoded in both the nuclear and mitochondrial genomes. As a result, functional integration between the genomes is essential for efficient adenosine triphosphate (ATP) generation. Although within populations this integration is presumably maintained by coevolution, the importance of mitonuclear coevolution in key biological processes such as speciation and mitochondrial disease has been questioned. In this study, we crossed populations of the intertidal copepod Tigriopus californicus to disrupt putatively coevolved mitonuclear genotypes in reciprocal F2 hybrids. We utilized interindividual variation in developmental rate among these hybrids as a proxy for fitness to assess the strength of selection imposed on the nuclear genome by alternate mitochondrial genotypes. Developmental rate varied among hybrid individuals, and in vitro ATP synthesis rates of mitochondria isolated from high-fitness hybrids were approximately two-fold greater than those of mitochondria isolated from low-fitness individuals. We then used Pool-seq to compare nuclear allele frequencies for high- or low-fitness hybrids. Significant biases for maternal alleles were detected on 5 (of 12) chromosomes in high-fitness individuals of both reciprocal crosses, whereas maternal biases were largely absent in low-fitness individuals. Therefore, the most fit hybrids were those with nuclear alleles that matched their mitochondrial genotype on these chromosomes, suggesting that mitonuclear effects underlie individual-level variation in developmental rate and that intergenomic compatibility is critical for high fitness. We conclude that mitonuclear interactions can have profound impacts on both physiological performance and the evolutionary trajectory of the nuclear genome.
Collapse
|
18
|
Rand DM, Mossman JA. Mitonuclear conflict and cooperation govern the integration of genotypes, phenotypes and environments. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190188. [PMID: 31787039 PMCID: PMC6939372 DOI: 10.1098/rstb.2019.0188] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mitonuclear genome is the most successful co-evolved mutualism in the history of life on Earth. The cross-talk between the mitochondrial and nuclear genomes has been shaped by conflict and cooperation for more than 1.5 billion years, yet this system has adapted to countless genomic reorganizations by each partner, and done so under changing environments that have placed dramatic biochemical and physiological pressures on evolving lineages. From putative anaerobic origins, mitochondria emerged as the defining aerobic organelle. During this transition, the two genomes resolved rules for sex determination and transmission that made uniparental inheritance the dominant, but not a universal pattern. Mitochondria are much more than energy-producing organelles and play crucial roles in nutrient and stress signalling that can alter how nuclear genes are expressed as phenotypes. All of these interactions are examples of genotype-by-environment (GxE) interactions, gene-by-gene (GxG) interactions (epistasis) or more generally context-dependent effects on the link between genotype and phenotype. We provide evidence from our own studies in Drosophila, and from those of other systems, that mitonuclear interactions—either conflicting or cooperative—are common features of GxE and GxG. We argue that mitonuclear interactions are an important model for how to better understand the pervasive context-dependent effects underlying the architecture of complex phenotypes. Future research in this area should focus on the quantitative genetic concept of effect size to place mitochondrial links to phenotype in a proper context. This article is part of the theme issue ‘Linking the mitochondrial genotype to phenotype: a complex endeavour’.
Collapse
Affiliation(s)
- David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Box G, Providence, RI, USA
| | - Jim A Mossman
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Box G, Providence, RI, USA
| |
Collapse
|
19
|
Yan Z, Ye G, Werren JH. Evolutionary Rate Correlation between Mitochondrial-Encoded and Mitochondria-Associated Nuclear-Encoded Proteins in Insects. Mol Biol Evol 2019; 36:1022-1036. [PMID: 30785203 DOI: 10.1093/molbev/msz036] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mitochondrion is a pivotal organelle for energy production, and includes components encoded by both the mitochondrial and nuclear genomes. Functional and evolutionary interactions are expected between the nuclear- and mitochondrial-encoded components. The topic is of broad interest in biology, with implications to genetics, evolution, and medicine. Here, we compare the evolutionary rates of mitochondrial proteins and ribosomal RNAs to rates of mitochondria-associated nuclear-encoded proteins, across the major orders of holometabolous insects. There are significant evolutionary rate correlations (ERCs) between mitochondrial-encoded and mitochondria-associated nuclear-encoded proteins, which are likely driven by different rates of mitochondrial sequence evolution and correlated changes in the interacting nuclear-encoded proteins. The pattern holds after correction for phylogenetic relationships and considering protein conservation levels. Correlations are stronger for both nuclear-encoded OXPHOS proteins that are in contact with mitochondrial OXPHOS proteins and for nuclear-encoded mitochondrial ribosomal amino acids directly contacting the mitochondrial rRNAs. We find that ERC between mitochondrial- and nuclear-encoded proteins is a strong predictor of nuclear-encoded proteins known to interact with mitochondria, and ERC shows promise for identifying new candidate proteins with mitochondrial function. Twenty-three additional candidate nuclear-encoded proteins warrant further study for mitochondrial function based on this approach, including proteins in the minichromosome maintenance helicase complex.
Collapse
Affiliation(s)
- Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.,Department of Biology, University of Rochester, Rochester, NY
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY
| |
Collapse
|
20
|
Hill GE, Havird JC, Sloan DB, Burton RS, Greening C, Dowling DK. Assessing the fitness consequences of mitonuclear interactions in natural populations. Biol Rev Camb Philos Soc 2019; 94:1089-1104. [PMID: 30588726 PMCID: PMC6613652 DOI: 10.1111/brv.12493] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022]
Abstract
Metazoans exist only with a continuous and rich supply of chemical energy from oxidative phosphorylation in mitochondria. The oxidative phosphorylation machinery that mediates energy conservation is encoded by both mitochondrial and nuclear genes, and hence the products of these two genomes must interact closely to achieve coordinated function of core respiratory processes. It follows that selection for efficient respiration will lead to selection for compatible combinations of mitochondrial and nuclear genotypes, and this should facilitate coadaptation between mitochondrial and nuclear genomes (mitonuclear coadaptation). Herein, we outline the modes by which mitochondrial and nuclear genomes may coevolve within natural populations, and we discuss the implications of mitonuclear coadaptation for diverse fields of study in the biological sciences. We identify five themes in the study of mitonuclear interactions that provide a roadmap for both ecological and biomedical studies seeking to measure the contribution of intergenomic coadaptation to the evolution of natural populations. We also explore the wider implications of the fitness consequences of mitonuclear interactions, focusing on central debates within the fields of ecology and biomedicine.
