1
|
Xu R, Zhang G, Huang H, Zhao Y, Tan WS, Cai H. Polyvinyl alcohol, N-acetylcysteine, and methyl-β-cyclodextrin exhibit albumin functions in natural killer cell culture. J Biosci Bioeng 2025; 139:436-444. [PMID: 40133146 DOI: 10.1016/j.jbiosc.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
Albumin is a crucial component of serum-free media, playing a significant role in ex vivo cell culture as a lipid carrier and antioxidant. However, purified albumin contains undefined substances, making it challenging to achieve clinical application standards for effector cell culture. This study used natural killer (NK)-92 cells as a model to investigate the effects of the albumin substitute replacing bovine serum albumin (BSA) on cell expansion and metabolism in an in-house-designed, chemically defined, serum-free medium. We selected polyvinyl alcohol (PVA), N-acetylcysteine (NAC), and methyl-β-cyclodextrin (M-β-CD) as an albumin substitute combination and optimized their concentrations by using response surface methodology. The optimized albumin substitute was named PVA-NAC-M-β-CD (PNM). After 8 days of culture, NK-92 cells cultured with the PNM exhibited phenotype and cytotoxic function comparable to cells cultured with different concentrations of BSA. The expansion fold was 89.22 ± 3.55, significantly higher than the 51.23 ± 6.57 observed in the 0.75 g/L BSA group (p < 0.05). Further verification of functions of PNM showed that intracellular fatty acid levels, cholesterol consumption rates, and the pSTAT5 level in the PNM group were significantly higher than those in the 0.75 g/L BSA group (p < 0.05). Reactive oxygen species levels remained controlled, and mitochondrial membrane potential was similar. These findings suggested that the PNM can effectively replace the functions of BSA as a fatty acid carrier, antioxidant, and, to some extent, a cholesterol carrier. This study provides insights for developing chemically defined media to prepare clinical-grade NK cells efficiently.
Collapse
Affiliation(s)
- Ruisheng Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Guofeng Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Huimin Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yuanyuan Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
2
|
Sung Y, Choi Y, Kim ES, Ryu JH, Kwon IC. Receptor-ligand interactions for optimized endocytosis in targeted therapies. J Control Release 2025; 380:524-538. [PMID: 39875075 DOI: 10.1016/j.jconrel.2025.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Receptor-mediated endocytosis plays a crucial role in the success of numerous therapies and remains central to advancing drug development. This process begins with ligand binding to specific receptors, triggering the internalization and intracellular trafficking of receptor-ligand complexes. These complexes are subsequently directed into distinct routes, either toward lysosomal degradation or recycling to the cell surface, with implications for therapeutic outcomes. This review examines receptor-ligand interactions as key modulators of endocytosis, emphasizing their role in shaping therapeutic design and efficacy. Advances in selecting receptor-ligand pairs and engineering ligands with optimized properties have enabled precise control over internalization, endosomal sorting, and trafficking, providing tailored solutions for diverse therapeutic applications. Leveraging these insights, strategies such as RNA-based therapies, antibody-drug conjugates (ADCs), and targeted protein degradation (TPD) platforms have been refined to selectively avoid or promote lysosomal degradation, thereby enhancing therapeutic efficacy. By bridging fundamental mechanisms of receptor-mediated endocytosis with innovative therapeutic approaches, this review offers a framework for advancing precision medicine.
Collapse
Affiliation(s)
- Yejin Sung
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Youngjin Choi
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eun Sun Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 20841, Republic of Korea
| | - Ju Hee Ryu
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
3
|
Gedaly R, Orozco G, Lewis LJ, Valvi D, Chapelin F, Khurana A, Hidalgo GE, Shmookler A, Tripathi A, Zhang C, Zwischenberger JB, Marti F. Effect of mitochondrial oxidative stress on regulatory T cell manufacturing for clinical application in transplantation: Results from a pilot study. Am J Transplant 2025; 25:720-733. [PMID: 39515758 PMCID: PMC11973835 DOI: 10.1016/j.ajt.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The manufacturing process of regulatory T (Treg) cells for clinical application begins with the positive selection of CD25+ cells using superparamagnetic iron oxide nanoparticle (SPION)-conjugated anti-CD25 antibodies (spCD25) and immunomagnetic cell separation technology. Our findings revealed that the interaction of spCD25 with its cell target induced the internalization of the complex spCD25-interleukin-2 receptor. Accumulation of intracellular spCD25 triggered oxidative stress, causing delayed Treg expansion and temporary reduction in suppressor activity. This activation delay hindered the efficient generation of clinically competent cells. During this early phase, Treg cells exhibited elevated mitochondrial superoxide and lipid peroxidation levels, with a concomitant decrease in mitochondrial respiration rates. The results uncovered the increased mitochondrial unfolded protein response. This protective, redox-sensitive activity is inherent in Tregs when contrasted with homologous, spCD25-treated, conventional T cells. Although the temporary effects of spCD25 on clinically competent cells did not impede their use in a safety/feasibility pilot study with kidney transplant recipients, it is reasonable to anticipate a potential reduction in their therapeutic efficacy. The mechanistic understanding of the adverse effects triggered by spCD25 is crucial for improving the manufacturing process of clinically competent Treg cells, a pivotal step in the successful implementation of immune cell therapy in transplantation.
