1
|
Luo R, Hu L, Wang D, Xiao K, Liu X, Kang Y, Wang Q. Enhanced biosynthesis of 6-aminocaproic acid in engineered Escherichia coli with artificial protein cage-organized enzymatic cascades. BIORESOURCE TECHNOLOGY 2025; 431:132641. [PMID: 40345342 DOI: 10.1016/j.biortech.2025.132641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 04/22/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Microbial synthesis of 6-aminocaproic acid (6-ACA), a key nylon-6 monomer, was the focus of this study. Our previous work on 6-ACA biosynthesis using an artificial iterative carbon-chain-extension cycle showed potential, but the impact of intermediates on metabolism remained unresolved. To address this, a bacterial microcompartment (BMC) was engineered in Escherichia coli to encapsulate 6-ACA synthesis enzymes, effectively controlling the release of intermediate products. This intervention led to a 90.85 % increase in cell growth and a final 6-ACA yield increase from 46.76 mg/L to 1.12 g/L in a 1 L fermentor. The redesigned BMC demonstrated potential in regulating cascade enzymatic catalysis, particularly in managing intermediates that could impact enzyme proteins, cause cytotoxicity, or DNA damage in cells. This work highlights the potential of the redesigned BMC in enhancing production by controlling the effects of intermediates on cellular processes.
Collapse
Affiliation(s)
- Ruoshi Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China; CAS Key Lab Syst Microbial Biotechnol, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin 300308, PR China
| | - Lin Hu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Dan Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| | - Kaixing Xiao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Xuemei Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Yaqi Kang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Qinhong Wang
- CAS Key Lab Syst Microbial Biotechnol, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin 300308, PR China.
| |
Collapse
|
2
|
Young EJ, Kirst H, Dwyer ME, Vermaas JV, Kerfeld CA. Quantitative Measurement of Molecular Permeability to a Synthetic Bacterial Microcompartment Shell System. ACS Synth Biol 2025; 14:1405-1413. [PMID: 39808735 PMCID: PMC12090211 DOI: 10.1021/acssynbio.4c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025]
Abstract
Naturally evolved and synthetically designed forms of compartmentalization benefit encapsulated function by increasing local concentrations of substrates and protecting cargo from destabilizing environments and inhibitors. Crucial to understanding the fundamental principles of compartmentalization are experimental systems enabling the measurement of the permeability rates of small molecules. Here, we report the experimental measurement of the small-molecule permeability of a 40 nm icosahedral bacterial microcompartment shell. This was accomplished by heterologous loading of light-producing luciferase enzymes and kinetic measurement of luminescence using stopped-flow spectrophotometry. Compared to free enzyme, the luminescence signal kinetics was slower when the luciferase was encapsulated in bacterial microcompartment shells. The results indicate that substrates and products can still exchange across the shell, and modeling of the experimental data suggest that a 50× permeability rate increase occurs when shell vertices were vacant. Overall, our results suggest design considerations for the construction of heterologous bacterial microcompartment shell systems and compartmentalized function at the nanoscale.
Collapse
Affiliation(s)
- Eric J. Young
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94702, United States
| | - Henning Kirst
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94702, United States
- Departamento
de Genética, Campus de Excelencia Internacional Agroalimentario
ceiA3, Universidad de Córdoba, Córdoba 14071, Spain
- Instituto
Maimónides de Investigación Biomédica de Córdoba
(IMIBIC), Córdoba 14004, Spain
| | - Matthew E. Dwyer
- MSU-DOE Plant
Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Josh V. Vermaas
- MSU-DOE Plant
Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
- Biochemistry
and Molecular Biology Department, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Cheryl A. Kerfeld
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94702, United States
- MSU-DOE Plant
Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
- Biochemistry
and Molecular Biology Department, Michigan
State University, East Lansing, Michigan 48824, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702, United States
| |
Collapse
|
3
|
Palmero BJ, Gamero E, Mangan NM, Tullman-Ercek D. Encapsulation of select violacein pathway enzymes in the 1,2-propanediol utilization bacterial microcompartment to divert pathway flux. Metab Eng 2025; 91:91-102. [PMID: 40187678 DOI: 10.1016/j.ymben.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/25/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
A continual goal in metabolic engineering is directing pathway flux to desired products and avoiding loss of pathway intermediates to competing pathways. Encapsulation of the pathway is a possible solution, as it creates a diffusion barrier between pathway intermediates and competing enzymes. It is hypothesized that bacteria use organelles known as bacterial microcompartments - proteinaceous shells encapsulating a metabolic pathway - for this purpose. We aim to determine to what degree this hypothesized benefit is conferred to encapsulated pathways. To this end, we used bacterial microcompartments to encapsulate select enzymes from the violacein pathway, which is composed of five enzymes that produce violacein as the main product and deoxyviolacein as a side product. Importantly, we studied the pathway in a cell-free context, allowing us to hold constant the concentration of unencapsulated and encapsulated enzymes and increase our control over reaction conditions. The VioE enzyme is a branch point in that it makes the precursor for both violacein and deoxyviolacein, the VioC enzyme is required for production of deoxyviolacein, and the VioD enzyme is required for violacein production. When we encapsulated VioE and VioC and left VioD unencapsulated, the product profile shifted toward deoxyviolacein and away from violacein compared to when VioC and VioD were both unencapsulated. This work provides the first fully quantitative evidence that microcompartment-based encapsulation can be used to divert pathway flux to the encapsulated pathway. It provides insight into why certain pathways are encapsulated natively and could be leveraged for metabolic engineering applications.
Collapse
Affiliation(s)
- Brett Jeffrey Palmero
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL, United States
| | - Emily Gamero
- Master of Biotechnology Program, Northwestern University, Evanston, IL, United States
| | - Niall M Mangan
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, United States; Center for Synthetic Biology, Northwestern University, Evanston, IL, United States
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States; Center for Synthetic Biology, Northwestern University, Evanston, IL, United States.
| |
Collapse
|
4
|
Johnson ER, Joseph MR, Tullman-Ercek D. Engineering bacterial microcompartments to enable sustainable microbial bioproduction from C1 greenhouse gases. Curr Opin Biotechnol 2025; 93:103299. [PMID: 40158330 DOI: 10.1016/j.copbio.2025.103299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025]
Abstract
One-carbon (C1) greenhouse gases are the primary driver of global climate change. Fermenting these gases into higher-value products is an attractive strategy for climate action and sustainable development. C1 gas-fermenting bacteria are promising chassis organisms, but various technical challenges hinder scale-up to industrial production levels. Bacterial microcompartments (MCPs), proteinaceous organelles that encapsulate enzymatic pathways, may confer several metabolic benefits to increase the industrial potential of these bacteria. Many species of gas-fermenting bacteria are already predicted to natively produce MCPs. Here, we describe how these organelles can be identified and engineered to encapsulate pathways that convert C1 gases into valuable chemical products.
