1
|
Gao J, Franzkoch R, Rocha-Roa C, Psathaki OE, Hensel M, Vanni S, Ungermann C. Any1 is a phospholipid scramblase involved in endosome biogenesis. J Cell Biol 2025; 224:e202410013. [PMID: 40047640 PMCID: PMC11893163 DOI: 10.1083/jcb.202410013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/17/2024] [Accepted: 01/22/2025] [Indexed: 03/12/2025] Open
Abstract
Endosomes are central organelles in the recycling and degradation of receptors and membrane proteins. Once endocytosed, such proteins are sorted at endosomes into intraluminal vesicles (ILVs). The resulting multivesicular bodies (MVBs) then fuse with the lysosomes, leading to the degradation of ILVs and recycling of the resulting monomers. However, the biogenesis of MVBs requires a constant lipid supply for efficient ILV formation. An ER-endosome membrane contact site has been suggested to play a critical role in MVB biogenesis. Here, we identify Any1 as a novel phospholipid scramblase, which functions with the lipid transfer protein Vps13 in MVB biogenesis. We uncover that Any1 cycles between the early endosomes and the Golgi and colocalizes with Vps13, possibly at a here-discovered potential contact site between lipid droplets (LDs) and endosomes. Strikingly, both Any1 and Vps13 are required for MVB formation, presumably to couple lipid flux with membrane homeostasis during ILV formation and endosome maturation.
Collapse
Affiliation(s)
- Jieqiong Gao
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Rico Franzkoch
- Department of Biology/Chemistry, Division of Microbiology, Osnabrück University, Osnabrück, Germany
- Integrated Bioimaging Facility, Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| | | | - Olympia Ekaterini Psathaki
- Integrated Bioimaging Facility, Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Michael Hensel
- Department of Biology/Chemistry, Division of Microbiology, Osnabrück University, Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research Bio-Inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
2
|
Cooper KF. Cargo hitchhiking autophagy - a hybrid autophagy pathway utilized in yeast. Autophagy 2025; 21:500-512. [PMID: 39757721 PMCID: PMC11849947 DOI: 10.1080/15548627.2024.2447207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 01/07/2025] Open
Abstract
Macroautophagy is a catabolic process that maintains cellular homeostasis by recycling intracellular material through the use of double-membrane vesicles called autophagosomes. In turn, autophagosomes fuse with vacuoles (in yeast and plants) or lysosomes (in metazoans), where resident hydrolases degrade the cargo. Given the conservation of autophagy, Saccharomyces cerevisiae is a valuable model organism for deciphering molecular details that define macroautophagy pathways. In yeast, macroautophagic pathways fall into two subclasses: selective and nonselective (bulk) autophagy. Bulk autophagy is predominantly upregulated following TORC1 inhibition, triggered by nutrient stress, and degrades superfluous random cytosolic proteins and organelles. In contrast, selective autophagy pathways maintain cellular homeostasis when TORC1 is active by degrading damaged organelles and dysfunctional proteins. Here, selective autophagy receptors mediate cargo delivery to the vacuole. Now, two groups have discovered a new hybrid autophagy mechanism, coined cargo hitchhiking autophagy (CHA), that uses autophagic receptor proteins to deliver selected cargo to phagophores built in response to nutrient stress for the random destruction of cytosolic contents. In CHA, various autophagic receptors link their cargos to lipidated Atg8, located on growing phagophores. In addition, the sorting nexin heterodimer Snx4-Atg20 assists in the degradation of cargo during CHA, possibly by aiding the delivery of cytoplasmic cargos to phagophores and/or by delaying the closure of expanding phagophores. This review will outline this new mechanism, also known as Snx4-assisted autophagy, that degrades an assortment of cargos in yeast, including transcription factors, glycogen, and a subset of ribosomal proteins.
Collapse
Affiliation(s)
- Katrina F. Cooper
- Department of Cell and Molecular Biology, Virtua Health College of Medicine and Life Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
| |
Collapse
|
3
|
Li X, Qiao F, Guo J, Jiang T, Lou H, Li H, Xie G, Wu H, Wang W, Pei R, Liu S, Ye M, Li J, Huang S, Zhang M, Ma C, Huang Y, Xu S, Li X, Sun X, Yu J, Fok KL, Duan S, Chen H. In situ architecture of the intercellular organelle reservoir between epididymal epithelial cells by volume electron microscopy. Nat Commun 2025; 16:1664. [PMID: 39955273 PMCID: PMC11830104 DOI: 10.1038/s41467-025-56807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025] Open
Abstract
Mammalian epididymal epithelial cells are crucial for sperm maturation. Historically, vacuole-like ultrastructures in epididymal epithelial cells were observed via transmission electron microscopy but were undefined. Here, we utilize volume electron microscopy (vEM) to generate 3D reconstructions of epididymal epithelial cells and identify these vacuoles as intercellular organelle reservoirs (IORs) in the lateral intercellular space (LIS), which contains protein aggregates, autophagosomes, lysosome-related organelles and mitochondrial residues. Immunolabelling of organelle markers such as P62, LC3, LAMP1 and TOMM20 confirm these findings. The IOR size or number varies across four epididymal regions and decreases with age. Rab27a mutant mice exhibit reduced IORs in the caput epididymis and a subfertility phenotype, suggesting the involvement of Rab27a in the formation of IORs. Furthermore, we observe the presence of IORs between intestinal epithelial cells besides epididymis. Amino acid transporters at IOR edges suggest dynamic protein recycling. Our findings reveal that the IOR is an important structure critical for organelle turnover and recycling outside epithelial cells with limited self-degradation capabilities.