Collapse
Affiliation(s)
- Geoffrey E. Hill
- Department of Biological Sciences, Auburn University, United States of America
| | - Justin C. Havird
- Department of Biology, Colorado State University, United States of America
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, United States of America
| | - Ronald S. Burton
- Scripps Institution of Oceanography, University of California, San Diego, United States of America
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Damian K. Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
21
|
Rapid divergence, molecular evolution, and morphological diversification of coastal host-parasite systems from southern Brazil. Parasitology 2019; 146:1313-1332. [PMID: 31142390 DOI: 10.1017/s0031182019000556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study assessed the role of historical processes on the geographic isolation, molecular evolution, and morphological diversification of host-parasite populations from the southern Brazilian coast. Adult specimens of Scleromystax barbatus and Scleromystax macropterus were collected from the sub-basin of the Nhundiaquara River and the sub-basin of the Paranaguá Bay, state of Paraná, Brazil. Four species of Gyrodactylus were recovered from the body surface of both host species. Morphometric analysis of Gyrodactylus spp. and Scleromystax spp. indicated that subpopulations of parasites and hosts could be distinguished from different sub-basins and locations, but the degree of morphological differentiation seems to be little related to geographic distance between subpopulations. Phylogenetic relationships based on DNA sequences of Gyrodactylus spp. and Scleromystax spp. allowed distinguishing lineages of parasites and hosts from different sub-basins. However, the level of genetic structuring of parasites was higher in comparison to host species. Evidence of positive selection in mtDNA sequences is likely associated with local adaptation of lineages of parasites and hosts. A historical demographic analysis revealed that populations of Gyrodactylus and Scleromystax have expanded in the last 250 000 years. The genetic variation of parasites and hosts is consistent with population-specific selection, population expansions, and recent evolutionary co-divergence.
Collapse
|
22
|
Dagilis AJ, Kirkpatrick M, Bolnick DI. The evolution of hybrid fitness during speciation. PLoS Genet 2019; 15:e1008125. [PMID: 31059513 PMCID: PMC6502311 DOI: 10.1371/journal.pgen.1008125] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/04/2019] [Indexed: 12/27/2022] Open
Abstract
The evolution of postzygotic reproductive isolation is an important component of speciation. But before isolation is complete there is sometimes a phase of heterosis in which hybrid fitness exceeds that of the two parental species. The genetics and evolution of heterosis and postzygotic isolation have typically been studied in isolation, precluding the development of a unified theory of speciation. Here, we develop a model that incorporates both positive and negative gene interactions, and accounts for the evolution of both heterosis and postzygotic isolation. We parameterize the model with recent data on the fitness effects of 10,000 mutations in yeast, singly and in pairwise epistatic combinations. The model makes novel predictions about the types of interactions that contribute to declining hybrid fitness. We reproduce patterns familiar from earlier models of speciation (e.g. Haldane's Rule and Darwin's Corollary) and identify new mechanisms that may underlie these patterns. Our approach provides a general framework for integrating experimental data from gene interaction networks into speciation theory and makes new predictions about the genetic mechanisms of speciation.
Collapse
Affiliation(s)
- Andrius J. Dagilis
- Integrative Biology Department, University of Texas at Austin, Austin, Texas, United States of America
| | - Mark Kirkpatrick
- Integrative Biology Department, University of Texas at Austin, Austin, Texas, United States of America
| | - Daniel I. Bolnick
- Integrative Biology Department, University of Texas at Austin, Austin, Texas, United States of America
- Department of Ecology and Evolutionary Biology, University of Connecticut, Mansfield, Connecticut, United States of America
| |
Collapse
|
23
|
Foley HB, Sun PY, Ramirez R, So BK, Venkataraman YR, Nixon EN, Davies KJA, Edmands S. Sex-specific stress tolerance, proteolysis, and lifespan in the invertebrate Tigriopus californicus. Exp Gerontol 2019; 119:146-156. [PMID: 30738921 DOI: 10.1016/j.exger.2019.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/04/2019] [Accepted: 02/06/2019] [Indexed: 11/30/2022]
Abstract
Because stress tolerance and longevity are mechanistically and phenotypically linked, the sex with higher acute stress tolerance might be expected to also live longer. On the other hand, the association between stress tolerance and lifespan may be complicated by tradeoffs between acute tolerance and long-term survival. Here we use the copepod Tigriopus californicus to test for sex differences in stress resistance, proteolytic activity and longevity. Unlike many model organisms, this species does not have sex chromosomes. However, substantial sex differences were still observed. Females were found to have superior tolerance to a range of acute stressors (high temperature, high salinity, low salinity, copper and bisphenol A (BPA)) across a variety of treatments including different populations, pure vs. hybrid crosses, and different shading environments. Upregulation of proteolytic capacity - one molecular mechanism for responding to acute stress - was also found to be sexually dimorphic. In the combined stress treatment of chronic copper exposure followed by acute heat exposure, proteolytic capacity was suppressed for males. Females, however, maintained a robust proteolytic stress response. While females consistently showed greater tolerance to short-term stress, lifespan was largely equivalent between the two sexes under both benign conditions and mild thermal stress. Our findings indicate that short-term stress tolerance does not predict long-term survival under relatively mild conditions.
Collapse
Affiliation(s)
- Helen B Foley
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Patrick Y Sun
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA; Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Rocio Ramirez
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Brandon K So
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Yaamini R Venkataraman
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Emily N Nixon
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089, USA; Molecular & Computational Biology Division, Department of Biological Sciences, College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90089, USA
| | - Suzanne Edmands
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
24
|
Sex and Mitonuclear Adaptation in Experimental Caenorhabditis elegans Populations. Genetics 2019; 211:1045-1058. [PMID: 30670540 DOI: 10.1534/genetics.119.301935] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/17/2019] [Indexed: 01/10/2023] Open
Abstract
To reveal phenotypic and functional genomic patterns of mitonuclear adaptation, a laboratory adaptation study with Caenorhabditis elegans nematodes was conducted in which independently evolving lines were initiated from a low-fitness mitochondrial electron transport chain (ETC) mutant, gas-1 Following 60 generations of evolution in large population sizes with competition for food resources, two distinct classes of lines representing different degrees of adaptive response emerged: a low-fitness class that exhibited minimal or no improvement compared to the gas-1 mutant ancestor, and a high-fitness class containing lines that exhibited partial recovery of wild-type fitness. Many lines that achieved higher reproductive and competitive fitness levels were also noted to evolve high frequencies of males during the experiment, consistent with adaptation in these lines having been facilitated by outcrossing. Whole-genome sequencing and analysis revealed an enrichment of mutations in loci that occur in a gas-1-centric region of the C. elegans interactome and could be classified into a small number of functional genomic categories. A highly nonrandom pattern of mitochondrial DNA mutation was observed within high-fitness gas-1 lines, with parallel fixations of nonsynonymous base substitutions within genes encoding NADH dehydrogenase subunits I and VI. These mitochondrial gene products reside within ETC complex I alongside the nuclear-encoded GAS-1 protein, suggesting that rapid adaptation of select gas-1 recovery lines was driven by fixation of compensatory mitochondrial mutations.
