1
|
Yeerkenbieke B, Li Y, Kiessling F, Lammers T, Vulpe C, Pallares RM. Understanding the action mechanisms and safety of nanoparticles with functional toxicogenomics. Nanomedicine (Lond) 2025:1-5. [PMID: 40567138 DOI: 10.1080/17435889.2025.2523733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2025] [Accepted: 06/19/2025] [Indexed: 06/28/2025] Open
Affiliation(s)
- Buerlan Yeerkenbieke
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Yanchen Li
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
2
|
Constantin M, Chioncel MF, Petrescu L, Vrancianu CO, Paun M, Cristian RE, Sidoroff M, Dionisie MV, Chifiriuc MC. From rock to living systems: Lanthanides toxicity and biological interactions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117494. [PMID: 39647373 DOI: 10.1016/j.ecoenv.2024.117494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Since the discovery of lanthanides, the expanding range of applications and the growing demand for lanthanides in different aspects of life have escalated their dispersion in the environment, raising concerns about their impact on the living world. This review explores the interaction between lanthanides and different groups of living organisms (bacteria, algae, lichens, plants, invertebrates, and low vertebrates), reflecting the current state of scientific knowledge. We have aimed to provide a comprehensive overview of relevant studies, highlight existing gaps, and suggest potential areas for future research to enhance the understanding of this topic.
Collapse
Affiliation(s)
- Marian Constantin
- Institute of Biology of Romanian Academy, Bucharest 060031, Romania; The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania.
| | - Mariana F Chioncel
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Livia Petrescu
- Department of Anatomy, Animal Physiology and Biophysics, DAFAB, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania.
| | - Corneliu Ovidiu Vrancianu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, Bucharest 060031, Romania; Doctoral School, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari, District 5, Bucharest, Romania; Romanian Society of Bioengineering and Biotechnology, Gheorghe Polizu, District 1, Bucharest, Romania.
| | - Mihaela Paun
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, Bucharest 060031, Romania; Faculty of Administration and Business, University of Bucharest, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, Bucharest 060031, Romania; Romanian Society of Bioengineering and Biotechnology, Gheorghe Polizu, District 1, Bucharest, Romania; Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| | - Manuela Sidoroff
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, Bucharest 060031, Romania
| | | | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| |
Collapse
|
3
|
Gao N, Yang L, Zhu L, Zhu L, Feng J. New Insights into the Visual Toxicity of Organophosphate Esters: An Integrated Quantitative Adverse Outcome Pathway and Cross-chemical Extrapolation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22039-22052. [PMID: 39631370 DOI: 10.1021/acs.est.4c08176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Organophosphate esters (OPEs) have been documented to adversely affect visual function, potentially impacting wildlife survival and human health, thereby necessitating a comprehensive risk assessment. Despite the quantitative adverse outcome pathway (qAOP) holding promise for addressing this concern mechanistically, unclear mode of action and inadequate quantitative understanding across biological levels currently impede its development. Herein, we employed an integrated strategy, combining multiomics analyses, targeted bioassays, and modular model-fitting, to develop and validate a qAOP framework for visual toxicity of OPEs, exemplified by tris(2-butoxyethyl) phosphate, triphenyl phosphate, and tris(1,3-dichloro-2-propyl) phosphate. Our results revealed that these OPEs induce visual dysfunction in zebrafish larvae primarily via oxidative stress, then cascade to damaging photoreceptors and retinal structures, ultimately resulting in the disruption of visual behaviors (i.e., decreased optokinetic response, phototaxis, and visual motor response). The qAOP, validated through cross-chemical extrapolation, enabled the prediction for vision-related effects of OPEs within a certain domain. Integrating toxicokinetic modeling could compensate for the uncertainty in qAOP predictions, since adjusting for internal concentrations as inputs significantly enhanced the accuracy and applicability of the predictions. This work contributes to a better understanding of visual toxicity by OPEs and presents a promising paradigm for quantitative risk assessment based on the qAOP framework.
Collapse
Affiliation(s)
- Ning Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lanpeng Yang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Constantin M, Chifiriuc MC, Vrancianu CO, Petrescu L, Cristian RE, Crunteanu I, Grigore GA, Chioncel MF. Insights into the effects of lanthanides on mammalian systems and potential applications. ENVIRONMENTAL RESEARCH 2024; 263:120235. [PMID: 39461700 DOI: 10.1016/j.envres.2024.120235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Lanthanides, a group of elements with unique chemical properties, have garnered significant attention for their varied biological effects, ranging from cytotoxic to protective, depending on concentration, cell type, and exposure conditions. This review provides a detailed examination of the biological interactions of lanthanides with mammalian systems, including humans, by exploring their impact on different cell lines and organisms. Through a systematic assessment of current research, this work highlights the dual nature of lanthanides, identifying them as both potential therapeutic agents and environmental toxins. Furthermore, it underscores the importance of understanding their mechanisms to mitigate health risks, particularly for those exposed occupationally or via environmental sources. The review concludes with an overview of knowledge gaps and future research directions necessary for unlocking the therapeutic potential of lanthanides while ensuring safety and sustainability in their applications.
Collapse
Affiliation(s)
- Marian Constantin
- Institute of Biology of Romanian Academy, 060031, Bucharest, Romania; The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania.
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania; Doctoral School, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari, District 5, Bucharest, Romania.
| | - Livia Petrescu
- Department of Anatomy, Animal Physiology and Biophysics, DAFAB, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania.
