1
|
Imaizumi K, Arimura SI, Ifuku K. The lumenal domain of Cyt b 559 interacting with extrinsic subunits is crucial for accumulation of functional photosystem II. PHOTOSYNTHESIS RESEARCH 2025; 163:33. [PMID: 40493130 DOI: 10.1007/s11120-025-01157-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/29/2025] [Indexed: 06/12/2025]
Abstract
Cytochrome b559 (Cyt b559) is an essential component of the photosystem II (PSII) reaction center core. It consists of two subunits, PsbE and PsbF, which together coordinate a redox-active heme. While extensive studies have revealed the importance of Cyt b559, its structural and functional roles are not fully understood. Previous studies have implied that the lumenal region of Cyt b559, interacting with the PSII extrinsic subunit PsbP in green plant PSII, may have important roles. However, few studies have investigated its lumenal region. Here, we have focused on a well-conserved lumenal region of PsbE, which was found to interact with the N-terminal region of PsbP in green-lineage PSII (from green algae and land plants). In red-lineage PSII (from red algae and algae possessing red algal-derived plastids), very similar interactions were observed between the same lumenal region of PsbE and the N-terminal region of PsbQ'. We generated Arabidopsis thaliana mutants harboring mutations in the well-conserved lumenal region of PsbE through targeted base editing of the plastid genome by ptpTALECD. The mutations led to strong growth defects and extremely low Fv/Fm. This study suggests the importance of the lumenal regions of Cyt b559, and gives insight into possible structural and functional compensation between the N-terminal regions of PsbP in green-lineage PSII and PsbQ' in red-lineage PSII.
Collapse
Affiliation(s)
- Ko Imaizumi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Shin-Ichi Arimura
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kentaro Ifuku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
2
|
Kim TD, Pretorius D, Murray JW, Cardona T. Exploring the Structural Diversity and Evolution of the D1 Subunit of Photosystem II Using AlphaFold and Foldtree. PHYSIOLOGIA PLANTARUM 2025; 177:e70284. [PMID: 40401773 PMCID: PMC12096807 DOI: 10.1111/ppl.70284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/23/2025]
Abstract
Although our knowledge of photosystem II has expanded to include time-resolved atomic details, the diversity of experimental structures of the enzyme remains limited. Recent advances in protein structure prediction with AlphaFold offer a promising approach to fill this gap in structural diversity in non-model systems. This study used AlphaFold to predict the structures of the D1 protein, the core subunit of photosystem II, across a broad range of photosynthetic organisms. The prediction produced high-confidence structures, and structural alignment analyses highlighted conserved regions across the different D1 groups, which were in line with high pLDDT scoring regions. In contrast, varying pLDDT in the DE loop and terminal regions appears to correlate with different degrees of structural flexibility or disorder. Subsequent structural phylogenetic analysis using Foldtree provided a tree that is in good agreement with previous sequence-based studies. Moreover, the phylogeny supports a parsimonious scenario in which far-red D1 and D1INT evolved from an ancestral form of G4 D1. This work demonstrates the potential of AlphaFold and Foldtree to study the molecular evolution of photosynthesis.
Collapse
Affiliation(s)
- Tom Dongmin Kim
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
- Department of Life SciencesImperial College LondonLondonUK
| | | | | | - Tanai Cardona
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
- Department of Life SciencesImperial College LondonLondonUK
| |
Collapse
|
3
|
Williams AM, Jackson PJ, Theg SM, Bricker TM, Hunter CN, Liu H. From cytoplasm to lumen-mapping the free pools of protein subunits of three photosynthetic complexes using quantitative mass spectrometry. FEBS Lett 2025; 599:1407-1419. [PMID: 40077900 DOI: 10.1002/1873-3468.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
The phycobilisome (PBS) captures light energy and transfers it to photosystem I (PSI) and photosystem II (PSII). Which and how many copies of protein subunits in PBSs, PSI, and PSII remain unbound in thylakoids are unknown. Here, quantitative mass spectrometry (QMS) was used to quantify substantial pools of free extrinsic subunits of PSII and PSI. Interestingly, the membrane intrinsic PsaL is 3-fold higher than PsaA/B. This scenario complements the static structures of these complexes as revealed by X-ray crystallography and cryo-EM. The ratios of ApcG and photoprotective OCP over PBS indicate a pool of extra ApcG. The 2.5 ratio of CpcG-PBS over CpcL-PBS improves our understanding of these light-harvesting complexes involved in energy capture and photoprotection in cyanobacteria. Impact statement Our study presents the first quantitative inquiry of the free pools of proteins associated with the three major photosynthetic complexes in Synechocystis 6803. This study increases our understanding of the unbound thylakoid proteome, guiding future research into the functions of these proteins, which will facilitate efforts to enhance photosynthetic efficiency.
Collapse
Affiliation(s)
| | - Philip J Jackson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, UK
| | - Steven M Theg
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Terry M Bricker
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - C Neil Hunter
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, UK
| | - Haijun Liu
- Department of Biology, Saint Louis University, MO, USA
| |
Collapse
|
4
|
Aydin AO, de Lichtenberg C, Liang F, Forsman J, Graça AT, Chernev P, Zhu S, Mateus A, Magnuson A, Cheah MH, Schröder WP, Ho F, Lindblad P, Debus RJ, Mamedov F, Messinger J. Probing substrate water access through the O1 channel of Photosystem II by single site mutations and membrane inlet mass spectrometry. PHOTOSYNTHESIS RESEARCH 2025; 163:28. [PMID: 40263146 PMCID: PMC12014804 DOI: 10.1007/s11120-025-01147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
Light-driven water oxidation by photosystem II sustains life on Earth by providing the electrons and protons for the reduction of CO2 to carbohydrates and the molecular oxygen we breathe. The inorganic core of the oxygen evolving complex is made of the earth-abundant elements manganese, calcium and oxygen (Mn4CaO5 cluster), and is situated in a binding pocket that is connected to the aqueous surrounding via water-filled channels that allow water intake and proton egress. Recent serial crystallography and infrared spectroscopy studies performed with PSII isolated from Thermosynechococcus vestitus (T. vestitus) support that one of these channels, the O1 channel, facilitates water access to the Mn4CaO5 cluster during its S2→S3 and S3→S4→S0 state transitions, while a subsequent CryoEM study concluded that this channel is blocked in the cyanobacterium Synechocystis sp. PCC 6803, questioning the role of the O1 channel in water delivery. Employing site-directed mutagenesis we modified the two O1 channel bottleneck residues D1-E329 and CP43-V410 (T. vestitus numbering) and probed water access and substrate exchange via time resolved membrane inlet mass spectrometry. Our data demonstrates that water reaches the Mn4CaO5 cluster via the O1 channel in both wildtype and mutant PSII. In addition, the detailed analysis provides functional insight into the intricate protein-water-cofactor network near the Mn4CaO5 cluster that includes the pentameric, near planar 'water wheel' of the O1 channel.
Collapse
Affiliation(s)
- A Orkun Aydin
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Casper de Lichtenberg
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Feiyan Liang
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, 1871, Denmark
| | - Jack Forsman
- Department of Chemistry, Chemical Biology Centre, Umeå University, Umeå, 907 36, Sweden
- Department of Plant Physiology, Umeå Plant Science Center (UPSC), Umeå University, Umeå, 901 87, Sweden
| | - André T Graça
- Department of Chemistry, Chemical Biology Centre, Umeå University, Umeå, 907 36, Sweden
- European Molecular Biology Laboratory, EMBL Grenoble, Grenoble, 38042, France
| | - Petko Chernev
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Shaochun Zhu
- Department of Chemistry, Chemical Biology Centre, Umeå University, Umeå, 907 36, Sweden
| | - André Mateus
- Department of Chemistry, Chemical Biology Centre, Umeå University, Umeå, 907 36, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, 907 36, Sweden
| | - Ann Magnuson
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Mun Hon Cheah
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Wolfgang P Schröder
- Department of Chemistry, Chemical Biology Centre, Umeå University, Umeå, 907 36, Sweden
- Department of Plant Physiology, Umeå Plant Science Center (UPSC), Umeå University, Umeå, 901 87, Sweden
| | - Felix Ho
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Peter Lindblad
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Richard J Debus
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala, 751 20, Sweden.
- Department of Plant Physiology, Umeå Plant Science Center (UPSC), Umeå University, Umeå, 901 87, Sweden.
| |
Collapse
|
5
|
Boussac A, Sellés J, Sugiura M, Burnap RL. New insights into the involvement of residue D1/V185 in photosystem II function in Synechocystis 6803 and Thermosynechococcus vestitus. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149550. [PMID: 40010481 DOI: 10.1016/j.bbabio.2025.149550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/20/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
The effects of D1-V185T and D1-V185N mutations in Photosystem II (PSII) from Thermosynechococcus vestitus (formerly T. elongatus) and Synechocystis 6803, respectively, were studied using both EPR and optical kinetics. EPR spectroscopy reveals the presence of a mixture of a S2 state in a high spin configuration (S2HS) and in a low spin configuration (S2LS) in both mutants. In contrast to the S2HS in the wild type, the S2HS state in the D1-V185T mutant does not progress to the S3 state at 198 K. This inability is likely due to alterations in the protonation state and hydrogen-bonding network around the Mn4CaO5 cluster. Optical studies show that these mutations significantly affect proton release during the S3-to-S0 transition. While the initial fast proton release associated with TyrZ● formation remains unaffected within the resolution of our measurements, the second, and slower, proton release is delayed, suggesting that the mutations disrupt the hydrogen-bonding interactions necessary for efficient deprotonation of substrate water (O6). This disruption in proton transfer also correlates with slower water exchange in the S3 state, likely due to non-native hydrogen bonds introduced by the threonine or asparagine side chains at position 185. These findings point to a critical role of D1-V185 in regulating both proton transfer dynamics and water binding, underscoring a complex interplay between structural and functional changes in PSII.
Collapse
Affiliation(s)
- Alain Boussac
- Institut de Biologie Intégrative de la Cellule, UMR9198, CEA Saclay, 91191 Gif-Sur-Yvette, France.
| | - Julien Sellés
- Institut de Biologie Physico-Chimique, UMR CNRS 7141 and Sorbonne Université, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Miwa Sugiura
- Proteo-Science Research Center, Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| | - Robert L Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, United States of America.
| |
Collapse
|
6
|
Flesher DA, Shin J, Debus RJ, Brudvig GW. Structure of a mutated photosystem II complex reveals changes to the hydrogen-bonding network that affect proton egress during O-O bond formation. J Biol Chem 2025; 301:108272. [PMID: 39922494 PMCID: PMC11930075 DOI: 10.1016/j.jbc.2025.108272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
Photosystem II (PSII) is the water-splitting enzyme of oxygenic photosynthesis. Using light energy, PSII catalytically oxidizes two water molecules to fuel downstream metabolism, forming an O-O bond and releasing O2 as a byproduct. The reaction mechanism requires the strategic removal of four protons via conserved hydrogen-bonding networks, but these pathways remain poorly understood. Site-directed mutagenesis has been used to study these pathways and the role of specific side chains, such as Lys317 of the D2 subunit. Previous studies showed that the D2-Lys317Ala substitution, which abolishes the flexible hydrogen-bonding -NH3+ group, resulted in delayed O2 release kinetics and diminished catalytic turnover, suggesting Lys317 has a crucial role in facilitating proton egress. Here, we investigated this proton egress pathway by determining the cryo-EM structure of PSII containing the D2-Lys317Ala substitution at a resolution of 1.97 Å. We observed that four new water molecules fill the space previously occupied by Lys317, but these waters lack specific water-protein interactions, leading to heterogeneity and suboptimal hydrogen bonding. We hypothesize that these waters negatively contribute to the existing hydrogen-bonding network and increase the entropic barrier for proton transfer. Additionally, we observed that a conserved chloride ion (Cl1), which is associated with Lys317, is unexpectedly maintained in D2-Lys317Ala PSII. However, unlike in wild-type, Cl1 has no measured effect on oxygen-evolution rates in D2-Lys317Ala PSII. This suggests that the role of Cl1 is dependent on the Lys317 amino group. These findings provide new insight into proton egress through the Cl1 hydrogen-bonding channel.