Collapse
|
25
|
Investigating mitonuclear interactions in human admixed populations. Nat Ecol Evol 2019; 3:213-222. [PMID: 30643241 PMCID: PMC6925600 DOI: 10.1038/s41559-018-0766-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
To function properly, mitochondria utilize products of 37 mitochondrial and >1,000 nuclear genes, which should be compatible with each other. Discordance between mitochondrial and nuclear genetic ancestry could contribute to phenotypic variation in admixed populations. Here, we explored potential mitonuclear incompatibility in six admixed human populations from the Americas: African Americans, African Caribbeans, Colombians, Mexicans, Peruvians and Puerto Ricans. By comparing nuclear versus mitochondrial ancestry in these populations, we first show that mitochondrial DNA (mtDNA) copy number decreases with increasing discordance between nuclear and mtDNA ancestry. The direction of this effect is consistent across mtDNA haplogroups of different geographic origins. This observation indicates suboptimal regulation of mtDNA replication when its components are encoded by nuclear and mtDNA genes with different ancestry. Second, while most populations analysed exhibit no such trend, in African Americans and Puerto Ricans, we find a significant enrichment of ancestry at nuclear-encoded mitochondrial genes towards the source populations contributing the most prevalent mtDNA haplogroups (African and Native American, respectively). This possibly reflects compensatory effects of selection in recovering mitonuclear interactions optimized in the source populations. Our results provide evidence of mitonuclear interactions in human admixed populations and we discuss their implications for human health and disease.
Collapse
|
26
|
Barreto FS, Watson ET, Lima TG, Willett CS, Edmands S, Li W, Burton RS. Genomic signatures of mitonuclear coevolution across populations of Tigriopus californicus. Nat Ecol Evol 2018; 2:1250-1257. [DOI: 10.1038/s41559-018-0588-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/21/2018] [Indexed: 12/19/2022]
|
27
|
Assessing introgressive hybridization between blue wildebeest (Connochaetes taurinus) and black wildebeest (Connochaetes gnou) from South Africa. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1071-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
28
|
Sharbrough J, Cruise JL, Beetch M, Enright NM, Neiman M. Genetic Variation for Mitochondrial Function in the New Zealand Freshwater Snail Potamopyrgus antipodarum. J Hered 2018; 108:759-768. [PMID: 28460111 DOI: 10.1093/jhered/esx041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/26/2017] [Indexed: 02/04/2023] Open
Abstract
The proteins responsible for mitochondrial function are encoded by 2 different genomes with distinct inheritance regimes, rendering rigorous inference of genotype-phenotype connections intractable for all but a few model systems. Asexual organisms provide a powerful means to address these challenges because offspring produced without recombination inherit both nuclear and mitochondrial genomes from a single parent. As such, these offspring inherit mitonuclear genotypes that are identical to the mitonuclear genotypes of their parents and siblings but different from those of other asexual lineages. Here, we compared mitochondrial function across distinct asexual lineages of Potamopyrgus antipodarum, a New Zealand freshwater snail model for understanding the evolutionary consequences of asexuality. Our analyses revealed substantial phenotypic variation across asexual lineages at 3 levels of biological organization: mitogenomic, organellar, and organismal. These data demonstrate that different asexual lineages have different mitochondrial function phenotypes, likely reflecting heritable variation (i.e., the raw material for evolution) for mitochondrial function in P. antipodarum. The discovery of this variation combined with the methods developed here sets the stage to use P. antipodarum to study central evolutionary questions involving mitochondrial function, including whether mitochondrial mutation accumulation influences the maintenance of sexual reproduction in natural populations.
Collapse
Affiliation(s)
- Joel Sharbrough
- Department of Biology, University of Iowa, Iowa City, IA.,Department of Biology, Colorado State University, Fort Collins, CO
| | | | - Megan Beetch
- Department of Biology, University of Iowa, Iowa City, IA.,Department of Biology, University of St. Thomas, Saint Paul, MN
| | | | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IA
| |
Collapse
|
29
|
Comparative biochemistry of cytochrome c oxidase in animals. Comp Biochem Physiol B Biochem Mol Biol 2017; 224:170-184. [PMID: 29180239 DOI: 10.1016/j.cbpb.2017.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
Cytochrome c oxidase (COX), the terminal enzyme of the electron transport system, is central to aerobic metabolism of animals. Many aspects of its structure and function are highly conserved, yet, paradoxically, it is also an important model for studying the evolution of the metabolic phenotype. In this review, part of a special issue honouring Peter Hochachka, we consider the biology of COX from the perspective of comparative and evolutionary biochemistry. The approach is to consider what is known about the enzyme in the context of conventional biochemistry, but focus on how evolutionary researchers have used this background to explore the role of the enzyme in biochemical adaptation of animals. In synthesizing the conventional and evolutionary biochemistry, we hope to identify synergies and future research opportunities. COX represents a rare opportunity for researchers to design studies that span the breadth of biology: molecular genetics, protein biochemistry, enzymology, metabolic physiology, organismal performance, evolutionary biology, and phylogeography.
Collapse
|
30
|
Melvin RG, Ballard JWO. Cellular and population level processes influence the rate, accumulation and observed frequency of inherited and somatic mtDNA mutations. Mutagenesis 2017; 32:323-334. [PMID: 28521046 DOI: 10.1093/mutage/gex004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are found in all animals and have the unique feature of containing multiple copies of their own small, circular DNA genome (mtDNA). The rate and pattern of mutation accumulation in the mtDNA are influenced by molecular, cellular and population level processes. We distinguish between inherited and somatic mtDNA mutations and review evidence for the often-made assumption that mutations accumulate at a higher rate in mtDNA than in nuclear DNA (nDNA). We conclude that the whole genome mutation accumulation rate is higher for mtDNA than for nDNA but include the caveat that rates overlap considerably between the individual mtDNA- and nDNA-encoded genes. Next, we discuss the postulated causal mechanisms for the high rate of mtDNA mutation accumulation in both inheritance and in somatic cells. Perhaps unexpectedly, mtDNA is resilient to many mutagens of nDNA but is prone to errors of replication. We then consider the influence of maternal inheritance, recombination and selection on the observed accumulation pattern of inherited mtDNA mutations. Finally, we discuss environmental influences of temperature and diet on the observed frequency of inherited and somatic mtDNA mutations. We conclude that it is necessary to understand the cellular processes to fully interpret the pattern of mutations and how they influence our interpretations of evolution and disease.