Collapse
Affiliation(s)
- Roberto Gedaly
- Department of Surgery - Transplant Division, College of Medicine, University of Kentucky, Lexington, Kentucky, USA; Lucille Parker Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, Kentucky, USA; Division of Transplantation, Quality and Biostatistics Section, University of Kentucky, College of Medicine, Lexington, Kentucky, USA; Alliance Research Initiative (TILT Alliance), University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| | - Gabriel Orozco
- Department of Surgery - Transplant Division, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
| | - Lillie J Lewis
- Department of Surgery - Transplant Division, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
| | - Deepa Valvi
- Department of Surgery - Transplant Division, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
| | - Fanny Chapelin
- Lucille Parker Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, Kentucky, USA; Alliance Research Initiative (TILT Alliance), University of Kentucky College of Medicine, Lexington, Kentucky, USA; Department of Biomedical Engineering, University of Kentucky, College of Medicine, Lexington, Kentucky, USA.
| | - Aman Khurana
- Lucille Parker Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, Kentucky, USA; Alliance Research Initiative (TILT Alliance), University of Kentucky College of Medicine, Lexington, Kentucky, USA; Department of Radiology, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Giovanna E Hidalgo
- Pathology and Laboratory Medicine, University of Kentucky, College of Medicine, Lexington, Kentucky, USA.
| | - Aaron Shmookler
- Pathology and Laboratory Medicine, University of Kentucky, College of Medicine, Lexington, Kentucky, USA.
| | - Aashutosh Tripathi
- Department of Microbiology, Immunology, and Molecular Genetics. University of Kentucky, College of Medicine, Lexington, Kentucky, USA.
| | - Cuiping Zhang
- Flow Cytometry & Immune Monitoring Core Facility, University of Kentucky, College of Medicine, Lexington, Kentucky, USA.
| | - Joseph B Zwischenberger
- Department of Surgery - Transplant Division, College of Medicine, University of Kentucky, Lexington, Kentucky, USA; Lucille Parker Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, Kentucky, USA.
| | - Francesc Marti
- Department of Surgery - Transplant Division, College of Medicine, University of Kentucky, Lexington, Kentucky, USA; Lucille Parker Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, Kentucky, USA; Alliance Research Initiative (TILT Alliance), University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| |
Collapse
|
4
|
Isogai T, Hirosawa KM, Suzuki KGN. Recent Advancements in Imaging Techniques for Individual Extracellular Vesicles. Molecules 2024; 29:5828. [PMID: 39769916 PMCID: PMC11728280 DOI: 10.3390/molecules29245828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Extracellular vesicles (EVs), secreted from most cells, are small lipid membranes of vesicles of 30 to 1000 nm in diameter and contain nucleic acids, proteins, and intracellular organelles originating from donor cells. EVs play pivotal roles in intercellular communication, particularly in forming niches for cancer cell metastasis. However, EVs derived from donor cells exhibit significant heterogeneity, complicating the investigation of EV subtypes using ensemble averaging methods. In this context, we highlight recent studies that characterize individual EVs using advanced techniques, including single-fluorescent-particle tracking, single-metal-nanoparticle tracking, single-non-label-particle tracking, super-resolution microscopy, and atomic force microscopy. These techniques have facilitated high-throughput analyses of the properties of individual EV particles such as their sizes, compositions, and physical properties. Finally, we address the challenges that need to be resolved via single-particle (-molecule) imaging and super-resolution microscopy in future research.
Collapse
Affiliation(s)
- Tatsuki Isogai
- The United Graduate School of Agricultural Science, Gifu University, Gifu 501-1193, Japan;
| | - Koichiro M. Hirosawa
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan;
| | - Kenichi G. N. Suzuki
- The United Graduate School of Agricultural Science, Gifu University, Gifu 501-1193, Japan;
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan;
- Division of Advanced Bioimaging, National Cancer Center Research Institute (NCCRI), Tokyo 104-0045, Japan
| |
Collapse
|
5
|
Zhao Q, Li W, Li W, Lu Y, Zeng T, Zhang W, Zhang M, Zhou L, An Y, Song W, Shu Z, Zhao X. Wiskott-Aldrich syndrome protein maintains regulatory T cell tolerance by modulating their surface IL-2 receptor levels. J Autoimmun 2024; 149:103336. [PMID: 39549486 DOI: 10.1016/j.jaut.2024.103336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 09/13/2024] [Accepted: 11/03/2024] [Indexed: 11/18/2024]
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency condition caused by ablation of functional WAS protein (WASP) expression, and associated with susceptibility to infections, eczema, and autoimmunity. Regulatory T cell (Treg) defects are an important cause of autoimmunity in WAS. Currently, the mechanisms underlying cytoskeleton involvement in Treg-regulated autoimmunity remain unclear, and WAS is an excellent model for investigation of this question. Here, we examined patients with WAS and WASP knockout (WASp-/-) mice to uncover a new mechanism involving the actin nucleation promoting factor, WASP, in regulating Treg tolerance by modulating their surface IL-2 receptor (IL-2R) levels. Surface expression levels of IL-2R and its downstream signaling molecules, phosphoinositide 3-kinase/pSTAT5, are decreased in WASp-/- Tregs. Low dosage IL-2 combined with anti-IL-2 monoclonal antibody (IL2 complex) treatment can compensate for Treg deficiency in WAS in vitro and in vivo. Moreover, IL2 complex treatment relieved autoimmune colitis in WASp-/- mice. Reduced surface IL-2R is primarily caused by elevated IL-2R internalization and degradation, and lysosomal and endosomal genes associated with these processes are upregulated in WASp-/- Tregs. Finally, spatiotemporal analysis of dynamin and Neural Wiskott Aldrich Syndrome Protein (N-WASP) recruitment, by generating lipid bilayers and total internal reflection fluorescence microscopy, showed that WASP deficiency promoted IL-2R internalization and degradation by enhancing N-WASP activation. Consistently, N-WASP inhibition in Tregs using wiskostatin reduced IL-2R internalization. Together, our results reveal a novel intrinsic role of WASP in regulation of surface IL-2R dynamics in Tregs, highlighting a potential new therapeutic approach for autoimmune diseases.