Collapse
Affiliation(s)
- David A Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Jieun Shin
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Richard J Debus
- Department of Biochemistry, University of California, Riverside, California, USA.
| | - Gary W Brudvig
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Chemistry, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
7
|
Nihara R, Saito K, Kuroda H, Komatsu Y, Chen Y, Ishikita H, Takahashi Y. D1-Tyr246 and D2-Tyr244 in photosystem II: Insights into bicarbonate binding and electron transfer from Q A•- to Q B. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149507. [PMID: 39218331 DOI: 10.1016/j.bbabio.2024.149507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
In photosystem II (PSII), D1-Tyr246 and D2-Tyr244 are symmetrically located at the binding site of the bicarbonate ligand of the non-heme Fe complex. Here, we investigated the role of the symmetrically arranged tyrosine pair, D1-Tyr246 and D2-Tyr244, in the function of PSII, by generating four chloroplast mutants of PSII from Chlamydomonas reinhardtii: D1-Y246F, D1-Y246T, D2-Y244F, and D2-Y244T. The mutants exhibited altered photoautotrophic growth, reduced PSII protein accumulation, and impaired O2-evolving activity. Flash-induced fluorescence yield decay kinetics indicated a significant slowdown in electron transfer from QA•- to QB in all mutants. Bicarbonate reconstitution resulted in enhanced O2-evolving activity, suggesting destabilization of bicarbonate binding in the mutants. Structural analyses based on a quantum mechanical/molecular mechanical approach identified the existence of a water channel that leads to incorporation of bulk water molecules and destabilization of the bicarbonate binding site. The water intake channels, crucial for bicarbonate stability, exhibited distinct paths in the mutants. These findings shed light on the essential role of the tyrosine pair in maintaining bicarbonate stability and facilitating efficient electron transfer in native PSII.
Collapse
Affiliation(s)
- Ruri Nihara
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Kuroda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yasuto Komatsu
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yang Chen
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
8
|
Shan J, Niedzwiedzki DM, Tomar RS, Liu Z, Liu H. Architecture and functional regulation of a plant PSII-LHCII megacomplex. SCIENCE ADVANCES 2024; 10:eadq9967. [PMID: 39671473 PMCID: PMC11640958 DOI: 10.1126/sciadv.adq9967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Photosystem II (PSII) splits water in oxygenic photosynthesis on Earth. The structure and function of the C4S4M2-type PSII-LHCII (light-harvesting complex II) megacomplexes from the wild-type and PsbR-deletion mutant plants are studied through electron microscopy (EM), structural mass spectrometry, and ultrafast fluorescence spectroscopy [time-resolved fluorescence (TRF)]. The cryo-EM structure of a type I C4S4M2 megacomplex demonstrates that the three domains of PsbR bind to the stromal side of D1, D2, and CP43; associate with the single transmembrane helix of the redox active Cyt b559; and stabilize the luminal extrinsic PsbP, respectively. This megacomplex, with PsbR and PsbY centered around the narrow interface between two dimeric PSII cores, provides the supramolecular structural basis that regulates the plastoquinone occupancy in QB site, excitation energy transfer, and oxygen evolution. PSII-LHCII megacomplexes (types I and II) and LHC aggregation levels in Arabidopsis psbR mutant were also interrogated and compared to wild-type plants through EM and picosecond TRF.
Collapse
Affiliation(s)
- Jianyu Shan
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dariusz M. Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Energy, Environmental, & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rupal S. Tomar
- Department of Biology, Saint Louis University, St. Louis, MO, 63103, USA
| | - Zhenfeng Liu
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haijun Liu
- Department of Biology, Saint Louis University, St. Louis, MO, 63103, USA
| |
Collapse
|
9
|
Biswas S, Niedzwiedzki DM, Liberton M, Pakrasi HB. Phylogenetic and spectroscopic insights on the evolution of core antenna proteins in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2024; 162:197-210. [PMID: 37737529 DOI: 10.1007/s11120-023-01046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023]
Abstract
Light harvesting by antenna systems is the initial step in a series of electron-transfer reactions in all photosynthetic organisms, leading to energy trapping by reaction center proteins. Cyanobacteria are an ecologically diverse group and are the simplest organisms capable of oxygenic photosynthesis. The primary light-harvesting antenna in cyanobacteria is the large membrane extrinsic pigment-protein complex called the phycobilisome. In addition, cyanobacteria have also evolved specialized membrane-intrinsic chlorophyll-binding antenna proteins that transfer excitation energy to the reaction centers of photosystems I and II (PSI and PSII) and dissipate excess energy through nonphotochemical quenching. Primary among these are the CP43 and CP47 proteins of PSII, but in addition, some cyanobacteria also use IsiA and the prochlorophyte chlorophyll a/b binding (Pcb) family of proteins. Together, these proteins comprise the CP43 family of proteins owing to their sequence similarity with CP43. In this article, we have revisited the evolution of these chlorophyll-binding antenna proteins by examining their protein sequences in parallel with their spectral properties. Our phylogenetic and spectroscopic analyses support the idea of a common ancestor for CP43, IsiA, and Pcb proteins, and suggest that PcbC might be a distant ancestor of IsiA. The similar spectral properties of CP47 and IsiA suggest a closer evolutionary relationship between these proteins compared to CP43.
Collapse
Affiliation(s)
- Sandeep Biswas
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University, St. Louis, MO, 63130, USA
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Michelle Liberton
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
10
|
Boussac A, Sugiura M, Nakamura M, Nagao R, Noguchi T, Viola S, Rutherford AW, Sellés J. Absorption changes in Photosystem II in the Soret band region upon the formation of the chlorophyll cation radical [P D1P D2] . PHOTOSYNTHESIS RESEARCH 2024; 162:211-223. [PMID: 37751034 DOI: 10.1007/s11120-023-01049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
Flash-induced absorption changes in the Soret region arising from the [PD1PD2]+ state, the chlorophyll cation radical formed upon light excitation of Photosystem II (PSII), were measured in Mn-depleted PSII cores at pH 8.6. Under these conditions, TyrD is i) reduced before the first flash, and ii) oxidized before subsequent flashes. In wild-type PSII, when TyrD● is present, an additional signal in the [PD1PD2]+-minus-[PD1PD2] difference spectrum was observed when compared to the first flash when TyrD is not oxidized. The additional feature was "W-shaped" with troughs at 434 nm and 446 nm. This feature was absent when TyrD was reduced, but was present (i) when TyrD was physically absent (and replaced by phenylalanine) or (ii) when its H-bonding histidine (D2-His189) was physically absent (replaced by a Leucine). Thus, the simple difference spectrum without the double trough feature at 434 nm and 446 nm, seemed to require the native structural environment around the reduced TyrD and its H bonding partners to be present. We found no evidence of involvement of PD1, ChlD1, PheD1, PheD2, TyrZ, and the Cytb559 heme in the W-shaped difference spectrum. However, the use of a mutant of the PD2 axial His ligand, the D2-His197Ala, shows that the PD2 environment seems involved in the formation of "W-shaped" signal.
Collapse
Affiliation(s)
- Alain Boussac
- Institut de Biologie Intégrative de la Cellule, UMR9198, CEA Saclay, 91191, Gif-Sur-Yvette, France.
| | - Miwa Sugiura
- Proteo-Science Research Center, and Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-Cho, Matsuyama, Ehime, 790-8577, Japan
| | - Makoto Nakamura
- Proteo-Science Research Center, and Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-Cho, Matsuyama, Ehime, 790-8577, Japan
| | - Ryo Nagao
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Takumi Noguchi
- Department of Physics, Graduate School of Science, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8602, Japan
| | - Stefania Viola
- Institut de Biosciences Et Biotechnologies, UMR 7265, Aix-Marseille, CEA Cadarache, Cité des Énergies, 13115, Saint-Paul-Lez-Durance, France
| | | | - Julien Sellés
- Institut de Biologie Physico-Chimique, UMR CNRS 7141 and Sorbonne Université, 13 Rue Pierre Et Marie Curie, 75005, Paris, France
| |
Collapse
|
11
|
Brown TJ, Vass I, Summerfield TC, Eaton-Rye JJ. Phe265 of the D1 protein is required to stabilize plastoquinone binding in the Q B-binding site of photosystem II in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 2024; 733:150692. [PMID: 39278092 DOI: 10.1016/j.bbrc.2024.150692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/23/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
In Photosystem II electrons from water splitting pass through a primary quinone electron acceptor (QA) to the secondary plastoquinone (QB). The D2 protein forms the QA-binding site and the D1 protein forms the QB-binding site. A non-heme iron sits between QA and QB resulting in a quinone-Fe-acceptor complex that must be activated before assembly of the oxygen-evolving complex can occur. An extended loop (residues 223-266) between the fourth (helix D) and fifth (helix E) helices of the D1 protein activates forward electron transfer via a conformational change that stabilizes a bidentate bicarbonate ligand to the non-heme iron while simultaneously stabilizing the binding of QB. We show that positioning of D1:Phe265 to provide a hydrogen bond to the distal oxygen of QB is required for forward electron transfer. In addition, mutations targeting D1:Phe265, resulted in a 50 mV decrease in the QB/QB- midpoint potential.
Collapse
Affiliation(s)
- Toby J Brown
- Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand
| | - Imre Vass
- Institute of Plant Biology, HUN-REN, Biological Research Center, Szeged, Hungary
| | | | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand.
| |
Collapse
|
12
|
Biswas S, Khaing EP, Zhong V, Eaton-Rye JJ. Arg24 and 26 of the D2 protein are important for photosystem II assembly and plastoquinol exchange in Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149150. [PMID: 38906313 DOI: 10.1016/j.bbabio.2024.149150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Photosystem II (PS II) assembly is a stepwise process involving preassembly complexes or modules focused around four core PS II proteins. The current model of PS II assembly in cyanobacteria is derived from studies involving the deletion of one or more of these core subunits. Such deletions may destabilize other PS II assembly intermediates, making constructing a clear picture of the intermediate events difficult. Information on plastoquinone exchange pathways operating within PS II is also unclear and relies heavily on computer-aided simulations. Deletion of PsbX in [S. Biswas, J.J. Eaton-Rye, Biochim. Biophys. Acta - Bioenerg. 1863 (2022) 148519] suggested modified QB binding in PS II lacking this subunit. This study has indicated the phenotype of the ∆PsbX mutant arose by disrupting a conserved hydrogen bond between PsbX and the D2 (PsbD) protein. We mutated two conserved arginine residues (D2:Arg24 and D2:Arg26) to further understand the observations made with the ∆PsbX mutant. Mutating Arg24 disrupted the interaction between PsbX and D2, replicating the high-light sensitivity and altered fluorescence decay kinetics observed in the ∆PsbX strain. The Arg26 residue, on the other hand, was more important for either PS II assembly or for stabilizing the fully assembled complex. The effects of mutating both arginine residues to alanine or aspartate were severe enough to render the corresponding double mutants non-photoautotrophic. Our study furthers our knowledge of the amino-acid interactions stabilizing plastoquinone-exchange pathways while providing a platform to study PS II assembly and repair without the actual deletion of any proteins.