Collapse
Affiliation(s)
- Richard G Melvin
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - John William O Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
31
|
Towarnicki SG, Ballard JWO. Drosophila mitotypes determine developmental time in a diet and temperature dependent manner. JOURNAL OF INSECT PHYSIOLOGY 2017; 100:133-139. [PMID: 28619466 DOI: 10.1016/j.jinsphys.2017.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
It is well known that specific mitochondrial (mt) DNA mutations can reduce organismal fitness and influence mitochondrial-nuclear interactions. However, determining specific mtDNA mutations that are beneficial has been elusive. In this study, we vary the diet and environmental temperature to study larval development time of two Drosophila melanogaster mitotypes (Alstonville and Dahomey), in two nuclear genetic backgrounds, and investigate developmental differences through weight, feeding rate, and movement. To manipulate the diet, we utilize the nutritional geometric framework to manipulate isocaloric diets of differing macronutrient ratios (1:2 and 1:16 protein: carbohydrate (P:C) ratios) and raise flies at three temperatures (19°C, 23°C and 27°C). Larvae with Dahomey mtDNA develop more slowly than Alstonville when fed the 1:2 P:C diet at all temperatures and developed more quickly when fed the 1:16 P:C diet at 23°C and 27°C. We determined that Dahomey larvae eat more, move less, and weigh more than Alstonville larvae when raised on the 1:16 P:C diet and that these physiological responses are modified by temperature. We suggest that 1 (or more) of 4 mtDNA changes is likely responsible for the observed effects and posit the mtDNA changes moderate a physiological trade-off between consumption and foraging.
Collapse
Affiliation(s)
- Samuel G Towarnicki
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - J William O Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
32
|
Baris TZ, Wagner DN, Dayan DI, Du X, Blier PU, Pichaud N, Oleksiak MF, Crawford DL. Evolved genetic and phenotypic differences due to mitochondrial-nuclear interactions. PLoS Genet 2017; 13:e1006517. [PMID: 28362806 PMCID: PMC5375140 DOI: 10.1371/journal.pgen.1006517] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/01/2016] [Indexed: 02/05/2023] Open
Abstract
The oxidative phosphorylation (OxPhos) pathway is responsible for most aerobic ATP production and is the only pathway with both nuclear and mitochondrial encoded proteins. The importance of the interactions between these two genomes has recently received more attention because of their potential evolutionary effects and how they may affect human health and disease. In many different organisms, healthy nuclear and mitochondrial genome hybrids between species or among distant populations within a species affect fitness and OxPhos functions. However, what is less understood is whether these interactions impact individuals within a single natural population. The significance of this impact depends on the strength of selection for mito-nuclear interactions. We examined whether mito-nuclear interactions alter allele frequencies for ~11,000 nuclear SNPs within a single, natural Fundulus heteroclitus population containing two divergent mitochondrial haplotypes (mt-haplotypes). Between the two mt-haplotypes, there are significant nuclear allele frequency differences for 349 SNPs with a p-value of 1% (236 with 10% FDR). Unlike the rest of the genome, these 349 outlier SNPs form two groups associated with each mt-haplotype, with a minority of individuals having mixed ancestry. We use this mixed ancestry in combination with mt-haplotype as a polygenic factor to explain a significant fraction of the individual OxPhos variation. These data suggest that mito-nuclear interactions affect cardiac OxPhos function. The 349 outlier SNPs occur in genes involved in regulating metabolic processes but are not directly associated with the 79 nuclear OxPhos proteins. Therefore, we postulate that the evolution of mito-nuclear interactions affects OxPhos function by acting upstream of OxPhos.
Collapse
Affiliation(s)
- Tara Z. Baris
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
- * E-mail:
| | - Dominique N. Wagner
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - David I. Dayan
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - Xiao Du
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - Pierre U. Blier
- Dept de Biologie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Quebec, Canada
| | - Nicolas Pichaud
- Dept de Biologie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Quebec, Canada
| | - Marjorie F. Oleksiak
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - Douglas L. Crawford
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| |
Collapse
|
33
|
Sunnucks P, Morales HE, Lamb AM, Pavlova A, Greening C. Integrative Approaches for Studying Mitochondrial and Nuclear Genome Co-evolution in Oxidative Phosphorylation. Front Genet 2017; 8:25. [PMID: 28316610 PMCID: PMC5334354 DOI: 10.3389/fgene.2017.00025] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/17/2017] [Indexed: 01/24/2023] Open
Abstract
In animals, interactions among gene products of mitochondrial and nuclear genomes (mitonuclear interactions) are of profound fitness, evolutionary, and ecological significance. Most fundamentally, the oxidative phosphorylation (OXPHOS) complexes responsible for cellular bioenergetics are formed by the direct interactions of 13 mitochondrial-encoded and ∼80 nuclear-encoded protein subunits in most animals. It is expected that organisms will develop genomic architecture that facilitates co-adaptation of these mitonuclear interactions and enhances biochemical efficiency of OXPHOS complexes. In this perspective, we present principles and approaches to understanding the co-evolution of these interactions, with a novel focus on how genomic architecture might facilitate it. We advocate that recent interdisciplinary advances assist in the consolidation of links between genotype and phenotype. For example, advances in genomics allow us to unravel signatures of selection in mitochondrial and nuclear OXPHOS genes at population-relevant scales, while newly published complete atomic-resolution structures of the OXPHOS machinery enable more robust predictions of how these genes interact epistatically and co-evolutionarily. We use three case studies to show how integrative approaches have improved the understanding of mitonuclear interactions in OXPHOS, namely those driving high-altitude adaptation in bar-headed geese, allopatric population divergence in Tigriopus californicus copepods, and the genome architecture of nuclear genes coding for mitochondrial functions in the eastern yellow robin.
Collapse
Affiliation(s)
- Paul Sunnucks
- School of Biological Sciences, Monash University, ClaytonVIC, Australia
| | - Hernán E. Morales
- School of Biological Sciences, Monash University, ClaytonVIC, Australia
- Department of Marine Sciences, University of GothenburgGothenburg, Sweden
| | - Annika M. Lamb
- School of Biological Sciences, Monash University, ClaytonVIC, Australia
| | - Alexandra Pavlova
- School of Biological Sciences, Monash University, ClaytonVIC, Australia
| | - Chris Greening
- School of Biological Sciences, Monash University, ClaytonVIC, Australia
| |
Collapse
|
34
|
Jhuang HY, Lee HY, Leu JY. Mitochondrial-nuclear co-evolution leads to hybrid incompatibility through pentatricopeptide repeat proteins. EMBO Rep 2016; 18:87-101. [PMID: 27920033 DOI: 10.15252/embr.201643311] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/09/2016] [Accepted: 10/21/2016] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial-nuclear incompatibility has a major role in reproductive isolation between species. However, the underlying mechanism and driving force of mitochondrial-nuclear incompatibility remain elusive. Here, we report a pentatricopeptide repeat-containing (PPR) protein, Ccm1, and its interacting partner, 15S rRNA, to be involved in hybrid incompatibility between two yeast species, Saccharomyces cerevisiae and Saccharomyces bayanus S. bayanus-Ccm1 has reduced binding affinity for S. cerevisiae-15S rRNA, leading to respiratory defects in hybrid cells. This incompatibility can be rescued by single mutations on several individual PPR motifs, demonstrating the highly evolvable nature of PPR proteins. When we examined other PPR proteins in the closely related Saccharomyces sensu stricto yeasts, about two-thirds of them showed detectable incompatibility. Our results suggest that fast co-evolution between flexible PPR proteins and their mitochondrial RNA substrates may be a common driving force in the development of mitochondrial-nuclear hybrid incompatibility.
