1
|
Newman A, Saha A, Starrs L, Arantes PR, Palermo G, Burgio G. CRISPR-Cas12a REC2 - NUC interactions drive target-strand cleavage and constrain trans cleavage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.23.644851. [PMID: 40196614 PMCID: PMC11974684 DOI: 10.1101/2025.03.23.644851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
CRISPR-Cas12a effects RNA-guided cleavage of dsDNA in cis, after which it remains catalytically active and non-specifically cleaves ssDNA in trans. Native host-defence by Cas12a employs cis cleavage, which can be repurposed for the genome editing of other organisms, and trans cleavage can be used for in vitro DNA detection. Cas12a orthologues have high structural similarity and a conserved mechanism of DNA cleavage, yet highly different efficacies when applied for genome editing or DNA detection. By comparing three well characterised Cas12a orthologues (FnCas12a, LbCas12a, and AsCas12a), we sought to determine what drives their different cis and trans cleavage, and how this relates to their applied function. We integrated in vitro DNA cleavage kinetics with molecular dynamics simulations, plasmid interference in E. coli, and genome editing in human cell lines. We report large differences in cis cleavage kinetics between orthologues, which may be driven by dynamic REC2-NUC interactions. We generated and tested REC2 and NUC mutants, including a hitherto unstudied 'NUC loop', integrity of which is critical for the function of Cas12 orthologues. In total, our in vitro, in vivo, and in silico survey of Cas12a orthologues highlights key properties that drive their function in biotechnology applications.
Collapse
Affiliation(s)
- Anthony Newman
- The Shine-Dalgarno Centre for RNA Innovation, Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Aakash Saha
- Department of Bioengineering, University of California Riverside, 900 University Avenue, 92512 Riverside, CA, USA
| | - Lora Starrs
- The Shine-Dalgarno Centre for RNA Innovation, Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Pablo R. Arantes
- Department of Bioengineering, University of California Riverside, 900 University Avenue, 92512 Riverside, CA, USA
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, 92512 Riverside, CA, USA
- Department of Chemistry, University of California Riverside, 900 University Avenue, 92512 Riverside, CA, USA
| | - Gaetan Burgio
- The Shine-Dalgarno Centre for RNA Innovation, Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
2
|
Allen A, Cooper BH, Singh J, Rohs R, Qin PZ. PAM-adjacent DNA flexibility tunes CRISPR-Cas12a off-target binding. Sci Rep 2025; 15:4930. [PMID: 39929897 PMCID: PMC11811290 DOI: 10.1038/s41598-025-87565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Cas12a is a class 2 type V CRISPR-associated nuclease that uses an effector complex comprised of a single protein activated by a CRISPR-encoded small RNA to cleave double-stranded DNA at specific sites. Cas12a processes unique features as compared to other CRISPR effector nucleases such as Cas9, and has been demonstrated as an effective tool for manipulating complex genomes. Prior studies have indicated that DNA flexibility at the region adjacent to the protospacer-adjacent-motif (PAM) contributes to Cas12a target recognition. Here, we adapted a SELEX-seq approach to further examine the connection between PAM-adjacent DNA flexibility and off-target binding by Cas12a. A DNA library containing DNA-DNA mismatches at PAM + 1 to + 6 positions was generated and subjected to binding in vitro with FnCas12a in the absence of pairing between the RNA guide and DNA target. The bound and unbound populations were sequenced to determine the propensity for off-target binding for each of the individual sequences. Analyzing the position and nucleotide dependency of the DNA-DNA mismatches showed that PAM-dependent Cas12a off-target binding requires unpairing of the protospacer at PAM + 1 and increases with unpairing at PAM + 2 and + 3. This revealed that PAM-adjacent DNA flexibility can tune Cas12a off-target binding. The work adds support to the notion that physical properties of the DNA modulate Cas12a target discrimination, and has implications on Cas12a-based applications.
Collapse
Affiliation(s)
- Aleique Allen
- Department of Chemistry, University of Southern California, 3430 S Vermont Ave., Los Angeles, CA, 90089, USA
| | - Brendon H Cooper
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Beckman Coulter, 1584 Enterprise Blvd, West Sacramento, CA, 95691, USA
| | - Jaideep Singh
- Department of Chemistry, University of Southern California, 3430 S Vermont Ave., Los Angeles, CA, 90089, USA
| | - Remo Rohs
- Department of Chemistry, University of Southern California, 3430 S Vermont Ave., Los Angeles, CA, 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Physics & Astronomy, University of Southern California, Los Angeles, CA, 90089, USA
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Peter Z Qin
- Department of Chemistry, University of Southern California, 3430 S Vermont Ave., Los Angeles, CA, 90089, USA.
| |
Collapse
|
3
|
Rimskaya B, Shebanov N, Entelis N, Mazunin I. Enzymatic tools for mitochondrial genome manipulation. Biochimie 2025; 229:114-128. [PMID: 39426703 DOI: 10.1016/j.biochi.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Mutations in mitochondrial DNA (mtDNA) can manifest phenotypically as a wide range of neuromuscular and neurodegenerative pathologies that are currently only managed symptomatically without addressing the root cause. A promising approach is the development of molecular tools aimed at mtDNA cutting or editing. Unlike nuclear DNA, a cell can have hundreds or even thousands of mitochondrial genomes, and mutations can be present either in all of them or only in a subset. Consequently, the developed tools are aimed at reducing the number of copies of mutant mtDNA or editing mutant nucleotides. Despite some progress in the field of mitochondrial genome editing in human cells, working with model animals is still limited due to the complexity of their creation. Furthermore, not all existing editing systems can be easily adapted to function within mitochondria. In this review, we evaluate the mtDNA editing tools available today, with a particular focus on specific mtDNA mutations linked to hereditary mitochondrial diseases, aiming to provide an in-depth understanding of both the opportunities and hurdles to the development of mitochondrial genome editing technologies.