Collapse
Affiliation(s)
- Elizabeth R Johnson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Madeline R Joseph
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA; Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA.
| |
Collapse
|
5
|
Tefft N, Wang Y, Jussupow A, Feig M, TerAvest MA. Controlled Enzyme Cargo Loading in Engineered Bacterial Microcompartment Shells. Biochemistry 2025; 64:1285-1292. [PMID: 40044576 PMCID: PMC11924220 DOI: 10.1021/acs.biochem.4c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/12/2025]
Abstract
Bacterial microcompartments (BMCs) are nanometer-scale organelles with a protein-based shell that serve to colocalize and encapsulate metabolic enzymes. They may provide a range of benefits to improve pathway catalysis, including substrate channeling and selective permeability. Several groups are working toward using BMC shells as a platform for enhancing engineered metabolic pathways. The microcompartment shell of Haliangium ochraceum (HO) has emerged as a versatile and modular shell system that can be expressed and assembled outside its native host and with non-native cargo. Further, the HO shell has been modified to use the engineered protein conjugation system SpyCatcher-SpyTag for non-native cargo loading. Here, we used a model enzyme, triose phosphate isomerase (Tpi), to study non-native cargo loading into four HO shell variants and begin to understand maximal shell loading levels. We also measured activity of Tpi encapsulated in the HO shell variants and found that activity was determined by the amount of cargo loaded and was not strongly impacted by the predicted permeability of the shell variant to large molecules. All shell variants tested could be used to generate active, Tpi-loaded versions, but the simplest variants assembled most robustly. We propose that the simple variant is the most promising for continued development as a metabolic engineering platform.
Collapse
Affiliation(s)
- Nicholas
M. Tefft
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Yali Wang
- Department
of Microbiology, Genetics, and Immunology, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Alexander Jussupow
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Michael Feig
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Michaela A. TerAvest
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
6
|
Costantino M, Young EJ, Banerjee A, Kerfeld CA, Ghirlanda G. Interfacing bacterial microcompartment shell proteins with genetically encoded condensates. Protein Sci 2025; 34:e70061. [PMID: 39969154 PMCID: PMC11837282 DOI: 10.1002/pro.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/09/2025] [Accepted: 01/28/2025] [Indexed: 02/20/2025]
Abstract
Condensates formed by liquid-liquid phase separation are promising candidates for the development of synthetic cells and organelles. Here, we show that bacterial microcompartment shell proteins from Haliangium ochraceum (BMC-H) assemble into coatings on the surfaces of protein condensates formed by tandem RGG-RGG domains, an engineered construct derived from the intrinsically disordered region of the RNA helicase LAF-1. WT BMC-H proteins formed higher-order assemblies within RGG-RGG droplets; however, engineered BMC-H variants fused to RGG truncations formed coatings on droplet surfaces. These intrinsically disordered tags controlled the interaction with the condensed phase based on their length and sequence, and one of the designs, BMC-H-T2, assembled preferentially on the surface of the droplet and prevented droplet coalescence. The formation of the coatings is dependent on the pH and protein concentration; once formed, the coatings are stable and do not exchange with the dilute phase. Coated droplets could sequester and concentrate folded proteins, including TEV protease, with selectivity similar to uncoated droplets. Addition of TEV protease to coated droplets resulted in the digestion of RGG-RGG to RGG and a decrease in droplet diameter, but not in the dissolution of the coatings. BMC shell protein-coated protein condensates are entirely encodable and provide a way to control the properties of liquid-liquid phase-separated compartments in the context of synthetic biology.
Collapse
Affiliation(s)
| | - Eric J. Young
- Biochemistry and Molecular Biology DepartmentMichigan State UniversityEast LansingMichiganUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Abesh Banerjee
- School of Molecular SciencesArizona State UniversityTempeArizonaUSA
| | - Cheryl A. Kerfeld
- Biochemistry and Molecular Biology DepartmentMichigan State UniversityEast LansingMichiganUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- MSU‐DOE Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
| | | |
Collapse
|
7
|
Carpenter W, Lavania AA, Squires AH, Moerner WE. Label-Free Anti-Brownian Trapping of Single Nanoparticles in Solution. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:20275-20286. [PMID: 39634022 PMCID: PMC11613540 DOI: 10.1021/acs.jpcc.4c05878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Today, biomolecular nanoparticles are prevalent as diagnostic tools and molecular delivery carriers, and it is particularly useful to examine individuals within a sample population to quantify the variations between objects and directly observe the molecular dynamics involving these objects. Using interferometric scattering as a highly sensitive label-free detection scheme, we recently developed the interferometric scattering anti-Brownian electrokinetic (ISABEL) trap to hold a single nanoparticle in solution for extended optical observation. In this perspective, we describe how we implemented this trap, how it extends the capabilities of previous ABEL traps, and how we have begun to study individual carboxysomes, a fascinating biological carbon fixation nanocompartment. By monitoring single nanocompartments for seconds to minutes in the ISABEL trap using simultaneous interferometric scattering and fluorescence spectroscopy, we have demonstrated single-compartment mass measurements, cargo-loading trends, and redox sensing inside individual particles. These experiments benefit from rich multiplexed correlative measurements utilizing both scattering and fluorescence with many exciting future capabilities within reach.
Collapse
Affiliation(s)
- William
B. Carpenter
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Abhijit A. Lavania
- Department
of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Allison H. Squires
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Institute
for Biophysical Dynamics, University of
Chicago, Chicago, Illinois 60637, United States
- Chan
Zuckerberg Biohub Chicago, LLC, Chicago, Illinois 60642, United States
| | - W. E. Moerner
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Department
of Applied Physics, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
8
|
Dwyer ME, Sutter M, Kerfeld CA. Characterization of a widespread sugar phosphate-processing bacterial microcompartment. Commun Biol 2024; 7:1562. [PMID: 39580597 PMCID: PMC11585597 DOI: 10.1038/s42003-024-07287-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024] Open
Abstract
Many prokaryotes form Bacterial Microcompartments (BMCs) that encapsulate segments of specialized metabolic pathways to enhance catalysis. The various functions of metabolosomes, catabolic BMCs, are dictated by the signature enzyme that processes initial substrates of the confined pathway. The components and native functions of several metabolosomes have been experimentally characterized; however one of the most prevalent across all bacteria has yet to be studied. Sugar Phosphate Utilizing (SPU) BMC loci encode enzymes predicted to be involved in sugar phosphate metabolism. The SPU genetic loci are found in organisms occupying habitats ranging from soils to hot springs, highlighting the ubiquity of the SPU BMC. We bioinformatically characterized seven SPU subtypes, all which contain an enzyme unique to SPU BMCs, a deoxyribose 5-phosphate aldolase (DERA). Here, we define the fundamental characteristics of SPU BMCs and have expressed, purified, and characterized a set of SPU core enzymes. These include a protein-protein complex formed between a SPU BMC DERA and a predicted ribose 5-phosphate isomerase. Further, we show that the SPU BMC DERA is catalytically active and propose that it acts as the universal signature enzyme for the SPU BMC, with implications for fundamental understanding and biotechnological applications of SPU BMCs.