Collapse
Affiliation(s)
- Qin Zhao
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenhui Li
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenyan Li
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Lu
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Zeng
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjing Zhang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Min Zhang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfei An
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China; Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Zhou Shu
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China; Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
6
|
DaCunza JT, Wickman JR, Ajit SK. miRNA packaging into small extracellular vesicles and implications in pain. Pain Rep 2024; 9:e1198. [PMID: 39450410 PMCID: PMC11500789 DOI: 10.1097/pr9.0000000000001198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 10/26/2024] Open
Abstract
Extracellular vesicles (EVs) are a heterogenous group of lipid bilayer bound particles naturally released by cells. These vesicles are classified based on their biogenesis pathway and diameter. The overlap in size of exosomes generated from the exosomal pathway and macrovesicles that are pinched off from the surface of the plasma membrane makes it challenging to isolate pure populations. Hence, isolated vesicles that are less than 200 nm are called small extracellular vesicles (sEVs). Extracellular vesicles transport a variety of cargo molecules, and multiple mechanisms govern the packaging of cargo into sEVs. Here, we discuss the current understanding of how miRNAs are targeted into sEVs, including the role of RNA binding proteins and EXOmotif sequences present in miRNAs in sEV loading. Several studies in human pain disorders and rodent models of pain have reported alterations in sEV cargo, including miRNAs. The sorting mechanisms and target regulation of miR-939, a miRNA altered in individuals with complex regional pain syndrome, is discussed in the context of inflammation. We also provide a broad overview of the therapeutic strategies being pursued to utilize sEVs in the clinic and the work needed to further our understanding of EVs to successfully deploy sEVs as a pain therapeutic.
Collapse
Affiliation(s)
- Jason T. DaCunza
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Molecular & Cell Biology & Genetics Graduate Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jason R. Wickman
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Seena K. Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
7
|
Hammoud MK, Meena C, Dietze R, Hoffmann N, Szymanski W, Finkernagel F, Nist A, Stiewe T, Graumann J, von Strandmann EP, Müller R. Arachidonic acid impairs natural killer cell functions by disrupting signaling pathways driven by activating receptors and reactive oxygen species. Cell Commun Signal 2024; 22:555. [PMID: 39563446 PMCID: PMC11575453 DOI: 10.1186/s12964-024-01940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND High levels of the polyunsaturated fatty acid arachidonic acid (AA) within the ovarian carcinoma (OC) microenvironment correlate with reduced relapse-free survival. Furthermore, OC progression is tied to compromised immunosurveillance, partially attributed to the impairment of natural killer (NK) cells. However, potential connections between AA and NK cell dysfunction in OC have not been studied. METHODS We employed a combination of phosphoproteomics, transcriptional profiling and biological assays to investigate AA's impact on NK cell functions. RESULTS AA (i) disrupts interleukin-2/15-mediated expression of pro-inflammatory genes by inhibiting STAT1-dependent signaling, (ii) hampers signaling by cytotoxicity receptors through disruption of their surface expression, (iii) diminishes phosphorylation of NKG2D-induced protein kinases, including ERK1/2, LYN, MSK1/2 and STAT1, and (iv) alters reactive oxygen species production by transcriptionally upregulating detoxification. These modifications lead to a cessation of NK cell proliferation and a reduction in cytotoxicity. CONCLUSION Our findings highlight significant AA-induced alterations in the signaling network that regulates NK cell activity. As low expression of several NK cell receptors correlates with shorter OC patient survival, these findings suggest a functional linkage between AA, NK cell dysfunction and OC progression.