Collapse
Affiliation(s)
- Xia Li
- Institute of Special Environmental Medicine and Medical School, Nantong University and Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, PR China
| | - Feng Qiao
- Institute of Special Environmental Medicine and Medical School, Nantong University and Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, PR China
| | - Jiansheng Guo
- School of Brain Science and Brain Medicine and Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Ting Jiang
- Institute of Special Environmental Medicine and Medical School, Nantong University and Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, PR China
| | - Huifang Lou
- School of Brain Science and Brain Medicine and Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Huixia Li
- Institute of Special Environmental Medicine and Medical School, Nantong University and Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, PR China
| | - Gangcai Xie
- Institute of Special Environmental Medicine and Medical School, Nantong University and Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, PR China
| | - Hangjun Wu
- School of Brain Science and Brain Medicine and Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Weizhen Wang
- Institute of Special Environmental Medicine and Medical School, Nantong University and Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, PR China
| | - Ruoyu Pei
- Institute of Special Environmental Medicine and Medical School, Nantong University and Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, PR China
| | - Sha Liu
- Institute of Special Environmental Medicine and Medical School, Nantong University and Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, PR China
| | - Mei Ye
- Institute of Special Environmental Medicine and Medical School, Nantong University and Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, PR China
| | - Jin Li
- Institute of Special Environmental Medicine and Medical School, Nantong University and Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, PR China
| | - Shiqin Huang
- Institute of Special Environmental Medicine and Medical School, Nantong University and Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, PR China
| | - Mengya Zhang
- Institute of Special Environmental Medicine and Medical School, Nantong University and Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, PR China
| | - Chaoye Ma
- Institute of Special Environmental Medicine and Medical School, Nantong University and Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, PR China
| | - Yiwen Huang
- Institute of Special Environmental Medicine and Medical School, Nantong University and Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, PR China
| | - Shushu Xu
- Institute of Special Environmental Medicine and Medical School, Nantong University and Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, PR China
| | - Xiaofeng Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, No. 1120 Lianhua Road, Futian District, Shenzhen, PR China
| | - Xiao Sun
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Jun Yu
- Institute of Special Environmental Medicine and Medical School, Nantong University and Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, PR China
| | - Kin Lam Fok
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Shumin Duan
- School of Brain Science and Brain Medicine and Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, PR China.
| | - Hao Chen
- Institute of Special Environmental Medicine and Medical School, Nantong University and Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, PR China.
- Key Laboratory of Reproductive Health Diseases Research and Translation of Ministry of Education & Key Laboratory of Human Reproductive Medicine and Genetic Research of Hainan Province & Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
4
|
Licheva M, Pflaum J, Babic R, Mancilla H, Elsässer J, Boyle E, Hollenstein DM, Jimenez-Niebla J, Pleyer J, Heinrich M, Wieland FG, Brenneisen J, Eickhorst C, Brenner J, Jiang S, Hartl M, Welsch S, Hunte C, Timmer J, Wilfling F, Kraft C. Phase separation of initiation hubs on cargo is a trigger switch for selective autophagy. Nat Cell Biol 2025; 27:283-297. [PMID: 39774270 PMCID: PMC11821514 DOI: 10.1038/s41556-024-01572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025]
Abstract
Autophagy is a key cellular quality control mechanism. Nutrient stress triggers bulk autophagy, which nonselectively degrades cytoplasmic material upon formation and liquid-liquid phase separation of the autophagy-related gene 1 (Atg1) complex. In contrast, selective autophagy eliminates protein aggregates, damaged organelles and other cargoes that are targeted by an autophagy receptor. Phase separation of cargo has been observed, but its regulation and impact on selective autophagy are poorly understood. Here, we find that key autophagy biogenesis factors phase separate into initiation hubs at cargo surfaces in yeast, subsequently maturing into sites that drive phagophore nucleation. This phase separation is dependent on multivalent, low-affinity interactions between autophagy receptors and cargo, creating a dynamic cargo surface. Notably, high-affinity interactions between autophagy receptors and cargo complexes block initiation hub formation and autophagy progression. Using these principles, we converted the mammalian reovirus nonstructural protein µNS, which accumulates as particles in the yeast cytoplasm that are not degraded, into a neo-cargo that is degraded by selective autophagy. We show that initiation hubs also form on the surface of different cargoes in human cells and are key to establish the connection to the endoplasmic reticulum, where the phagophore assembly site is formed to initiate phagophore biogenesis. Overall, our findings suggest that regulated phase separation underscores the initiation of both bulk and selective autophagy in evolutionarily diverse organisms.