Collapse
Affiliation(s)
- Sandeep Biswas
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ei Phyo Khaing
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Victor Zhong
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
13
|
Komenda J, Sobotka R, Nixon PJ. The biogenesis and maintenance of PSII: Recent advances and current challenges. THE PLANT CELL 2024; 36:3997-4013. [PMID: 38484127 PMCID: PMC11449106 DOI: 10.1093/plcell/koae082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/27/2024] [Indexed: 10/05/2024]
Abstract
The growth of plants, algae, and cyanobacteria relies on the catalytic activity of the oxygen-evolving PSII complex, which uses solar energy to extract electrons from water to feed into the photosynthetic electron transport chain. PSII is proving to be an excellent system to study how large multi-subunit membrane-protein complexes are assembled in the thylakoid membrane and subsequently repaired in response to photooxidative damage. Here we summarize recent developments in understanding the biogenesis of PSII, with an emphasis on recent insights obtained from biochemical and structural analysis of cyanobacterial PSII assembly/repair intermediates. We also discuss how chlorophyll synthesis is synchronized with protein synthesis and suggest a possible role for PSI in PSII assembly. Special attention is paid to unresolved and controversial issues that could be addressed in future research.
Collapse
Affiliation(s)
- Josef Komenda
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Roman Sobotka
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
14
|
Pohland AC, Bernát G, Geimer S, Schneider D. Mg 2+ limitation leads to a decrease in chlorophyll, resulting in an unbalanced photosynthetic apparatus in the cyanobacterium Synechocytis sp. PCC6803. PHOTOSYNTHESIS RESEARCH 2024; 162:13-27. [PMID: 39037691 DOI: 10.1007/s11120-024-01112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Mg2+, the most abundant divalent cation in living cells, plays a pivotal role in numerous enzymatic reactions and is of particular importance for organisms performing oxygenic photosynthesis. Its significance extends beyond serving as the central ion of the chlorophyll molecule, as it also acts as a counterion during the light reaction to balance the proton gradient across the thylakoid membranes. In this study, we investigated the effects of Mg2+ limitation on the physiology of the well-known model microorganism Synechocystis sp. PCC6803. Our findings reveal that Mg2+ deficiency triggers both morphological and functional changes. As seen in other oxygenic photosynthetic organisms, Mg2+ deficiency led to a decrease in cellular chlorophyll concentration. Moreover, the PSI-to-PSII ratio decreased, impacting the photosynthetic efficiency of the cell. In line with this, Mg2+ deficiency led to a change in the proton gradient built up across the thylakoid membrane upon illumination.
Collapse
Affiliation(s)
- Anne-Christin Pohland
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, Mainz, 55128, Germany
- HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Gábor Bernát
- HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Stefan Geimer
- Cell Biology and Electron Microscopy, University of Bayreuth, Bayreuth, Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, Mainz, 55128, Germany.
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
15
|
Vinyard DJ, Govindjee G. Bicarbonate is a key regulator but not a substrate for O 2 evolution in Photosystem II. PHOTOSYNTHESIS RESEARCH 2024; 162:93-99. [PMID: 39037690 DOI: 10.1007/s11120-024-01111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Photosystem II (PSII) uses light energy to oxidize water and to reduce plastoquinone in the photosynthetic electron transport chain. O2 is produced as a byproduct. While most members of the PSII research community agree that O2 originates from water molecules, alternative hypotheses involving bicarbonate persist in the literature. In this perspective, we provide an overview of the important roles of bicarbonate in regulating PSII activity and assembly. Further, we emphasize that biochemistry, spectroscopy, and structural biology experiments have all failed to detect bicarbonate near the active site of O2 evolution. While thermodynamic arguments for oxygen-centered bicarbonate oxidation are valid, the claim that bicarbonate is a substrate for photosynthetic O2 evolution is challenged.
Collapse
Affiliation(s)
- David J Vinyard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
16
|
Fujimoto KJ, Tsuji R, Wang-Otomo ZY, Yanai T. Prominent Role of Charge Transfer in the Spectral Tuning of Photosynthetic Light-Harvesting I Complex. ACS PHYSICAL CHEMISTRY AU 2024; 4:499-509. [PMID: 39346607 PMCID: PMC11428290 DOI: 10.1021/acsphyschemau.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 10/01/2024]
Abstract
Purple bacteria possess two ring-shaped protein complexes, light-harvesting 1 (LH1) and 2 (LH2), both of which function as antennas for solar energy utilization for photosynthesis but exhibit distinct absorption properties. The two antennas have differing amounts of bacteriochlorophyll (BChl) a; however, their significance in spectral tuning remains elusive. Here, we report a high-precision evaluation of the physicochemical factors contributing to the variation in absorption maxima between LH1 and LH2, namely, BChl a structural distortion, protein electrostatic interaction, excitonic coupling, and charge transfer (CT) effects, as derived from detailed spectral calculations using an extended version of the exciton model, in the model purple bacterium Rhodospirillum rubrum. Spectral analysis confirmed that the electronic structure of the excited state in LH1 extended to the BChl a 16-mer. Further analysis revealed that the LH1-specific redshift (∼61% in energy) is predominantly accounted for by the CT effect resulting from the closer inter-BChl distance in LH1 than in LH2. Our analysis explains how LH1 and LH2, both with chemically identical BChl a chromophores, use distinct physicochemical effects to achieve a progressive redshift from LH2 to LH1, ensuring efficient energy transfer to the reaction center special pair.
Collapse
Affiliation(s)
- Kazuhiro J. Fujimoto
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Rio Tsuji
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | | | - Takeshi Yanai
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
17
|
Nayak P, Singh AK, Nayak M, Kar S, Sahu K, Meena K, Topwal D, Indra A, Kar S. Structural modification of nickel tetra(thiocyano)corroles during electrochemical water oxidation. Dalton Trans 2024; 53:14922-14932. [PMID: 39194402 DOI: 10.1039/d4dt01628a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
In this study, we present two fully characterized nickel tetrathiocyanocorroles, representing a novel class of 3d-metallocorroles. These nickel(II) ions form square planar complexes, exhibiting a d8-electronic configuration. These anionic complexes are stabilized by the electron-withdrawing SCN groups on the bipyrrole unit of the corrole. The reduced aromaticity in these anionic nickel(II) corrole complexes is evidenced by single crystal X-ray diffraction (XRD) data and a markedly altered absorption profile, with stronger Q bands compared to Soret bands. Notably, the UV-Vis and electrochemical data exhibit significant differences from previously reported nickel(II) corrole radical cation and nickel(II) porphyrin complexes. While these electrochemical data bear a resemblance to those of the anionic nickel(II) corrole by Gross et al., the UV-Vis data show substantial distinctions. Additionally, we explore the utilization of nickel(II)-corrole@CC (where CC denotes carbon cloth) as an electrocatalyst for the oxygen evolution reaction (OER) in an alkaline medium. During electrochemical water oxidation, the molecular catalyst is partially converted to nickel (oxy)hydroxide, Ni(O)OH. The structure reveals the coexistence of the molecular complex and Ni(O)OH in the active catalyst, achieving a turnover frequency (TOF) of 3.32 × 10-2 s-1. The synergy between the homogeneous and heterogeneous phases improves the OER activity, providing more active sites and edge sites and enhancing interfacial charge transfer.
Collapse
Affiliation(s)
- Panisha Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Ajit Kumar Singh
- Department of Chemistry, IIT(BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Manisha Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Subhajit Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Kasturi Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Kiran Meena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Dinesh Topwal
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
- Institute of Physics, Bhubaneswar 751005, India
| | - Arindam Indra
- Department of Chemistry, IIT(BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Sanjib Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
18
|
Zhang X, Xiao Y, You X, Sun S, Sui SF. In situ structural determination of cyanobacterial phycobilisome-PSII supercomplex by STAgSPA strategy. Nat Commun 2024; 15:7201. [PMID: 39169020 PMCID: PMC11339077 DOI: 10.1038/s41467-024-51460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Photosynthesis converting solar energy to chemical energy is one of the most important chemical reactions on earth. In cyanobacteria, light energy is captured by antenna system phycobilisomes (PBSs) and transferred to photosynthetic reaction centers of photosystem II (PSII) and photosystem I (PSI). While most of the protein complexes involved in photosynthesis have been characterized by in vitro structural analyses, how these protein complexes function together in vivo is not well understood. Here we implemented STAgSPA, an in situ structural analysis strategy, to solve the native structure of PBS-PSII supercomplex from the cyanobacteria Arthrospira sp. FACHB439 at resolution of ~3.5 Å. The structure reveals coupling details among adjacent PBSs and PSII dimers, and the collaborative energy transfer mechanism mediated by multiple super-PBS in cyanobacteria. Our results provide insights into the diversity of photosynthesis-related systems between prokaryotic cyanobacteria and eukaryotic red algae but are also a methodological demonstration for high-resolution structural analysis in cellular or tissue samples.
Collapse
Affiliation(s)
- Xing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Yanan Xiao
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xin You
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sen-Fang Sui
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
19
|
Wang J. Composition Heterogeneity of Metal Ions Bound at the Oxygen-Evolving Center of Photosystem II in Living Cells. Biochemistry 2024; 63:1963-1968. [PMID: 39037205 DOI: 10.1021/acs.biochem.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Recent resolution advancement of in situ cryo-electron tomography (cryo-ET) and cryo-electron microscopy (cryo-EM) enables us to visualize large enzymes-in-action in atomic detail in their native environments inside living cells, such as photosystem II (PSII) and the ribosome. A variety of crystallographic and cryo-EM structures of PSII have been published for the purified PSII dimeric core complexes by itself, in supercomplexes with photosystem I (PSI) and light-harvesting complexes (LHC), and in megacomplexes with phycobilisome (PBS). In the latter case, two or five copies of asymmetric dimeric PSII molecules are present in highly asymmetric environments that differ from other 2-fold symmetric structures. Previous systematic analysis of X-ray free-electron laser (XFEL) crystal structures of PSII has shown different degrees of composition heterogeneity of metal ion cofactor bound at the oxygen-evolving center (OEC), including between two monomers of the same PSII dimer. This study analyzed the metal ions bound at four OECs in two asymmetric dimeric PSII molecules within in situ cryo-ET structures reported for an asymmetric PBS-PSII-PSI-LHC megacomplex determined in a living organism without purification and shows that composition heterogeneity with reduced metal ion occupancies at the OEC of PSII is a general phenomenon. This finding could have profound implications for spectroscopic interpretations of unpurified PSII samples.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, United States
| |
Collapse
|
20
|
Xia L, Li M, Chen Y, Dai Y, Li H, Zhang S. Sexually dimorphic acetyl-CoA biosynthesis and utilization in response to drought and exogenous acetic acid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1967-1985. [PMID: 38944754 DOI: 10.1111/tpj.16901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/19/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Female willows exhibit greater drought tolerance and benefit more from exogenous acetic acid (AA)-improved drought tolerance than males. However, the potential mechanisms driving these sex-specific responses remain unclear. To comprehensively investigate the sexually dimorphic responsive mechanisms of willows to drought and exogenous AA, here, we performed physiological, proteomic, Lys-acetylproteomic, and transgenic analyses in female and male Salix myrtillacea exposed to drought and AA-applicated drought treatments, focusing on protein abundance and lysine acetylation (LysAc) changes. Drought-tolerant females suffered less drought-induced photosynthetic and oxidative damage, did not activate AA and acetyl-CoA biosynthesis, TCA cycle, fatty acid metabolism, and jasmonic acid signaling as strongly as drought-sensitive males. Exogenous AA caused overaccumulation of endogenous AA and inhibition of acetyl-CoA biosynthesis and utilization in males. However, exogenous AA greatly enhanced acetyl-CoA biosynthesis and utilization and further enhanced drought performance of females, possibly determining that AA improved drought tolerance more in females than in males. Interestingly, overexpression of acetyl-CoA synthetase (ACS) could reprogram fatty acids, increase LysAc levels, and improve drought tolerance, highlighting the involvement of ACS-derived acetyl-CoA in drought responses. In addition, drought and exogenous AA induced sexually dimorphic LysAc associated with histones, transcription factors, and metabolic enzymes in willows. Especially, exogenous AA may greatly improve the photosynthetic capacity of S. myrtillacea males by decreasing LysAc levels and increasing the abundances of photosynthetic proteins. While hyperacetylation in glycolysis, TCA cycle, and fatty acid biosynthesis potentially possibly serve as negative feedback to acclimate acetyl-CoA biosynthesis and utilization in drought-stressed males and AA-applicated females. Thus, acetyl-CoA biosynthesis and utilization determine the sexually dimorphic responses of S. myrtillacea to drought and exogenous AA.