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania; Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania
| | - Ioana Crunteanu
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Georgiana Alexandra Grigore
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania
| | - Mariana F Chioncel
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| |
Collapse
|
5
|
Arino T, Faulkner D, Bustillo KC, An DD, Jorgens D, Hébert S, McKinley C, Proctor M, Loguinov A, Vulpe C, Abergel RJ. Electron microscopy evidence of gadolinium toxicity being mediated through cytoplasmic membrane dysregulation. Metallomics 2024; 16:mfae042. [PMID: 39313325 PMCID: PMC11497612 DOI: 10.1093/mtomcs/mfae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Past functional toxicogenomic studies have indicated that genes relevant to membrane lipid synthesis are important for tolerance to the lanthanides. Moreover, previously reported imaging of patient's brains following administration of gadolinium-based contrast agents shows gadolinium lining the vessels of the brain. Taken together, these findings suggest the disruption of cytoplasmic membrane integrity as a mechanism by which lanthanides induce cytotoxicity. In the presented work we used scanning transmission electron microscopy and spatially resolved elemental spectroscopy to image the morphology and composition of gadolinium, europium, and samarium precipitates that formed on the outside of yeast cell membranes. In no sample did we find that the lanthanide contaminant had crossed the cell membrane, even in experiments using yeast mutants with disrupted genes for sphingolipid synthesis-the primary lipids found in yeast cytoplasmic membranes. Rather, we have evidence that lanthanides are co-located with phosphorus outside the yeast cells. These results lead us to hypothesize that the lanthanides scavenge or otherwise form complexes with phosphorus from the sphingophospholipid head groups in the cellular membrane, thereby compromising the structure or function of the membrane, and gaining the ability to disrupt membrane function without entering the cell.
Collapse
Affiliation(s)
- Trevor Arino
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 97420, USA
- Department of Nuclear Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - David Faulkner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 97420, USA
| | - Karen C Bustillo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 97420, USA
| | - Danielle Jorgens
- Electron Microscope Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Solène Hébert
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 97420, USA
| | - Carla McKinley
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 97420, USA
- Department of Nuclear Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Michael Proctor
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Alex Loguinov
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 97420, USA
- Department of Nuclear Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
León JJ, Oetiker N, Torres N, Bruna N, Oskolkov E, Lei P, Kuzmin AN, Chen K, Andreadis S, Pfeifer BA, Swihart MT, Prasad PN, Pérez-Donoso J. Microbial green synthesis of luminescent terbium sulfide nanoparticles using E. Coli: a rare earth element detoxification mechanism. Microb Cell Fact 2024; 23:248. [PMID: 39267051 PMCID: PMC11391766 DOI: 10.1186/s12934-024-02519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Rare-earth sulfide nanoparticles (NPs) could harness the optical and magnetic features of rare-earth ions for applications in nanotechnology. However, reports of their synthesis are scarce and typically require high temperatures and long synthesis times. RESULTS Here we present a biosynthesis of terbium sulfide (TbS) NPs using microorganisms, identifying conditions that allow Escherichia coli to extracellularly produce TbS NPs in aqueous media at 37 °C by controlling cellular sulfur metabolism to produce a high concentration of sulfide ions. Electron microscopy revealed ultrasmall spherical NPs with a mean diameter of 4.1 ± 1.3 nm. Electron diffraction indicated a high degree of crystallinity, while elemental mapping confirmed colocalization of terbium and sulfur. The NPs exhibit characteristic absorbance and luminescence of terbium, with downshifting quantum yield (QY) reaching 28.3% and an emission lifetime of ~ 2 ms. CONCLUSIONS This high QY and long emission lifetime is unusual in a neat rare-earth compound; it is typically associated with rare-earth ions doped into another crystalline lattice to avoid non-radiative cross relaxation. This suggests a reduced role of nonradiative processes in these terbium-based NPs. This is, to our knowledge, the first report revealing the advantage of biosynthesis over chemical synthesis for Rare Earth Element (REE) based NPs, opening routes to new REE-based nanocrystals.
Collapse
Affiliation(s)
- Juan José León
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, USA
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Nía Oetiker
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, USA
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Nicolás Torres
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Nicolás Bruna
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Evgenii Oskolkov
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Andrey N Kuzmin
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Kaiwen Chen
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Stelios Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Paras N Prasad
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - José Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
7
|
Li Y, Vulpe C, Lammers T, Pallares RM. Assessing inorganic nanoparticle toxicity through omics approaches. NANOSCALE 2024; 16:15928-15945. [PMID: 39145718 DOI: 10.1039/d4nr02328e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In the last two decades, the development of nanotechnology has resulted in inorganic nanoparticles playing crucial roles in key industries, ranging from healthcare to energy technologies. For instance, gold and silver nanoparticles are widely used in rapid COVID-19 and flu tests, titania and zinc oxide nanoparticles are commonly found in cosmetic products, and superparamagnetic iron oxide nanoparticles have been clinically exploited as contrast agents and anti-anemia medicines. As a result, human exposure to nanomaterials is continuously increasing, raising concerns about their potential adverse health effects. Historically, the study of nanoparticle toxicity has largely relied on macroscopic observations obtained in different in vitro and in vivo models, resulting in readouts such as median lethal dose, biodistribution profile, and/or histopathological assessment. In recent years, omics methodologies, including transcriptomics, epigenomics, proteomics, metabolomics, and lipidomics, are increasingly used to characterize the biological interactions of nanomaterials, providing a better and broader understanding of their impact and mechanisms of toxicity. These approaches have been able to identify important genes and gene products that mediate toxicological effects, as well as endogenous functions and pathways dysregulated by nanoparticles. Omics methods improve our understanding of nanoparticle biology, and unravel mechanistic insights into nanomedicine-based therapies. This review aims to provide a deeper understanding and new perspectives of omics approaches to characterize the toxicity and biological interactions of inorganic nanoparticles, and improve the safety of nanoparticle applications.