Collapse
Affiliation(s)
- Beatrisa Rimskaya
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russian Federation; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russian Federation; Department of Biology and Genetics, Petrovsky Medical University, Moscow, 117418, Russian Federation
| | - Nikita Shebanov
- UMR7156 Molecular Genetics, Genomics, Microbiology, University of Strasbourg - CNRS, Strasbourg, 67000, France
| | - Nina Entelis
- UMR7156 Molecular Genetics, Genomics, Microbiology, University of Strasbourg - CNRS, Strasbourg, 67000, France.
| | - Ilya Mazunin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russian Federation; Department of Biology and Genetics, Petrovsky Medical University, Moscow, 117418, Russian Federation.
| |
Collapse
|
4
|
Li X, Huang Z, Lau CH, Li J, Zou M, Wu W, Chen X, Li J, Huang Y, Wang T, Li Y, Xu M, Huang X, Zhu H, Yang C. One-pot isothermal CRISPR/Dx system for specific and sensitive detection of microRNA. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:823-833. [PMID: 39744795 DOI: 10.1039/d4ay01695e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
MicroRNA (miRNA) is a promising biomarker for the early diagnosis of pancreatic cancer. To enable sensitive and reliable miRNA detection, we have developed a one-pot isothermal CRISPR/Dx detection system by combining rolling circle amplification (RCA) and CRISPR/Cas12a. RCA and CRISPR/Cas12a reactions are carried out in a single closed tube, bypassing the transferring step. We demonstrate the feasibility of our one-pot CRISPR/Dx system in detecting pancreatic cancer by targeting miR-25, miR-191, miR-205, and miR-1246. When applied to fluorescence- and lateral flow strip paper-based detection platforms, our one-pot CRISPR/Dx system detects synthetic miR-25 at a LOD of 6.60 fM and 500 fM, respectively. It has high targeting specificity, as shown by its ability to discriminate miR-25 with a single-base mutation and highly homologous miRNA species. It is also successfully generalized to detect other pancreatic cancer-associated miRNAs, including miR-191, miR-205, and miR-1246. Importantly, our one-pot CRISPR/Dx system enables specific and sensitive detection of endogenous miR-25 in the human pancreatic cancer cell line PANC-1. We have successfully developed a one-pot isothermal CRISPR/Dx system for detecting miRNA with high specificity and sensitivity. It is highly flexible and economical, as a common crRNA can detect different miRNAs and only requires minor modifications to the locking padlock probe. Therefore, it can potentially be translated into clinical settings and POCT for the diagnosis of various human cancers.
Collapse
Affiliation(s)
- Xinyu Li
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou, Fujian, China
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Zhihao Huang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
| | - Cia-Hin Lau
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
| | - Jiaqi Li
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
| | - Minghai Zou
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
| | - Weidong Wu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
| | - Xiaoqing Chen
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
| | - Jiahui Li
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
| | - Yumei Huang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
| | - Tao Wang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
| | - Yulin Li
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
| | - Meijing Xu
- Xiamen Fly Gene Biomedical Technology Co., Ltd, Biomedical Industrial Park, Xiamen, Fujian, China
| | - Xiaojun Huang
- Xiamen Fly Gene Biomedical Technology Co., Ltd, Biomedical Industrial Park, Xiamen, Fujian, China
| | - Haibao Zhu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong, China.
- Shantou Key Laboratory of Marine Microbial Resources and Interactions with Environment, Shantou University, Shantou, Guangdong, China
| | - Chunkang Yang
- Department of Colorectal Surgery, College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou, Fujian, China.
- Department of Colorectal Surgery, Fujian Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Wang K, Liu S, Zhou S, Qileng A, Wang D, Liu Y, Chen C, Lei C, Nie Z. Ligand-Responsive Artificial Protein-Protein Communication for Field-Deployable Cell-Free Biosensing. Angew Chem Int Ed Engl 2025; 64:e202416671. [PMID: 39558180 DOI: 10.1002/anie.202416671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/20/2024]
Abstract
Natural protein-protein communications, such as those between transcription factors (TFs) and RNA polymerases/ribosomes, underpin cell-free biosensing systems operating on the transcription/translation (TXTL) paradigm. However, their deployment in field analysis is hampered by the delayed response (hour-level) and the complex composition of in vitro TXTL systems. For this purpose, we present a de novo-designed ligand-responsive artificial protein-protein communication (LIRAC) by redefining the connection between TFs and non-interacting CRISPR/Cas enzymes. By rationally designing a chimeric DNA adaptor and precisely regulating its binding affinities to both proteins, LIRAC immediately transduces target-induced TF allostery into rapid CRISPR/Cas enzyme activation within a homogeneous system. Consequently, LIRAC obviates the need for RNA/protein biosynthesis inherent to conventional TXTL-based cell-free systems, substantially reducing reaction complexity and time (from hours to 10 minutes) with improved sensitivity and tunable dynamic range. Moreover, LIRAC exhibits excellent versatility and programmability for rapidly and sensitively detecting diverse contaminants, including antibiotics, heavy metal ions, and preservatives. It also enables the creation of a multi-protein communication-based tristate logic for the intelligent detection of multiple contaminants. Integrated with portable devices, LIRAC has been proven effective in the field analysis of environmental samples and personal care products, showcasing its potential for environmental and health monitoring.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Siqian Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Shuqi Zhou
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Aori Qileng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Dingyi Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Chunlai Chen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
6
|
Lee J, Jeong C. Single-molecule perspectives of CRISPR/Cas systems: target search, recognition, and cleavage. BMB Rep 2025; 58:8-16. [PMID: 39701024 PMCID: PMC11788531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/21/2024] Open
Abstract
CRISPR/Cas systems have emerged as powerful tools for gene editing, nucleic acid detection, and therapeutic applications. Recent advances in single-molecule techniques have provided new insights into the DNA-targeting mechanisms of CRISPR/ Cas systems, in particular, Types I, II, and V. Here, we review how single-molecule approaches have expanded our understanding of key processes, namely target search, recognition, and cleavage. Furthermore, we focus on the dynamic behavior of Cas proteins, including PAM site recognition and R-loop formation, which are crucial to ensure specificity and efficiency in gene editing. Additionally, we discuss the conformational changes and interactions that drive precise DNA cleavage by different Cas proteins. This mini review provides a comprehensive overview of CRISPR/Cas molecular dynamics, offering conclusive insights into their broader potential for genome editing and biotechnological applications. [BMB Reports 2025; 58(1): 8-16].