Collapse
Affiliation(s)
- Matthew E Dwyer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
9
|
Tefft NM, Wang Y, Jussupow A, Feig M, TerAvest MA. Controlled enzyme cargo loading in engineered bacterial microcompartment shells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619467. [PMID: 39484613 PMCID: PMC11526891 DOI: 10.1101/2024.10.21.619467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Bacterial microcompartments (BMCs) are nanometer-scale organelles with a protein-based shell that serve to co-localize and encapsulate metabolic enzymes. They may provide a range of benefits to improve pathway catalysis, including substrate channeling and selective permeability. Several groups are working toward using BMC shells as a platform for enhancing engineered metabolic pathways. The microcompartment shell of Haliangium ochraceum (HO) has emerged as a versatile and modular shell system that can be expressed and assembled outside its native host and with non-native cargo. Further, the HO shell has been modified to use the engineered protein conjugation system SpyCatcher-SpyTag for non-native cargo loading. Here, we used a model enzyme, triose phosphate isomerase (Tpi), to study non-native cargo loading into four HO shell variants and begin to understand maximal shell loading levels. We also measured activity of Tpi encapsulated in the HO shell variants and found that activity was determined by the amount of cargo loaded and was not strongly impacted by the predicted permeability of the shell variant to large molecules. All shell variants tested could be used to generate active, Tpi-loaded versions, but the simplest variants assembled most robustly. We propose that the simple variant is the most promising for continued development as a metabolic engineering platform.
Collapse
|
10
|
Raza S, Sarkar D, Chan LJG, Mae J, Sutter M, Petzold CJ, Kerfeld CA, Ralston CY, Gupta S, Vermaas JV. Comparative Pore Structure and Dynamics for Bacterial Microcompartment Shell Protein Assemblies in Sheets or Shells. ACS OMEGA 2024; 9:35503-35514. [PMID: 39184480 PMCID: PMC11339822 DOI: 10.1021/acsomega.4c02406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024]
Abstract
Bacterial microcompartments (BMCs) are protein-bound organelles found in some bacteria that encapsulate enzymes for enhanced catalytic activity. These compartments spatially sequester enzymes within semipermeable shell proteins, analogous to many membrane-bound organelles. The shell proteins assemble into multimeric tiles; hexamers, trimers, and pentamers, and these tiles self-assemble into larger assemblies with icosahedral symmetry. While icosahedral shells are the predominant form in vivo, the tiles can also form nanoscale cylinders or sheets. The individual multimeric tiles feature central pores that are key to regulating transport across the protein shell. Our primary interest is to quantify pore shape changes in response to alternative component morphologies at the nanoscale. We used molecular modeling tools to develop atomically detailed models for both planar sheets of tiles and curved structures representative of the complete shells found in vivo. Subsequently, these models were animated using classical molecular dynamics simulations. From the resulting trajectories, we analyzed the overall structural stability, water accessibility to individual residues, water residence time, and pore geometry for the hexameric and trimeric protein tiles from the Haliangium ochraceum model BMC shell. These exhaustive analyses suggest no substantial variation in pore structure or solvent accessibility between the flat and curved shell geometries. We additionally compare our analysis to hydroxyl radical footprinting data to serve as a check against our simulation results, highlighting specific residues where water molecules are bound for a long time. Although with little variation in morphology or water interaction, we propose that the planar and capsular morphology can be used interchangeably when studying permeability through BMC pores.
Collapse
Affiliation(s)
- Saad Raza
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Daipayan Sarkar
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Leanne Jade G. Chan
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Joshua Mae
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Markus Sutter
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher J. Petzold
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Cheryl A. Kerfeld
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Corie Y. Ralston
- Molecular
Foundry Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Sayan Gupta
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Josh V. Vermaas
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
11
|
Doron L, Kerfeld CA. Bacterial microcompartments as a next-generation metabolic engineering tool: utilizing nature's solution for confining challenging catabolic pathways. Biochem Soc Trans 2024; 52:997-1010. [PMID: 38813858 PMCID: PMC11346464 DOI: 10.1042/bst20230229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Advancements in synthetic biology have facilitated the incorporation of heterologous metabolic pathways into various bacterial chassis, leading to the synthesis of targeted bioproducts. However, total output from heterologous production pathways can suffer from low flux, enzyme promiscuity, formation of toxic intermediates, or intermediate loss to competing reactions, which ultimately hinder their full potential. The self-assembling, easy-to-modify, protein-based bacterial microcompartments (BMCs) offer a sophisticated way to overcome these obstacles by acting as an autonomous catalytic module decoupled from the cell's regulatory and metabolic networks. More than a decade of fundamental research on various types of BMCs, particularly structural studies of shells and their self-assembly, the recruitment of enzymes to BMC shell scaffolds, and the involvement of ancillary proteins such as transporters, regulators, and activating enzymes in the integration of BMCs into the cell's metabolism, has significantly moved the field forward. These advances have enabled bioengineers to design synthetic multi-enzyme BMCs to promote ethanol or hydrogen production, increase cellular polyphosphate levels, and convert glycerol to propanediol or formate to pyruvate. These pioneering efforts demonstrate the enormous potential of synthetic BMCs to encapsulate non-native multi-enzyme biochemical pathways for the synthesis of high-value products.
Collapse
Affiliation(s)
- Lior Doron
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
12
|
Trettel DS, Kerfeld CA, Gonzalez-Esquer CR. Dynamic structural determinants in bacterial microcompartment shells. Curr Opin Microbiol 2024; 80:102497. [PMID: 38909546 DOI: 10.1016/j.mib.2024.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024]
Abstract
Bacterial microcompartments (BMCs) are polyhedral structures that segregate enzymatic cargo from the cytosol via encapsulation within a protein shell. Unlike other biological polyhedra, such as viral capsids and encapsulins, BMC shells can exhibit a highly advantageous structural and functional plasticity, conforming to a variety of anabolic (CO2 fixation in carboxysomes) and catabolic (nutrient assimilation in metabolosomes) roles. Consequently, understanding the subunit properties and associated protein-protein interaction processes that guide shell assembly and function is a necessary step to fully harness BMCs as modular, biotechnological nanomachines. Here, we describe the recent insights into the dynamics of structural features of the key BMC domain (Pfam00936)-containing proteins, which serve as a structural template for BMC-H and BMC-T shell building blocks.