Collapse
Affiliation(s)
- Yanchen Li
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| |
Collapse
|
8
|
Zhang Y, Wang L, Liu X, Cao C, Yao J, Ma Z, Shen Q, Chen Q, Liu J, Li R, Jiang J. Enhancing La(III) biosorption and biomineralization with Micromonospora saelicesensis: Involvement of phosphorus and formation of monazite nano-minerals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169851. [PMID: 38185165 DOI: 10.1016/j.scitotenv.2023.169851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
The release of rare earth elements (REEs) from mining wastes and their applications has significant environmental implications, necessitating the development of effective prevention and reclamation strategies. The mobility of REEs in groundwater due to microorganisms has garnered considerable attention. In this study, a La(III) resistant actinobacterium, Micromonospora saelicesensis KLBMP 9669, was isolated from REE enrichment soil in GuiZhou, China, and evaluated for its ability to adsorb and biomineralize La(III). The findings demonstrated that M. saelicesensis KLBMP 9669 immobilized La(III) through the physical and chemical interactions, with immobilization being influenced by the initial La(III) concentration, biomass, and pH. The adsorption kinetics followed a pseudo-second-order rate model, and the adsorption isotherm conformed to the Langmuir model. La(III) adsorption capacity of this strain was 90 mg/g, and removal rate was 94 %. Scanning electron microscope (SEM) coupled with energy dispersive X-ray spectrometer (EDS) analysis revealed the coexistence of La(III) with C, N, O, and P. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) investigations further indicated that carboxyl, amino, carbonyl, and phosphate groups on the mycelial surface may participate in lanthanum adsorption. Transmission electron microscopy (TEM) revealed that La(III) accumulation throughout the M. saelicesensis KLBMP 9669, with some granular deposits on the mycelial surface. Selected area electron diffraction (SAED) confirmed the presence of LaPO4 crystals on the M. saelicesensis KLBMP 9669 biomass after a prolonged period of La(III) accumulation. This post-sorption nano-crystallization on the M. saelicesensis KLBMP 9669 mycelial surface is expected to play a crucial role in limiting the bioimmobilization of REEs in geological repositories.
Collapse
Affiliation(s)
- Ya Zhang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Lili Wang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Xiuming Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550002, PR China
| | - Chengliang Cao
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.
| | - Jiaqi Yao
- The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Zhouai Ma
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Qi Shen
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Qiuyu Chen
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Jinjuan Liu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.
| | - Rongpeng Li
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| |
Collapse
|
9
|
Yang L, Zeng J, Gao N, Zhu L, Feng J. Predicting the Metal Mixture Toxicity with a Toxicokinetic-Toxicodynamic Model Considering the Time-Dependent Adverse Outcome Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3714-3725. [PMID: 38350648 DOI: 10.1021/acs.est.3c09857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Chemicals mainly exist in ecosystems as mixtures, and understanding and predicting their effects are major challenges in ecotoxicology. While the adverse outcome pathway (AOP) and toxicokinetic-toxicodynamic (TK-TD) models show promise as mechanistic approaches in chemical risk assessment, there is still a lack of methodology to incorporate the AOP into a TK-TD model. Here, we describe a novel approach that integrates the AOP and TK-TD models to predict mixture toxicity using metal mixtures (specifically Cd-Cu) as a case study. We preliminarily constructed an AOP of the metal mixture through temporal transcriptome analysis together with confirmatory bioassays. The AOP revealed that prolonged exposure time activated more key events and adverse outcomes, indicating different modes of action over time. We selected a potential key event as a proxy for damage and used it as a measurable parameter to replace the theoretical parameter (scaled damage) in the TK-TD model. This refined model, which connects molecular responses to organism outcomes, effectively predicts Cd-Cu mixture toxicity over time and can be extended to other metal mixtures and even multicomponent mixtures. Overall, our results contribute to a better understanding of metal mixture toxicity and provide insights for integrating the AOP and TK-TD models to improve risk assessment for chemical mixtures.
Collapse
Affiliation(s)
- Lanpeng Yang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
| | - Jing Zeng
- School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ning Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
10
|
Ghardashpour M, Saeedi M, Negarandeh R, Enderami SE, Ghorbani A, Lotfizadeh A, Jafari A, Arezoumandi A, Hassannia H, Molania T. Anti-inflammatory and tissue repair effect of cinnamaldehyde and nano cinnamaldehyde on gingival fibroblasts and macrophages. BMC Oral Health 2023; 23:1014. [PMID: 38110929 PMCID: PMC10729471 DOI: 10.1186/s12903-023-03682-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Recurrent aphthous stomatitis has a complex and inflammatory origin. Among the great variety of medications it is increasingly common to use herbal medicines due to the adverse side effects of chemical medications. Considering the anti-inflammatory properties of cinnamaldehyde and the lack of studies related to the effectiveness of its nano form; This study investigates the effect of cinnamaldehyde and nano cinnamaldehyde on the healing rate of recurrent aphthous stomatitis lesions. METHODS In a laboratory experiment, cinnamaldehyde was converted into niosomal nanoparticles. The niosome vesicles diameter and polydispersity index were measured at 25°C using a dynamic light scattering (DLS) Mastersizer 2000 (Malvern Panalytical technologies: UK) and Zetasizer Nano ZS system (Malvern Instruments Worcestershire: UK). After characterizing these particles, the (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) [XTT] assay was used to assess the toxicity of cinnamaldehyde and nano cinnamaldehyde on gingival fibroblast (HGF) and macrophage (THP-1) cells. By determining the release of TNF-α, IL-6, and TGF-β cytokines using ELISA kits, the level of tissue repair and anti-inflammatory capabilities of these two substances were evaluated. RESULTS The size and loading rate of the cinnamaldehyde nanoparticles were established after its creation. The optimized nanovesicle exhibited the following characteristics: particle size of 228.75 ± 2.38 nm, PDI of 0.244 ± 0.01, the zeta potential of -10.87 ± 1.09 mV and the drug encapsulation percentage of 66.72 ± 3.93%. PDIs range was between 0.242-0.274. The zeta potential values at 25°C were from -2.67 to -12.9 mV. The results of the XTT test demonstrated that nano cinnamaldehyde exhibited dose-dependent toxicity effects. Moreover, nano cinnamaldehyde released more TGF-β and had better reparative effects when taken at lower concentrations than cinnamaldehyde. CONCLUSION Nano cinnamaldehyde and cinnamaldehyde are effective in repairing tissue when used in non-toxic amounts. After confirmation in animal models, it is envisaged that these substances can be utilized to treat recurrent aphthous stomatitis.