Collapse
Affiliation(s)
- Jeongmin Lee
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Cherlhyun Jeong
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul 02792, Korea
| |
Collapse
|
7
|
Hwang I, Song YH, Lee S. Enhanced trans-cleavage activity using CRISPR-Cas12a variant designed to reduce steric inhibition by cis-cleavage products. Biosens Bioelectron 2025; 267:116859. [PMID: 39426279 DOI: 10.1016/j.bios.2024.116859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The CRISPR-Cas12a system has emerged as a promising tool for molecular diagnostics due to its indiscriminate trans-ssDNase activity. However, the sensitivity of Cas12a-based diagnostics remains insufficient for clinical use without a pre-amplification step such as loop-mediated isothermal amplification, and therefore the trans-cleavage activity of Cas12a needs to be enhanced. Here, we present a novel strategy to enhance the trans-cleavage activity of Cas12a by reducing the steric hindrance from cis-cleavage products. We have designed Cas12a variants with alanine mutations in the target strand loading (TSL) domain, resulting in reduced affinity for target strand (TS) overhangs to the catalytic site and significantly increased trans-cleavage efficiency by up to 5.8-fold. In addition, we used a novel salt dilution method to exploit the enhanced trans-cleavage activity of Cas12a under low ionic strength conditions (7-fold), significantly improving the sensitivity of our Cas12a-based detection system. To demonstrate the clinical potential of our Cas12a-based detection system, we validated its ability to detect small amounts of hepatitis B virus (HBV) DNA model using the combination of the KE1096AA Cas12a mutant and the salt dilution method, which enables the detection of DNA at atto-molar concentrations. Our strategy to enhance the trans-cleavage activity of Cas12a paves the way for the development of more sensitive and efficient Cas12a-based diagnostics.
Collapse
Affiliation(s)
- Injoo Hwang
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Yo Han Song
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Sanghwa Lee
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea; Department of Medical Sciences, Graduate School of the Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
8
|
Song X, Chen Z, Sun W, Yang H, Guo L, Zhao Y, Li Y, Ren Z, Shi J, Liu C, Ma P, Huang X, Ji Q, Sun B. CRISPR-AsCas12f1 couples out-of-protospacer DNA unwinding with exonuclease activity in the sequential target cleavage. Nucleic Acids Res 2024; 52:14030-14042. [PMID: 39530229 DOI: 10.1093/nar/gkae989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Type V-F CRISPR-Cas12f is a group of hypercompact RNA-guided nucleases that present a versatile in vivo delivery platform for gene therapy. Upon target recognition, Acidibacillus sulfuroxidans Cas12f (AsCas12f1) distinctively engenders three DNA break sites, two of which are located outside the protospacer. Combining ensemble and single-molecule approaches, we elucidate the molecular details underlying AsCas12f1-mediated DNA cleavages. We find that following the protospacer DNA unwinding and non-target strand (NTS) DNA nicking, AsCas12f1 surprisingly carries out bidirectional exonucleolytic cleavage from the nick. Subsequently, DNA unwinding is extended to the out-of-protospacer region, and AsCas12f1 gradually digests the unwound DNA beyond the protospacer. Eventually, the single endonucleolytic target-strand DNA cleavage at 3 nt downstream of the protospacer readily dissociates the ternary AsCas12f1-sgRNA-DNA complex from the protospacer adjacent motif-distal end, leaving a staggered double-strand DNA break. The coupling between the unwinding and cleavage of both protospacer and out-of-protospacer DNA is promoted by Mg2+. Kinetic analysis on the engineered AsCas12f1-v5.1 variant identifies the only accelerated step of the protospacer NTS DNA trimming within the sequential DNA cleavage. Our findings provide a dynamic view of AsCas12f1 catalyzing DNA unwinding-coupled nucleolytic cleavage and help with practical improvements of Cas12f-based genome editing tools.