Collapse
Affiliation(s)
- Mohamad K Hammoud
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
- Institute of Physiological Chemistry, Philipps University, Marburg, Germany
| | - Celina Meena
- Institute of Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Raimund Dietze
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Nathalie Hoffmann
- Institute of Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Witold Szymanski
- Institute of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany
- Core Facility Translational Proteomics, Philipps University, Marburg, Germany
| | - Florian Finkernagel
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
- Institute of Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany
- Core Facility Translational Proteomics, Philipps University, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute of Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany.
- Center for Tumor Biology and Immunology (ZTI), Philipps University, Hans-Meerwein-Strasse 3, 35043, Marburg, Germany.
| | - Rolf Müller
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany.
- Center for Tumor Biology and Immunology (ZTI), Philipps University, Hans-Meerwein-Strasse 3, 35043, Marburg, Germany.
| |
Collapse
|
8
|
Winkelmann H, Richter CP, Eising J, Piehler J, Kurre R. Correlative single-molecule and structured illumination microscopy of fast dynamics at the plasma membrane. Nat Commun 2024; 15:5813. [PMID: 38987559 PMCID: PMC11236984 DOI: 10.1038/s41467-024-49876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Total internal reflection fluorescence (TIRF) microscopy offers powerful means to uncover the functional organization of proteins in the plasma membrane with very high spatial and temporal resolution. Traditional TIRF illumination, however, shows a Gaussian intensity profile, which is typically deteriorated by overlaying interference fringes hampering precise quantification of intensities-an important requisite for quantitative analyses in single-molecule localization microscopy (SMLM). Here, we combine flat-field illumination by using a standard πShaper with multi-angular TIR illumination by incorporating a spatial light modulator compatible with fast super-resolution structured illumination microscopy (SIM). This distinct combination enables quantitative multi-color SMLM with a highly homogenous illumination. By using a dual camera setup with optimized image splitting optics, we achieve a versatile combination of SMLM and SIM with up to three channels. We deploy this setup for establishing robust detection of receptor stoichiometries based on single-molecule intensity analysis and single-molecule Förster resonance energy transfer (smFRET). Homogeneous illumination furthermore enables long-term tracking and localization microscopy (TALM) of cell surface receptors identifying spatial heterogeneity of mobility and accessibility in the plasma membrane. By combination of TALM and SIM, spatially and molecularly heterogenous diffusion properties can be correlated with nanoscale cytoskeletal organization and dynamics.
Collapse
Affiliation(s)
- Hauke Winkelmann
- Division of Biophysics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany
| | - Christian P Richter
- Division of Biophysics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany
| | - Jasper Eising
- Division of Biophysics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany
| | - Jacob Piehler
- Division of Biophysics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany.
- Center for Cellular Nanoanalytics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany.
| | - Rainer Kurre
- Division of Biophysics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany.
- Center for Cellular Nanoanalytics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany.
- Integrated Bioimaging Facility iBiOs, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany.
| |
Collapse
|
9
|
Hagiyama M, Yoneshige A, Wada A, Kimura R, Ito S, Inoue T, Takeuchi F, Ito A. Efficient intracellular drug delivery by co-administration of two antibodies against cell adhesion molecule 1. J Control Release 2024; 371:603-618. [PMID: 38782061 DOI: 10.1016/j.jconrel.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Cell adhesion molecule 1 (CADM1), a single-pass transmembrane protein, is involved in oncogenesis. We previously demonstrated the therapeutic efficacy of anti-CADM1 ectodomain monoclonal antibodies against mesothelioma; however, the underlying mechanism is unclear. In the present study, we explored the molecular behavior of anti-CADM1 antibodies in CADM1-expressing tumor cells. Sequencing analyses revealed that the anti-CADM1 chicken monoclonal antibodies 3E1 and 9D2 are IgY and IgM isotype antibodies, respectively. Co-administration of 3E1 and 9D2 altered the subcellular distribution of CADM1 from the detergent-soluble fraction to the detergent-resistant fraction in tumor cells. Using recombinant chicken-mouse chimeric antibodies that had been isotype-switched from IgG to IgM, we demonstrated that the combination of the variable region of 3E1 and the constant region of IgM was required for CADM1 relocation. Cytochemical studies showed that 3E1 colocalized with late endosomes/lysosomes after co-administration with 9D2, suggesting that the CADM1-antibody complex is internalized from the cell surface to intracellular compartments by lipid-raft mediated endocytosis. Finally, 3E1 was conjugated with the antimitotic agent monomethyl auristatin E (MMAE) via a cathepsin-cleavable linker. Co-administration of 3E1-monomethyl auristatin E and 9D2 suppressed the growth of multiple types of tumor cells, and this anti-tumor activity was confirmed in a syngeneic mouse model of melanoma. 3E1 and 9D2 are promising drug delivery vehicles for CADM1-expressing tumor cells.