Collapse
Affiliation(s)
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Negarandeh
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anahita Ghorbani
- Department of Oral and Maxillofacial Medicine, Dental Research Center, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | | | | - Hadi Hassannia
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Tahereh Molania
- Department of Oral and Maxillofacial Medicine, Dental Research Center, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
11
|
Song Y, You Q, Chen X. Transition Metal-Based Therapies for Inflammatory Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212102. [PMID: 36863722 DOI: 10.1002/adma.202212102] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/15/2023] [Indexed: 08/04/2023]
Abstract
Inflammatory disease (ID) is a general term that covers all diseases in which chronic inflammation performs as the major manifestation of pathogenesis. Traditional therapies based on the anti-inflammatory and immunosuppressive drugs are palliative with the short-term remission. The emergence of nanodrugs has been reported to solve the potential causes and prevent recurrences, thus holding great potential for the treatment of IDs. Among various nanomaterial systems, transition metal-based smart nanosystems (TMSNs) with unique electronic structures possess therapeutic advantages owing to their large surface area to volume ratio, high photothermal conversion efficiency, X-ray absorption capacity, and multiple catalytic enzyme activities. In this review, the rationale, design principle, and therapeutic mechanisms of TMSNs for treatments of various IDs are summarized. Specifically, TMSNs can not only be designed to scavenge danger signals, such as reactive oxygen and nitrogen species and cell-free DNA, but also can be engineered to block the mechanism of initiating inflammatory responses. In addition, TMSNs can be further applied as nanocarriers to deliver anti-inflammatory drugs. Finally, the opportunities and challenges of TMSNs are discussed, and the future directions of TMSN-based ID treatment for clinical applications are emphasized.
Collapse
Affiliation(s)
- Yilin Song
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Qing You
- Departments of Diagnostic, Radiology Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program NUS center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic, Radiology Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program NUS center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
12
|
Semelka RC, Ramalho M. Gadolinium Deposition Disease: Current State of Knowledge and Expert Opinion. Invest Radiol 2023; 58:523-529. [PMID: 37058336 DOI: 10.1097/rli.0000000000000977] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
ABSTRACT This review describes the current knowledge of a form of gadolinium toxicity termed gadolinium deposition disease (GDD), supplemented with the opinions of the authors developed during 6 years of clinical experience treating GDD. Gadolinium deposition disease can also be considered a subset under the symptoms associated with gadolinium exposure rubric. Young and middle-aged White women of central European genetic origin are the most affected. The most common symptoms are fatigue, brain fog, skin pain, skin discoloration, bone pain, muscle fasciculations, and pins and needles, but a long list of additional symptoms is reported herein. The time of onset of symptoms ranges from immediate to 1 month after gadolinium-based contrast agent (GBCA) administration. The primary treatment is to avoid further GBCAs and metal removal through chelation. Presently, the most effective chelating agent is DTPA because of its high affinity with gadolinium. Flare development is an expected outcome, amenable to concurrent immune dampening. We emphasize in this review the critical nature of recognizing GDD when it first arises, as the disease becomes progressively more severe with each subsequent GBCA injection. It is generally very treatable after the first symptoms of GDD, often arising after the first GBCA injection. Future directions of disease detection and treatment are discussed.
Collapse
|
13
|
Pallares RM, An DD, Hebert S, Loguinov A, Proctor M, Villalobos JA, Bjornstad KA, Rosen CJ, Vulpe C, Abergel RJ. Screening the complex biological behavior of late lanthanides through genome-wide interactions. Metallomics 2023; 15:mfad039. [PMID: 37336558 DOI: 10.1093/mtomcs/mfad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
Despite their similar physicochemical properties, recent studies have demonstrated that lanthanides can display different biological behaviors. Hence, the lanthanide series can be divided into three parts, namely early, mid, and late lanthanides, based on their interactions with biological systems. In particular, the late lanthanides demonstrate distinct, but poorly understood biological activity. In the current study, we employed genome-wide functional screening to help understand biological effects of exposure to Yb(III) and Lu(III), which were selected as representatives of the late lanthanides. As a model organism, we used Saccharomyces cerevisiae, since it shares many biological functions with humans. Analysis of the functional screening results indicated toxicity of late lanthanides is consistent with disruption of vesicle-mediated transport, and further supported a role for calcium transport processes and mitophagy in mitigating toxicity. Unexpectedly, our analysis suggested that late lanthanides target proteins with SH3 domains, which may underlie the observed toxicity. This study provides fundamental insights into the unique biological chemistry of late lanthanides, which may help devise new avenues toward the development of decorporation strategies and bio-inspired separation processes.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstr. 55, Aachen 52074, Germany
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Solene Hebert
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alex Loguinov
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Michael Proctor
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jonathan A Villalobos
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kathleen A Bjornstad
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chris J Rosen
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Nuclear Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
Recio-Vega R, Facio-Campos RA, Hernández-González SI, Olivas-Calderón E. State of the Art of Genomic Technology in Toxicology: A Review. Int J Mol Sci 2023; 24:ijms24119618. [PMID: 37298568 DOI: 10.3390/ijms24119618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The rapid growth of genomics techniques has revolutionized and impacted, greatly and positively, the knowledge of toxicology, ushering it into a "new era": the era of genomic technology (GT). This great advance permits us to analyze the whole genome, to know the gene response to toxicants and environmental stressors, and to determine the specific profiles of gene expression, among many other approaches. The aim of this work was to compile and narrate the recent research on GT during the last 2 years (2020-2022). A literature search was managed using the PubMed and Medscape interfaces on the Medline database. Relevant articles published in peer-reviewed journals were retrieved and their main results and conclusions are mentioned briefly. It is quite important to form a multidisciplinary taskforce on GT with the aim of designing and implementing a comprehensive, collaborative, and a strategic work plan, prioritizing and assessing the most relevant diseases, so as to decrease human morbimortality due to exposure to environmental chemicals and stressors.