Collapse
Affiliation(s)
- Xiaoxuan Song
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ziting Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, China
| | - Wenjun Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hao Yang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lijuan Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yilin Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhiyun Ren
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | | | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, ShanghaiTech University, Shanghai 201210, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
9
|
Son H, Kang Y, Song YH, Park J, Lee S. Effects of steric hindrance from single-stranded overhangs on target-strand loading into the Cas12a active site. Chem Commun (Camb) 2024; 60:13087-13090. [PMID: 39439303 DOI: 10.1039/d4cc04716h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
CRISPR-Cas12a, an RNA-guided DNA endonuclease, induces double-strand breaks by cleaving the non-target strand (NTS) first, followed by the target strand (TS). Using single-molecule FRET with alternating-laser excitation, we found that steric hindrance from the 3' overhangs of both the cleaved NTS and crRNA impedes TS loading into the catalytic core. Our study highlights the direct involvement of both 3' NTS and crRNA overhangs in TS cleavage, offering insights into regulatory strategies for Cas12a cleavage reactions.
Collapse
Affiliation(s)
- Heyjin Son
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Youngjae Kang
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yo Han Song
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jaeil Park
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sanghwa Lee
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
10
|
Zuo T, Shen C, Xie Z, Xu G, Wei F, Yang J, Zhu X, Hu Q, Zhao Z, Tang BZ, Cen Y. FRAME: flap endonuclease 1-engineered PAM module for precise and sensitive modulation of CRISPR/Cas12a trans-cleavage activity. Nucleic Acids Res 2024; 52:11884-11894. [PMID: 39315702 PMCID: PMC11514456 DOI: 10.1093/nar/gkae804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
CRISPR/Cas12a system, renowned for its precise recognition and efficient nucleic acid cleavage capabilities, has demonstrated remarkable performance in molecular diagnostics and biosensing. However, the reported Cas12a activity regulation methods often involved intricate CRISPR RNA (crRNA) structural adjustments or costly chemical modifications, which limited their applications. Here, we demonstrated a unique enzyme activity engineering strategy using flap endonuclease 1 (FEN1) to regulate the accessibility of the protospacer adjacent motif (PAM) module in the double-stranded DNA activator (FRAME). By identifying the three-base overlapping structure between the target inputs and substrate, FEN1 selectively cleaved and released the 5'-flap containing the 'TTTN' sequence, which triggered the secondary cleavage of FEN1 while forming a nicked PAM, ultimately achieving the sensitive switching of Cas12a's activity. The FRAME strategy exemplified the 'two birds with one stone' principle, as it not only precisely programmed Cas12a's activity but also simultaneously triggered isothermal cyclic amplification. Moreover, the FRAME strategy was applied to construct a sensing platform for detecting myeloperoxidase and miR-155, which demonstrated high sensitivity and specificity. Importantly, it proved its versatility in detecting multiple targets using a single crRNA without redesign. Collectively, the FRAME strategy opens up a novel avenue for modulating Cas12a's activity, promising immense potential in the realm of medical diagnostics.
Collapse
Affiliation(s)
- Tongshan Zuo
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chen Shen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhen Xie
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guanhong Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fangdi Wei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jing Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Qin Hu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Yao Cen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Hunan Normal University, Ministry of Education, Changsha, Hunan 410081, China
| |
Collapse
|
11
|
Nguyen GT, Schelling MA, Raju A, Buscher KA, Sritharan A, Sashital DG. CRISPR-Cas12a exhibits metal-dependent specificity switching. Nucleic Acids Res 2024; 52:9343-9359. [PMID: 39019776 PMCID: PMC11381342 DOI: 10.1093/nar/gkae613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024] Open
Abstract
Cas12a is the immune effector of type V-A CRISPR-Cas systems and has been co-opted for genome editing and other biotechnology tools. The specificity of Cas12a has been the subject of extensive investigation both in vitro and in genome editing experiments. However, in vitro studies have often been performed at high magnesium ion concentrations that are inconsistent with the free Mg2+ concentrations that would be present in cells. By profiling the specificity of Cas12a orthologs at a range of Mg2+ concentrations, we find that Cas12a switches its specificity depending on metal ion concentration. Lowering Mg2+ concentration decreases cleavage defects caused by seed mismatches, while increasing the defects caused by PAM-distal mismatches. We show that Cas12a can bind seed mutant targets more rapidly at low Mg2+ concentrations, resulting in faster cleavage. In contrast, PAM-distal mismatches cause substantial defects in cleavage following formation of the Cas12a-target complex at low Mg2+ concentrations. We observe differences in Cas12a specificity switching between three orthologs that results in variations in the routes of phage escape from Cas12a-mediated immunity. Overall, our results reveal the importance of physiological metal ion conditions on the specificity of Cas effectors that are used in different cellular environments.
Collapse
Affiliation(s)
- Giang T Nguyen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Michael A Schelling
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Akshara Raju
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Kathryn A Buscher
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Aneisha Sritharan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Dipali G Sashital
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
12
|
Nguyen GT, Schelling MA, Sashital DG. CRISPR-Cas9 target-strand nicking provides phage resistance by inhibiting replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611540. [PMID: 39282300 PMCID: PMC11398490 DOI: 10.1101/2024.09.05.611540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Cas endonucleases, like Cas9 and Cas12a, are RNA-guided immune effectors that provide bacterial defense against bacteriophages. Cas endonucleases rely on divalent metal ions for their enzymatic activities and to facilitate conformational changes that are required for specific recognition and cleavage of target DNA. While Cas endonucleases typically produce double-strand breaks (DSBs) in DNA targets, reduced, physiologically relevant Mg2+ concentrations and target mismatches can result in incomplete second-strand cleavage, resulting in the production of a nicked DNA. It remains poorly understood whether nicking by Cas endonucleases is sufficient to provide protection against phage. To address this, we tested phage protection by Cas9 nickases, in which only one of two nuclease domains is catalytically active. By testing a large panel of guide RNAs, we find that target strand nicking can be sufficient to provide immunity, while non-target nicking does not provide any additional protection beyond Cas9 binding. Target-strand nicking inhibits phage replication and can reduce the susceptibility of Cas9 to viral escape when targeting non-essential regions of the genome. Cleavage of the non-target strand by the RuvC domain is strongly impaired at low Mg2+ concentrations. As a result, fluctuations in the concentration of other biomolecules that can compete for binding of free Mg2+ strongly influences the ability of Cas9 to form a DSB at targeted sites. Overall, our results suggest that Cas9 may only nick DNA during CRISPR-mediated immunity, especially under conditions of low Mg2+ availability in cells.