Collapse
Affiliation(s)
- Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jeremy Pflaum
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Riccardo Babic
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Hector Mancilla
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jana Elsässer
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Emily Boyle
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - David M Hollenstein
- Department for Biochemistry and Cell Biology, University of Vienna, Center for Molecular Biology, Vienna Biocenter Campus (VBC), Vienna, Austria
- Mass Spectrometry Facility, Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Jorge Jimenez-Niebla
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Jonas Pleyer
- Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, Freiburg, Germany
| | - Mio Heinrich
- Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Franz-Georg Wieland
- Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Joachim Brenneisen
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Christopher Eickhorst
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Johann Brenner
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Shan Jiang
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Markus Hartl
- Department for Biochemistry and Cell Biology, University of Vienna, Center for Molecular Biology, Vienna Biocenter Campus (VBC), Vienna, Austria
- Mass Spectrometry Facility, Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Carola Hunte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- BIOSS-Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Jens Timmer
- Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Florian Wilfling
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Powell BM, Brant TS, Davis JH, Mosalaganti S. Rapid structural analysis of bacterial ribosomes in situ. Commun Biol 2025; 8:131. [PMID: 39875527 PMCID: PMC11775198 DOI: 10.1038/s42003-025-07586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
Rapid structural analysis of purified proteins and their complexes has become increasingly common thanks to key methodological advances in cryo-electron microscopy (cryo-EM) and associated data processing software packages. In contrast, analogous structural analysis in cells via cryo-electron tomography (cryo-ET) remains challenging due to critical technical bottlenecks, including low-throughput sample preparation and imaging, and laborious data processing methods. Here, we describe a rapid in situ cryo-ET sample preparation and data analysis workflow that results in the routine determination of sub-nm resolution ribosomal structures. We apply this workflow to E. coli, producing a 5.8 Å structure of the 70S ribosome from cells in less than 10 days and facilitating the discovery of a minor population of 100S-like disomes. We envision our approach to be widely applicable to related bacterial samples.
Collapse
Affiliation(s)
- Barrett M Powell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler S Brant
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Joseph H Davis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Biophysics, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Wang Y, Dahmane S, Ti R, Mai X, Zhu L, Carlson LA, Stjepanovic G. Structural basis for lipid transfer by the ATG2A-ATG9A complex. Nat Struct Mol Biol 2025; 32:35-47. [PMID: 39174844 DOI: 10.1038/s41594-024-01376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Autophagy is characterized by the formation of double-membrane vesicles called autophagosomes. Autophagy-related proteins (ATGs) 2A and 9A have an essential role in autophagy by mediating lipid transfer and re-equilibration between membranes for autophagosome formation. Here we report the cryo-electron microscopy structures of human ATG2A in complex with WD-repeat protein interacting with phosphoinositides 4 (WIPI4) at 3.2 Å and the ATG2A-WIPI4-ATG9A complex at 7 Å global resolution. On the basis of molecular dynamics simulations, we propose a mechanism of lipid extraction from the donor membranes. Our analysis revealed 3:1 stoichiometry of the ATG9A-ATG2A complex, directly aligning the ATG9A lateral pore with ATG2A lipid transfer cavity, and an interaction of the ATG9A trimer with both the N-terminal and the C-terminal tip of rod-shaped ATG2A. Cryo-electron tomography of ATG2A liposome-binding states showed that ATG2A tethers lipid vesicles at different orientations. In summary, this study provides a molecular basis for the growth of the phagophore membrane and lends structural insights into spatially coupled lipid transport and re-equilibration during autophagosome formation.
Collapse
Affiliation(s)
- Yang Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Selma Dahmane
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Rujuan Ti
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Xinyi Mai
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China.
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China.
| | - Lars-Anders Carlson
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.
| | - Goran Stjepanovic
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China.
| |
Collapse
|
7
|
Chung T, Choi YE, Song K, Jung H. How coat proteins shape autophagy in plant cells. PLANT PHYSIOLOGY 2024; 197:kiae426. [PMID: 39259569 DOI: 10.1093/plphys/kiae426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Autophagy is a membrane trafficking pathway through which eukaryotic cells target their own cytoplasmic constituents for degradation in the lytic compartment. Proper biogenesis of autophagic organelles requires a conserved set of autophagy-related (ATG) proteins and their interacting factors, such as signalling phospholipid phosphatidylinositol 3-phosphate (PI3P) and coat complex II (COPII). The COPII machinery, which was originally identified as a membrane coat involved in the formation of vesicles budding from the endoplasmic reticulum, contributes to the initiation of autophagic membrane formation in yeast, metazoan, and plant cells; however, the exact mechanisms remain elusive. Recent studies using the plant model species Arabidopsis thaliana have revealed that plant-specific PI3P effectors are involved in autophagy. The PI3P effector FYVE2 interacts with the conserved PI3P effector ATG18 and with COPII components, indicating an additional role for the COPII machinery in the later stages of autophagosome biogenesis. In this Update, we examined recent research on plant autophagosome biogenesis and proposed working models on the functions of the COPII machinery in autophagy, including its potential roles in stabilizing membrane curvature and sealing the phagophore.