Collapse
Affiliation(s)
| | - Rolando Adair Facio-Campos
- Laboratory of Environmental Health, School of Chemical Sciences, Juarez University of Durango State, Gomez Palacio 35010, Mexico
| | - Sandra Isabel Hernández-González
- Laboratory of Environmental Health, School of Chemical Sciences, Juarez University of Durango State, Gomez Palacio 35010, Mexico
| | - Edgar Olivas-Calderón
- Laboratory of Environmental Health, School of Chemical Sciences, Juarez University of Durango State, Gomez Palacio 35010, Mexico
| |
Collapse
|
15
|
Guo Y, Chen K, Lei S, Gao Y, Yan S, Yuan M. Rare Earth Elements (REEs) Adsorption and Detoxification Mechanisms in Cell Wall Polysaccharides of Phytolacca americana L. PLANTS (BASEL, SWITZERLAND) 2023; 12:1981. [PMID: 37653898 PMCID: PMC10223583 DOI: 10.3390/plants12101981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 09/02/2023]
Abstract
The cell wall (CW) is critical for the accumulation of heavy metals in metal-tolerant plants. Polysaccharides, the main component of the CW, contribute significantly to the immobilization of heavy metals. However, the mechanisms of rare earth elements (REEs) adsorption and detoxification by polysaccharides in the cell walls of Phytolacca americana L. (P. americana) remain unclear. In this work, we explored the binding sites of REEs and the modifications to polysaccharides in the cell walls of roots and leaves in P. americana, in order to elucidate the adsorption and fixation mechanism of REEs by the cell wall. Our findings indicated that up to 40.7% and 48.1% of cell-wall-bound REEs were present in the root and leaf pectin, respectively. The removal of pectin led to a 39.8% and 23.6% decrease in the maximum adsorption of REEs in the CW, suggesting that pectin was the main binding site for REEs in the cell walls of P. americana. Hydroxyl (-OH) and carboxyl (-COOH) groups in the cell wall interacted mainly with REEs ions under stress conditions, which played a key role in REEs binding. An obvious REEs fractionation was found during the various fractions of the CW, and all fractions of the root cell wall were enriched with HREEs, whereas all fractions of the leaf cell wall were enriched with LREEs. Moreover, P. americana modulated cell wall composition in reaction to REEs stress. In conclusion, cell wall pectin is the main binding site of REEs, and the functional groups on the cell wall play a significant role in the binding of REEs. At the same time, plants can control the selective adsorption and fixation of REEs by adjusting the composition of cell walls. This study offers valuable insights into the mechanisms of REEs adsorption and fixation in cell walls of P. americana, contributing to a theoretical basis for the bioremediation of REEs pollution.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming Yuan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
16
|
Le Jean M, Montargès-Pelletier E, Rivard C, Grosjean N, Chalot M, Vantelon D, Spiers KM, Blaudez D. Locked up Inside the Vessels: Rare Earth Elements Are Transferred and Stored in the Conductive Tissues of the Accumulating Fern Dryopteris erythrosora. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2768-2778. [PMID: 36752569 DOI: 10.1021/acs.est.2c06985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rare earth elements (REEs) are strategic metals strongly involved in low-carbon energy conversion. However, these emerging contaminants are increasingly disseminated into ecosystems, raising concern regarding their toxicity. REE-accumulating plants are crucial subjects to better understand REE transfer to the trophic chain but are also promising phytoremediation tools. In this analysis, we deciphered REE accumulation sites in the REE-accumulating fern Dryopteris erythrosora by synchrotron X-ray μfluorescence (μXRF). This technique allows a high-resolution and in situ analysis of fresh samples or frozen-hydrated cross sections of different organs of the plant. In the sporophyte, REEs were translocated from the roots to the fronds by the xylem sap and were stored within the xylem conductive system. The comparison of REE distribution and accumulation levels in the healthy and necrotic parts of the frond shed light on the differential mobility between light and heavy REEs. Furthermore, the comparison emphasized that necrotized areas were not the main REE-accumulating sites. Finally, the absence of cell-to-cell mobility of REEs in the gametophyte suggested the absence of REE-compatible transporters in photosynthetic tissues. These results provide valuable knowledge on the physiology of REE-accumulating ferns to understand the REE cycle in biological systems and the expansion of phytotechnologies for REE-enriched or REE-contaminated soils.
Collapse
Affiliation(s)
- Marie Le Jean
- Université de Lorraine, CNRS, LIEC, Metz F-57000, France
| | | | - Camille Rivard
- Synchrotron SOLEIL, Saint-Aubin F-91190, France
- INRAE, TRANSFORM, Nantes F-44300, France
| | - Nicolas Grosjean
- Université de Lorraine, CNRS, LIEC, Metz F-57000, France
- Université de Lorraine, CNRS, LIEC, Nancy F-54000, France
| | - Michel Chalot
- Université de Franche-Comté, CNRS, Laboratoire Chrono-Environnement, Besançon F-25000, France
- Université de Lorraine, Nancy F-54000, France
| | | | | | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, Nancy F-54000, France
| |
Collapse
|
17
|
Pallares RM, Abergel RJ. Development of radiopharmaceuticals for targeted alpha therapy: Where do we stand? Front Med (Lausanne) 2022; 9:1020188. [PMID: 36619636 PMCID: PMC9812962 DOI: 10.3389/fmed.2022.1020188] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Targeted alpha therapy is an oncological treatment, where cytotoxic doses of alpha radiation are locally delivered to tumor cells, while the surrounding healthy tissue is minimally affected. This therapeutic strategy relies on radiopharmaceuticals made of medically relevant radionuclides chelated by ligands, and conjugated to targeting vectors, which promote the drug accumulation in tumor sites. This review discusses the state-of-the-art in the development of radiopharmaceuticals for targeted alpha therapy, breaking down their key structural components, such as radioisotope, targeting vector, and delivery formulation, and analyzing their pros and cons. Moreover, we discuss current drawbacks that are holding back targeted alpha therapy in the clinic, and identify ongoing strategies in field to overcome those issues, including radioisotope encapsulation in nanoformulations to prevent the release of the daughters. Lastly, we critically discuss potential opportunities the field holds, which may contribute to targeted alpha therapy becoming a gold standard treatment in oncology in the future.