Collapse
Affiliation(s)
- Giang T Nguyen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Michael A Schelling
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Dipali G Sashital
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
13
|
Strohkendl I, Saha A, Moy C, Nguyen AH, Ahsan M, Russell R, Palermo G, Taylor DW. Cas12a domain flexibility guides R-loop formation and forces RuvC resetting. Mol Cell 2024; 84:2717-2731.e6. [PMID: 38955179 PMCID: PMC11283365 DOI: 10.1016/j.molcel.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
The specific nature of CRISPR-Cas12a makes it a desirable RNA-guided endonuclease for biotechnology and therapeutic applications. To understand how R-loop formation within the compact Cas12a enables target recognition and nuclease activation, we used cryo-electron microscopy to capture wild-type Acidaminococcus sp. Cas12a R-loop intermediates and DNA delivery into the RuvC active site. Stages of Cas12a R-loop formation-starting from a 5-bp seed-are marked by distinct REC domain arrangements. Dramatic domain flexibility limits contacts until nearly complete R-loop formation, when the non-target strand is pulled across the RuvC nuclease and coordinated domain docking promotes efficient cleavage. Next, substantial domain movements enable target strand repositioning into the RuvC active site. Between cleavage events, the RuvC lid conformationally resets to occlude the active site, requiring re-activation. These snapshots build a structural model depicting Cas12a DNA targeting that rationalizes observed specificity and highlights mechanistic comparisons to other class 2 effectors.
Collapse
Affiliation(s)
- Isabel Strohkendl
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Aakash Saha
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Catherine Moy
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Alexander-Hoi Nguyen
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Mohd Ahsan
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Rick Russell
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX 78712, USA
| | - Giulia Palermo
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA; Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; LIVESTRONG Cancer Institute, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
14
|
Lei X, Cao S, Liu T, Wu Y, Yu S. Non-canonical CRISPR/Cas12a-based technology: A novel horizon for biosensing in nucleic acid detection. Talanta 2024; 271:125663. [PMID: 38232570 DOI: 10.1016/j.talanta.2024.125663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Nucleic acids are essential biomarkers in molecular diagnostics. The CRISPR/Cas system has been widely used for nucleic acid detection. Moreover, canonical CRISPR/Cas12a based biosensors can specifically recognize and cleave target DNA, as well as single-strand DNA serving as reporter probe, which have become a super star in recent years in the field of nucleic acid detection due to its high specificity, universal programmability and simple operation. However, canonical CRISPR/Cas12a based biosensors are hard to meet the requirements of higher sensitivity, higher specificity, higher efficiency, larger target scope, easier operation, multiplexing, low cost and diversified signal reading. Then, advanced non-canonical CRISPR/Cas12a based biosensors emerge. In this review, applications of non-canonical CRISPR/Cas12a-based biosensors in nucleic acid detection are summarized. And the principles, peculiarities, performances and perspectives of these non-canonical CRISPR/Cas12a based biosensors are also discussed.
Collapse
Affiliation(s)
- Xueying Lei
- . College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, PR China
| | - Shengnan Cao
- . College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, PR China
| | - Tao Liu
- . College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, PR China
| | - Yongjun Wu
- . College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, PR China
| | - Songcheng Yu
- . College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, PR China.
| |
Collapse
|
15
|
Zheng L, Zhou B, Yang Y, Zan B, Zhong B, Wu B, Feng Y, Liu Q, Hong L. Mn 2+-induced structural flexibility enhances the entire catalytic cycle and the cleavage of mismatches in prokaryotic argonaute proteins. Chem Sci 2024; 15:5612-5626. [PMID: 38638240 PMCID: PMC11023060 DOI: 10.1039/d3sc06221j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024] Open
Abstract
Prokaryotic Argonaute (pAgo) proteins, a class of DNA/RNA-guided programmable endonucleases, have been extensively utilized in nucleic acid-based biosensors. The specific binding and cleavage of nucleic acids by pAgo proteins, which are crucial processes for their applications, are dependent on the presence of Mn2+ bound in the pockets, as verified through X-ray crystallography. However, a comprehensive understanding of how dissociated Mn2+ in the solvent affects the catalytic cycle, and its underlying regulatory role in this structure-function relationship, remains underdetermined. By combining experimental and computational methods, this study reveals that unbound Mn2+ in solution enhances the flexibility of diverse pAgo proteins. This increase in flexibility through decreasing the number of hydrogen bonds, induced by Mn2+, leads to higher affinity for substrates, thus facilitating cleavage. More importantly, Mn2+-induced structural flexibility increases the mismatch tolerance between guide-target pairs by increasing the conformational states, thereby enhancing the cleavage of mismatches. Further simulations indicate that the enhanced flexibility in linkers triggers conformational changes in the PAZ domain for recognizing various lengths of nucleic acids. Additionally, Mn2+-induced dynamic alterations of the protein cause a conformational shift in the N domain and catalytic sites towards their functional form, resulting in a decreased energy penalty for target release and cleavage. These findings demonstrate that the dynamic conformations of pAgo proteins, resulting from the presence of the unbound Mn2+ in solution, significantly promote the catalytic cycle of endonucleases and the tolerance of cleavage to mismatches. This flexibility enhancement mechanism serves as a general strategy employed by Ago proteins from diverse prokaryotes to accomplish their catalytic functions and provide useful information for Ago-based precise molecular diagnostics.