Collapse
Affiliation(s)
- Taijoon Chung
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Ye Eun Choi
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Kyoungjun Song
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyera Jung
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
8
|
Singh A, Perez ML, Kirsanov O, Padilla-Banks E, Guardia CM. Autophagy in reproduction and pregnancy-associated diseases. iScience 2024; 27:111268. [PMID: 39628569 PMCID: PMC11613427 DOI: 10.1016/j.isci.2024.111268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
As advantageous as sexual reproduction is during progeny generation, it is also an expensive and treacherous reproductive strategy. The viviparous eukaryote has evolved to survive stress before, during, and after pregnancy. An important and conserved intracellular pathway for the control of metabolic stress is autophagy. The autophagy process occurs in multiple stages through the coordinated action of autophagy-related genes. This review summarizes the evidence that autophagy is an integral component of reproduction. Additionally, we discuss emerging in vitro techniques that will enable cellular and molecular studies of autophagy and its associated pathways in reproduction. Finally, we discuss the role of autophagy in the pathogenesis and progression of several pregnancy-related disorders such as preterm birth, preeclampsia, and intra-uterine growth restriction, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Asmita Singh
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Maira L. Perez
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Oleksandr Kirsanov
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Elizabeth Padilla-Banks
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Carlos M. Guardia
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| |
Collapse
|
9
|
Mannino PJ, Perun A, Surovtsev IV, Ader NR, Shao L, Rodriguez EC, Melia TJ, King MC, Lusk CP. A quantitative ultrastructural timeline of nuclear autophagy reveals a role for dynamin-like protein 1 at the nuclear envelope. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580336. [PMID: 38405892 PMCID: PMC10888867 DOI: 10.1101/2024.02.14.580336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Autophagic mechanisms that maintain nuclear envelope homeostasis are bulwarks to aging and disease. By leveraging 4D lattice light sheet microscopy and correlative light and electron tomography, we define a quantitative and ultrastructural timeline of nuclear macroautophagy (nucleophagy) in yeast. Nucleophagy begins with a rapid accumulation of the selective autophagy receptor Atg39 at the nuclear envelope and finishes in ~300 seconds with Atg39-cargo delivery to the vacuole. Although there are several routes to the vacuole, at least one pathway incorporates two consecutive membrane fission steps: inner nuclear membrane (INM) fission to generate an INM-derived vesicle in the perinuclear space and outer nuclear membrane (ONM) fission to liberate a double membraned vesicle to the cytosol. ONM fission occurs independently of phagophore engagement and instead relies surprisingly on dynamin like 1 (Dnm1), which is recruited to sites of Atg39 accumulation by Atg11. Loss of Dnm1 compromises nucleophagic flux by stalling nucleophagy after INM fission. Our findings reveal how nuclear and INM cargo are removed from an intact nucleus without compromising its integrity, achieved in part by a non-canonical role for Dnm1 in nuclear envelope remodeling.
Collapse
Affiliation(s)
- Philip J. Mannino
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT, 06520
| | - Andrew Perun
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT, 06520
| | - Ivan V. Surovtsev
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT, 06520
- Department of Physics, Yale University, New Haven, CT, 06511
| | - Nicholas R. Ader
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT, 06520
| | - Lin Shao
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT, 06520
| | - Elisa C. Rodriguez
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT, 06520
| | - Thomas J. Melia
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT, 06520
| | - Megan C. King
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT, 06520
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, 06511
| | - C. Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT, 06520
| |
Collapse
|
10
|
Norell PN, Campisi D, Mohan J, Wollert T. Biogenesis of omegasomes and autophagosomes in mammalian autophagy. Biochem Soc Trans 2024; 52:2145-2155. [PMID: 39392358 PMCID: PMC11555699 DOI: 10.1042/bst20240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Autophagy is a highly conserved catabolic pathway that maintains cellular homeostasis by promoting the degradation of damaged or superfluous cytoplasmic material. A hallmark of autophagy is the generation of membrane cisternae that sequester autophagic cargo. Expansion of these structures allows cargo to be engulfed in a highly selective and exclusive manner. Cytotoxic stress or starvation induces the formation of autophagosomes that sequester bulk cytoplasm instead of selected cargo. This rather nonselective pathway is essential for maintaining vital cellular functions during adverse conditions and is thus a major stress response pathway. Both selective and nonselective autophagy rely on the same molecular machinery. However, due to the different nature of cargo to be sequestered, the involved molecular mechanisms are fundamentally different. Although intense research over the past decades has advanced our understanding of autophagy, fundamental questions remain to be addressed. This review will focus on molecular principles and open questions regarding the formation of omegasomes and phagophores in nonselective mammalian autophagy.
Collapse
Affiliation(s)
- Puck N. Norell
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Daniele Campisi
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Jagan Mohan
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Thomas Wollert
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| |
Collapse
|
11
|
Liu J, Ma H, Wu Z, Ji Y, Liang Y. The Knowns and Unknowns of Membrane Features and Changes During Autophagosome-Lysosome/Vacuole Fusion. Int J Mol Sci 2024; 25:11160. [PMID: 39456939 PMCID: PMC11508585 DOI: 10.3390/ijms252011160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Autophagosome (AP)-lysosome/vacuole fusion is one of the hallmarks of macroautophagy. Membrane features and changes during the fusion process have mostly been described using two-dimensional (2D) models with one AP and one lysosome/vacuole. The outer membrane (OM) of a closed mature AP has been suggested to fuse with the lysosomal/vacuolar membrane. However, the descriptions in some studies for fusion-related issues are questionable or incomplete. The correct membrane features of APs and lysosomes/vacuoles are the prerequisite for describing the fusion process. We searched the literature for representative membrane features of AP-related structures based on electron microscopy (EM) graphs of both animal and yeast cells and re-evaluated the findings. We also summarized the main 2D models describing the membrane changes during AP-lysosome/vacuole fusion in the literature. We used three-dimensional (3D) models to characterize the known and unknown membrane changes during and after fusion of the most plausible 2D models. The actual situation is more complex, since multiple lysosomes may fuse with the same AP in mammalian cells, multiple APs may fuse with the same vacuole in yeast cells, and in some mutant cells, phagophores (unclosed APs) fuse with lysosomes/vacuoles. This review discusses the membrane features and highly dynamic changes during AP (phagophore)-lysosome/vacuole fusion. The resulting information will improve the understanding of AP-lysosome/vacuole fusion and direct the future research on AP-lysosome/vacuole fusion and regeneration.