Collapse
Affiliation(s)
- Han-Ying Jhuang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hsin-Yi Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan .,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
35
|
Đorđević M, Stojković B, Savković U, Immonen E, Tucić N, Lazarević J, Arnqvist G. Sex-specific mitonuclear epistasis and the evolution of mitochondrial bioenergetics, ageing, and life history in seed beetles. Evolution 2016; 71:274-288. [PMID: 27861795 DOI: 10.1111/evo.13109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/13/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022]
Abstract
The role of mitochondrial DNA for the evolution of life-history traits remains debated. We examined mitonuclear effects on the activity of the multisubunit complex of the electron transport chain (ETC) involved in oxidative phosphorylation (OXPHOS) across lines of the seed beetle Acanthoscelides obtectus selected for a short (E) or a long (L) life for more than >160 generations. We constructed and phenotyped mitonuclear introgression lines, which allowed us to assess the independent effects of the evolutionary history of the nuclear and the mitochondrial genome. The nuclear genome was responsible for the largest share of divergence seen in ageing. However, the mitochondrial genome also had sizeable effects, which were sex-specific and expressed primarily as epistatic interactions with the nuclear genome. The effects of mitonuclear disruption were largely consistent with mitonuclear coadaptation. Variation in ETC activity explained a large proportion of variance in ageing and life-history traits and this multivariate relationship differed somewhat between the sexes. In conclusion, mitonuclear epistasis has played an important role in the laboratory evolution of ETC complex activity, ageing, and life histories and these are closely associated. The mitonuclear architecture of evolved differences in life-history traits and mitochondrial bioenergetics was sex-specific.
Collapse
Affiliation(s)
- Mirko Đorđević
- Department of Evolutionary Biology, Institute for Biological Research, University of Belgrade, Despota Stefana Boulevard 142, Belgrade, 11060, Serbia
| | - Biljana Stojković
- Department of Evolutionary Biology, Institute for Biological Research, University of Belgrade, Despota Stefana Boulevard 142, Belgrade, 11060, Serbia.,Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, 11000, Serbia
| | - Uroš Savković
- Department of Evolutionary Biology, Institute for Biological Research, University of Belgrade, Despota Stefana Boulevard 142, Belgrade, 11060, Serbia
| | - Elina Immonen
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Nikola Tucić
- Department of Evolutionary Biology, Institute for Biological Research, University of Belgrade, Despota Stefana Boulevard 142, Belgrade, 11060, Serbia
| | - Jelica Lazarević
- Department of Insect Physiology and Biochemistry, Institute for Biological Research, University of Belgrade, Despota Stefana Boulevard 142, Belgrade, 11060, Serbia
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| |
Collapse
|
36
|
Hill GE. Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode gap. Ecol Evol 2016; 6:5831-42. [PMID: 27547358 PMCID: PMC4983595 DOI: 10.1002/ece3.2338] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial genes are widely used in taxonomy and systematics because high mutation rates lead to rapid sequence divergence and because such changes have long been assumed to be neutral with respect to function. In particular, the nucleotide sequence of the mitochondrial gene cytochrome c oxidase subunit 1 has been established as a highly effective DNA barcode for diagnosing the species boundaries of animals. Rarely considered in discussions of mitochondrial evolution in the context of systematics, speciation, or DNA barcodes, however, is the genomic architecture of the eukaryotes: Mitochondrial and nuclear genes must function in tight coordination to produce the complexes of the electron transport chain and enable cellular respiration. Coadaptation of these interacting gene products is essential for organism function. I extend the hypothesis that mitonuclear interactions are integral to the process of speciation. To maintain mitonuclear coadaptation, nuclear genes, which code for proteins in mitochondria that cofunction with the products of mitochondrial genes, must coevolve with rapidly changing mitochondrial genes. Mitonuclear coevolution in isolated populations leads to speciation because population-specific mitonuclear coadaptations create between-population mitonuclear incompatibilities and hence barriers to gene flow between populations. In addition, selection for adaptive divergence of products of mitochondrial genes, particularly in response to climate or altitude, can lead to rapid fixation of novel mitochondrial genotypes between populations and consequently to disruption in gene flow between populations as the initiating step in animal speciation. By this model, the defining characteristic of a metazoan species is a coadapted mitonuclear genotype that is incompatible with the coadapted mitochondrial and nuclear genotype of any other population.
Collapse
Affiliation(s)
- Geoffrey E. Hill
- Department Biological ScienceAuburn University331 Funchess HallAuburnAlabama36849‐5414
| |
Collapse
|
37
|
Willett CS, Lima TG, Kovaleva I, Hatfield L. Chromosome-Wide Impacts on the Expression of Incompatibilities in Hybrids of Tigriopus californicus. G3 (BETHESDA, MD.) 2016; 6:1739-49. [PMID: 27172190 PMCID: PMC4889669 DOI: 10.1534/g3.116.028050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/06/2016] [Indexed: 11/18/2022]
Abstract
Chromosome rearrangements such as inversions have been recognized previously as contributing to reproductive isolation by maintaining alleles together that jointly contribute to deleterious genetic interactions and postzygotic reproductive isolation. In this study, an impact of potential incompatibilities merely residing on the same chromosome was found in crosses of populations of the copepod Tigriopus californicus When genetically divergent populations of this copepod are crossed, hybrids show reduced fitness, and deviations from expected genotypic ratios can be used to determine regions of the genome involved in deleterious interactions. In this study, a set of markers was genotyped for a cross of two populations of T. californicus, and these markers show widespread deviations from Mendelian expectations, with entire chromosomes showing marked skew. Despite the importance of mtDNA/nuclear interactions in incompatibilities in this system in previous studies, in these crosses the expected patterns stemming from these interactions are not widely apparent. Females lack recombination in this species, and a striking difference is observed between male and female backcrosses. This suggests that the maintenance of multiple loci on individual chromosomes can enable some incompatibilities, perhaps playing a similar role in the initial rounds of hybridization to chromosomal rearrangements in preserving sets of alleles together that contribute to incompatibilities. Finally, it was observed that candidate pairs of incompatibility regions are not consistently interacting across replicates or subsets of these crosses, despite the repeatability of the deviations at many of the single loci themselves, suggesting that more complicated models of Dobzhansky-Muller incompatibilities may need to be considered.