Collapse
Affiliation(s)
- Lirong Zheng
- Institute of Natural Sciences, Shanghai Jiao Tong University Shanghai 200240 China
- Department of Cell and Developmental Biology & Michigan Neuroscience Institute, University of Michigan Medical School 48105 Ann Arbor MI USA
| | - Bingxin Zhou
- Institute of Natural Sciences, Shanghai Jiao Tong University Shanghai 200240 China
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai Jiao Tong University Shanghai 200240 China
| | - Yu Yang
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Bing Zan
- Institute of Natural Sciences, Shanghai Jiao Tong University Shanghai 200240 China
| | - Bozitao Zhong
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Banghao Wu
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yan Feng
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qian Liu
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Liang Hong
- Institute of Natural Sciences, Shanghai Jiao Tong University Shanghai 200240 China
- State Key Laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
- Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai Jiao Tong University Shanghai 200240 China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
16
|
Liu Z, Xu J, Huang S, Dai W, Zhang W, Li L, Xiao X, Wu T. Gene point mutation information translation and detection: Leveraging single base extension and CRISPR/Cas12a. Biosens Bioelectron 2024; 247:115936. [PMID: 38142668 DOI: 10.1016/j.bios.2023.115936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Gene point mutations play a significant role in the development of cancer. Therefore, developing a sensitive, specific, and universally applicable method for detecting gene point mutation is crucial for clinical diagnosis, prognosis, and cancer treatment. Recently, gene point mutation detection methods based on CRISPR/Cas12a detection have emerged. However, existing methods generally lack universality and specificity. In this study, we have developed a CRISPR/Cas12a-based method that combines improved allele-specific polymerase chain reaction and single base extension to translate the point mutation information in the target dsDNA into length information in ssDNA activators to overcome the limitations associated with PAM sequences in the CRISPR/Cas12a system. Our method achieved a detection limit of 0.002% for clinically significant EGFR T790M mutation. The CRISPR/Cas12a system we constructed demonstrates high sensitivity, specificity, and universality in detecting gene point mutations, making it a promising tool for clinical cancer screening.
Collapse
Affiliation(s)
- Zhujun Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shan Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Dai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Wei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Longjie Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xianjin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tongbo Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
17
|
Nguyen GT, Schelling MA, Buscher KA, Sritharan A, Sashital DG. CRISPR-Cas12a exhibits metal-dependent specificity switching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.29.569287. [PMID: 38076861 PMCID: PMC10705449 DOI: 10.1101/2023.11.29.569287] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cas12a is the immune effector of type V-A CRISPR-Cas systems and has been co-opted for genome editing and other biotechnology tools. The specificity of Cas12a has been the subject of extensive investigation both in vitro and in genome editing experiments. However, in vitro studies have often been performed at high magnesium ion concentrations that are inconsistent with the free Mg2+ concentrations that would be present in cells. By profiling the specificity of Cas12a orthologs at a range of Mg2+ concentrations, we find that Cas12a switches its specificity depending on metal ion concentration. Lowering Mg2+ concentration decreases cleavage defects caused by seed mismatches, while increasing the defects caused by PAM-distal mismatches. We show that Cas12a can bind seed mutant targets more rapidly at low Mg2+ concentrations, resulting in faster cleavage. In contrast, PAM-distal mismatches cause substantial defects in cleavage following formation of the Cas12a-target complex at low Mg2+ concentrations. We observe differences in Cas12a specificity switching between three orthologs that results in variations in the routes of phage escape from Cas12a-mediated immunity. Overall, our results reveal the importance of physiological metal ion conditions on the specificity of Cas effectors that are used in different cellular environments.
Collapse
Affiliation(s)
- Giang T. Nguyen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
- Equal contribution
| | - Michael A. Schelling
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
- Equal contribution
| | - Kathryn A. Buscher
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
- Current address: Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Aneisha Sritharan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
- Current address: Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Dipali G. Sashital
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
18
|
Badon IW, Oh Y, Kim HJ, Lee SH. Recent application of CRISPR-Cas12 and OMEGA system for genome editing. Mol Ther 2024; 32:32-43. [PMID: 37952084 PMCID: PMC10787141 DOI: 10.1016/j.ymthe.2023.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
In 2012, it was discovered that precise gene editing could be induced in target DNA using the reprogrammable characteristics of the CRISPR system. Since then, several studies have investigated the potential of the CRISPR system to edit various biological organisms. For the typical CRISPR system obtained from bacteria and archaea, many application studies have been conducted and have spread to various fields. To date, orthologs with various characteristics other than CRISPR-Cas9 have been discovered and are being intensively studied in the field of gene editing. CRISPR-Cas12 and its varied orthologs are representative examples of genome editing tools and have superior properties in terms of in vivo target gene editing compared with Cas9. Recently, TnpB and Fanzor of the OMEGA (obligate mobile element guided activity) system were identified to be the ancestor of CRISPR-Cas12 on the basis of phylogenetic analysis. Notably, the compact sizes of Cas12 and OMEGA endonucleases allow adeno-associated virus (AAV) delivery; hence, they are set to challenge Cas9 for in vivo gene therapy. This review is focused on these RNA-guided reprogrammable endonucleases: their structure, biochemistry, off-target effects, and applications in therapeutic gene editing.