Collapse
Affiliation(s)
- Daniel S Trettel
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences group, Los Alamos, NM, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Cesar R Gonzalez-Esquer
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences group, Los Alamos, NM, USA.
| |
Collapse
|
13
|
Wang R, Su Y, Yang W, Zhang H, Wang J, Gao W. Enhanced precision and efficiency in metabolic regulation: Compartmentalized metabolic engineering. BIORESOURCE TECHNOLOGY 2024; 402:130786. [PMID: 38703958 DOI: 10.1016/j.biortech.2024.130786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Metabolic engineering has witnessed remarkable advancements, enabling successful large-scale, cost-effective and efficient production of numerous compounds. However, the predominant expression of heterologous genes in the cytoplasm poses limitations, such as low substrate concentration, metabolic competition and product toxicity. To overcome these challenges, compartmentalized metabolic engineering allows the spatial separation of metabolic pathways for the efficient and precise production of target compounds. Compartmentalized metabolic engineering and its common strategies are comprehensively described in this study, where various membranous compartments and membraneless compartments have been used for compartmentalization and constructive progress has been made. Additionally, the challenges and future directions are discussed in depth. This review is dedicated to providing compartmentalized, precise and efficient methods for metabolic production, and provides valuable guidance for further development in the field of metabolic engineering.
Collapse
Affiliation(s)
- Rubing Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Yaowu Su
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Wenqi Yang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Huanyu Zhang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
14
|
Abeysinghe AADT, Young EJ, Rowland AT, Dunshee LC, Urandur S, Sullivan MO, Kerfeld CA, Keating CD. Interfacial Assembly of Bacterial Microcompartment Shell Proteins in Aqueous Multiphase Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308390. [PMID: 38037673 DOI: 10.1002/smll.202308390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Compartments are a fundamental feature of life, based variously on lipid membranes, protein shells, or biopolymer phase separation. Here, this combines self-assembling bacterial microcompartment (BMC) shell proteins and liquid-liquid phase separation (LLPS) to develop new forms of compartmentalization. It is found that BMC shell proteins assemble at the liquid-liquid interfaces between either 1) the dextran-rich droplets and PEG-rich continuous phase of a poly(ethyleneglycol)(PEG)/dextran aqueous two-phase system, or 2) the polypeptide-rich coacervate droplets and continuous dilute phase of a polylysine/polyaspartate complex coacervate system. Interfacial protein assemblies in the coacervate system are sensitive to the ratio of cationic to anionic polypeptides, consistent with electrostatically-driven assembly. In both systems, interfacial protein assembly competes with aggregation, with protein concentration and polycation availability impacting coating. These two LLPS systems are then combined to form a three-phase system wherein coacervate droplets are contained within dextran-rich phase droplets. Interfacial localization of BMC hexameric shell proteins is tunable in a three-phase system by changing the polyelectrolyte charge ratio. The tens-of-micron scale BMC shell protein-coated droplets introduced here can accommodate bioactive cargo such as enzymes or RNA and represent a new synthetic cell strategy for organizing biomimetic functionality.
Collapse
Affiliation(s)
| | - Eric J Young
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Andrew T Rowland
- Department of Chemistry, Pennsylvania State University, State College, PA, 16801, USA
| | - Lucas C Dunshee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Sandeep Urandur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Cheryl A Kerfeld
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Christine D Keating
- Department of Chemistry, Pennsylvania State University, State College, PA, 16801, USA
| |
Collapse
|
15
|
Li T, Chang P, Chen W, Shi Z, Xue C, Dykes GF, Huang F, Wang Q, Liu LN. Nanoengineering Carboxysome Shells for Protein Cages with Programmable Cargo Targeting. ACS NANO 2024; 18:7473-7484. [PMID: 38326220 PMCID: PMC10938918 DOI: 10.1021/acsnano.3c11559] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Protein nanocages have emerged as promising candidates for enzyme immobilization and cargo delivery in biotechnology and nanotechnology. Carboxysomes are natural proteinaceous organelles in cyanobacteria and proteobacteria and have exhibited great potential in creating versatile nanocages for a wide range of applications given their intrinsic characteristics of self-assembly, cargo encapsulation, permeability, and modularity. However, how to program intact carboxysome shells with specific docking sites for tunable and efficient cargo loading is a key question in the rational design and engineering of carboxysome-based nanostructures. Here, we generate a range of synthetically engineered nanocages with site-directed cargo loading based on an α-carboxysome shell in conjunction with SpyTag/SpyCatcher and Coiled-coil protein coupling systems. The systematic analysis demonstrates that the cargo-docking sites and capacities of the carboxysome shell-based protein nanocages could be precisely modulated by selecting specific anchoring systems and shell protein domains. Our study provides insights into the encapsulation principles of the α-carboxysome and establishes a solid foundation for the bioengineering and manipulation of nanostructures capable of capturing cargos and molecules with exceptional efficiency and programmability, thereby enabling applications in catalysis, delivery, and medicine.
Collapse
Affiliation(s)
- Tianpei Li
- State
Key Laboratory of Crop Stress Adaptation and Improvement, School of
Life Sciences, Henan University, Kaifeng 475004, China
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United
Kingdom
| | - Ping Chang
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United
Kingdom
| | - Weixian Chen
- State
Key Laboratory of Crop Stress Adaptation and Improvement, School of
Life Sciences, Henan University, Kaifeng 475004, China
| | - Zhaoyang Shi
- State
Key Laboratory of Crop Stress Adaptation and Improvement, School of
Life Sciences, Henan University, Kaifeng 475004, China
| | - Chunling Xue
- State
Key Laboratory of Crop Stress Adaptation and Improvement, School of
Life Sciences, Henan University, Kaifeng 475004, China
| | - Gregory F. Dykes
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United
Kingdom
| | - Fang Huang
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United
Kingdom
| | - Qiang Wang
- State
Key Laboratory of Crop Stress Adaptation and Improvement, School of
Life Sciences, Henan University, Kaifeng 475004, China
| | - Lu-Ning Liu
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United
Kingdom
- MOE
Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science
Center for Deep Ocean Multispheres and Earth System & College
of Marine Life Sciences, Ocean University
of China, Qingdao 266003, China
| |
Collapse
|
16
|
Raza S, Sarkar D, Chan LJG, Mae J, Sutter M, Petzold CJ, Kerfeld CA, Ralston CY, Gupta S, Vermaas JV. Comparative Pore Structure and Dynamics for Bacterial Microcompartment Shell Protein Assemblies in Sheets or Shells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584231. [PMID: 38559214 PMCID: PMC10980050 DOI: 10.1101/2024.03.12.584231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bacterial microcompartments (BMCs) are protein-bound organelles found in some bacteria which encapsulate enzymes for enhanced catalytic activity. These compartments spatially sequester enzymes within semi-permeable shell proteins, analogous to many membrane-bound organelles. The shell proteins assemble into multimeric tiles; hexamers, trimers, and pentamers, and these tiles self-assemble into larger assemblies with icosahedral symmetry. While icosahedral shells are the predominant form in vivo, the tiles can also form nanoscale cylinders or sheets. The individual multimeric tiles feature central pores that are key to regulating transport across the protein shell. Our primary interest is to quantify pore shape changes in response to alternative component morphologies at the nanoscale. We use molecular modeling tools to develop atomically detailed models for both planar sheets of tiles and curved structures representative of the complete shells found in vivo. Subsequently, these models were animated using classical molecular dynamics simulations. From the resulting trajectories, we analyzed overall structural stability, water accessibility to individual residues, water residence time, and pore geometry for the hexameric and trimeric protein tiles from the Haliangium ochraceum model BMC shell. These exhaustive analyses suggest no substantial variation in pore structure or solvent accessibility between the flat and curved shell geometries. We additionally compare our analysis to hydroxyl radical footprinting data to serve as a check against our simulation results, highlighting specific residues where water molecules are bound for a long time. Although with little variation in morphology or water interaction, we propose that the planar and capsular morphology can be used interchangeably when studying permeability through BMC pores.