Collapse
Affiliation(s)
| | | | | | | | - Yongheng Liang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.L.); (H.M.); (Z.W.); (Y.J.)
| |
Collapse
|
12
|
Zanellati MC, Hsu CH, Cohen S. Imaging interorganelle contacts at a glance. J Cell Sci 2024; 137:jcs262020. [PMID: 39440475 PMCID: PMC11529887 DOI: 10.1242/jcs.262020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Eukaryotic cells are compartmentalized into membrane-bound organelles that must coordinate their responses to stimuli. One way that organelles communicate is via membrane contact sites (MCSs), sites of close apposition between organelles used for the exchange of ions, lipids and information. In this Cell Science at a Glance article and the accompanying poster, we describe an explosion of new methods that have led to exciting progress in this area and discuss key examples of how these methods have advanced our understanding of MCSs. We discuss how diffraction-limited and super-resolution fluorescence imaging approaches have provided important insight into the biology of interorganelle communication. We also describe how the development of multiple proximity-based methods has enabled the detection of MCSs with high accuracy and precision. Finally, we assess how recent advances in electron microscopy (EM), considered the gold standard for detecting MCSs, have allowed the visualization of MCSs and associated proteins in 3D at ever greater resolution.
Collapse
Affiliation(s)
- Maria Clara Zanellati
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chih-Hsuan Hsu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah Cohen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Rudinskiy M, Morone D, Molinari M. Fluorescent Reporters, Imaging, and Artificial Intelligence Toolkits to Monitor and Quantify Autophagy, Heterophagy, and Lysosomal Trafficking Fluxes. Traffic 2024; 25:e12957. [PMID: 39450581 DOI: 10.1111/tra.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/21/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Lysosomal compartments control the clearance of cell-own material (autophagy) or of material that cells endocytose from the external environment (heterophagy) to warrant supply of nutrients, to eliminate macromolecules or parts of organelles present in excess, aged, or containing toxic material. Inherited or sporadic mutations in lysosomal proteins and enzymes may hamper their folding in the endoplasmic reticulum (ER) and their lysosomal transport via the Golgi compartment, resulting in lysosomal dysfunction and storage disorders. Defective cargo delivery to lysosomal compartments is harmful to cells and organs since it causes accumulation of toxic compounds and defective organellar homeostasis. Assessment of resident proteins and cargo fluxes to the lysosomal compartments is crucial for the mechanistic dissection of intracellular transport and catabolic events. It might be combined with high-throughput screenings to identify cellular, chemical, or pharmacological modulators of these events that may find therapeutic use for autophagy-related and lysosomal storage disorders. Here, discuss qualitative, quantitative and chronologic monitoring of autophagic, heterophagic and lysosomal protein trafficking in fixed and live cells, which relies on fluorescent single and tandem reporters used in combination with biochemical, flow cytometry, light and electron microscopy approaches implemented by artificial intelligence-based technology.
Collapse
Affiliation(s)
- Mikhail Rudinskiy
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Department of Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Diego Morone
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Maurizio Molinari
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Zheng T, Cai S. Recent technical advances in cellular cryo-electron tomography. Int J Biochem Cell Biol 2024; 175:106648. [PMID: 39181502 DOI: 10.1016/j.biocel.2024.106648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Understanding the in situ structure, organization, and interactions of macromolecules is essential for elucidating their functions and mechanisms of action. Cellular cryo-electron tomography (cryo-ET) is a cutting-edge technique that reveals in situ molecular-resolution architectures of macromolecules in their lifelike states. It also provides insights into the three-dimensional distribution of macromolecules and their spatial relationships with various subcellular structures. Thus, cellular cryo-ET bridges the gap between structural biology and cell biology. With rapid advancements, this technique achieved substantial improvements in throughput, automation, and resolution. This review presents the fundamental principles and methodologies of cellular cryo-ET, highlighting recent developments in sample preparation, data collection, and image processing. We also discuss emerging trends and potential future directions. As cellular cryo-ET continues to develop, it is set to play an increasingly vital role in structural cell biology.
Collapse
Affiliation(s)
- Tianyu Zheng
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shujun Cai
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
15
|
Gamuyao R, Chang CL. Imaging and proteomics toolkits for studying organelle contact sites. Front Cell Dev Biol 2024; 12:1466915. [PMID: 39381373 PMCID: PMC11458464 DOI: 10.3389/fcell.2024.1466915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Organelle contact sites are regions where two heterologous membranes are juxtaposed by molecular tethering complexes. These contact sites are important in inter-organelle communication and cellular functional integration. However, visualizing these minute foci and identifying contact site proteomes have been challenging. In recent years, fluorescence-based methods have been developed to visualize the dynamic physical interaction of organelles while proximity labeling approaches facilitate the profiling of proteomes at contact sites. In this review, we explain the design principle for these contact site reporters: a dual-organelle interaction mechanism based on how endogenous tethers and/or tethering complexes localize to contact sites. We classify the contact site reporters into three categories: (i) single-protein systems, (ii) two-component systems with activated reporter signal upon organelle proximity, and (iii) reporters for contact site proteomes. We also highlight advanced imaging analysis with high temporal-spatial resolution and the use of machine-learning algorithms for detecting contact sites.