Collapse
Affiliation(s)
- Roger M. Pallares
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States
| | - Rebecca J. Abergel
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States,Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA, United States,*Correspondence: Rebecca J. Abergel,
| |
Collapse
|
18
|
The NPR/Hal family of protein kinases in yeasts: biological role, phylogeny and regulation under environmental challenges. Comput Struct Biotechnol J 2022; 20:5698-5712. [PMID: 36320937 PMCID: PMC9596735 DOI: 10.1016/j.csbj.2022.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
Abstract
Protein phosphorylation is the most common and versatile post-translational modification occurring in eukaryotes. In yeast, protein phosphorylation is fundamental for maintaining cell growth and adapting to sudden changes in environmental conditions by regulating cellular processes and activating signal transduction pathways. Protein kinases catalyze the reversible addition of phosphate groups to target proteins, thereby regulating their activity. In Saccharomyces cerevisiae, kinases are classified into six major groups based on structural and functional similarities. The NPR/Hal family of kinases comprises nine fungal-specific kinases that, due to lack of similarity with the remaining kinases, were classified to the “Other” group. These kinases are primarily implicated in regulating fundamental cellular processes such as maintaining ion homeostasis and controlling nutrient transporters’ concentration at the plasma membrane. Despite their biological relevance, these kinases remain poorly characterized and explored. This review provides an overview of the information available regarding each of the kinases from the NPR/Hal family, including their known biological functions, mechanisms of regulation, and integration in signaling pathways in S. cerevisiae. Information gathered for non-Saccharomyces species of biotechnological or clinical relevance is also included.
Collapse
|
19
|
Pallares R, An DD, Hébert S, Loguinov A, Proctor M, Villalobos JA, Bjornstad KA, Rosen CJ, Vulpe CD, Abergel RJ. Identifying Toxicity Mechanisms Associated with Early Lanthanide Exposure through Multidimensional Genome-Wide Screening. ACS OMEGA 2022; 7:34412-34419. [PMID: 36188298 PMCID: PMC9521019 DOI: 10.1021/acsomega.2c04045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Lanthanides are a series of elements essential to a wide range of applications, from clean energy production to healthcare. Despite their presence in multiple products and technologies, their toxicological characteristics have been only partly studied. Recently, our group has employed a genomic approach to extensively characterize the toxicity mechanisms of lanthanides. Even though we identified substantially different behaviors for mid and late lanthanides, the toxicological profiles of early lanthanides remained elusive. Here, we overcome this gap by describing a multidimensional genome-wide toxicogenomic study for two early lanthanides, namely, lanthanum and praseodymium. We used Saccharomyces cerevisiae as a model system since its genome shares many biological pathways with humans. By performing functional analysis and protein-protein interaction network analysis, we identified the main genes and proteins that participate in the yeast response to counter metal harmful effects. Moreover, our analysis also highlighted key enzymes that are dysregulated by early lanthanides, inducing cytotoxicity. Several of these genes and proteins have human orthologues, indicating that they may also participate in the human response against the metals. By highlighting the key genes and proteins in lanthanide-induced toxicity, this work may contribute to the development of new prophylactic and therapeutic strategies against lanthanide harmful exposures.
Collapse
Affiliation(s)
- Roger
M. Pallares
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Dahlia D. An
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Solène Hébert
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Alex Loguinov
- Center
for Environmental and Human Toxicology, Department of Physiological
Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Michael Proctor
- Center
for Environmental and Human Toxicology, Department of Physiological
Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Jonathan A. Villalobos
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Kathleen A. Bjornstad
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Chris J. Rosen
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Chris D. Vulpe
- Center
for Environmental and Human Toxicology, Department of Physiological
Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Rebecca J. Abergel
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Nuclear Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
20
|
He E, Peijnenburg WJGM, Qiu H. Photosynthetic, antioxidative, and metabolic adjustments of a crop plant to elevated levels of La and Ce exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113922. [PMID: 35905629 DOI: 10.1016/j.ecoenv.2022.113922] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Rare earth elements (REEs) have been widely applied as fertilizers in farmland of China for decades to improve the yield and quality of crops. Unfortunately, adverse effects on plants have been observed due to overdosing with REEs. Until now, the toxicology of REEs was mainly evaluated based on phenotypic responses, but knowledge gaps still exist concerning their metabolic effects. Here, the physiological responses and nontargeted metabolomics studies were combined to systematically explore the potential effects of La and Ce on a crop plant, wheat Triticum aestivum. It was observed that REEs accumulated in the shoots of wheat, with significant reduction of the shoot biomass at higher exposure doses. The disturbance of photosynthesis and induced oxidative stress were identified by analyzing indicators of the photosynthetic (chlorophyll a/b, carotenoid and rubisco) and antioxidant systems (POD, CAT, SOD, GSH and MDA). Furthermore, the global metabolic profiles of REEs treatment groups and the non-exposed control group were screened and compared, and the metabolomic disturbance of REEs was dose-dependent. A high overlap of significantly changed metabolites and matched disturbed biological pathways was found between La and Ce treatments, indicating similarity of their toxicity mechanism in wheat shoots. Generally, the perturbed metabolomic pathways were mainly related to carbohydrate, amino acid and nucleotide/side metabolism, suggesting a disturbance of carbon and nitrogen metabolism, which finally affected the growth of wheat. We thus proved the potential adverse effect of inappropriate application of REEs in crop plants and postulated metabolomics as a feasible tool to identify the underlying toxicological mechanisms.