Collapse
Affiliation(s)
- Saad Raza
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
| | - Daipayan Sarkar
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
| | - Leanne Jade G Chan
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Current address: Calico Life Sciences LLC, South San Francisco, CA 94080
| | - Joshua Mae
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
- Department Of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720
| | - Corie Y Ralston
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
- Department Of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824
| |
Collapse
|
17
|
Trettel DS, Pacheco SL, Laskie AK, Gonzalez-Esquer CR. Modeling bacterial microcompartment architectures for enhanced cyanobacterial carbon fixation. FRONTIERS IN PLANT SCIENCE 2024; 15:1346759. [PMID: 38425792 PMCID: PMC10902431 DOI: 10.3389/fpls.2024.1346759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
The carboxysome is a bacterial microcompartment (BMC) which plays a central role in the cyanobacterial CO2-concentrating mechanism. These proteinaceous structures consist of an outer protein shell that partitions Rubisco and carbonic anhydrase from the rest of the cytosol, thereby providing a favorable microenvironment that enhances carbon fixation. The modular nature of carboxysomal architectures makes them attractive for a variety of biotechnological applications such as carbon capture and utilization. In silico approaches, such as molecular dynamics (MD) simulations, can support future carboxysome redesign efforts by providing new spatio-temporal insights on their structure and function beyond in vivo experimental limitations. However, specific computational studies on carboxysomes are limited. Fortunately, all BMC (including the carboxysome) are highly structurally conserved which allows for practical inferences to be made between classes. Here, we review simulations on BMC architectures which shed light on (1) permeation events through the shell and (2) assembly pathways. These models predict the biophysical properties surrounding the central pore in BMC-H shell subunits, which in turn dictate the efficiency of substrate diffusion. Meanwhile, simulations on BMC assembly demonstrate that assembly pathway is largely dictated kinetically by cargo interactions while final morphology is dependent on shell factors. Overall, these findings are contextualized within the wider experimental BMC literature and framed within the opportunities for carboxysome redesign for biomanufacturing and enhanced carbon fixation.
Collapse
Affiliation(s)
- Daniel S. Trettel
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences Group, Los Alamos, NM, United States
| | | | | | | |
Collapse
|
18
|
Fang Z, Zhu YJ, Qian ZG, Xia XX. Designer protein compartments for microbial metabolic engineering. Curr Opin Biotechnol 2024; 85:103062. [PMID: 38199036 DOI: 10.1016/j.copbio.2023.103062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Protein compartments are distinct structures assembled in living cells via self-assembly or phase separation of specific proteins. Significant efforts have been made to discover their molecular structures and formation mechanisms, as well as their fundamental roles in spatiotemporal control of cellular metabolism. Here, we review the design and construction of synthetic protein compartments for spatial organization of target metabolic pathways toward increased efficiency and specificity. In particular, we highlight the compartmentalization strategies and recent examples to speed up desirable metabolic reactions, to reduce the accumulation of toxic metabolic intermediates, and to switch competing metabolic pathways. We also identify the most important challenges that need to be addressed for exploitation of these designer compartments as a versatile toolkit in metabolic reprogramming.
Collapse
Affiliation(s)
- Zhen Fang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Ya-Jiao Zhu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| |
Collapse
|
19
|
Shinde YD, Chowdhury C. Potential utility of bacterial protein nanoreactor for sustainable in-situ biocatalysis in wide range of bioprocess conditions. Enzyme Microb Technol 2024; 173:110354. [PMID: 37988973 DOI: 10.1016/j.enzmictec.2023.110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/30/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Bacterial microcompartments (MCPs) are proteinaceous organelles that natively encapsulates the enzymes, substrates, and cofactors within a protein shell. They optimize the reaction rates by enriching the substrate in the vicinity of enzymes to increase the yields of the product and mitigate the outward diffusion of the toxic or volatile intermediates. The shell protein subunits of MCP shell are selectively permeable and have specialized pores for the selective inward diffusion of substrates and products release. Given their attributes, MCPs have been recently explored as potential candidates as subcellular nano-bioreactor for the enhanced production of industrially important molecules by exercising pathway encapsulation. In the current study, MCPs have been shown to sustain enzyme activity for extended periods, emphasizing their durability against a range of physical challenges such as temperature, pH and organic solvents. The significance of an intact shell in conferring maximum protection is highlighted by analyzing the differences in enzyme activities inside the intact and broken shell. Moreover, a minimal synthetic shell was designed with recruitment of a heterologous enzyme cargo to demonstrate the improved durability of the enzyme. The encapsulated enzyme was shown to be more stable than its free counterpart under the aforementioned conditions. Bacterial MCP-mediated encapsulation can serve as a potential strategy to shield the enzymes used under extreme conditions by maintaining the internal microenvironment and enhancing their cycle life, thereby opening new means for stabilizing, and reutilizing the enzymes in several bioprocess industries.