Collapse
Affiliation(s)
- Linchao Xia
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Menghan Li
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yao Chen
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yujie Dai
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Huanhuan Li
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Sheng Zhang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
21
|
Gisriel CJ. Recent structural discoveries of photosystems I and II acclimated to absorb far-red light. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149032. [PMID: 38401604 PMCID: PMC11162955 DOI: 10.1016/j.bbabio.2024.149032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 02/26/2024]
Abstract
Photosystems I and II are the photooxidoreductases central to oxygenic photosynthesis and canonically absorb visible light (400-700 nm). Recent investigations have revealed that certain cyanobacteria can acclimate to environments enriched in far-red light (700-800 nm), yet can still perform oxygenic photosynthesis in a process called far-red light photoacclimation, or FaRLiP. During this process, the photosystem subunits and pigment compositions are altered. Here, the current structural understanding of the photosystems expressed during FaRLiP is described. The design principles may be useful for guiding efforts to engineer shade tolerance in organisms that typically cannot utilize far-red light.
Collapse
|
22
|
Flesher DA, Liu J, Wang J, Gisriel CJ, Yang KR, Batista VS, Debus RJ, Brudvig GW. Mutation-induced shift of the photosystem II active site reveals insight into conserved water channels. J Biol Chem 2024; 300:107475. [PMID: 38879008 PMCID: PMC11294709 DOI: 10.1016/j.jbc.2024.107475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 07/11/2024] Open
Abstract
Photosystem II (PSII) is the water-plastoquinone photo-oxidoreductase central to oxygenic photosynthesis. PSII has been extensively studied for its ability to catalyze light-driven water oxidation at a Mn4CaO5 cluster called the oxygen-evolving complex (OEC). Despite these efforts, the complete reaction mechanism for water oxidation by PSII is still heavily debated. Previous mutagenesis studies have investigated the roles of conserved amino acids, but these studies have lacked a direct structural basis that would allow for a more meaningful interpretation. Here, we report a 2.14-Å resolution cryo-EM structure of a PSII complex containing the substitution Asp170Glu on the D1 subunit. This mutation directly perturbs a bridging carboxylate ligand of the OEC, which alters the spectroscopic properties of the OEC without fully abolishing water oxidation. The structure reveals that the mutation shifts the position of the OEC within the active site without markedly distorting the Mn4CaO5 cluster metal-metal geometry, instead shifting the OEC as a rigid body. This shift disturbs the hydrogen-bonding network of structured waters near the OEC, causing disorder in the conserved water channels. This mutation-induced disorder appears consistent with previous FTIR spectroscopic data. We further show using quantum mechanics/molecular mechanics methods that the mutation-induced structural changes can affect the magnetic properties of the OEC by altering the axes of the Jahn-Teller distortion of the Mn(III) ion coordinated to D1-170. These results offer new perspectives on the conserved water channels, the rigid body property of the OEC, and the role of D1-Asp170 in the enzymatic water oxidation mechanism.
Collapse
Affiliation(s)
- David A Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Jinchan Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | | | - Ke R Yang
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Richard J Debus
- Department of Biochemistry, University of California, Riverside, California, USA.
| | - Gary W Brudvig
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Chemistry, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
23
|
Hussein R, Graça A, Forsman J, Aydin AO, Hall M, Gaetcke J, Chernev P, Wendler P, Dobbek H, Messinger J, Zouni A, Schröder WP. Cryo-electron microscopy reveals hydrogen positions and water networks in photosystem II. Science 2024; 384:1349-1355. [PMID: 38900892 DOI: 10.1126/science.adn6541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024]
Abstract
Photosystem II starts the photosynthetic electron transport chain that converts solar energy into chemical energy and thus sustains life on Earth. It catalyzes two chemical reactions: water oxidation to molecular oxygen and plastoquinone reduction. Coupling of electron and proton transfer is crucial for efficiency; however, the molecular basis of these processes remains speculative owing to uncertain water binding sites and the lack of experimentally determined hydrogen positions. We thus collected high-resolution cryo-electron microscopy data of fully hydrated photosystem II from the thermophilic cyanobacterium Thermosynechococcus vestitus to a final resolution of 1.71 angstroms. The structure reveals several previously undetected partially occupied water binding sites and more than half of the hydrogen and proton positions. This clarifies the pathways of substrate water binding and plastoquinone B protonation.
Collapse
Affiliation(s)
- Rana Hussein
- Humboldt-Universität zu Berlin, Department of Biology, D 10099 Berlin, Germany
| | - André Graça
- Department of Chemistry, Umeå University, SE 90187 Umeå, Sweden
- Molecular Biomimetics, Department of Chemistry- Ångström Laboratory, Uppsala University, SE 75120 Uppsala, Sweden
| | - Jack Forsman
- Department of Chemistry, Umeå University, SE 90187 Umeå, Sweden
| | - A Orkun Aydin
- Molecular Biomimetics, Department of Chemistry- Ångström Laboratory, Uppsala University, SE 75120 Uppsala, Sweden
| | - Michael Hall
- Department of Chemistry, Umeå University, SE 90187 Umeå, Sweden
| | - Julia Gaetcke
- Humboldt-Universität zu Berlin, Department of Biology, D 10099 Berlin, Germany
| | - Petko Chernev
- Molecular Biomimetics, Department of Chemistry- Ångström Laboratory, Uppsala University, SE 75120 Uppsala, Sweden
| | - Petra Wendler
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Karl-Liebknecht Strasse 24-25, D 14476, Potsdam-Golm, Germany
| | - Holger Dobbek
- Humboldt-Universität zu Berlin, Department of Biology, D 10099 Berlin, Germany
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry- Ångström Laboratory, Uppsala University, SE 75120 Uppsala, Sweden
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Sweden
| | - Athina Zouni
- Humboldt-Universität zu Berlin, Department of Biology, D 10099 Berlin, Germany
| | - Wolfgang P Schröder
- Department of Chemistry, Umeå University, SE 90187 Umeå, Sweden
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Sweden
| |
Collapse
|
24
|
Wang H, Zhang J, Ji Y, Guo Y, Liu Q, Chang Y, Qiang S, Chen S. Structure-Based Design, Virtual Screening, and Discovery of Novel Patulin Derivatives as Biogenic Photosystem II Inhibiting Herbicides. PLANTS (BASEL, SWITZERLAND) 2024; 13:1710. [PMID: 38931142 PMCID: PMC11207439 DOI: 10.3390/plants13121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Computer-aided design usually gives inspirations and has become a vital strategy to develop novel pesticides through reconstructing natural lead compounds. Patulin, an unsaturated heterocyclic lactone mycotoxin, is a new natural PSII inhibitor and shows significant herbicidal activity to various weeds. However, some evidence, especially the health concern, prevents it from developing as a bioherbicide. In this work, molecular docking and toxicity risk prediction are combined to construct interaction models between the ligand and acceptor, and design and screen novel derivatives. Based on the analysis of a constructed patulin-Arabidopsis D1 protein docking model, in total, 81 derivatives are designed and ranked according to quantitative estimates of drug-likeness (QED) values and free energies. Among the newly designed derivatives, forty-five derivatives with better affinities than patulin are screened to further evaluate their toxicology. Finally, it is indicated that four patulin derivatives, D3, D6, D34, and D67, with higher binding affinity but lower toxicity than patulin have a great potential to develop as new herbicides with improved potency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shiguo Chen
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (J.Z.); (Y.J.); (Y.G.); (Q.L.); (Y.C.); (S.Q.)
| |
Collapse
|
25
|
Arshad F, Eaton-Rye JJ. Indirect interactions involving the PsbM or PsbT subunits and the PsbO, PsbU and PsbV proteins stabilize assembly and activity of Photosystem II in Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2024; 160:61-75. [PMID: 38488942 PMCID: PMC11108944 DOI: 10.1007/s11120-024-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
The low-molecular-weight PsbM and PsbT proteins of Photosystem II (PS II) are both located at the monomer-monomer interface of the mature PS II dimer. Since the extrinsic proteins are associated with the final step of assembly of an active PS II monomer and, in the case of PsbO, are known to impact the stability of the PS II dimer, we have investigated the potential cooperativity between the PsbM and PsbT subunits and the PsbO, PsbU and PsbV extrinsic proteins. Blue-native polyacrylamide electrophoresis and western blotting detected stable PS II monomers in the ∆PsbM:∆PsbO and ∆PsbT:∆PsbO mutants that retained sufficient oxygen-evolving activity to support reduced photoautotrophic growth. In contrast, the ∆PsbM:∆PsbU and ∆PsbT:∆PsbU mutants assembled dimeric PS II at levels comparable to wild type and supported photoautotrophic growth at rates similar to those obtained with the corresponding ∆PsbM and ∆PsbT cells. Removal of PsbV was more detrimental than removal of PsbO. Only limited levels of dimeric PS II were observed in the ∆PsbM:∆PsbV mutant and the overall reduced level of assembled PS II in this mutant resulted in diminished rates of photoautotrophic growth and PS II activity below those obtained in the ∆PsbM:∆PsbO and ∆PsbT:∆PsbO strains. In addition, the ∆PsbT:∆PsbV mutant did not assemble active PS II centers although inactive monomers could be detected. The inability of the ∆PsbT:∆PsbV mutant to grow photoautotrophically, or to evolve oxygen, suggested a stable oxygen-evolving complex could not assemble in this mutant.