Collapse
Affiliation(s)
- Isabel Wen Badon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeounsun Oh
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ho-Joong Kim
- Department of Chemistry, Chosun University, Gwangju 61452, Republic of Korea.
| | - Seung Hwan Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
19
|
Singh J, Liu KG, Allen A, Jiang W, Qin PZ. A DNA unwinding equilibrium serves as a checkpoint for CRISPR-Cas12a target discrimination. Nucleic Acids Res 2023; 51:8730-8743. [PMID: 37522352 PMCID: PMC10484686 DOI: 10.1093/nar/gkad636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
CRISPR-associated proteins such as Cas9 and Cas12a are programable RNA-guided nucleases that have emerged as powerful tools for genome manipulation and molecular diagnostics. However, these enzymes are prone to cleaving off-target sequences that contain mismatches between the RNA guide and DNA protospacer. In comparison to Cas9, Cas12a has demonstrated distinct sensitivity to protospacer-adjacent-motif (PAM) distal mismatches, and the molecular basis of Cas12a's enhanced target discrimination is of great interest. In this study, we investigated the mechanism of Cas12a target recognition using a combination of site-directed spin labeling, fluorescent spectroscopy, and enzyme kinetics. With a fully matched RNA guide, the data revealed an inherent equilibrium between a DNA unwound state and a DNA-paired duplex-like state. Experiments with off-target RNA guides and pre-nicked DNA substrates identified the PAM-distal DNA unwinding equilibrium as a mismatch sensing checkpoint prior to the first step of DNA cleavage. The finding sheds light on the distinct targeting mechanism of Cas12a and may better inform CRISPR based biotechnology developments.
Collapse
Affiliation(s)
- Jaideep Singh
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Kevin G Liu
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Aleique Allen
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Wei Jiang
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter Z Qin
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
20
|
Wang X, Jing S, Wang W, Wang J. Direct and noninvasive fluorescence analysis of an RNA-protein interaction based on a CRISPR/Cas12a-powered assay. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122884. [PMID: 37210856 DOI: 10.1016/j.saa.2023.122884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023]
Abstract
RNA-protein interactions (RPIs) play critical roles in gene transcription and protein expression, but current analytical methods for RPIs are mainly performed in an invasive manner, involving special RNA/protein labeling, hampering access to intact and precise information on RPIs. In this work, we present the first CRISPR/Cas12a-based fluorescence assay for the direct analysis of RPIs without RNA/protein labeling steps. Select vascular endothelial growth factor 165 (VEGF165)/its RNA aptamer interaction as a model, the RNA sequence simultaneously serves as both the aptamer of VEGF165 and crRNA of CRISPR/Cas12a system, and the presence of VEGF165 facilitates VEGF165/its RNA aptamer interaction, thus prohibiting the formation of Cas12a-crRNA-DNA ternary complex along with low fluorescence signal. The assay showed a detection limit of 0.23 pg mL-1, and good performance in serum-spiked samples with an RSD of 0.4 %-13.1 %. This simple and selective strategy opens the door for establishing CRISPR/Cas-based biosensors for gaining intact information on RPIs, and shows widespread potential for other RPIs analysis.
Collapse
Affiliation(s)
- Xueliang Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China; Collaborative Innovation Center of NPU, Shanghai 201100, P.R. China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China; Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, PR China
| | - Shaozhen Jing
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China; Collaborative Innovation Center of NPU, Shanghai 201100, P.R. China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China; Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, PR China
| | - Wanhe Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China; Collaborative Innovation Center of NPU, Shanghai 201100, P.R. China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China; Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, PR China.
| | - Jing Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China; Collaborative Innovation Center of NPU, Shanghai 201100, P.R. China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China; Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, PR China.
| |
Collapse
|
21
|
Singh J, Liu KG, Allen A, Jiang W, Qin PZ. A DNA Unwinding Equilibrium Serves as a Checkpoint for CRISPR-Cas12a Target Discrimination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541046. [PMID: 37292754 PMCID: PMC10245671 DOI: 10.1101/2023.05.16.541046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CRISPR-associated proteins such as Cas9 and Cas12a are programable RNA-guided nucleases that have emerged as powerful tools for genome manipulation and molecular diagnostics. However, these enzymes are prone to cleaving off-target sequences that contain mismatches between the RNA guide and DNA protospacer. In comparison to Cas9, Cas12a has demonstrated distinct sensitivity to protospacer-adjacent-motif (PAM) distal mismatches, and the molecular basis of Cas12a's enhanced target discrimination is of great interest. In this study, we investigated the mechanism of Cas12a target recognition using a combination of site-directed spin labeling, fluorescent spectroscopy, and enzyme kinetics. With a fully matched RNA guide, the data revealed an inherent equilibrium between a DNA unwound state and a DNA-paired duplex-like state. Experiments with off-target RNA guides and pre-nicked DNA substrates identified the PAM-distal DNA unwinding equilibrium as a mismatch sensing checkpoint prior to the first step of DNA cleavage. The data sheds light on the distinct targeting mechanism of Cas12a and may better inform CRISPR based biotechnology developments.