Collapse
Affiliation(s)
| | - Chi-Lun Chang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
16
|
Eisenstein F, Fukuda Y, Danev R. Smart parallel automated cryo-electron tomography. Nat Methods 2024; 21:1612-1615. [PMID: 39117874 DOI: 10.1038/s41592-024-02373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/20/2024] [Indexed: 08/10/2024]
Abstract
In situ cryo-electron tomography enables investigation of macromolecules in their native cellular environment. Samples have become more readily available owing to recent software and hardware advancements. Data collection, however, still requires an experienced operator and appreciable microscope time to carefully select targets for high-throughput tilt series acquisition. Here, we developed smart parallel automated cryo-electron tomography (SPACEtomo), a workflow using machine learning approaches to fully automate the entire cryo-electron tomography process, including lamella detection, biological feature segmentation, target selection and parallel tilt series acquisition, all without the need for human intervention. This degree of automation will be essential for obtaining statistically relevant datasets and high-resolution structures of macromolecules in their native context.
Collapse
Affiliation(s)
- Fabian Eisenstein
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Yoshiyuki Fukuda
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
17
|
Schiøtz OH, Kaiser CJO, Klumpe S, Morado DR, Poege M, Schneider J, Beck F, Klebl DP, Thompson C, Plitzko JM. Serial Lift-Out: sampling the molecular anatomy of whole organisms. Nat Methods 2024; 21:1684-1692. [PMID: 38110637 PMCID: PMC11399102 DOI: 10.1038/s41592-023-02113-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/25/2023] [Indexed: 12/20/2023]
Abstract
Cryo-focused ion beam milling of frozen-hydrated cells and subsequent cryo-electron tomography (cryo-ET) has enabled the structural elucidation of macromolecular complexes directly inside cells. Application of the technique to multicellular organisms and tissues, however, is still limited by sample preparation. While high-pressure freezing enables the vitrification of thicker samples, it prolongs subsequent preparation due to increased thinning times and the need for extraction procedures. Additionally, thinning removes large portions of the specimen, restricting the imageable volume to the thickness of the final lamella, typically <300 nm. Here we introduce Serial Lift-Out, an enhanced lift-out technique that increases throughput and obtainable contextual information by preparing multiple sections from single transfers. We apply Serial Lift-Out to Caenorhabditis elegans L1 larvae, yielding a cryo-ET dataset sampling the worm's anterior-posterior axis, and resolve its ribosome structure to 7 Å and a subregion of the 11-protofilament microtubule to 13 Å, illustrating how Serial Lift-Out enables the study of multicellular molecular anatomy.
Collapse
Affiliation(s)
- Oda Helene Schiøtz
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christoph J O Kaiser
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sven Klumpe
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Dustin R Morado
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department for Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Matthias Poege
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jonathan Schneider
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Beck
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David P Klebl
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christopher Thompson
- Materials and Structural Analysis, Thermo Fisher Scientific, Eindhoven, the Netherlands
| | - Jürgen M Plitzko
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
18
|
Holzer E, Martens S, Tulli S. The Role of ATG9 Vesicles in Autophagosome Biogenesis. J Mol Biol 2024; 436:168489. [PMID: 38342428 DOI: 10.1016/j.jmb.2024.168489] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Autophagy mediates the degradation and recycling of cellular material in the lysosomal system. Dysfunctional autophagy is associated with a plethora of diseases including uncontrolled infections, cancer and neurodegeneration. In macroautophagy (hereafter autophagy) this material is encapsulated in double membrane vesicles, the autophagosomes, which form upon induction of autophagy. The precursors to autophagosomes, referred to as phagophores, first appear as small flattened membrane cisternae, which gradually enclose the cargo material as they grow. The assembly of phagophores during autophagy initiation has been a major subject of investigation over the past decades. A special focus has been ATG9, the only conserved transmembrane protein among the core machinery. The majority of ATG9 localizes to small Golgi-derived vesicles. Here we review the recent advances and breakthroughs regarding our understanding of how ATG9 and the vesicles it resides in serve to assemble the autophagy machinery and to establish membrane contact sites for autophagosome biogenesis. We also highlight open questions in the field that need to be addressed in the years to come.
Collapse
Affiliation(s)
- Elisabeth Holzer
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria; University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Campus-Vienna-Biocenter 1, Vienna, Austria.
| | - Sascha Martens
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria; University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria.
| | - Susanna Tulli
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria; University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria.
| |
Collapse
|
19
|
Lizarrondo J, Wilfling F. Selective Autophagy of Macromolecular Complexes: What Does It Take to be Taken? J Mol Biol 2024; 436:168574. [PMID: 38636617 DOI: 10.1016/j.jmb.2024.168574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Proteins are known to perform an astonishing array of functions thanks to their ability to cooperate and modulate each other's properties. Inside cells, proteins can assemble into large multi-subunit complexes to carry out complex cellular functions. The correct assembly and maintenance of the functional state of macromolecular protein complexes is crucial for human health. Failure to do so leads to loss of function and potential accumulation of harmful materials, which is associated with a variety of human diseases such as neurodegeneration and cancer. Autophagy engulfs cytosolic material in autophagosomes, and therefore is best suited to eliminate intact macromolecular complexes without disassembling them, which could interfere with de novo assembly. In this review, we discuss the role of autophagy in the selective degradation of macromolecular complexes. We highlight the current state of knowledge for different macromolecular complexes and their selective autophagic degradation. We emphasize the gaps in our understanding of what it takes for these large macromolecular complexes to be degraded and point to future work that may shed light on the regulation of the selective degradation of macromolecular complexes by autophagy.