Collapse
Affiliation(s)
- Faiza Arshad
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
26
|
Debus RJ, Oyala PH. Independent Mutation of Two Bridging Carboxylate Ligands Stabilizes Alternate Conformers of the Photosynthetic O 2-Evolving Mn 4CaO 5 Cluster in Photosystem II. J Phys Chem B 2024; 128:3870-3884. [PMID: 38602496 DOI: 10.1021/acs.jpcb.4c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The O2-evolving Mn4CaO5 cluster in photosystem II is ligated by six carboxylate residues. One of these is D170 of the D1 subunit. This carboxylate bridges between one Mn ion (Mn4) and the Ca ion. A second carboxylate ligand is D342 of the D1 subunit. This carboxylate bridges between two Mn ions (Mn1 and Mn2). D170 and D342 are located on opposite sides of the Mn4CaO5 cluster. Recently, it was shown that the D170E mutation perturbs both the intricate networks of H-bonds that surround the Mn4CaO5 cluster and the equilibrium between different conformers of the cluster in two of its lower oxidation states, S1 and S2, while still supporting O2 evolution at approximately 50% the rate of the wild type. In this study, we show that the D342E mutation produces much the same alterations to the cluster's FTIR and EPR spectra as D170E, while still supporting O2 evolution at approximately 20% the rate of the wild type. Furthermore, the double mutation, D170E + D342E, behaves similarly to the two single mutations. We conclude that D342E alters the equilibrium between different conformers of the cluster in its S1 and S2 states in the same manner as D170E and perturbs the H-bond networks in a similar fashion. This is the second identification of a Mn4CaO5 metal ligand whose mutation influences the equilibrium between the different conformers of the S1 and S2 states without eliminating O2 evolution. This finding has implications for our understanding of the mechanism of O2 formation in terms of catalytically active/inactive conformations of the Mn4CaO5 cluster in its lower oxidation states.
Collapse
Affiliation(s)
- Richard J Debus
- Department of Biochemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91106, United States
| |
Collapse
|
27
|
Sheridan KJ, Eaton-Rye JJ, Summerfield TC. Mutagenesis of Ile184 in the cd-loop of the photosystem II D1 protein modifies acceptor-side function via spontaneous mutation of D1-His252 in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 2024; 702:149595. [PMID: 38340653 DOI: 10.1016/j.bbrc.2024.149595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
The Photosystem II water-plastoquinone oxidoreductase is a multi-subunit complex which catalyses the light-driven oxidation of water to molecular oxygen in oxygenic photosynthesis. The D1 reaction centre protein exists in multiple forms in cyanobacteria, including D1FR which is expressed under far-red light. We investigated the role of Phe184 that is found in the lumenal cd-loop of D1FR but is typically an isoleucine in other D1 isoforms. The I184F mutant in Synechocystis sp. PCC 6803 was similar to the control strain but accumulated a spontaneous mutation that introduced a Gln residue in place of His252 located on the opposite side of the thylakoid membrane. His252 participates in the protonation of the secondary plastoquinone electron acceptor QB. The I184F:H252Q double mutant exhibited reduced high-light-induced photodamage and an altered QB-binding site that impaired herbicide binding. Additionally, the H252Q mutant had a large increase in the variable fluorescence yield although the number of photochemically active PS II centres was unchanged. In the I184F:H252Q mutant the extent of the increased fluorescence yield decreased. Our data indicates substitution of Ile184 to Phe modulates PS II-specific variable fluorescence in cells with the His252 to Gln substitution by modifying the QB-binding site.
Collapse
Affiliation(s)
- Kevin J Sheridan
- Department of Botany, University of Otago, Dunedin, 9016, New Zealand; Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand
| | | |
Collapse
|
28
|
Kaur D, Reiss K, Wang J, Batista VS, Brudvig GW, Gunner MR. Occupancy Analysis of Water Molecules inside Channels within 25 Å Radius of the Oxygen-Evolving Center of Photosystem II in Molecular Dynamics Simulations. J Phys Chem B 2024; 128:2236-2248. [PMID: 38377592 DOI: 10.1021/acs.jpcb.3c05367] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
At room temperature and neutral pH, the oxygen-evolving center (OEC) of photosystem II (PSII) catalyzes water oxidation. During this process, oxygen is released from the OEC, while substrate waters are delivered to the OEC and protons are passed from the OEC to the lumen through water channels known as the narrow or the O4 channel, broad or the Cl1 channel, and large or the O1 channel. Protein residues lining the surfaces of these channels play a critical role in stabilizing the hydrogen-bonding networks that assist in the process. We carried out an occupancy analysis to better understand the structural and possible substrate water dynamics in full PSII monomer molecular dynamics (MD) trajectories in both the S1 and S2 states. We find that the equilibrated positions of water molecules derived from MD-derived electron density maps largely match the experimentally observed positions in crystallography. Furthermore, the occupancy reduction in MD simulations of some water molecules inside the single-filed narrow channel also correlates well with the crystallographic data during a structural transition when the S1 state of the OEC advances to the S2 state. The overall reduced occupancies of water molecules are the source of their "vacancy-hopping" dynamic nature inside these channels, unlike water molecules inside an ice lattice where all water molecules have a fixed unit occupancy. We propose on the basis of findings in our structural and molecular dynamics analysis that the water molecule occupying a pocket formed by D1-D61, D1-S169, and O4 of the OEC could be the last steppingstone to enter into the OEC and that the broad channel may be favored for proton transfer.
Collapse
Affiliation(s)
- Divya Kaur
- Department of Chemistry, Brock University, 500 Glenridge Avenue, St. Catharines L2S 3A1, Ontario, Canada
| | - Krystle Reiss
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - M R Gunner
- Department of Physics, City College of New York New York, New York 10031, United States
| |
Collapse
|
29
|
Lin C, Mazor Y, Reppert M. Feeling the Strain: Quantifying Ligand Deformation in Photosynthesis. J Phys Chem B 2024; 128:2266-2280. [PMID: 38442033 DOI: 10.1021/acs.jpcb.3c06488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Structural distortion of protein-bound ligands can play a critical role in enzyme function by tuning the electronic and chemical properties of the ligand molecule. However, quantifying these effects is difficult due to the limited resolution of protein structures and the difficulty of generating accurate structural restraints for nonprotein ligands. Here, we seek to quantify these effects through a statistical analysis of ligand distortion in chlorophyll proteins (CP), where ring deformation is thought to play a role in energy and electron transfer. To assess the accuracy of ring-deformation estimates from available structural data, we take advantage of the C2 symmetry of photosystem II (PSII), comparing ring-deformation estimates for equivalent sites both within and between 113 distinct X-ray and cryogenic electron microscopy PSII structures. Significantly, we find that several deformation modes exhibit considerable variability in predictions, even for equivalent monomers, down to a 2 Å resolution, to an extent that probably prevents their utilization in optical calculations. We further find that refinement restraints play a critical role in determining deformation values to resolution as low as 2 Å. However, for those modes that are well-resolved in the structural data, ring deformation in PSII is strongly conserved across all species tested from cyanobacteria to algae. These results highlight both the opportunities and limitations inherent in structure-based analyses of the bioenergetic and optical properties of CPs and other protein-ligand complexes.
Collapse
Affiliation(s)
- Chientzu Lin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47920, United States
| | - Yuval Mazor
- School of Molecular Sciences, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Mike Reppert
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47920, United States
| |
Collapse
|
30
|
Mehra HS, Wang X, Russell BP, Kulkarni N, Ferrari N, Larson B, Vinyard DJ. Assembly and Repair of Photosystem II in Chlamydomonas reinhardtii. PLANTS (BASEL, SWITZERLAND) 2024; 13:811. [PMID: 38592843 PMCID: PMC10975043 DOI: 10.3390/plants13060811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
Oxygenic photosynthetic organisms use Photosystem II (PSII) to oxidize water and reduce plastoquinone. Here, we review the mechanisms by which PSII is assembled and turned over in the model green alga Chlamydomonas reinhardtii. This species has been used to make key discoveries in PSII research due to its metabolic flexibility and amenability to genetic approaches. PSII subunits originate from both nuclear and chloroplastic gene products in Chlamydomonas. Nuclear-encoded PSII subunits are transported into the chloroplast and chloroplast-encoded PSII subunits are translated by a coordinated mechanism. Active PSII dimers are built from discrete reaction center complexes in a process facilitated by assembly factors. The phosphorylation of core subunits affects supercomplex formation and localization within the thylakoid network. Proteolysis primarily targets the D1 subunit, which when replaced, allows PSII to be reactivated and completes a repair cycle. While PSII has been extensively studied using Chlamydomonas as a model species, important questions remain about its assembly and repair which are presented here.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David J. Vinyard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (H.S.M.); (X.W.); (B.P.R.); (N.K.); (N.F.); (B.L.)
| |
Collapse
|
31
|
Shen L, Gao Y, Tang K, Qi R, Fu L, Chen JH, Wang W, Ma X, Li P, Chen M, Kuang T, Zhang X, Shen JR, Wang P, Han G. Structure of a unique PSII-Pcb tetrameric megacomplex in a chlorophyll d-containing cyanobacterium. SCIENCE ADVANCES 2024; 10:eadk7140. [PMID: 38394197 PMCID: PMC10889353 DOI: 10.1126/sciadv.adk7140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Acaryochloris marina is a unique cyanobacterium using chlorophyll d (Chl d) as its major pigment and thus can use far-red light for photosynthesis. Photosystem II (PSII) of A. marina associates with a number of prochlorophyte Chl-binding (Pcb) proteins to act as the light-harvesting system. We report here the cryo-electron microscopic structure of a PSII-Pcb megacomplex from A. marina at a 3.6-angstrom overall resolution and a 3.3-angstrom local resolution. The megacomplex is organized as a tetramer consisting of two PSII core dimers flanked by sixteen symmetrically related Pcb proteins, with a total molecular weight of 1.9 megadaltons. The structure reveals the detailed organization of PSII core consisting of 15 known protein subunits and an unknown subunit, the assembly of 4 Pcb antennas within each PSII monomer, and possible pathways of energy transfer within the megacomplex, providing deep insights into energy transfer and dissipation mechanisms within the PSII-Pcb megacomplex involved in far-red light utilization.
Collapse
Affiliation(s)
- Liangliang Shen
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yuanzhu Gao
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kailu Tang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ruxi Qi
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lutang Fu
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing-Hua Chen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaomin Ma
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyao Li
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Chen
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney NSW 2006, Australia
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xing Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Laboratory for System and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Peiyi Wang
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
32
|
Su J, Jiao Q, Jia T, Hu X. The photosystem-II repair cycle: updates and open questions. PLANTA 2023; 259:20. [PMID: 38091081 DOI: 10.1007/s00425-023-04295-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION The photosystem-II (PSII) repair cycle is essential for the maintenance of photosynthesis in plants. A number of novel findings have illuminated the regulatory mechanisms of the PSII repair cycle. Photosystem II (PSII) is a large pigment-protein complex embedded in the thylakoid membrane. It plays a vital role in photosynthesis by absorbing light energy, splitting water, releasing molecular oxygen, and transferring electrons for plastoquinone reduction. However, PSII, especially the PsbA (D1) core subunit, is highly susceptible to oxidative damage. To prevent irreversible damage, plants have developed a repair cycle. The main objective of the PSII repair cycle is the degradation of photodamaged D1 and insertion of newly synthesized D1 into the PSII complex. While many factors are known to be involved in PSII repair, the exact mechanism is still under investigation. In this review, we discuss the primary steps of PSII repair, focusing on the proteolytic degradation of photodamaged D1 and the factors involved.