Collapse
Affiliation(s)
- Yashodhara D Shinde
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, MH 411008, India
| | - Chiranjit Chowdhury
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, MH 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India.
| |
Collapse
|
20
|
Kalnins G, Bertins M, Viksna A, Tars K. Functionalization of bacterial microcompartment shell interior with cysteine containing peptides enhances the iron and cobalt loading capacity. Biometals 2024; 37:267-274. [PMID: 37728832 DOI: 10.1007/s10534-023-00538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Bacterial microcompartments (BMCs) are prokaryotic organelles involved in several biochemical processes in bacterial cells. These cellular substructures consist of an icosahedral shell and an encapsulated enzymatic core. The outer shells of BMCs have been proposed as an attractive platform for the creation of novel nanomaterials, nanocages, and nanoreactors. In this study, we present a method for functionalizing recombinant GRM2-type BMC shell lumens with short cysteine-containing sequences and demonstrate that the iron and cobalt loading capacity of such modified shells is markedly increased. These results also imply that a passive flow of cobalt and iron atoms across the BMC shell could be possible.
Collapse
Affiliation(s)
- Gints Kalnins
- Latvian Biomedical Research and Study Centre, Ratsupites street 1, Riga, 1067, Latvia.
| | - Maris Bertins
- University of Latvia, Jelgavas street 1, Riga, 1004, Latvia
| | - Arturs Viksna
- University of Latvia, Jelgavas street 1, Riga, 1004, Latvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Ratsupites street 1, Riga, 1067, Latvia
- University of Latvia, Jelgavas street 1, Riga, 1004, Latvia
| |
Collapse
|
21
|
Doron L, Raval D, Kerfeld CA. Towards using bacterial microcompartments as a platform for spatial metabolic engineering in the industrially important and metabolically versatile Zymomonas mobilis. Front Bioeng Biotechnol 2024; 12:1344260. [PMID: 38344288 PMCID: PMC10853475 DOI: 10.3389/fbioe.2024.1344260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/08/2024] [Indexed: 10/28/2024] Open
Abstract
Advances in synthetic biology have enabled the incorporation of novel biochemical pathways for the production of high-value products into industrially important bacterial hosts. However, attempts to redirect metabolic fluxes towards desired products often lead to the buildup of toxic or undesirable intermediates or, more generally, unwanted metabolic cross-talk. The use of shells derived from self-assembling protein-based prokaryotic organelles, referred to as bacterial microcompartments (BMCs), as a scaffold for metabolic enzymes represents a sophisticated approach that can both insulate and integrate the incorporation of challenging metabolic pathways into industrially important bacterial hosts. Here we took a synthetic biology approach and introduced the model shell system derived from the myxobacterium Haliangium ochraceum (HO shell) into the industrially relevant organism Zymomonas mobilis with the aim of constructing a BMC-based spatial scaffolding platform. SDS-PAGE, transmission electron microscopy, and dynamic light scattering analyses collectively demonstrated the ability to express and purify empty capped and uncapped HO shells from Z. mobilis. As a proof of concept to internally load or externally decorate the shell surface with enzyme cargo, we have successfully targeted fluorophores to the surfaces of the BMC shells. Overall, our results provide the foundation for incorporating enzymes and constructing BMCs with synthetic biochemical pathways for the future production of high-value products in Z. mobilis.
Collapse
Affiliation(s)
- Lior Doron
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Dhairya Raval
- Department of Engineering, Michigan State University, East Lansing, MI, United States
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Biochemistry and Molecular Biology Michigan State University, East Lansing, MI, United States
| |
Collapse
|
22
|
Sheppard TJ, Specht DA, Barstow B. Efficiency estimates for electromicrobial production of branched-chain hydrocarbons. iScience 2024; 27:108773. [PMID: 38283329 PMCID: PMC10821168 DOI: 10.1016/j.isci.2023.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
In electromicrobial production (EMP), electricity is used as microbial energy to produce complex molecules starting from simple compounds like CO2. The aviation industry requires sustainable fuel alternatives that can meet demands for high-altitude performance and modern emissions standards. EMP of jet fuel components provides a unique opportunity to generate fuel blends compatible with modern engines producing net-neutral emissions. Branched-chain hydrocarbons modulate the boiling and freezing points of liquid fuels at high altitudes. In this study, we analyze the pathways necessary to generate branched-chain hydrocarbons in vivo utilizing extracellular electron uptake (EEU) and H2-oxidation for electron delivery, the Calvin cycle for CO2-fixation and the aldehyde deformolating oxygenase decarboxylation pathway. We find the maximum electrical-to-fuel energy conversion efficiencies to be 40.0 - 4.4 + 0.6 % and 39.8 - 4.5 + 0.7 % . For a model blend containing straight-chain, branched-chain, and terpenoid components, increasing the fraction of branched-chain alkanes from zero to 47% only lowers the electrical energy conversion efficiency from 40.1 - 4.5 + 0.7 % to 39.5 - 4.6 + 0.7 % .
Collapse
Affiliation(s)
- Timothy J. Sheppard
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - David A. Specht
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Buz Barstow
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
23
|
Sheppard TJ, Specht DA, Barstow B. Upper limit efficiency estimates for electromicrobial production of drop-in jet fuels. Bioelectrochemistry 2023; 154:108506. [PMID: 37473694 DOI: 10.1016/j.bioelechem.2023.108506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Microbes which participate in extracellular electron uptake (EEU) or H2 oxidation have the ability to manufacture organic compounds using electricity as the primary source of metabolic energy. So-called electromicrobial production could be valuable to efficiently synthesize drop-in jet fuels using renewable energy. Here, we calculate the upper limit electrical-to-fuel conversion efficiency for a model jet fuel blend containing 85% straight-chain alkanes and 15% terpenoids. When using the Calvin cycle for carbon-fixation, the energy conversion efficiency is 37.8-4.3+1.8% when using EEU for electron delivery and 40.1-4.6+0.7% when using H2 oxidation. The production efficiency can be raised to 44.2-3.7+0.5% when using the Formolase formate-assimilation pathway, and to 49.2-2.1+0.3% with the Wood-Ljungdahl pathway. This efficiency can be further raised by swapping the well-known Aldehyde Deformolating Oxygenase (ADO) termination pathway with the recently discovered Fatty Acid Photodecarboxylase (FAP) pathway. If these systems were supplied with electricity from a maximally-efficient silicon solar photovoltaic, even the least efficient pathway exceeds the maximum solar-to-fuel efficiency of all known forms of photosynthesis.