Collapse
Affiliation(s)
- Javier Lizarrondo
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt a.M. 60598, Germany; Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, Frankfurt a.M. 60438, Germany
| | - Florian Wilfling
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, Frankfurt a.M. 60438, Germany.
| |
Collapse
|
20
|
Isola D, Elazar Z. Phospholipid Supply for Autophagosome Biogenesis. J Mol Biol 2024; 436:168691. [PMID: 38944336 DOI: 10.1016/j.jmb.2024.168691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Autophagy is a cellular degradation pathway where double-membrane autophagosomes form de novo to engulf cytoplasmic material destined for lysosomal degradation. This process requires regulated membrane remodeling, beginning with the initial autophagosomal precursor and progressing to its elongation and maturation into a fully enclosed, fusion-capable vesicle. While the core protein machinery involved in autophagosome formation has been extensively studied over the past two decades, the role of phospholipids in this process has only recently been studied. This review focuses on the phospholipid composition of the phagophore membrane and the mechanisms that supply lipids to expand this unique organelle.
Collapse
Affiliation(s)
- Damilola Isola
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Zvulun Elazar
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
21
|
Jiang T, Ma C, Chen H. Unraveling the ultrastructure and dynamics of autophagic vesicles: Insights from advanced imaging techniques. FASEB Bioadv 2024; 6:189-199. [PMID: 38974114 PMCID: PMC11226998 DOI: 10.1096/fba.2024-00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 07/09/2024] Open
Abstract
Autophagy, an intracellular self-degradation process, is governed by a complex interplay of signaling pathways and interactions between proteins and organelles. Its fundamental purpose is to efficiently clear and recycle cellular components that are damaged or redundant. Central to this process are autophagic vesicles, specialized structures that encapsulate targeted cellular elements, playing a pivotal role in autophagy. Despite growing interest in the molecular components of autophagic machinery and their regulatory mechanisms, capturing the detailed ultrastructural dynamics of autophagosome formation continues to present significant challenges. However, recent advancements in microscopy, particularly in electron microscopy, have begun to illuminate the dynamic regulatory processes underpinning autophagy. This review endeavors to provide an exhaustive overview of contemporary research on the ultrastructure of autophagic processes. By synthesizing observations from diverse technological methodologies, this review seeks to deepen our understanding of the genesis of autophagic vesicles, their membrane origins, and the dynamic alterations that transpire during the autophagy process. The aim is to bridge gaps in current knowledge and foster a more comprehensive comprehension of this crucial cellular mechanism.
Collapse
Affiliation(s)
- Ting Jiang
- Institute of Reproductive MedicineMedical School of Nantong UniversityNantongPR China
| | - Chaoye Ma
- Institute of Reproductive MedicineMedical School of Nantong UniversityNantongPR China
| | - Hao Chen
- Institute of Reproductive MedicineMedical School of Nantong UniversityNantongPR China
- Guangzhou Women and Children’s Medical Center, GMU‐GIBH Joint School of Life ScienceGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
22
|
Shi Y, Suzuki K. Quantitative analysis of the spatial distance between autophagy-related membrane structures and the endoplasmic reticulum in Saccharomyces cerevisiae. Autophagy 2024; 20:1673-1680. [PMID: 38478967 PMCID: PMC11210900 DOI: 10.1080/15548627.2024.2330033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/07/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Macroautophagy/autophagy is the process by which cells degrade their cytoplasmic proteins or organelles in vacuoles to maintain cellular homeostasis under severe environmental conditions. In the yeast Saccharomyces cerevisiae, autophagy-related (Atg) proteins essential for autophagosome formation accumulate near the vacuole to form the dot-shaped phagophore assembly site/pre-autophagosomal structure (PAS). The PAS then generates the phagophore/isolation membrane (PG), which expands to become a closed double-membrane autophagosome. Hereinafter, we refer to the PAS, PG, and autophagosome as autophagy-related structures (ARSs). During autophagosome formation, Atg2 is responsible for tethering the ARS to the endoplasmic reticulum (ER) via ER exit sites (ERESs), and for transferring phospholipids from the ER to ARSs. Therefore, ARS and the ER are spatially close in the presence of Atg2 but are separated in its absence. Because the contact of an ARS with the ER must be established at the earliest stage of autophagosome formation, it is important to know whether the ARS is tethered to the ER. In this study, we developed a rapid and objective method to estimate tethering of the ARS to the ER by measuring the distance between the ARS and ERES under fluorescence microscopy, and found that tethering of the ARS to the ER was lost without Atg1. This method might be useful to predict the tethering activity of Atg2.Abbreviation: ARS, autophagy-related structure; Dautas, automated measurement of the distance between autophagy-related structures and ER exit sites analysis system; ERES, endoplasmic reticulum exit site; PAS, phagophore assembly site/pre-autophagosomal structure; PCR, polymerase chain reaction; PG, phagophore/isolation membrane; prApe1, precursor of vacuolar aminopeptidase I; Qautas, quantitative autophagy-related structure analysis system; SD/CA; synthetic dextrose plus casamino acid medium; WT, wild-type.
Collapse
Affiliation(s)
- Yang Shi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Kuninori Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
- Life Science Data Research Center, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
- Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
23
|
Shatz O, Elazar Z. The physiological relevance of autophagosome morphogenesis. Trends Biochem Sci 2024; 49:569-572. [PMID: 38796312 DOI: 10.1016/j.tibs.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024]
Abstract
Autophagy sequesters cytoplasmic portions into autophagosomes. While selective cargo is engulfed by elongation of cup-shaped isolation membranes (IMs), the morphogenesis of non-selective IMs remains elusive. Based on recent observations, we propose a novel model for autophagosome morphogenesis wherein active regulation of the IM rim serves the physiological roles of autophagy.