Collapse
Affiliation(s)
- Jinling Su
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Qingsong Jiao
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Jia
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Xueyun Hu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
33
|
Balaga RR, Itoh F, Chauhan S, Mandal M, Krishna PS, Suzuki I, Prakash JSS. Sll1252 Coordinates Electron Transport between Plastoquinone and Cytochrome b6/f Complex in Synechocystis PCC 6803. Genes (Basel) 2023; 14:2151. [PMID: 38136973 PMCID: PMC10743179 DOI: 10.3390/genes14122151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
A mutant, Δsll1252ins, was generated to functionally characterize Sll1252. Δsll1252ins exhibited a slow-growth phenotype at 70 µmol photons m-2 s-1 and glucose sensitivity. In Δsll1252ins, the rate of PSII activity was not affected, whereas the whole chain electron transport activity was reduced by 45%. The inactivation of sll1252 led to the upregulation of genes, which were earlier reported to be induced in DBMIB-treated wild-type, suggesting that Sll1252 may be involved in electron transfer from the reduced-PQ pool to Cyt b6/f. The inhibitory effect of DCMU on PSII activity was similar in both wild-type and Δsll1252ins. However, the concentration of DBMIB for 50% inhibition of whole chain electron transport activity was 140 nM for Δsll1252ins and 300 nM for wild-type, confirming the site of action of Sll1252. Moreover, the elevated level of the reduced-PQ pool in Δsll1252ins supports that Sll1252 functions between the PQ pool and Cyt b6/f. Interestingly, we noticed that Δsll1252ins reverted to wild-type phenotype by insertion of natural transposon, ISY523, at the disruption site. Δsll1252-Ntrn, expressing only the C-terminal region of Sll1252, exhibited a slow-growth phenotype and disorganized thylakoid structure compared to wild-type and Δsll1252-Ctrn (expressing only the N-terminal region). Collectively, our data suggest that Sll1252 regulates electron transfer between the PQ pool and the Cyt b6/f complex in the linear photosynthetic electron transport chain via coordinated function of both the N- and C-terminal regions of Sll1252.
Collapse
Affiliation(s)
- Radha Rani Balaga
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India;
| | - Fumihiro Itoh
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Japan;
| | - Suraj Chauhan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (S.C.); (M.M.); (P.S.K.)
| | - Mukulika Mandal
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (S.C.); (M.M.); (P.S.K.)
| | - Pilla Sankara Krishna
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (S.C.); (M.M.); (P.S.K.)
| | - Iwane Suzuki
- Institute of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Japan;
| | - Jogadhenu S. S. Prakash
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (S.C.); (M.M.); (P.S.K.)
| |
Collapse
|
34
|
Gates C, Williams JM, Ananyev G, Dismukes GC. How chloride functions to enable proton conduction in photosynthetic water oxidation: Time-resolved kinetics of intermediates (S-states) in vivo and bromide substitution. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148998. [PMID: 37499962 DOI: 10.1016/j.bbabio.2023.148998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Chloride (Cl-) is essential for O2 evolution during photosynthetic water oxidation. Two chlorides near the water-oxidizing complex (WOC) in Photosystem II (PSII) structures from Thermosynechococcus elongatus (and T. vulcanus) have been postulated to transfer protons generated from water oxidation. We monitored four criteria: primary charge separation flash yield (P* → P+QA-), rates of water oxidation steps (S-states), rate of proton evolution, and flash O2 yield oscillations by measuring chlorophyll variable fluorescence (P* quenching), pH-sensitive dye changes, and oximetry. Br-substitution slows and destabilizes cellular growth, resulting from lower light-saturated O2 evolution rate (-20 %) and proton release (-36 % ΔpH gradient). The latter implies less ATP production. In Br- cultures, protonogenic S-state transitions (S2 → S3 → S0') slow with increasing light intensity and during O2/water exchange (S0' → S0 → S1), while the non-protonogenic S1 → S2 transition is kinetically unaffected. As flash rate increases in Cl- cultures, both rate and extent of acidification of the lumen increase, while charge recombination is suppressed relative to Br-. The Cl- advantage in rapid proton escape from the WOC to lumen is attributed to correlated ion-pair movement of H3O+Cl- in dry water channels vs. separated Br- and H+ ion movement through different regions (>200-fold difference in Bronsted acidities). By contrast, at low flash rates a previously unreported reversal occurs that favors Br- cultures for both proton evolution and less PSII charge recombination. In Br- cultures, slower proton transfer rate is attributed to stronger ion-pairing of Br- with AA residues lining the water channels. Both anions charge-neutralize protons and shepherd them to the lumen using dry aqueous channels.
Collapse
Affiliation(s)
- Colin Gates
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Computational Biology and Molecular Biophysics, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Biochemistry, Loyola University Chicago, IL 60660, USA
| | - Jonah M Williams
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - Gennady Ananyev
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - G Charles Dismukes
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, NJ 08854, USA.
| |
Collapse
|
35
|
Hussein R, Ibrahim M, Bhowmick A, Simon PS, Bogacz I, Doyle MD, Dobbek H, Zouni A, Messinger J, Yachandra VK, Kern JF, Yano J. Evolutionary diversity of proton and water channels on the oxidizing side of photosystem II and their relevance to function. PHOTOSYNTHESIS RESEARCH 2023; 158:91-107. [PMID: 37266800 PMCID: PMC10684718 DOI: 10.1007/s11120-023-01018-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/29/2023] [Indexed: 06/03/2023]
Abstract
One of the reasons for the high efficiency and selectivity of biological catalysts arise from their ability to control the pathways of substrates and products using protein channels, and by modulating the transport in the channels using the interaction with the protein residues and the water/hydrogen-bonding network. This process is clearly demonstrated in Photosystem II (PS II), where its light-driven water oxidation reaction catalyzed by the Mn4CaO5 cluster occurs deep inside the protein complex and thus requires the transport of two water molecules to and four protons from the metal center to the bulk water. Based on the recent advances in structural studies of PS II from X-ray crystallography and cryo-electron microscopy, in this review we compare the channels that have been proposed to facilitate this mass transport in cyanobacteria, red and green algae, diatoms, and higher plants. The three major channels (O1, O4, and Cl1 channels) are present in all species investigated; however, some differences exist in the reported structures that arise from the different composition and arrangement of membrane extrinsic subunits between the species. Among the three channels, the Cl1 channel, including the proton gate, is the most conserved among all photosynthetic species. We also found at least one branch for the O1 channel in all organisms, extending all the way from Ca/O1 via the 'water wheel' to the lumen. However, the extending path after the water wheel varies between most species. The O4 channel is, like the Cl1 channel, highly conserved among all species while having different orientations at the end of the path near the bulk. The comparison suggests that the previously proposed functionality of the channels in T. vestitus (Ibrahim et al., Proc Natl Acad Sci USA 117:12624-12635, 2020; Hussein et al., Nat Commun 12:6531, 2021) is conserved through the species, i.e. the O1-like channel is used for substrate water intake, and the tighter Cl1 and O4 channels for proton release. The comparison does not eliminate the potential role of O4 channel as a water intake channel. However, the highly ordered hydrogen-bonded water wire connected to the Mn4CaO5 cluster via the O4 may strongly suggest that it functions in proton release, especially during the S0 → S1 transition (Saito et al., Nat Commun 6:8488, 2015; Kern et al., Nature 563:421-425, 2018; Ibrahim et al., Proc Natl Acad Sci USA 117:12624-12635, 2020; Sakashita et al., Phys Chem Chem Phys 22:15831-15841, 2020; Hussein et al., Nat Commun 12:6531, 2021).
Collapse
Affiliation(s)
- Rana Hussein
- Department of Biology, Humboldt-Universität Zu Berlin, 10099, Berlin, Germany.
| | - Mohamed Ibrahim
- Department of Biology, Humboldt-Universität Zu Berlin, 10099, Berlin, Germany
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Philipp S Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Margaret D Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Holger Dobbek
- Department of Biology, Humboldt-Universität Zu Berlin, 10099, Berlin, Germany
| | - Athina Zouni
- Department of Biology, Humboldt-Universität Zu Berlin, 10099, Berlin, Germany
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, SE 75120, Uppsala, Sweden
- Department of Chemistry, Umeå University, SE 90187, Umeå, Sweden
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
36
|
Doronin IA, Bushnev SO, Vasilov RG, Tsygankov AA. Photosystem II for photoelectrochemical hydrogen production. Biophys Rev 2023; 15:907-920. [PMID: 37975003 PMCID: PMC10643564 DOI: 10.1007/s12551-023-01139-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/03/2023] [Indexed: 11/19/2023] Open
Abstract
Water is a primary source of electrons and protons for photosynthetic organisms. For the production of hydrogen through the process of mimicking natural photosynthesis, photosystem II (PSII)-based hybrid photosynthetic systems have been created, both with and without an external voltage source. In the past 30 years, various PSII immobilization techniques have been proposed, and redox polymers have been created for charge transfer from PSII. This review considers the main components of photosynthetic systems, methods for evaluating efficiency, implemented systems and the ways to improve them. Recently, low-overpotential catalysts have emerged that do not contain precious metals, which could ultimately replace Pt and Ir catalysts and make water electrolysis cheaper. However, PSII competes with semiconductor analogues that are less efficient but more stable. Methods originally created for sensors also allow for the use of PSII as a component of a photoanode. To date, charge transfer from PSII remains a bottleneck for such systems. Novel data about action mechanism of artificial electron acceptors in PSII could develop redox polymers to level out mass transport limitations. Hydrogen-producing systems based on PSII have allowed to work out processes in artificial photosynthesis, investigate its features and limitations. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01139-5.
Collapse
Affiliation(s)
- Ivan A. Doronin
- National Research Centre “Kurchatov Institute”, Kurchatova sq., 1, Moscow, 123182 Russia
- Federal Research Center “Pushchino’s center of Biological Research, of Basic Biological Problems of Russian Academy of Sciences, Institutskaya st 2, Moscow, 142290 Russia
| | - Sergey O. Bushnev
- National Research Centre “Kurchatov Institute”, Kurchatova sq., 1, Moscow, 123182 Russia
| | - Raif G. Vasilov
- National Research Centre “Kurchatov Institute”, Kurchatova sq., 1, Moscow, 123182 Russia
| | - Anatoly A. Tsygankov
- Federal Research Center “Pushchino’s center of Biological Research, of Basic Biological Problems of Russian Academy of Sciences, Institutskaya st 2, Moscow, 142290 Russia
| |
Collapse
|
37
|
Khaing EP, Eaton-Rye JJ. Lys264 of the D2 Protein Performs a Dual Role in Photosystem II Modifying Assembly and Electron Transfer through the Quinone-Iron Acceptor Complex. Biochemistry 2023; 62:2738-2750. [PMID: 37606628 DOI: 10.1021/acs.biochem.3c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Bicarbonate (HCO3-) binding regulates electron flow between the primary (QA) and secondary (QB) plastoquinone electron acceptors of Photosystem II (PS II). Lys264 of the D2 subunit of PS II contributes to a hydrogen-bond network that stabilizes HCO3- ligation to the non-heme iron in the QA-Fe-QB complex. Using the cyanobacterium Synechocystis sp. PCC 6803, alanine and glutamate were introduced to create the K264A and K264E mutants. Photoautotrophic growth was slowed in K264E cells but not in the K264A strain. Both mutants accumulated an unassembled CP43 precomplex as well as the CP43-lacking RC47 assembly intermediate, indicating weakened binding of the CP43 precomplex to RC47. Assembly was impeded more in K264E cells than in the K264A strain, but K264A cells were more susceptible to high-light-induced photodamage when assayed using PS II-specific electron acceptors. Furthermore, an impaired repair mechanism was observed in the K264A mutant in protein labeling experiments. Unexpectedly, unlike the K264A strain, the K264E mutant displayed inhibited oxygen evolution following high-light exposure when HCO3- was added to support whole chain electron transport. In both mutants, the decay of chlorophyll fluorescence was slowed, indicating impaired electron transfer between QA and QB. Furthermore, the fluorescence decay kinetics in the K264E strain were insensitive to addition of either formate or HCO3-, whereas HCO3--reversible formate-induced inhibition in the K264A mutant was observed. Exchange of plastoquinol with the membrane plastoquinone pool at the QB-binding site was also retarded in both mutants. Hence, D2-Lys264 possesses key roles in both assembly and activity of PS II.