Collapse
Affiliation(s)
- Christopher S Willett
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599-3280
| | - Thiago G Lima
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599-3280
| | - Inna Kovaleva
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599-3280
| | - Lydia Hatfield
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599-3280
| |
Collapse
|
38
|
Pereira RJ, Barreto FS, Pierce NT, Carneiro M, Burton RS. Transcriptome-wide patterns of divergence during allopatric evolution. Mol Ecol 2016; 25:1478-93. [DOI: 10.1111/mec.13579] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/03/2015] [Accepted: 01/06/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Ricardo J. Pereira
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093-0202 USA
- Centre for GeoGenetics; Natural History Museum of Denmark; University of Copenhagen; Øster Voldgade 5-7 1350 Copenhagen Denmark
| | - Felipe S. Barreto
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093-0202 USA
- Department of Integrative Biology; Oregon State University; Corvallis OR 97331 USA
| | - N. Tessa Pierce
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093-0202 USA
| | - Miguel Carneiro
- CIBIO; Centro de Investigação em Biodiversidade e Recursos Genéticos; Campus Agrário de Vairão 4485-661 Vairão Portugal
| | - Ronald S. Burton
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093-0202 USA
| |
Collapse
|
39
|
Cytonuclear interactions affect adaptive traits of the annual plant Arabidopsis thaliana in the field. Proc Natl Acad Sci U S A 2016; 113:3687-92. [PMID: 26979961 DOI: 10.1073/pnas.1520687113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the contribution of cytonuclear interactions to plant fitness variation is relatively well documented at the interspecific level, the prevalence of cytonuclear interactions at the intraspecific level remains poorly investigated. In this study, we set up a field experiment to explore the range of effects that cytonuclear interactions have on fitness-related traits in Arabidopsis thaliana To do so, we created a unique series of 56 cytolines resulting from cytoplasmic substitutions among eight natural accessions reflecting within-species genetic diversity. An assessment of these cytolines and their parental lines scored for 28 adaptive whole-organism phenotypes showed that a large proportion of phenotypic traits (23 of 28) were affected by cytonuclear interactions. The effects of these interactions varied from slight but frequent across cytolines to strong in some specific parental pairs. Two parental pairs accounted for half of the significant pairwise interactions. In one parental pair, Ct-1/Sha, we observed symmetrical phenotypic responses between the two nuclear backgrounds when combined with specific cytoplasms, suggesting nuclear differentiation at loci involved in cytonuclear epistasis. In contrast, asymmetrical phenotypic responses were observed in another parental pair, Cvi-0/Sha. In the Cvi-0 nuclear background, fecundity and phenology-related traits were strongly affected by the Sha cytoplasm, leading to a modified reproductive strategy without penalizing total seed production. These results indicate that natural variation in cytoplasmic and nuclear genomes interact to shape integrative traits that contribute to adaptation, thereby suggesting that cytonuclear interactions can play a major role in the evolutionary dynamics ofA. thaliana.
Collapse
|
40
|
Carmona D, Fitzpatrick CR, Johnson MTJ. Fifty years of co-evolution and beyond: integrating co-evolution from molecules to species. Mol Ecol 2015; 24:5315-29. [PMID: 26394718 DOI: 10.1111/mec.13389] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 02/04/2023]
Abstract
Fifty years after Ehrlich and Raven's seminal paper, the idea of co-evolution continues to grow as a key concept in our understanding of organic evolution. This concept has not only provided a compelling synthesis between evolutionary biology and community ecology, but has also inspired research that extends beyond its original scope. In this article, we identify unresolved questions about the co-evolutionary process and advocate for the integration of co-evolutionary research from molecular to interspecific interactions. We address two basic questions: (i) What is co-evolution and how common is it? (ii) What is the unit of co-evolution? Both questions aim to explore the heart of the co-evolutionary process. Despite the claim that co-evolution is ubiquitous, we argue that there is in fact little evidence to support the view that reciprocal natural selection and coadaptation are common in nature. We also challenge the traditional view that co-evolution only occurs between traits of interacting species. Co-evolution has the potential to explain evolutionary processes and patterns that result from intra- and intermolecular biochemical interactions within cells, intergenomic interactions (e.g. nuclear-cytoplasmic) within species, as well as intergenomic interactions mediated by phenotypic traits between species. Research that bridges across these levels of organization will help to advance our understanding of the importance of the co-evolutionary processes in shaping the diversity of life on Earth.
Collapse
Affiliation(s)
- Diego Carmona
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Connor R Fitzpatrick
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Marc T J Johnson
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
41
|
Havird JC, Vaught RC, Weese DA, Santos SR. Reproduction and development in Halocaridina rubra Holthuis, 1963 (Crustacea: Atyidae) clarifies larval ecology in the Hawaiian anchialine ecosystem. THE BIOLOGICAL BULLETIN 2015; 229:134-142. [PMID: 26504154 DOI: 10.1086/bblv229n2p134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Larvae in aquatic habitats often develop in environments different from those they inhabit as adults. Shrimp in the Atyidae exemplify this trend, as larvae of many species require salt or brackish water for development, while adults are freshwater-adapted. An exception within the Atyidae family is the "anchialine clade," which are euryhaline as adults and endemic to habitats with subterranean fresh and marine water influences. Although the Hawaiian anchialine atyid Halocaridina rubra is a strong osmoregulator, its larvae have never been observed in nature. Moreover, larval development in anchialine species is poorly studied. Here, reproductive trends in laboratory colonies over a 5-y period are presented from seven genetic lineages and one mixed population of H. rubra; larval survivorship under varying salinities is also discussed. The presence and number of larvae differed significantly among lineages, with the mixed population being the most prolific. Statistical differences in reproduction attributable to seasonality also were identified. Larval survivorship was lowest (12% settlement rate) at a salinity approaching fresh water and significantly higher in brackish and seawater (88% and 72%, respectively). Correlated with this finding, identifiable gills capable of ion transport did not develop until metamorphosis into juveniles. Thus, early life stages of H. rubra are apparently excluded from surface waters, which are characterized by lower and fluctuating salinities. Instead, these stages are restricted to the subterranean (where there is higher and more stable salinity) portion of Hawaii's anchialine habitats due to their inability to tolerate low salinities. Taken together, these data contribute to the understudied area of larval ecology in the anchialine ecosystem.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Bldg., Auburn, Alabama 36849
| | - Rebecca C Vaught
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Bldg., Auburn, Alabama 36849
| | - David A Weese
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Bldg., Auburn, Alabama 36849
| | - Scott R Santos
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Bldg., Auburn, Alabama 36849
| |
Collapse
|
42
|
Suzuki TA, Nachman MW. Speciation and reduced hybrid female fertility in house mice. Evolution 2015; 69:2468-81. [PMID: 26299202 DOI: 10.1111/evo.12747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/28/2015] [Indexed: 01/19/2023]
Abstract
In mammals, intrinsic postzygotic isolation has been well studied in males but has been less studied in females, despite the fact that female gametogenesis and pregnancy provide arenas for hybrid sterility or inviability that are absent in males. Here, we asked whether inviability or sterility is observed in female hybrids of Mus musculus domesticus and M. m. musculus, taxa which hybridize in nature and for which male sterility has been well characterized. We looked for parent-of-origin growth phenotypes by measuring adult body weights in F1 hybrids. We evaluated hybrid female fertility by crossing F1 females to a tester male and comparing multiple reproductive parameters between intrasubspecific controls and intersubspecific hybrids. Hybrid females showed no evidence of parent-of-origin overgrowth or undergrowth, providing no evidence for reduced viability. However, hybrid females had smaller litter sizes, reduced embryo survival, fewer ovulations, and fewer small follicles relative to controls. Significant variation in reproductive parameters was seen among different hybrid genotypes, suggesting that hybrid incompatibilities are polymorphic within subspecies. Differences in reproductive phenotypes in reciprocal genotypes were observed and are consistent with cyto-nuclear incompatibilities or incompatibilities involving genomic imprinting. These findings highlight the potential importance of reduced hybrid female fertility in the early stages of speciation.