Collapse
Affiliation(s)
- Erkai He
- School of Geographic Sciences, East China Normal University, 200241 Shanghai, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, 510006 Guangzhou, China
| | - Willie J G M Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, 3720BA Bilthoven, the Netherlands; Institute of Environmental Sciences, Leiden University, 2300RA Leiden, the Netherlands
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China.
| |
Collapse
|
21
|
Grosjean N, Le Jean M, Chalot M, Mora-Montes HM, Armengaud J, Gross EM, Blaudez D. Genome-Wide Mutant Screening in Yeast Reveals that the Cell Wall is a First Shield to Discriminate Light From Heavy Lanthanides. Front Microbiol 2022; 13:881535. [PMID: 35663896 PMCID: PMC9162579 DOI: 10.3389/fmicb.2022.881535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The rapidly expanding utilization of lanthanides (Ln) for the development of new technologies, green energies, and agriculture has raised concerns regarding their impacts on the environment and human health. The absence of characterization of the underlying cellular and molecular mechanisms regarding their toxicity is a caveat in the apprehension of their environmental impacts. We performed genomic phenotyping and molecular physiology analyses of Saccharomyces cerevisiae mutants exposed to La and Yb to uncover genes and pathways affecting Ln resistance and toxicity. Ln responses strongly differed from well-known transition metal and from common responses mediated by oxidative compounds. Shared response pathways to La and Yb exposure were associated to lipid metabolism, ion homeostasis, vesicular trafficking, and endocytosis, which represents a putative way of entry for Ln. Cell wall organization and related signaling pathways allowed for the discrimination of light and heavy Ln. Mutants in cell wall integrity-related proteins (e.g., Kre1p, Kre6p) or in the activation of secretory pathway and cell wall proteins (e.g., Kex2p, Kex1p) were resistant to Yb but sensitive to La. Exposure of WT yeast to the serine protease inhibitor tosyl phenylalanyl chloromethyl ketone mimicked the phenotype of kex2∆ under Ln, strengthening these results. Our data also suggest that the relative proportions of chitin and phosphomannan could modulate the proportion of functional groups (phosphates and carboxylates) to which La and Yb could differentially bind. Moreover, we showed that kex2∆, kex1∆, kre1∆, and kre6∆ strains were all sensitive to light Ln (La to Eu), while being increasingly resistant to heavier Ln. Finally, shotgun proteomic analyses identified modulated proteins in kex2∆ exposed to Ln, among which several plasmalemma ion transporters that were less abundant and that could play a role in Yb uptake. By combining these different approaches, we unraveled that cell wall components not only act in Ln adsorption but are also active signal effectors allowing cells to differentiate light and heavy Ln. This work paves the way for future investigations to the better understanding of Ln toxicity in higher eukaryotes.
Collapse
Affiliation(s)
- Nicolas Grosjean
- Université de Lorraine, CNRS, LIEC, Nancy, France
- Université de Lorraine, CNRS, LIEC, Metz, France
| | | | - Michel Chalot
- Laboratoire Chrono-Environnement, Université de Bourgogne Franche-Comté, CNRS, Besançon, France
- Université de Lorraine, Nancy, France
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | | | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, Nancy, France
- *Correspondence: Damien Blaudez,
| |
Collapse
|
22
|
Giaretta J, Duan H, Oveissi F, Farajikhah S, Dehghani F, Naficy S. Flexible Sensors for Hydrogen Peroxide Detection: A Critical Review. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20491-20505. [PMID: 35486920 PMCID: PMC9104121 DOI: 10.1021/acsami.1c24727] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Hydrogen peroxide (H2O2) is a common chemical used in many industries and can be found in various biological environments, water, and air. Yet, H2O2 in a certain range of concentrations can be hazardous and toxic. Therefore, it is crucial to determine its concentration at different conditions for safety and diagnostic purposes. This review provides an insight about different types of sensors that have been developed for detection of H2O2. Their flexibility, stability, cost, detection limit, manufacturing, and challenges in their applications have been compared. More specifically the advantages and disadvantages of various flexible substrates that have been utilized for the design of H2O2 sensors were discussed. These substrates include carbonaceous substrates (e.g., reduced graphene oxide films, carbon cloth, carbon, and graphene fibers), polymeric substrates, paper, thin glass, and silicon wafers. Many of these substrates are often decorated with nanostructures composed of Pt, Au, Ag, MnO2, Fe3O4, or a conductive polymer to enhance the performance of sensors. The impact of these nanostructures on the sensing performance of resulting flexible H2O2 sensors has been reviewed in detail. In summary, the detection limits of these sensors are within the range of 100 nM-1 mM, which makes them potentially, but not necessarily, suitable for applications in health, food, and environmental monitoring. However, the required sample volume, cost, ease of manufacturing, and stability are often neglected compared to other detection parameters, which hinders sensors' real-world application. Future perspectives on how to address some of the substrate limitations and examples of application-driven sensors are also discussed.