Collapse
Affiliation(s)
- Ei Phyo Khaing
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
38
|
Hu J, Zhang N, Srinivasan B, Yang J, Tang K, Zhang L, Liu X, Zhang X. Photosynthetic response mechanism to polybrominated diphenyl ether exposure in Chlorella pyrenoidosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115245. [PMID: 37451097 DOI: 10.1016/j.ecoenv.2023.115245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Polybrominated diphenyl ether (PBDE) contamination is common in aquatic environments and can severely damage aquatic organisms. However, there is a lack of information on the response and self-adaptation mechanisms of these organisms. Chlorella pyrenoidosa was treated with 2,2',4,4'-tetrabromodiphenyl ether (BDE47), causing significant growth inhibition, pigment reduction, oxidative stress, and chloroplast atrophy. Photosynthetic damage contributed to inhibition, as indicated by Fv/Fm, Chl a fluorescence induction, photosynthetic oxygen evolution activity, and photosystem subunit stoichiometry. Here, Chl a fluorescence induction and quinone electron acceptor (QA-) reoxidation kinetics showed that the PSII donor and acceptor sides were insensitive to BDE47. Quantitative analyses of D1 and PsaD proteins illustrated that PSII and PSI complexes were the main primary targets of photosynthesis inhibition by BDE47. Significant modulation of PSII complex might have been caused by the potential binding of BDE47 on D1 protein, and molecular docking was performed to investigate this. Increased activation of antioxidant defense systems and photosystem repair as a function of exposure time indicated a positive resistance to BDE47. After a 5-day exposure, 23 % of BDE47 was metabolized. Our findings suggest that C. pyrenoidosa has potential as a bioremediator for wastewater-borne PBDEs and can improve our understanding of ecological risks to microalgae.
Collapse
Affiliation(s)
- Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Ning Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | | | - Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Kaixin Tang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lifei Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xueli Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xin Zhang
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| |
Collapse
|
39
|
Zhao Z, Vercellino I, Knoppová J, Sobotka R, Murray JW, Nixon PJ, Sazanov LA, Komenda J. The Ycf48 accessory factor occupies the site of the oxygen-evolving manganese cluster during photosystem II biogenesis. Nat Commun 2023; 14:4681. [PMID: 37542031 PMCID: PMC10403576 DOI: 10.1038/s41467-023-40388-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
Robust oxygenic photosynthesis requires a suite of accessory factors to ensure efficient assembly and repair of the oxygen-evolving photosystem two (PSII) complex. The highly conserved Ycf48 assembly factor binds to the newly synthesized D1 reaction center polypeptide and promotes the initial steps of PSII assembly, but its binding site is unclear. Here we use cryo-electron microscopy to determine the structure of a cyanobacterial PSII D1/D2 reaction center assembly complex with Ycf48 attached. Ycf48, a 7-bladed beta propeller, binds to the amino-acid residues of D1 that ultimately ligate the water-oxidising Mn4CaO5 cluster, thereby preventing the premature binding of Mn2+ and Ca2+ ions and protecting the site from damage. Interactions with D2 help explain how Ycf48 promotes assembly of the D1/D2 complex. Overall, our work provides valuable insights into the early stages of PSII assembly and the structural changes that create the binding site for the Mn4CaO5 cluster.
Collapse
Affiliation(s)
- Ziyu Zhao
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, S. Kensington Campus, London, SW7 2AZ, UK
| | - Irene Vercellino
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
- Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Jana Knoppová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, Třeboň, 379 81, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, Třeboň, 379 81, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budĕjovice, 37005, Czech Republic
| | - James W Murray
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, S. Kensington Campus, London, SW7 2AZ, UK
| | - Peter J Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, S. Kensington Campus, London, SW7 2AZ, UK.
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria.
| | - Josef Komenda
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, Třeboň, 379 81, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budĕjovice, 37005, Czech Republic.
| |
Collapse
|
40
|
Shevela D, Kern JF, Govindjee G, Messinger J. Solar energy conversion by photosystem II: principles and structures. PHOTOSYNTHESIS RESEARCH 2023; 156:279-307. [PMID: 36826741 PMCID: PMC10203033 DOI: 10.1007/s11120-022-00991-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/01/2022] [Indexed: 05/23/2023]
Abstract
Photosynthetic water oxidation by Photosystem II (PSII) is a fascinating process because it sustains life on Earth and serves as a blue print for scalable synthetic catalysts required for renewable energy applications. The biophysical, computational, and structural description of this process, which started more than 50 years ago, has made tremendous progress over the past two decades, with its high-resolution crystal structures being available not only of the dark-stable state of PSII, but of all the semi-stable reaction intermediates and even some transient states. Here, we summarize the current knowledge on PSII with emphasis on the basic principles that govern the conversion of light energy to chemical energy in PSII, as well as on the illustration of the molecular structures that enable these reactions. The important remaining questions regarding the mechanism of biological water oxidation are highlighted, and one possible pathway for this fundamental reaction is described at a molecular level.
Collapse
Affiliation(s)
- Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden.
| |
Collapse
|
41
|
Chakarawet K, Debus RJ, Britt RD. Mutation of a metal ligand stabilizes the high-spin form of the S 2 state in the O 2-producing Mn 4CaO 5 cluster of photosystem II. PHOTOSYNTHESIS RESEARCH 2023; 156:309-314. [PMID: 36653579 DOI: 10.1007/s11120-023-00998-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/09/2023] [Indexed: 05/23/2023]
Abstract
The residue D1-D170 bridges Mn4 with the Ca ion in the O2-evolving Mn4CaO5 cluster of Photosystem II. Recently, the D1-D170E mutation was shown to substantially alter the Sn+1-minus-Sn FTIR difference spectra [Debus RJ (2021) Biochemistry 60:3841-3855]. The mutation was proposed to alter the equilibrium between different Jahn-Teller conformers of the S1 state such that (i) a different S1 state conformer is stabilized in D1-D170E than in wild-type and (ii) the S1 to S2 transition in D1-D170E produces a high-spin form of the S2 state rather than the low-spin form that is produced in wild-type. In this study, we employed EPR spectroscopy to test if a high-spin form of the S2 state is formed preferentially in D1-D170E PSII. Our data show that illumination of dark-adapted D1-D170E PSII core complexes does indeed produce a high-spin form of the S2 state rather than the low-spin multiline form that is produced in wild-type. This observation provides further experimental support for a change in the equilibrium between S state conformers in both the S1 and S2 states in a site-directed mutant that retains substantial O2 evolving activity.
Collapse
Affiliation(s)
- Khetpakorn Chakarawet
- Department of Chemistry, University of California, Davis, CA, 95616, USA
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Richard J Debus
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA.
| | - R David Britt
- Department of Chemistry, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
42
|
Kamada S, Nakajima Y, Shen JR. Structural insights into the action mechanisms of artificial electron acceptors in photosystem II. J Biol Chem 2023:104839. [PMID: 37209822 PMCID: PMC10300377 DOI: 10.1016/j.jbc.2023.104839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023] Open
Abstract
Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to QB, a plastoquinone (PQ) molecule bound to the D1 subunit of PSII. Many artificial electron acceptors (AEAs) with similar molecular structures to PQ can accept electrons from PSII. However, the molecular mechanism by which AEAs act on PSII is unclear. Here, we solved the crystal structure of PSII treated with three different AEAs, 2,5-dibromo-1,4-benzoquinone, 2,6-dichloro-1,4-benzoquinone, and 2-phenyl-1,4-benzoquinone, at 1.95-2.10 Å resolution. Our results show that all AEAs substitute for QB and are bound to the QB-binding site (QB site) to receive electrons, but their binding strengths are different, resulting in differences in their efficiencies to accept electrons. The acceptor 2-phenyl-1,4-benzoquinone binds most weakly to the QB site, and showed the highest oxygen-evolving activity, implying a reverse relationship between the binding strength and oxygen-evolving activity. In addition, a novel quinone binding site, designated the QD site, was discovered, which is located in the vicinity of QB site and close to QC site, a binding site reported previously. This QD site is expected to play a role as a channel or a storage site for quinones to be transported to the QB site. These results provide the structural basis for elucidating the actions of AEAs and exchange mechanism of QB in PSII, and also provide information for the design of more efficient electron acceptors.
Collapse
Affiliation(s)
- Shinji Kamada
- Faculty of Science, Okayama University, Okayama 700-8503, Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8503, Japan.
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8503, Japan.
| |
Collapse
|
43
|
Biswas S, Niedzwiedzki DM, Pakrasi HB. Energy dissipation efficiency in the CP43 assembly intermediate complex of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148982. [PMID: 37146928 DOI: 10.1016/j.bbabio.2023.148982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023]
Abstract
Photosystem II in oxygenic organisms is a large membrane bound rapidly turning over pigment protein complex. During its biogenesis, multiple assembly intermediates are formed, including the CP43-preassembly complex (pCP43). To understand the energy transfer dynamics in pCP43, we first engineered a His-tagged version of the CP43 in a CP47-less strain of the cyanobacterium Synechocystis 6803. Isolated pCP43 from this engineered strain was subjected to advanced spectroscopic analysis to evaluate its excitation energy dissipation characteristics. These included measurements of steady-state absorption and fluorescence emission spectra for which correlation was tested with Stepanov relation. Comparison of fluorescence excitation and absorptance spectra determined that efficiency of energy transfer from β-carotene to chlorophyll a is 39 %. Time-resolved fluorescence images of pCP43-bound Chl a were recorded on streak camera, and fluorescence decay dynamics were evaluated with global fitting. These demonstrated that the decay kinetics strongly depends on temperature and buffer used to disperse the protein sample and fluorescence decay lifetime was estimated in 3.2-5.7 ns time range, depending on conditions. The pCP43 complex was also investigated with femtosecond and nanosecond time-resolved absorption spectroscopy upon excitation of Chl a and β-carotene to reveal pathways of singlet excitation relaxation/decay, Chl a triplet dynamics and Chl a → β-carotene triplet state sensitization process. The latter demonstrated that Chl a triplet in the pCP43 complex is not efficiently quenched by carotenoids. Finally, detailed kinetic analysis of the rise of the population of β-carotene triplets determined that the time constant of the carotenoid triplet sensitization is 40 ns.
Collapse
Affiliation(s)
- Sandeep Biswas
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University, St. Louis, MO 63130, USA; Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, MO 63130, USA.