Collapse
Affiliation(s)
- Man Hagiyama
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Azusa Yoneshige
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan.
| | - Akihiro Wada
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Ryuichiro Kimura
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takao Inoue
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Fuka Takeuchi
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan.
| |
Collapse
|
10
|
Caveney NA, Rodriguez GE, Pollmann C, Meyer T, Borowska MT, Wilson SC, Wang N, Xiang X, Householder KD, Tao P, Su LL, Saxton RA, Piehler J, Garcia KC. Structure of the interleukin-5 receptor complex exemplifies the organizing principle of common beta cytokine signaling. Mol Cell 2024; 84:1995-2005.e7. [PMID: 38614096 PMCID: PMC11102305 DOI: 10.1016/j.molcel.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/20/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Cytokines regulate immune responses by binding to cell surface receptors, including the common subunit beta (βc), which mediates signaling for GM-CSF, IL-3, and IL-5. Despite known roles in inflammation, the structural basis of IL-5 receptor activation remains unclear. We present the cryo-EM structure of the human IL-5 ternary receptor complex, revealing architectural principles for IL-5, GM-CSF, and IL-3. In mammalian cell culture, single-molecule imaging confirms hexameric IL-5 complex formation on cell surfaces. Engineered chimeric receptors show that IL-5 signaling, as well as IL-3 and GM-CSF, can occur through receptor heterodimerization, obviating the need for higher-order assemblies of βc dimers. These findings provide insights into IL-5 and βc receptor family signaling mechanisms, aiding in the development of therapies for diseases involving deranged βc signaling.
Collapse
Affiliation(s)
- Nathanael A Caveney
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.
| | - Grayson E Rodriguez
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christoph Pollmann
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Thomas Meyer
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Marta T Borowska
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven C Wilson
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nan Wang
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xinyu Xiang
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Biophysics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karsten D Householder
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pingdong Tao
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leon L Su
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert A Saxton
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Abraham BG, Haikarainen T, Vuorio J, Girych M, Virtanen AT, Kurttila A, Karathanasis C, Heilemann M, Sharma V, Vattulainen I, Silvennoinen O. Molecular basis of JAK2 activation in erythropoietin receptor and pathogenic JAK2 signaling. SCIENCE ADVANCES 2024; 10:eadl2097. [PMID: 38457493 PMCID: PMC10923518 DOI: 10.1126/sciadv.adl2097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
Janus kinase 2 (JAK2) mediates type I/II cytokine receptor signaling, but JAK2 is also activated by somatic mutations that cause hematological malignancies by mechanisms that are still incompletely understood. Quantitative superresolution microscopy (qSMLM) showed that erythropoietin receptor (EpoR) exists as monomers and dimerizes upon Epo stimulation or through the predominant JAK2 pseudokinase domain mutations (V617F, K539L, and R683S). Crystallographic analysis complemented by kinase activity analysis and atomic-level simulations revealed distinct pseudokinase dimer interfaces and activation mechanisms for the mutants: JAK V617F activity is driven by dimerization, K539L involves both increased receptor dimerization and kinase activity, and R683S prevents autoinhibition and increases catalytic activity and drives JAK2 equilibrium toward activation state through a wild-type dimer interface. Artificial intelligence-guided modeling and simulations revealed that the pseudokinase mutations cause differences in the pathogenic full-length JAK2 dimers, particularly in the FERM-SH2 domains. A detailed molecular understanding of mutation-driven JAK2 hyperactivation may enable novel therapeutic approaches to selectively target pathogenic JAK2 signaling.
Collapse
Affiliation(s)
| | - Teemu Haikarainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Joni Vuorio
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Anniina T. Virtanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Antti Kurttila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Christos Karathanasis
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Olli Silvennoinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Liu MCJ, Yeh FLJ, Yvon R, Simpson K, Jordan S, Chambers J, Wu HM, Cheung AY. Extracellular pectin-RALF phase separation mediates FERONIA global signaling function. Cell 2024; 187:312-330.e22. [PMID: 38157854 DOI: 10.1016/j.cell.2023.11.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/01/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
The FERONIA (FER)-LLG1 co-receptor and its peptide ligand RALF regulate myriad processes for plant growth and survival. Focusing on signal-induced cell surface responses, we discovered that intrinsically disordered RALF triggers clustering and endocytosis of its cognate receptors and FER- and LLG1-dependent endocytosis of non-cognate regulators of diverse processes, thus capable of broadly impacting downstream responses. RALF, however, remains extracellular. We demonstrate that RALF binds the cell wall polysaccharide pectin. They phase separate and recruit FER and LLG1 into pectin-RALF-FER-LLG1 condensates to initiate RALF-triggered cell surface responses. We show further that two frequently encountered environmental challenges, elevated salt and temperature, trigger RALF-pectin phase separation, promiscuous receptor clustering and massive endocytosis, and that this process is crucial for recovery from stress-induced growth attenuation. Our results support that RALF-pectin phase separation mediates an exoskeletal mechanism to broadly activate FER-LLG1-dependent cell surface responses to mediate the global role of FER in plant growth and survival.
Collapse
Affiliation(s)
- Ming-Che James Liu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA
| | - Fang-Ling Jessica Yeh
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA; Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Robert Yvon
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Kelly Simpson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Samuel Jordan
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA
| | - James Chambers
- Light Microscopy Core Facility, Institute of Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA 01003, USA.