Collapse
Affiliation(s)
- Taichi A Suzuki
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721. .,Current Address: Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, 94720.
| | - Michael W Nachman
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721.,Current Address: Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, 94720
| |
Collapse
|
43
|
Bui DT, Dine E, Anderson JB, Aquadro CF, Alani EE. A Genetic Incompatibility Accelerates Adaptation in Yeast. PLoS Genet 2015; 11:e1005407. [PMID: 26230253 PMCID: PMC4521705 DOI: 10.1371/journal.pgen.1005407] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/01/2015] [Indexed: 12/21/2022] Open
Abstract
During mismatch repair (MMR) MSH proteins bind to mismatches that form as the result of DNA replication errors and recruit MLH factors such as Mlh1-Pms1 to initiate excision and repair steps. Previously, we identified a negative epistatic interaction involving naturally occurring polymorphisms in the MLH1 and PMS1 genes of baker’s yeast. Here we hypothesize that a mutagenic state resulting from this negative epistatic interaction increases the likelihood of obtaining beneficial mutations that can promote adaptation to stress conditions. We tested this by stressing yeast strains bearing mutagenic (incompatible) and non-mutagenic (compatible) mismatch repair genotypes. Our data show that incompatible populations adapted more rapidly and without an apparent fitness cost to high salt stress. The fitness advantage of incompatible populations was rapid but disappeared over time. The fitness gains in both compatible and incompatible strains were due primarily to mutations in PMR1 that appeared earlier in incompatible evolving populations. These data demonstrate a rapid and reversible role (by mating) for genetic incompatibilities in accelerating adaptation in eukaryotes. They also provide an approach to link experimental studies to observational population genomics. In nature, bacterial populations with high mutation rates can adapt faster to new environments by acquiring beneficial mutations. However, such populations also accumulate harmful mutations that reduce their fitness. We show that the model eukaryote baker’s yeast can use a similar mutator strategy to adapt to new environments. The mutator state that we observed resulted from an incompatibility involving two genes, MLH1 and PMS1, that work together to remove DNA replication errors through a spellchecking mismatch repair mechanism. This incompatibility can occur through mating between baker’s yeast from different genetic backgrounds, yielding mutator offspring containing an MLH1-PMS1 combination not present in either parent. Interestingly, these offspring adapted more rapidly to stress, compared to the parental strains, and did so without an overall loss in fitness. DNA sequencing analyses of baker’s yeast strains from across the globe support the presence of incompatible hybrid yeast strains in nature. These observations provide a powerful model to understand how the segregation of defects in DNA mismatch repair can serve as an effective strategy to enable eukaryotes to adapt to changing environments.
Collapse
Affiliation(s)
- Duyen T. Bui
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Elliot Dine
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - James B. Anderson
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Charles F. Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Eric E. Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
44
|
Schumer M, Cui R, Rosenthal GG, Andolfatto P. Reproductive isolation of hybrid populations driven by genetic incompatibilities. PLoS Genet 2015; 11:e1005041. [PMID: 25768654 PMCID: PMC4359097 DOI: 10.1371/journal.pgen.1005041] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/29/2015] [Indexed: 12/25/2022] Open
Abstract
Despite its role in homogenizing populations, hybridization has also been proposed as a means to generate new species. The conceptual basis for this idea is that hybridization can result in novel phenotypes through recombination between the parental genomes, allowing a hybrid population to occupy ecological niches unavailable to parental species. Here we present an alternative model of the evolution of reproductive isolation in hybrid populations that occurs as a simple consequence of selection against genetic incompatibilities. Unlike previous models of hybrid speciation, our model does not incorporate inbreeding, or assume that hybrids have an ecological or reproductive fitness advantage relative to parental populations. We show that reproductive isolation between hybrids and parental species can evolve frequently and rapidly under this model, even in the presence of substantial ongoing immigration from parental species and strong selection against hybrids. An interesting prediction of our model is that replicate hybrid populations formed from the same pair of parental species can evolve reproductive isolation from each other. This non-adaptive process can therefore generate patterns of species diversity and relatedness that resemble an adaptive radiation. Intriguingly, several known hybrid species exhibit patterns of reproductive isolation consistent with the predictions of our model.
Collapse
Affiliation(s)
- Molly Schumer
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Rongfeng Cui
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, Calnali, Hidalgo, Mexico
- Max Planck Institute for the Biology of Ageing, Cologne, Germany
| | - Gil G. Rosenthal
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, Calnali, Hidalgo, Mexico
| | - Peter Andolfatto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
45
|
Saunier A, Garcia P, Becquet V, Marsaud N, Escudié F, Pante E. Mitochondrial genomes of the Baltic clam Macoma balthica (Bivalvia: Tellinidae): setting the stage for studying mito-nuclear incompatibilities. BMC Evol Biol 2014; 14:259. [PMID: 25527898 PMCID: PMC4302422 DOI: 10.1186/s12862-014-0259-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/05/2014] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Allopatric divergence across lineages can lead to post-zygotic reproductive isolation upon secondary contact and disrupt coevolution between mitochondrial and nuclear genomes, promoting emergence of genetic incompatibilities. A previous F ST scan on the transcriptome of the Baltic clam Macoma balthica highlighted several genes potentially involved in mito-nuclear incompatibilities (MNIs). As proteins involved in the mitochondrial oxidative phosphorylation (OXPHO) chain are prone to MNIs and can contribute to the maintenance of genetic barriers, the mitochondrial genomes of six Ma. balthica individuals spanning two secondary contact zones were sequenced using the Illumina MiSeq plateform. RESULTS The mitogenome has an approximate length of 16,806 bp and encodes 13 protein-coding genes, 2 rRNAs and 22 tRNAs, all located on the same strand. atp8, a gene long reported as rare in bivalves, was detected. It encodes 42 amino acids and is putatively expressed and functional. A large unassigned region was identified between rrnS and tRNA (Met) and could likely correspond to the Control Region. Replacement and synonymous mutations were mapped on the inferred secondary structure of all protein-coding genes of the OXPHO chain. The atp6 and atp8 genes were characterized by background levels of replacement mutations, relative to synonymous mutations. However, most nad genes (notably nad2 and nad5) were characterized by an elevated proportion of replacement mutations. CONCLUSIONS Six nearly complete mitochondrial genomes were successfully assembled and annotated, providing the necessary roadmap to study MNIs at OXPHO loci. Few replacement mutations were mapped on mitochondrial-encoded ATP synthase subunits, which is in contrast with previous data on nuclear-encoded subunits. Conversely, the high population divergence and the prevalence of non-synonymous mutations at nad genes are congruent with previous observations from the nuclear transcriptome. This further suggest that MNIs between subunits of Complex I of the OXPHO chain, coding for NADH dehydrogenase, may play a role in maintaining barriers to gene flow in Ma. balthica.