Collapse
Affiliation(s)
- Jacopo
E. Giaretta
- School
of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Haowei Duan
- School
of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Farshad Oveissi
- School
of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Syamak Farajikhah
- School
of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- The
University of Sydney, Sydney Nano Institute, Camperdown, 2006 New South Wales, Australia
- Institute
of Photonics and Optical Sciences (IPOS), School of Physics, The University of Sydney, Camperdown, 2006 New South Wales, Australia
| | - Fariba Dehghani
- School
of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- The
University of Sydney, Sydney Nano Institute, Camperdown, 2006 New South Wales, Australia
- F.D. ()
| | - Sina Naficy
- School
of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- The
University of Sydney, Sydney Nano Institute, Camperdown, 2006 New South Wales, Australia
- S.N. ()
| |
Collapse
|
23
|
Liu C, Sun D, Zheng HX, Wang GB, Liu WS, Cao Y, Tang YT, Qiu RL. The limited exclusion and efficient translocation mediated by organic acids contribute to rare earth element hyperaccumulation in Phytolacca americana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150335. [PMID: 34818777 DOI: 10.1016/j.scitotenv.2021.150335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Organic acids play an important role in metal tolerance, uptake, and translocation in hyperaccumulators. Phytolacca americana is a rare earth element (REE) hyperaccumulator, but the underlying mechanisms on REE tolerance and accumulation mediated by organic acids are poorly understood. Here, we reported for the first time the strategy of P. americana to enhance REE tolerance and accumulation through organic acids from root external secretion to internal biosynthesis. Different from the exclusion of heavy metal by organic acid in the typical plants, the results showed that oxalate secretion (0.3-0.6 μmol h-1 g-1 root DW) induced by yttrium (Y) could not prevent Y from entering the roots, resulting in excess Y uptake by P. americana. Yttrium stress also stimulated the accumulation of malate and citrate by 1.4- and 2.0-folds in the root cortex. Exogenous malate and citrate promoted the redistribution of Y from the root cell walls to the shoot by 30% and 21%, respectively. Based on comparative transcriptome analysis, 6-fold up-regulation was observed in PaNIP1;2, whose homology AtNIP1;2 is responsible for the transport of Al-malate in Arabidopsis. These results suggested that the promoted formation of Y-malate complexes within the roots potentially accelerated the transport of Y from P. americana roots to shoots through PaNIP1;2. Our study revealed the potential mechanism of organic acids in the external exclusion and internal detoxification and translocation of REE in P. americana roots, which provided a basis for improving the efficiency of REE phytoextraction.
Collapse
Affiliation(s)
- Chong Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Dan Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Hong-Xiang Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Guo-Bao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Wen-Shen Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yue Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
24
|
Pallares RM, An DD, Hébert S, Faulkner D, Loguinov A, Proctor M, Villalobos JA, Bjornstad KA, Rosen CJ, Vulpe C, Abergel RJ. Delineating toxicity mechanisms associated with MRI contrast enhancement through a multidimensional toxicogenomic profiling of gadolinium. Mol Omics 2022; 18:237-248. [PMID: 35040455 DOI: 10.1039/d1mo00267h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gadolinium is a metal used in contrast agents for magnetic resonance imaging. Although gadolinium is widely used in clinical settings, many concerns regarding its toxicity and bioaccumulation after gadolinium-based contrast agent administration have been raised and published over the last decade. To date, most toxicological studies have focused on identifying acute effects following gadolinium exposure, rather than investigating associated toxicity mechanisms. In this study, we employ functional toxicogenomics to assess mechanistic interactions of gadolinium with Saccharomyces cerevisiae. Furthermore, we determine which mechanisms are conserved in humans, and their implications for diseases related to the use of gadolinium-based contrast agents in medicine. A homozygous deletion pool of 4291 strains were screened to identify biological functions and pathways disturbed by the metal. Gene ontology and pathway enrichment analyses showed endocytosis and vesicle-mediated transport as the main yeast response to gadolinium, while certain metabolic processes, such as glycosylation, were the primary disrupted functions after the metal treatments. Cluster and protein-protein interaction network analyses identified proteins mediating vesicle-mediated transport through the Golgi apparatus and the vacuole, and vesicle cargo exocytosis as key components to reduce the metal toxicity. Moreover, the metal seemed to induce cytotoxicity by disrupting the function of enzymes (e.g. transferases and proteases) and chaperones involved in metabolic processes. Several of the genes and proteins associated with gadolinium toxicity are conserved in humans, suggesting that they may participate in pathologies linked to gadolinium-based contrast agent exposures. We thereby discuss the potential role of these conserved genes and gene products in gadolinium-induced nephrogenic systemic fibrosis, and propose potential prophylactic strategies to prevent its adverse health effects.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Solène Hébert
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - David Faulkner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Alex Loguinov
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Michael Proctor
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Jonathan A Villalobos
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Kathleen A Bjornstad
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Chris J Rosen
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Department of Nuclear Engineering, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
25
|
Pallares RM, An DD, Hébert S, Faulkner D, Loguinov A, Proctor M, Villalobos JA, Bjornstad KA, Rosen CJ, Vulpe C, Abergel RJ. Multidimensional genome-wide screening in yeast provides mechanistic insights into europium toxicity. Metallomics 2021; 13:6409834. [PMID: 34694395 DOI: 10.1093/mtomcs/mfab061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022]
Abstract
Europium is a lanthanide metal that is highly valued in optoelectronics. Even though europium is used in many commercial products, its toxicological profile has only been partially characterized, with most studies focusing on identifying lethal doses in different systems or bioaccumulation in vivo. This paper describes a genome-wide toxicogenomic study of europium in Saccharomyces cerevisiae, which shares many biological functions with humans. By using a multidimensional approach and functional and network analyses, we have identified a group of genes and proteins associated with the yeast responses to ameliorate metal toxicity, which include metal discharge paths through vesicle-mediated transport, paths to regulate biologically relevant cations, and processes to reduce metal-induced stress. Furthermore, the analyses indicated that europium promotes yeast toxicity by disrupting the function of chaperones and cochaperones, which have metal-binding sites. Several of the genes and proteins highlighted in our study have human orthologues, suggesting they may participate in europium-induced toxicity in humans. By identifying the endogenous targets of europium as well as the already existing paths that can decrease its toxicity, we can determine specific genes and proteins that may help to develop future therapeutic strategies.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Solène Hébert
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David Faulkner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alex Loguinov
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Michael Proctor
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jonathan A Villalobos
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kathleen A Bjornstad
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chris J Rosen
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Nuclear Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
26
|
Mundy DC, Goldberg JL. Nanoparticles as Cell Tracking Agents in Human Ocular Cell Transplantation Therapy. CURRENT OPHTHALMOLOGY REPORTS 2021. [DOI: 10.1007/s40135-021-00275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|