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA 01003, USA; Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
13
|
Gormal RS, Martinez-Marmol R, Brooks AJ, Meunier FA. Location, location, location: Protein kinase nanoclustering for optimised signalling output. eLife 2024; 13:e93902. [PMID: 38206309 PMCID: PMC10783869 DOI: 10.7554/elife.93902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Protein kinases (PKs) are proteins at the core of cellular signalling and are thereby responsible for most cellular physiological processes and their regulations. As for all intracellular proteins, PKs are subjected to Brownian thermal energy that tends to homogenise their distribution throughout the volume of the cell. To access their substrates and perform their critical functions, PK localisation is therefore tightly regulated in space and time, relying upon a range of clustering mechanisms. These include post-translational modifications, protein-protein and protein-lipid interactions, as well as liquid-liquid phase separation, allowing spatial restriction and ultimately regulating access to their substrates. In this review, we will focus on key mechanisms mediating PK nanoclustering in physiological and pathophysiological processes. We propose that PK nanoclusters act as a cellular quantal unit of signalling output capable of integration and regulation in space and time. We will specifically outline the various super-resolution microscopy approaches currently used to elucidate the composition and mechanisms driving PK nanoscale clustering and explore the pathological consequences of altered kinase clustering in the context of neurodegenerative disorders, inflammation, and cancer.
Collapse
Affiliation(s)
- Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Ramon Martinez-Marmol
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Andrew J Brooks
- Frazer Institute, The University of QueenslandWoolloongabbaAustralia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
- School of Biomedical Sciences, The University of QueenslandSt LuciaAustralia
| |
Collapse
|
14
|
Porębska N, Ciura K, Chorążewska A, Zakrzewska M, Otlewski J, Opaliński Ł. Multivalent protein-drug conjugates - An emerging strategy for the upgraded precision and efficiency of drug delivery to cancer cells. Biotechnol Adv 2023; 67:108213. [PMID: 37453463 DOI: 10.1016/j.biotechadv.2023.108213] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/20/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
With almost 20 million new cases per year, cancer constitutes one of the most important challenges for public health systems. Unlike traditional chemotherapy, targeted anti-cancer strategies employ sophisticated therapeutics to precisely identify and attack cancer cells, limiting the impact of drugs on healthy cells and thereby minimizing the unwanted side effects of therapy. Protein drug conjugates (PDCs) are a rapidly growing group of targeted therapeutics, composed of a cancer-recognition factor covalently coupled to a cytotoxic drug. Several PDCs, mainly in the form of antibody-drug conjugates (ADCs) that employ monoclonal antibodies as cancer-recognition molecules, are used in the clinic and many PDCs are currently in clinical trials. Highly selective, strong and stable interaction of the PDC with the tumor marker, combined with efficient, rapid endocytosis of the receptor/PDC complex and its subsequent effective delivery to lysosomes, is critical for the efficacy of targeted cancer therapy with PDCs. However, the bivalent architecture of contemporary clinical PDCs is not optimal for tumor receptor recognition or PDCs internalization. In this review, we focus on multivalent PDCs, which represent a rapidly evolving and highly promising therapeutics that overcome most of the limitations of current bivalent PDCs, enhancing the precision and efficiency of drug delivery to cancer cells. We present an expanding set of protein scaffolds used to generate multivalent PDCs that, in addition to folding into well-defined multivalent molecular structures, enable site-specific conjugation of the cytotoxic drug to ensure PDC homogeneity. We provide an overview of the architectures of multivalent PDCs developed to date, emphasizing their efficacy in the targeted treatment of various cancers.
Collapse
Affiliation(s)
- Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Krzysztof Ciura
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Aleksandra Chorążewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| |
Collapse
|
15
|
Yang H, Ulge UY, Quijano-Rubio A, Bernstein ZJ, Maestas DR, Chun JH, Wang W, Lin JX, Jude KM, Singh S, Orcutt-Jahns BT, Li P, Mou J, Chung L, Kuo YH, Ali YH, Meyer AS, Grayson WL, Heller NM, Garcia KC, Leonard WJ, Silva DA, Elisseeff JH, Baker D, Spangler JB. Design of cell-type-specific hyperstable IL-4 mimetics via modular de novo scaffolds. Nat Chem Biol 2023; 19:1127-1137. [PMID: 37024727 PMCID: PMC10697138 DOI: 10.1038/s41589-023-01313-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
The interleukin-4 (IL-4) cytokine plays a critical role in modulating immune homeostasis. Although there is great interest in harnessing this cytokine as a therapeutic in natural or engineered formats, the clinical potential of native IL-4 is limited by its instability and pleiotropic actions. Here, we design IL-4 cytokine mimetics (denoted Neo-4) based on a de novo engineered IL-2 mimetic scaffold and demonstrate that these cytokines can recapitulate physiological functions of IL-4 in cellular and animal models. In contrast with natural IL-4, Neo-4 is hyperstable and signals exclusively through the type I IL-4 receptor complex, providing previously inaccessible insights into differential IL-4 signaling through type I versus type II receptors. Because of their hyperstability, our computationally designed mimetics can directly incorporate into sophisticated biomaterials that require heat processing, such as three-dimensional-printed scaffolds. Neo-4 should be broadly useful for interrogating IL-4 biology, and the design workflow will inform targeted cytokine therapeutic development.