Collapse
Affiliation(s)
- Alice Saunier
- Littoral, Environnement et Sociétés, UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, La Rochelle, 17000, France.
| | - Pascale Garcia
- Littoral, Environnement et Sociétés, UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, La Rochelle, 17000, France.
| | - Vanessa Becquet
- Littoral, Environnement et Sociétés, UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, La Rochelle, 17000, France.
| | - Nathalie Marsaud
- GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan, 31326, France.
| | - Frédéric Escudié
- GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan, 31326, France.
| | - Eric Pante
- Littoral, Environnement et Sociétés, UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, La Rochelle, 17000, France.
| |
Collapse
|
46
|
Barreto FS, Pereira RJ, Burton RS. Hybrid Dysfunction and Physiological Compensation in Gene Expression. Mol Biol Evol 2014; 32:613-22. [DOI: 10.1093/molbev/msu321] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
47
|
Li P, Gao X. Trace elements in major marketed marine bivalves from six northern coastal cities of China: concentrations and risk assessment for human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 109:1-9. [PMID: 25128644 DOI: 10.1016/j.ecoenv.2014.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 06/03/2023]
Abstract
One hundred and fifty nine samples of nine edible bivalve species (Argopecten irradians, Chlamys farreri, Crassostrea virginica, Lasaea nipponica, Meretrix meretrix, Mytilus edulis, Ruditapes philippinarum, Scapharca subcrenata and Sinonovacula constricta) were randomly collected from eight local seafood markets in six big cities (Dalian, Qingdao, Rizhao, Weifang, Weihai and Yantai) in the northern coastal areas of China for the investigation of trace element contamination. As, Cd, Cr, Cu, Hg, Pb and Zn were quantified. The risk of these trace elements to humans through bivalve consumption was then assessed. Results indicated that the concentrations of most of the studied trace element varied significantly with species: the average concentration of Cu in C. virginica was an order of magnitude higher than that in the remaining species; the average concentration of Zn was also highest in C. virginica; the average concentration of As, Cd and Pb was highest in R. philippinarum, C. farreri and A. irradians, respectively. Spatial differences in the concentrations of elements were generally less than those of interspecies, yet some elements such as Cr and Hg in the samples from different cities showed a significant difference in concentrations for some bivalve species. Trace element concentrations in edible tissues followed the order of Zn>Cu>As>Cd>Cr>Pb>Hg generally. Statistical analysis (one-way ANOVA) indicated that different species examined showed different bioaccumulation of trace elements. There were significant correlations between the concentrations of some elements. The calculated hazard quotients indicated in general that there was no obvious health risk from the intake of trace elements through bivalve consumption. But care must be taken considering the increasing amount of seafood consumption.
Collapse
Affiliation(s)
- Peimiao Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xuelu Gao
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.
| |
Collapse
|
48
|
Dobler R, Rogell B, Budar F, Dowling DK. A meta-analysis of the strength and nature of cytoplasmic genetic effects. J Evol Biol 2014; 27:2021-34. [DOI: 10.1111/jeb.12468] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/25/2014] [Accepted: 07/27/2014] [Indexed: 01/07/2023]
Affiliation(s)
- R. Dobler
- Institute of Evolution and Ecology; University of Tübingen; Tübingen Germany
| | - B. Rogell
- School of Biological Sciences; Monash University; Clayton Vic. Australia
| | - F. Budar
- UMR 1318; Institut Jean-Pierre Bourgin; INRA; Versailles France
- UMR 1318; Institut Jean-Pierre Bourgin; AgroParisTech; Versailles France
| | - D. K. Dowling
- School of Biological Sciences; Monash University; Clayton Vic. Australia
| |
Collapse
|
49
|
Garvin MR, Bielawski JP, Sazanov LA, Gharrett AJ. Review and meta-analysis of natural selection in mitochondrial complex I in metazoans. J ZOOL SYST EVOL RES 2014. [DOI: 10.1111/jzs.12079] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael R. Garvin
- Fisheries Division; School of Fisheries and Ocean Sciences; University of Alaska Fairbanks; Juneau AK USA
| | - Joseph P. Bielawski
- Department of Biology; Dalhousie University; Halifax NS Canada
- Department of Mathematics & Statistics; Dalhousie University; Halifax NS Canada
| | | | - Anthony J. Gharrett
- Fisheries Division; School of Fisheries and Ocean Sciences; University of Alaska Fairbanks; Juneau AK USA
| |
Collapse
|
50
|
Wolff JN, Ladoukakis ED, Enríquez JA, Dowling DK. Mitonuclear interactions: evolutionary consequences over multiple biological scales. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130443. [PMID: 24864313 PMCID: PMC4032519 DOI: 10.1098/rstb.2013.0443] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fundamental biological processes hinge on coordinated interactions between genes spanning two obligate genomes--mitochondrial and nuclear. These interactions are key to complex life, and allelic variation that accumulates and persists at the loci embroiled in such intergenomic interactions should therefore be subjected to intense selection to maintain integrity of the mitochondrial electron transport system. Here, we compile evidence that suggests that mitochondrial-nuclear (mitonuclear) allelic interactions are evolutionarily significant modulators of the expression of key health-related and life-history phenotypes, across several biological scales--within species (intra- and interpopulational) and between species. We then introduce a new frontier for the study of mitonuclear interactions--those that occur within individuals, and are fuelled by the mtDNA heteroplasmy and the existence of nuclear-encoded mitochondrial gene duplicates and isoforms. Empirical evidence supports the idea of high-resolution tissue- and environment-specific modulation of intraindividual mitonuclear interactions. Predicting the penetrance, severity and expression patterns of mtDNA-induced mitochondrial diseases remains a conundrum. We contend that a deeper understanding of the dynamics and ramifications of mitonuclear interactions, across all biological levels, will provide key insights that tangibly advance our understanding, not only of core evolutionary processes, but also of the complex genetics underlying human mitochondrial disease.
Collapse
Affiliation(s)
- Jonci N Wolff
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, New South Wales, Australia Evolution and Ecology Research Centre, University of New South Wales, Sydney 2052, New South Wales, Australia School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| | | | - José A Enríquez
- Regenerative Cardiology Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain Departamento de Bioquímica, Universidad de Zaragoza, Zaragoza, Spain
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|