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
44
|
Boussac A, Sellés J, Sugiura M. Energetics and proton release in photosystem II from Thermosynechococcus elongatus with a D1 protein encoded by either the psbA 2 or psbA 3 gene. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148979. [PMID: 37080330 DOI: 10.1016/j.bbabio.2023.148979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
In the cyanobacterium Thermosynechococcus elongatus, there are three psbA genes coding for the Photosystem II (PSII) D1 subunit that interacts with most of the main cofactors involved in the electron transfers. Recently, the 3D crystal structures of both PsbA2-PSII and PsbA3-PSII have been solved [Nakajima et al., J. Biol. Chem. 298 (2022) 102668.]. It was proposed that the loss of one hydrogen bond of PheD1 due to the D1-Y147F exchange in PsbA2-PSII resulted in a more negative Em of PheD1 in PsbA2-PSII when compared to PsbA3-PSII. In addition, the loss of two water molecules in the Cl-1 channel was attributed to the D1-P173M substitution in PsbA2-PSII. This exchange, by narrowing the Cl-1 proton channel, could be at the origin of a slowing down of the proton release. Here, we have continued the characterization of PsbA2-PSII by measuring the thermoluminescence from the S2QA-/DCMU charge recombination and by measuring proton release kinetics using time-resolved absorption changes of the dye bromocresol purple. It was found that i) the Em of PheD1-•/PheD1 was decreased by ~30 mV in PsbA2-PSII when compared to PsbA3-PSII and ii) the kinetics of the proton release into the bulk was significantly slowed down in PsbA2-PSII in the S2TyrZ• to S3TyrZ and S3TyrZ• → (S3TyrZ•)' transitions. This slowing down was partially reversed by the PsbA2/M173P mutation and induced by the PsbA3/P173M mutation thus confirming a role of the D1-173 residue in the egress of protons trough the Cl-1 channel.
Collapse
Affiliation(s)
- Alain Boussac
- I2BC, UMR CNRS 9198, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | - Julien Sellés
- Institut de Biologie Physico-Chimique, UMR CNRS 7141 and Sorbonne Université, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Miwa Sugiura
- Proteo-Science Research Center, and Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
45
|
You X, Zhang X, Cheng J, Xiao Y, Ma J, Sun S, Zhang X, Wang HW, Sui SF. In situ structure of the red algal phycobilisome-PSII-PSI-LHC megacomplex. Nature 2023; 616:199-206. [PMID: 36922595 DOI: 10.1038/s41586-023-05831-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023]
Abstract
In oxygenic photosynthetic organisms, light energy is captured by antenna systems and transferred to photosystem II (PSII) and photosystem I (PSI) to drive photosynthesis1,2. The antenna systems of red algae consist of soluble phycobilisomes (PBSs) and transmembrane light-harvesting complexes (LHCs)3. Excitation energy transfer pathways from PBS to photosystems remain unclear owing to the lack of structural information. Here we present in situ structures of PBS-PSII-PSI-LHC megacomplexes from the red alga Porphyridium purpureum at near-atomic resolution using cryogenic electron tomography and in situ single-particle analysis4, providing interaction details between PBS, PSII and PSI. The structures reveal several unidentified and incomplete proteins and their roles in the assembly of the megacomplex, as well as a huge and sophisticated pigment network. This work provides a solid structural basis for unravelling the mechanisms of PBS-PSII-PSI-LHC megacomplex assembly, efficient energy transfer from PBS to the two photosystems, and regulation of energy distribution between PSII and PSI.
Collapse
Affiliation(s)
- Xin You
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanan Xiao
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China
| | - Jianfei Ma
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
46
|
Amin M. Predicting the oxidation states of Mn ions in the oxygen-evolving complex of photosystem II using supervised and unsupervised machine learning. PHOTOSYNTHESIS RESEARCH 2023; 156:89-100. [PMID: 35896927 PMCID: PMC10070209 DOI: 10.1007/s11120-022-00941-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/13/2022] [Indexed: 05/21/2023]
Abstract
Serial Femtosecond Crystallography at the X-ray Free Electron Laser (XFEL) sources enabled the imaging of the catalytic intermediates of the oxygen evolution reaction of Photosystem II (PSII). However, due to the incoherent transition of the S-states, the resolved structures are a convolution from different catalytic states. Here, we train Decision Tree Classifier and K-means clustering models on Mn compounds obtained from the Cambridge Crystallographic Database to predict the S-state of the X-ray, XFEL, and CryoEM structures by predicting the Mn's oxidation states in the oxygen-evolving complex. The model agrees mostly with the XFEL structures in the dark S1 state. However, significant discrepancies are observed for the excited XFEL states (S2, S3, and S0) and the dark states of the X-ray and CryoEM structures. Furthermore, there is a mismatch between the predicted S-states within the two monomers of the same dimer, mainly in the excited states. We validated our model against other metalloenzymes, the valence bond model and the Mn spin densities calculated using density functional theory for two of the mismatched predictions of PSII. The model suggests designing a more optimized sample delivery and illumiation systems are crucial to precisely resolve the geometry of the advanced S-states to overcome the noncoherent S-state transition. In addition, significant radiation damage is observed in X-ray and CryoEM structures, particularly at the dangler Mn center (Mn4). Our model represents a valuable tool for investigating the electronic structure of the catalytic metal cluster of PSII to understand the water splitting mechanism.
Collapse
Affiliation(s)
- Muhamed Amin
- Department of Sciences, University College Groningen, University of Groningen, Hoendiepskade 23/24, 9718 BG, Groningen, The Netherlands.
- Rijksuniversiteit Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.
| |
Collapse
|
47
|
Jackson PJ, Hitchcock A, Brindley AA, Dickman MJ, Hunter CN. Absolute quantification of cellular levels of photosynthesis-related proteins in Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2023; 155:219-245. [PMID: 36542271 PMCID: PMC9958174 DOI: 10.1007/s11120-022-00990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Quantifying cellular components is a basic and important step for understanding how a cell works, how it responds to environmental changes, and for re-engineering cells to produce valuable metabolites and increased biomass. We quantified proteins in the model cyanobacterium Synechocystis sp. PCC 6803 given the general importance of cyanobacteria for global photosynthesis, for synthetic biology and biotechnology research, and their ancestral relationship to the chloroplasts of plants. Four mass spectrometry methods were used to quantify cellular components involved in the biosynthesis of chlorophyll, carotenoid and bilin pigments, membrane assembly, the light reactions of photosynthesis, fixation of carbon dioxide and nitrogen, and hydrogen and sulfur metabolism. Components of biosynthetic pathways, such as those for chlorophyll or for photosystem II assembly, range between 1000 and 10,000 copies per cell, but can be tenfold higher for CO2 fixation enzymes. The most abundant subunits are those for photosystem I, with around 100,000 copies per cell, approximately 2 to fivefold higher than for photosystem II and ATP synthase, and 5-20 fold more than for the cytochrome b6f complex. Disparities between numbers of pathway enzymes, between components of electron transfer chains, and between subunits within complexes indicate possible control points for biosynthetic processes, bioenergetic reactions and for the assembly of multisubunit complexes.
Collapse
Affiliation(s)
- Philip J Jackson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK.
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Amanda A Brindley
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - C Neil Hunter
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
48
|
Tay JW, Cameron JC. Asymmetric survival in single-cell lineages of cyanobacteria in response to photodamage. PHOTOSYNTHESIS RESEARCH 2023; 155:289-297. [PMID: 36581718 DOI: 10.1007/s11120-022-00986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Oxygenic photosynthesis is driven by the coupled action of the light-dependent pigment-protein complexes, photosystem I and II, located within the internal thylakoid membrane system. However, photosystem II is known to be prone to photooxidative damage. Thus, photosynthetic organisms have evolved a repair cycle to continuously replace the damaged proteins in photosystem II. However, it has remained difficult to deconvolute the damage and repair processes using traditional ensemble approaches. Here, we demonstrate an automated approach using time-lapse fluorescence microscopy and computational image analysis to study the dynamics and effects of photodamage in single cells at subcellular resolution in cyanobacteria. By growing cells in a two-dimensional layer, we avoid shading effects, thereby generating uniform and reproducible growth conditions. Using this platform, we analyzed the growth and physiology of multiple strains simultaneously under defined photoinhibitory conditions stimulated by UV-A light. Our results reveal an asymmetric cellular response to photodamage between sibling cells and the generation of an elusive subcellular structure, here named a 'photoendosome,' derived from the thylakoid which could indicate the presence of a previously unknown photoprotective mechanism. We anticipate these results to be a starting point for further studies to better understand photodamage and repair at the single-cell level.
Collapse
Affiliation(s)
- Jian Wei Tay
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, CO, 80309, USA
| | - Jeffrey C Cameron
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA.
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA.
- National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
49
|
Gisriel CJ, Shen G, Flesher DA, Kurashov V, Golbeck JH, Brudvig GW, Amin M, Bryant DA. Structure of a dimeric photosystem II complex from a cyanobacterium acclimated to far-red light. J Biol Chem 2023; 299:102815. [PMID: 36549647 PMCID: PMC9843442 DOI: 10.1016/j.jbc.2022.102815] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Photosystem II (PSII) is the water-splitting enzyme central to oxygenic photosynthesis. To drive water oxidation, light is harvested by accessory pigments, mostly chlorophyll (Chl) a molecules, which absorb visible light (400-700 nm). Some cyanobacteria facultatively acclimate to shaded environments by altering their photosynthetic machinery to additionally absorb far-red light (FRL, 700-800 nm), a process termed far-red light photoacclimation or FaRLiP. During far-red light photoacclimation, FRL-PSII is assembled with FRL-specific isoforms of the subunits PsbA, PsbB, PsbC, PsbD, and PsbH, and some Chl-binding sites contain Chls d or f instead of the usual Chl a. The structure of an apo-FRL-PSII monomer lacking the FRL-specific PsbH subunit has previously been determined, but visualization of the dimeric complex has remained elusive. Here, we report the cryo-EM structure of a dimeric FRL-PSII complex. The site assignments for Chls d and f are consistent with those assigned in the previous apo-FRL-PSII monomeric structure. All sites that bind Chl d or Chl f at high occupancy exhibit a FRL-specific interaction of the formyl moiety of the Chl d or Chl f with the protein environment, which in some cases involves a phenylalanine sidechain. The structure retains the FRL-specific PsbH2 subunit, which appears to alter the energetic landscape of FRL-PSII, redirecting energy transfer from the phycobiliprotein complex to a Chl f molecule bound by PsbB2 that acts as a bridge for energy transfer to the electron transfer chain. Collectively, these observations extend our previous understanding of the structure-function relationship that allows PSII to function using lower energy FRL.
Collapse
Affiliation(s)
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - David A Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Muhamed Amin
- Department of Sciences, University College Groningen, University of Groningen, Groningen, the Netherlands; Rijksuniversiteit Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
50
|
Lubitz W, Pantazis DA, Cox N. Water oxidation in oxygenic photosynthesis studied by magnetic resonance techniques. FEBS Lett 2023; 597:6-29. [PMID: 36409002 DOI: 10.1002/1873-3468.14543] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
The understanding of light-induced biological water oxidation in oxygenic photosynthesis is of great importance both for biology and (bio)technological applications. The chemically difficult multistep reaction takes place at a unique protein-bound tetra-manganese/calcium cluster in photosystem II whose structure has been elucidated by X-ray crystallography (Umena et al. Nature 2011, 473, 55). The cluster moves through several intermediate states in the catalytic cycle. A detailed understanding of these intermediates requires information about the spatial and electronic structure of the Mn4 Ca complex; the latter is only available from spectroscopic techniques. Here, the important role of Electron Paramagnetic Resonance (EPR) and related double resonance techniques (ENDOR, EDNMR), complemented by quantum chemical calculations, is described. This has led to the elucidation of the cluster's redox and protonation states, the valence and spin states of the manganese ions and the interactions between them, and contributed substantially to the understanding of the role of the protein surrounding, as well as the binding and processing of the substrate water molecules, the O-O bond formation and dioxygen release. Based on these data, models for the water oxidation cycle are developed.
Collapse
Affiliation(s)
- Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim/Ruhr, Germany
| | | | - Nicholas Cox
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| |
Collapse
|