Collapse
Affiliation(s)
- Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Umut Y Ulge
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Alfredo Quijano-Rubio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Zachary J Bernstein
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David R Maestas
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jung-Ho Chun
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Wentao Wang
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kevin M Jude
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Srujan Singh
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jody Mou
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liam Chung
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA
| | - Yun-Huai Kuo
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yasmin H Ali
- College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Aaron S Meyer
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- Department of Bioinformatics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Warren L Grayson
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel-Adriano Silva
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| | - Jamie B Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Joensuu M, Syed P, Saber SH, Lanoue V, Wallis TP, Rae J, Blum A, Gormal RS, Small C, Sanders S, Jiang A, Mahrhold S, Krez N, Cousin MA, Cooper‐White R, Cooper‐White JJ, Collins BM, Parton RG, Balistreri G, Rummel A, Meunier FA. Presynaptic targeting of botulinum neurotoxin type A requires a tripartite PSG-Syt1-SV2 plasma membrane nanocluster for synaptic vesicle entry. EMBO J 2023; 42:e112095. [PMID: 37226896 PMCID: PMC10308369 DOI: 10.15252/embj.2022112095] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023] Open
Abstract
The unique nerve terminal targeting of botulinum neurotoxin type A (BoNT/A) is due to its capacity to bind two receptors on the neuronal plasma membrane: polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Whether and how PSGs and SV2 may coordinate other proteins for BoNT/A recruitment and internalization remains unknown. Here, we demonstrate that the targeted endocytosis of BoNT/A into synaptic vesicles (SVs) requires a tripartite surface nanocluster. Live-cell super-resolution imaging and electron microscopy of catalytically inactivated BoNT/A wildtype and receptor-binding-deficient mutants in cultured hippocampal neurons demonstrated that BoNT/A must bind coincidentally to a PSG and SV2 to target synaptic vesicles. We reveal that BoNT/A simultaneously interacts with a preassembled PSG-synaptotagmin-1 (Syt1) complex and SV2 on the neuronal plasma membrane, facilitating Syt1-SV2 nanoclustering that controls endocytic sorting of the toxin into synaptic vesicles. Syt1 CRISPRi knockdown suppressed BoNT/A- and BoNT/E-induced neurointoxication as quantified by SNAP-25 cleavage, suggesting that this tripartite nanocluster may be a unifying entry point for selected botulinum neurotoxins that hijack this for synaptic vesicle targeting.
Collapse
Affiliation(s)
- Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
| | - Parnayan Syed
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Saber H Saber
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - James Rae
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Ailisa Blum
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Christopher Small
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Shanley Sanders
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Anmin Jiang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Stefan Mahrhold
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Nadja Krez
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, Hugh Robson BuildingUniversity of EdinburghEdinburghUK
- Muir Maxwell Epilepsy CentreUniversity of EdinburghEdinburghUK
- Simons Initiative for the Developing BrainUniversity of EdinburghEdinburghUK
| | - Ruby Cooper‐White
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLDAustralia
| | - Justin J Cooper‐White
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLDAustralia
- UQ Centre for Stem Cell Ageing and Regenerative EngineeringThe University of QueenslandBrisbaneQLDAustralia
| | - Brett M Collins
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Robert G Parton
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
- Centre for Microscopy and MicroanalysisThe University of QueenslandBrisbaneQLDAustralia
| | - Giuseppe Balistreri
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Department of Virology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Andreas Rummel
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
17
|
Wallis TP, Jiang A, Young K, Hou H, Kudo K, McCann AJ, Durisic N, Joensuu M, Oelz D, Nguyen H, Gormal RS, Meunier FA. Super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing. Nat Commun 2023; 14:3353. [PMID: 37291117 PMCID: PMC10250379 DOI: 10.1038/s41467-023-38866-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/11/2023] [Indexed: 06/10/2023] Open
Abstract
Single-molecule localization microscopy techniques are emerging as vital tools to unravel the nanoscale world of living cells by understanding the spatiotemporal organization of protein clusters at the nanometer scale. Current analyses define spatial nanoclusters based on detections but neglect important temporal information such as cluster lifetime and recurrence in "hotspots" on the plasma membrane. Spatial indexing is widely used in video games to detect interactions between moving geometric objects. Here, we use the R-tree spatial indexing algorithm to determine the overlap of the bounding boxes of individual molecular trajectories to establish membership in nanoclusters. Extending the spatial indexing into the time dimension allows the resolution of spatial nanoclusters into multiple spatiotemporal clusters. Using spatiotemporal indexing, we found that syntaxin1a and Munc18-1 molecules transiently cluster in hotspots, offering insights into the dynamics of neuroexocytosis. Nanoscale spatiotemporal indexing clustering (NASTIC) has been implemented as a free and open-source Python graphic user interface.