Collapse
Affiliation(s)
- Timothy J Sheppard
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - David A Specht
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Buz Barstow
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
24
|
Wang Y, Douglas T. Tuning Multistep Biocatalysis through Enzyme and Cofactor Colocalization in Charged Porous Protein Macromolecular Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43621-43632. [PMID: 37695852 DOI: 10.1021/acsami.3c10340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Spatial organization of biocatalytic activities is crucial to organisms to efficiently process complex metabolism. Inspired by this mechanism, artificial scaffold structures are designed to harbor functionally coupled biocatalysts, resulting in acellular materials that can complete multistep reactions at high efficiency and low cost. Substrate channeling is an approach for efficiency enhancement of multistep reactions, but fast diffusion of small molecule intermediates poses a major challenge to achieve channeling in vitro. Here, we explore how multistep biocatalysis is affected, and can be modulated, by cofactor-enzyme colocalization within a synthetic bioinspired material. In this material, a heterogeneous protein macromolecular framework (PMF) acts as a porous host matrix for colocalization of two coupled enzymes and their small molecule cofactor, nicotinamide adenine dinucleotide (NAD). After formation of the PMF from a higher order assembly of P22 virus-like particles (VLPs), the enzymes were partitioned into the PMF by covalent attachment and presentation on the VLP exterior. Using a collective property of the PMF (i.e., high density of negative charges in the PMF), NAD molecules were partitioned into the framework via electrostatic interactions after being conjugated to a polycationic species. This effectively controlled the localization and diffusion of NAD, resulting in substrate channeling between the enzymes. Changing ionic strength modulates the PMF-NAD interactions, tuning two properties that impact the multistep efficiency oppositely in response to ionic strength: cofactor partitioning (colocalization with the enzymes) and cofactor mobility (translocation between the enzymes). Within the range tested, we observed a maximum of 5-fold increase or 75% decrease in multistep efficiency as compared to free enzymes in solution, which suggest both the colocalization and the mobility are critical for the multistep efficiency. This work demonstrates utility of collective behaviors, exhibited by hierarchical bioassemblies, in the construction of functional materials for enzyme cascades, which possess properties such as tunable multistep biocatalysis.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
25
|
Ferlez BH, Kirst H, Greber BJ, Nogales E, Sutter M, Kerfeld CA. Heterologous Assembly of Pleomorphic Bacterial Microcompartment Shell Architectures Spanning the Nano- to Microscale. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212065. [PMID: 36932732 PMCID: PMC10330516 DOI: 10.1002/adma.202212065] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/09/2023] [Indexed: 06/09/2023]
Abstract
Many bacteria use protein-based organelles known as bacterial microcompartments (BMCs) to organize and sequester sequential enzymatic reactions. Regardless of their specialized metabolic function, all BMCs are delimited by a shell made of multiple structurally redundant, yet functionally diverse, hexameric (BMC-H), pseudohexameric/trimeric (BMC-T), or pentameric (BMC-P) shell protein paralogs. When expressed without their native cargo, shell proteins have been shown to self-assemble into 2D sheets, open-ended nanotubes, and closed shells of ≈40 nm diameter that are being developed as scaffolds and nanocontainers for applications in biotechnology. Here, by leveraging a strategy for affinity-based purification, it is demonstrated that a wide range of empty synthetic shells, many differing in end-cap structures, can be derived from a glycyl radical enzyme-associated microcompartment. The range of pleomorphic shells observed, which span ≈2 orders of magnitude in size from ≈25 nm to ≈1.8 µm, reveal the remarkable plasticity of BMC-based biomaterials. In addition, new capped nanotube and nanocone morphologies are observed that are consistent with a multicomponent geometric model in which architectural principles are shared among asymmetric carbon, viral protein, and BMC-based structures.
Collapse
Affiliation(s)
- Bryan H. Ferlez
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Henning Kirst
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Basil J. Greber
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Markus Sutter
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Cheryl A. Kerfeld
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
26
|
Bierbaumer S, Nattermann M, Schulz L, Zschoche R, Erb TJ, Winkler CK, Tinzl M, Glueck SM. Enzymatic Conversion of CO 2: From Natural to Artificial Utilization. Chem Rev 2023; 123:5702-5754. [PMID: 36692850 PMCID: PMC10176493 DOI: 10.1021/acs.chemrev.2c00581] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 01/25/2023]
Abstract
Enzymatic carbon dioxide fixation is one of the most important metabolic reactions as it allows the capture of inorganic carbon from the atmosphere and its conversion into organic biomass. However, due to the often unfavorable thermodynamics and the difficulties associated with the utilization of CO2, a gaseous substrate that is found in comparatively low concentrations in the atmosphere, such reactions remain challenging for biotechnological applications. Nature has tackled these problems by evolution of dedicated CO2-fixing enzymes, i.e., carboxylases, and embedding them in complex metabolic pathways. Biotechnology employs such carboxylating and decarboxylating enzymes for the carboxylation of aromatic and aliphatic substrates either by embedding them into more complex reaction cascades or by shifting the reaction equilibrium via reaction engineering. This review aims to provide an overview of natural CO2-fixing enzymes and their mechanistic similarities. We also discuss biocatalytic applications of carboxylases and decarboxylases for the synthesis of valuable products and provide a separate summary of strategies to improve the efficiency of such processes. We briefly summarize natural CO2 fixation pathways, provide a roadmap for the design and implementation of artificial carbon fixation pathways, and highlight examples of biocatalytic cascades involving carboxylases. Additionally, we suggest that biochemical utilization of reduced CO2 derivates, such as formate or methanol, represents a suitable alternative to direct use of CO2 and provide several examples. Our discussion closes with a techno-economic perspective on enzymatic CO2 fixation and its potential to reduce CO2 emissions.
Collapse
Affiliation(s)
- Sarah Bierbaumer
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Maren Nattermann
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Luca Schulz
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | | | - Tobias J. Erb
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Christoph K. Winkler
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Matthias Tinzl
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Silvia M. Glueck
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| |
Collapse
|
27
|
Abrahamson CH, Palmero BJ, Kennedy NW, Tullman-Ercek D. Theoretical and Practical Aspects of Multienzyme Organization and Encapsulation. Annu Rev Biophys 2023; 52:553-572. [PMID: 36854212 DOI: 10.1146/annurev-biophys-092222-020832] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The advent of biotechnology has enabled metabolic engineers to assemble heterologous pathways in cells to produce a variety of products of industrial relevance, often in a sustainable way. However, many pathways face challenges of low product yield. These pathways often suffer from issues that are difficult to optimize, such as low pathway flux and off-target pathway consumption of intermediates. These issues are exacerbated by the need to balance pathway flux with the health of the cell, particularly when a toxic intermediate builds up. Nature faces similar challenges and has evolved spatial organization strategies to increase metabolic pathway flux and efficiency. Inspired by these strategies, bioengineers have developed clever strategies to mimic spatial organization in nature. This review explores the use of spatial organization strategies, including protein scaffolding and protein encapsulation inside of proteinaceous shells, toward overcoming bottlenecks in metabolic engineering efforts.