Collapse
|
22
|
Shen Y, Hu K, Yuan M, Duan G, Guo Y, Chen S. Progress and bioapplication of CRISPR-based one-step, quantitative and multiplexed infectious disease diagnostics. J Appl Microbiol 2023; 134:lxad035. [PMID: 36813257 DOI: 10.1093/jambio/lxad035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/06/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
In Vitro Diagnosis (IVD) technology is able to accurately detect pathogens or biomarkers at an initial stage of disease, which works as an important toolbox for disease diagnosis. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) system, as an emerging IVD method, plays a crucial role in the field of infectious disease detection due to its superior sensitivity and specificity. Recently, an increasing number of scientists have been devoted to improving the performance of CRISPR-based detection and on-site point-of-care testing (POCT) from extraction-free detection, amplification-free, modified Cas/crRNA complexes, quantitative assays, one-pot detection, and multiplexed platform. In this review, we describe the potential roles of these novel approaches and platforms in one-pot methods, quantitative molecular diagnostics as well as multiplexed detection. This review will not only help guide the full use of the CRISPR-Cas tools for quantification, multiplexed detection, POCT and as next-generation diagnostic biosensing platforms but also inspire new ideas, technological advances, and engineering strategies to address real-world challenges like the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Yue Shen
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China
| | - Kai Hu
- Laboratory Biosafety Technology Center, Henan Academy of Medical Sciences, Zhengzhou 450046, China
| | - Mingzhu Yuan
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China
| | - Guangcai Duan
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China
| | - Yongjun Guo
- Laboratory Biosafety Technology Center, Henan Academy of Medical Sciences, Zhengzhou 450046, China
| | - Shuaiyin Chen
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
23
|
Daskalakis V. Deciphering the QR Code of the CRISPR-Cas9 System: Synergy between Gln768 (Q) and Arg976 (R). ACS PHYSICAL CHEMISTRY AU 2022; 2:496-505. [PMID: 36855610 PMCID: PMC9955204 DOI: 10.1021/acsphyschemau.2c00041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
Markov state models (MSMs) and machine learning (ML) algorithms can extrapolate the long-time-scale behavior of large biomolecules from molecular dynamics (MD) trajectories. In this study, an MD-MSM-ML scheme has been applied to probe the large endonuclease (Cas9) in the bacterial adaptive immunity CRISPR-Cas9 system. CRISPR has become a programmable and state-of-the-art powerful genome editing tool that has already revolutionized life sciences. CRISPR-Cas9 is programmed to process specific DNA sequences in the genome. However, human/biomedical applications are compromised by off-target DNA damage. Characterization of Cas9 at the structural and biophysical levels is a prerequisite for the development of efficient and high-fidelity Cas9 variants. The Cas9 wild type and two variants (R63A-R66A-R70A, R69A-R71A-R74A-R78A) are studied herein. The configurational space of Cas9 is provided with a focus on the conformations of the side chains of two residues (Gln768 and Arg976). A model for the synergy between those two residues is proposed. The results are discussed within the context of experimental literature. The results and methodology can be exploited for the study of large biomolecules in general and for the engineering of more efficient and safer Cas9 variants for applications.
Collapse
|
24
|
Zhu C, Zhang F, Li H, Chen Z, Yan M, Li L, Qu F. CRISPR/Cas Systems Accelerating the Development of Aptasensors. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Li S, Liu Y, Zhang T, Lin S, Shi S, He J, Xie Y, Cai X, Tian T, Lin Y. A Tetrahedral Framework DNA-Based Bioswitchable miRNA Inhibitor Delivery System: Application to Skin Anti-Aging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204287. [PMID: 35901292 DOI: 10.1002/adma.202204287] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/21/2022] [Indexed: 02/05/2023]
Abstract
MicroRNA (miR)-based therapy shows strong potential; however, structural limitations pose a challenge in fully exploiting its biomedical functionality. Tetrahedral framework DNA (tFNA) has proven to be an ideal vehicle for miR therapy. Inspired by the ancient Chinese myth "Sun and Immortal Birds," a novel bioswitchable miR inhibitor delivery system (BiRDS) is designed with three miR inhibitors (the three immortal birds) and a nucleic acid core (the central sun). The BiRDS fuses miR inhibitors within the framework, maximizing their loading capacity, while allowing the system to retain the characteristics of small-sized tFNA and avoiding uncertainty associated with RNA exposure in traditional loading protocols. The RNase H-responsive sequence at the tail of each "immortal bird" enables the BiRDS to transform from a 3D to a 2D structure upon entering cells, promoting the delivery of miR inhibitors. To confirm the application potential, the BiRDS is used to deliver the miR-31 inhibitor, with antiaging effects on hair follicle stem cells, into a skin aging model. Superior skin penetration ability and RNA delivery are observed with significant anti-aging effects. These findings demonstrate the capability and editability of the BiRDS to improve the stability and delivery efficacy of miRs for future innovations.
Collapse
Affiliation(s)
- Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuhao Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shiyu Lin
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiajun He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yu Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
26
|
Son H, Park J, Choi YH, Jung Y, Lee JW, Bae S, Lee S. Exploring the dynamic nature of divalent metal ions involved in DNA cleavage by CRISPR-Cas12a. Chem Commun (Camb) 2022; 58:1978-1981. [PMID: 35045150 DOI: 10.1039/d1cc04446j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas12a has been widely used in genome editing and nucleic acid detection. In both of these applications, Cas12a cleaves target DNA in a divalent metal ion-dependent manner. However, when and how metal ions contribute to the cleavage reaction is unclear. Here, using a single-molecule FRET assay, we reveal that these metal ions are necessary for stabilising cleavage-competent conformations and that they are easily exchangeable, suggesting that they are dynamically coordinated.
Collapse
Affiliation(s)
- Heyjin Son
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Jaeil Park
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea. .,Department of Physics and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - You Hee Choi
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea. .,Ministry of Food and Drug Safety (MFDS), Cheongju 28159, Republic of Korea
| | - Youngri Jung
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Joong-Wook Lee
- Department of Physics and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sangsu Bae
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Sanghwa Lee
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|