Collapse
Affiliation(s)
- Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Anmin Jiang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kyle Young
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Huiyi Hou
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kye Kudo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alex J McCann
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nela Durisic
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dietmar Oelz
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Hien Nguyen
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
18
|
Abstract
Total internal reflection fluorescence (TIRF) microscopy (TIRFM) is an elegant optical technique that provides for the excitation of fluorophores in an extremely thin axial region ("optical section"). The method is based on the principle that when excitation light is completely internally reflected in a transparent solid (e.g., coverglass) at its interface with liquid, an electromagnetic field, called the evanescent wave, is generated in the liquid at the solid-liquid interface and is the same frequency as the excitation light. Since the intensity of the evanescent wave exponentially decays with distance from the surface of the solid, only fluorescent molecules within a few hundred nanometers of the solid are efficiently excited. This overview will review the history, optical theory, and hardware configurations used in TIRFM. In addition, it will provide experimental details and methodological considerations for studying receptors at the plasma membrane in neurons. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Momboisse F, Nardi G, Colin P, Hery M, Cordeiro N, Blachier S, Schwartz O, Arenzana-Seisdedos F, Sauvonnet N, Olivio-Marin JC, Lagane B, Lagache T, Brelot A. Tracking receptor motions at the plasma membrane reveals distinct effects of ligands on CCR5 dynamics depending on its dimerization status. eLife 2022; 11:76281. [PMID: 35866628 PMCID: PMC9307273 DOI: 10.7554/elife.76281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/17/2022] [Indexed: 12/30/2022] Open
Abstract
G-protein-coupled receptors (GPCR) are present at the cell surface in different conformational and oligomeric states. However, how these states impact GPCRs biological function and therapeutic targeting remains incompletely known. Here, we investigated this issue in living cells for the CC chemokine receptor 5 (CCR5), a major receptor in inflammation and the principal entry co-receptor for Human Immunodeficiency Viruses type 1 (HIV-1). We used TIRF microscopy and a statistical method to track and classify the motion of different receptor subpopulations. We showed a diversity of ligand-free forms of CCR5 at the cell surface constituted of various oligomeric states and exhibiting transient Brownian and restricted motions. These forms were stabilized differently by distinct ligands. In particular, agonist stimulation restricted the mobility of CCR5 and led to its clustering, a feature depending on β-arrestin, while inverse agonist stimulation exhibited the opposite effect. These results suggest a link between receptor activation and immobilization. Applied to HIV-1 envelope glycoproteins gp120, our quantitative analysis revealed agonist-like properties of gp120s. Distinct gp120s influenced CCR5 dynamics differently, suggesting that they stabilize different CCR5 conformations. Then, using a dimerization-compromized mutant, we showed that dimerization (i) impacts CCR5 precoupling to G proteins, (ii) is a pre-requisite for the immobilization and clustering of receptors upon activation, and (iii) regulates receptor endocytosis, thereby impacting the fate of activated receptors. This study demonstrates that tracking the dynamic behavior of a GPCR is an efficient way to link GPCR conformations to their functions, therefore improving the development of drugs targeting specific receptor conformations.
Collapse
Affiliation(s)
- Fanny Momboisse
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Virus and Immunity Unit, Paris, France
| | - Giacomo Nardi
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, BioImage Analysis Unit, Paris, France
| | - Philippe Colin
- Infinity, Université de Toulouse, CNRS, INSERM, Toulouse, France
| | - Melanie Hery
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Virus and Immunity Unit, Paris, France
| | - Nelia Cordeiro
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Virus and Immunity Unit, Paris, France
| | - Simon Blachier
- Institut Pasteur, Université Paris Cité, Dynamics of Host-Pathogen Interactions Unit, Paris, France
| | - Olivier Schwartz
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Virus and Immunity Unit, Paris, France
| | | | - Nathalie Sauvonnet
- Institut Pasteur, Université Paris Cité, Group Intracellular Trafficking and Tissue Homeostasis, Paris, France
| | | | - Bernard Lagane
- Infinity, Université de Toulouse, CNRS, INSERM, Toulouse, France
| | - Thibault Lagache
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, BioImage Analysis Unit, Paris, France
| | - Anne Brelot
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Virus and Immunity Unit, Paris, France
| |
Collapse
|
20
|
Yoshimura H. Triple-color single-molecule imaging for analysis of the role of receptor oligomers in signal transduction. Biophys Physicobiol 2022; 19:1-9. [PMID: 35435651 PMCID: PMC8968032 DOI: 10.2142/biophysico.bppb-v19.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/08/2022] [Indexed: 12/01/2022] Open
Abstract
Membrane receptors provide interfaces of various extracellular stimuli to transduce the signal into the cell. Receptors are required to possess such conflicting properties as high sensitivity and noise reduction for the cell to keep its homeostasis and appropriate responses. To understand the mechanisms by which these functions are achieved, single-molecule monitoring of the motilities of receptors and signaling molecules on the plasma membrane is one of the most direct approaches. This review article introduces several recent single-molecule imaging studies of receptors, including the author’s recent work on triple-color single-molecule imaging of G protein-coupled receptors. Based on these researches, advantages and perspectives of the single-molecule imaging approach to solving the mechanisms of receptor functions are illustrated.
Collapse
|