Collapse
Affiliation(s)
- Charlotte H Abrahamson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA;
| | - Brett J Palmero
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, USA
| | - Nolan W Kennedy
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA;
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
28
|
An B, Wang Y, Huang Y, Wang X, Liu Y, Xun D, Church GM, Dai Z, Yi X, Tang TC, Zhong C. Engineered Living Materials For Sustainability. Chem Rev 2023; 123:2349-2419. [PMID: 36512650 DOI: 10.1021/acs.chemrev.2c00512] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in synthetic biology and materials science have given rise to a new form of materials, namely engineered living materials (ELMs), which are composed of living matter or cell communities embedded in self-regenerating matrices of their own or artificial scaffolds. Like natural materials such as bone, wood, and skin, ELMs, which possess the functional capabilities of living organisms, can grow, self-organize, and self-repair when needed. They also spontaneously perform programmed biological functions upon sensing external cues. Currently, ELMs show promise for green energy production, bioremediation, disease treatment, and fabricating advanced smart materials. This review first introduces the dynamic features of natural living systems and their potential for developing novel materials. We then summarize the recent research progress on living materials and emerging design strategies from both synthetic biology and materials science perspectives. Finally, we discuss the positive impacts of living materials on promoting sustainability and key future research directions.
Collapse
Affiliation(s)
- Bolin An
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yanyi Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanyuan Huang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuzhu Liu
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongmin Xun
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - George M Church
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Zhuojun Dai
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiao Yi
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tzu-Chieh Tang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Chao Zhong
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
29
|
Ricci L, Seifert A, Bernacchi S, Fino D, Pirri CF, Re A. Leveraging substrate flexibility and product selectivity of acetogens in two-stage systems for chemical production. Microb Biotechnol 2023; 16:218-237. [PMID: 36464980 PMCID: PMC9871533 DOI: 10.1111/1751-7915.14172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 12/09/2022] Open
Abstract
Carbon dioxide (CO2 ) stands out as sustainable feedstock for developing a circular carbon economy whose energy supply could be obtained by boosting the production of clean hydrogen from renewable electricity. H2 -dependent CO2 gas fermentation using acetogenic microorganisms offers a viable solution of increasingly demonstrated value. While gas fermentation advances to achieve commercial process scalability, which is currently limited to a few products such as acetate and ethanol, it is worth taking the best of the current state-of-the-art technology by its integration within innovative bioconversion schemes. This review presents multiple scenarios where gas fermentation by acetogens integrate into double-stage biotechnological production processes that use CO2 as sole carbon feedstock and H2 as energy carrier for products' synthesis. In the integration schemes here reviewed, the first stage can be biotic or abiotic while the second stage is biotic. When the first stage is biotic, acetogens act as a biological platform to generate chemical intermediates such as acetate, formate and ethanol that become substrates for a second fermentation stage. This approach holds the potential to enhance process titre/rate/yield metrics and products' spectrum. Alternatively, when the first stage is abiotic, the integrated two-stage scheme foresees, in the first stage, the catalytic transformation of CO2 into C1 products that, in the second stage, can be metabolized by acetogens. This latter scheme leverages the metabolic flexibility of acetogens in efficient utilization of the products of CO2 abiotic hydrogenation, namely formate and methanol, to synthesize multicarbon compounds but also to act as flexible catalysts for hydrogen storage or production.
Collapse
Affiliation(s)
- Luca Ricci
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| | | | | | - Debora Fino
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| | - Candido Fabrizio Pirri
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| | - Angela Re
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| |
Collapse
|
30
|
Kwon S, Giessen TW. Engineered Protein Nanocages for Concurrent RNA and Protein Packaging In Vivo. ACS Synth Biol 2022; 11:3504-3515. [PMID: 36170610 PMCID: PMC9944510 DOI: 10.1021/acssynbio.2c00391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Protein nanocages have emerged as an important engineering platform for biotechnological and biomedical applications. Among naturally occurring protein cages, encapsulin nanocompartments have recently gained prominence due to their favorable physico-chemical properties, ease of shell modification, and highly efficient and selective intrinsic protein packaging capabilities. Here, we expand encapsulin function by designing and characterizing encapsulins for concurrent RNA and protein encapsulation in vivo. Our strategy is based on modifying encapsulin shells with nucleic acid-binding peptides without disrupting the native protein packaging mechanism. We show that our engineered encapsulins reliably self-assemble in vivo, are capable of efficient size-selective in vivo RNA packaging, can simultaneously load multiple functional RNAs, and can be used for concurrent in vivo packaging of RNA and protein. Our engineered encapsulation platform has potential for codelivery of therapeutic RNAs and proteins to elicit synergistic effects and as a modular tool for other biotechnological applications.
Collapse
Affiliation(s)
- Seokmu Kwon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tobias W. Giessen
- Department of Biological Chemistry and Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
31
|
Raba DA, Kerfeld CA. The potential of bacterial microcompartment architectures for phytonanotechnology. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:700-710. [PMID: 35855583 DOI: 10.1111/1758-2229.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The application of nanotechnology to plants, termed phytonanotechnology, has the potential to revolutionize plant research and agricultural production. Advancements in phytonanotechnology will allow for the time-controlled and target-specific release of bioactive compounds and agrochemicals to alter and optimize conventional plant production systems. A diverse range of engineered nanoparticles with unique physiochemical properties is currently being investigated to determine their suitability for plants. Improvements in crop yield, disease resistance and nutrient and pesticide management are all possible using designed nanocarriers. However, despite these prospective benefits, research to thoroughly understand the precise activity, localization and potential phytotoxicity of these nanoparticles within plant systems is required. Protein-based bacterial microcompartment shell proteins that self-assemble into spherical shells, nanotubes and sheets could be of immense value for phytonanotechnology due to their ease of manipulation, multifunctionality, rapid and efficient producibility and biodegradability. In this review, we explore bacterial microcompartment-based architectures within the scope of phytonanotechnology.
Collapse
Affiliation(s)
- Daniel A Raba
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
32
|
Jäger C, Croft AK. If It Is Hard, It Is Worth Doing: Engineering Radical Enzymes from Anaerobes. Biochemistry 2022; 62:241-252. [PMID: 36121716 PMCID: PMC9850924 DOI: 10.1021/acs.biochem.2c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
With a pressing need for sustainable chemistries, radical enzymes from anaerobes offer a shortcut for many chemical transformations and deliver highly sought-after functionalizations such as late-stage C-H functionalization, C-C bond formation, and carbon-skeleton rearrangements, among others. The challenges in handling these oxygen-sensitive enzymes are reflected in their limited industrial exploitation, despite what they may deliver. With an influx of structures and mechanistic understanding, the scope for designed radical enzymes to deliver wanted processes becomes ever closer. Combined with new advances in computational methods and workflows for these complex systems, the outlook for an increased use of radical enzymes in future processes is exciting.
Collapse
|
33
|
A synthetic bacterial microcompartment as production platform for pyruvate from formate and acetate. Proc Natl Acad Sci U S A 2022; 119:2201330119. [PMID: 35217629 PMCID: PMC8892506 DOI: 10.1073/pnas.2201330119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|