Collapse
Affiliation(s)
- Oren Shatz
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Zvulun Elazar
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
24
|
Baumann V, Achleitner S, Tulli S, Schuschnig M, Klune L, Martens S. Faa1 membrane binding drives positive feedback in autophagosome biogenesis via fatty acid activation. J Cell Biol 2024; 223:e202309057. [PMID: 38573225 PMCID: PMC10993510 DOI: 10.1083/jcb.202309057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/14/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
Autophagy serves as a stress response pathway by mediating the degradation of cellular material within lysosomes. In autophagy, this material is encapsulated in double-membrane vesicles termed autophagosomes, which form from precursors referred to as phagophores. Phagophores grow by lipid influx from the endoplasmic reticulum into Atg9-positive compartments and local lipid synthesis provides lipids for their expansion. How phagophore nucleation and expansion are coordinated with lipid synthesis is unclear. Here, we show that Faa1, an enzyme activating fatty acids, is recruited to Atg9 vesicles by directly binding to negatively charged membranes with a preference for phosphoinositides such as PI3P and PI4P. We define the membrane-binding surface of Faa1 and show that its direct interaction with the membrane is required for its recruitment to phagophores. Furthermore, the physiological localization of Faa1 is key for its efficient catalysis and promotes phagophore expansion. Our results suggest a positive feedback loop coupling phagophore nucleation and expansion to lipid synthesis.
Collapse
Affiliation(s)
- Verena Baumann
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | - Sonja Achleitner
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, A Doctoral School of the University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Susanna Tulli
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | - Martina Schuschnig
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | - Lara Klune
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | - Sascha Martens
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Keller J, Fernández-Busnadiego R. In situ studies of membrane biology by cryo-electron tomography. Curr Opin Cell Biol 2024; 88:102363. [PMID: 38677049 DOI: 10.1016/j.ceb.2024.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Cryo-electron tomography (cryo-ET) allows high resolution 3D imaging of biological samples in near-native environments. Thus, cryo-ET has become the method of choice to analyze the unperturbed organization of cellular membranes. Here, we briefly discuss current cryo-ET workflows and their application to study membrane biology in situ, under basal and pathological conditions.
Collapse
Affiliation(s)
- Jenny Keller
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, 37077, Germany; Collaborative Research Center 1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Göttingen, Germany.
| | - Rubén Fernández-Busnadiego
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, 37077, Germany; Collaborative Research Center 1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, 37077, Germany; Faculty of Physics, University of Göttingen, Göttingen, 37077, Germany.
| |
Collapse
|
26
|
Nähse V, Stenmark H, Schink KO. Omegasomes control formation, expansion, and closure of autophagosomes. Bioessays 2024; 46:e2400038. [PMID: 38724256 DOI: 10.1002/bies.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/28/2024]
Abstract
Autophagy, an essential cellular process for maintaining cellular homeostasis and eliminating harmful cytoplasmic objects, involves the de novo formation of double-membraned autophagosomes that engulf and degrade cellular debris, protein aggregates, damaged organelles, and pathogens. Central to this process is the phagophore, which forms from donor membranes rich in lipids synthesized at various cellular sites, including the endoplasmic reticulum (ER), which has emerged as a primary source. The ER-associated omegasomes, characterized by their distinctive omega-shaped structure and accumulation of phosphatidylinositol 3-phosphate (PI3P), play a pivotal role in autophagosome formation. Omegasomes are thought to serve as platforms for phagophore assembly by recruiting essential proteins such as DFCP1/ZFYVE1 and facilitating lipid transfer to expand the phagophore. Despite the critical importance of phagophore biogenesis, many aspects remain poorly understood, particularly the complete range of proteins involved in omegasome dynamics, and the detailed mechanisms of lipid transfer and membrane contact site formation.
Collapse
Affiliation(s)
- Viola Nähse
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kay O Schink
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Zhang Y, Lin C. Lipid osmosis, membrane tension, and other mechanochemical driving forces of lipid flow. Curr Opin Cell Biol 2024; 88:102377. [PMID: 38823338 PMCID: PMC11193448 DOI: 10.1016/j.ceb.2024.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Nonvesicular lipid transport among different membranes or membrane domains plays crucial roles in lipid homeostasis and organelle biogenesis. However, the forces that drive such lipid transport are not well understood. We propose that lipids tend to flow towards the membrane area with a higher membrane protein density in a process termed lipid osmosis. This process lowers the membrane tension in the area, resulting in a membrane tension difference called osmotic membrane tension. We examine the thermodynamic basis and experimental evidence of lipid osmosis and osmotic membrane tension. We predict that lipid osmosis can drive bulk lipid flows between different membrane regions through lipid transfer proteins, scramblases, or similar barriers that selectively pass lipids but not membrane proteins. We also speculate on the biological functions of lipid osmosis. Finally, we explore other driving forces for lipid transfer and describe potential methods and systems to further test our theory.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA.
| | - Chenxiang Lin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
28
|
Zhao DY, Bäuerlein FJB, Saha I, Hartl FU, Baumeister W, Wilfling F. Autophagy preferentially degrades non-fibrillar polyQ aggregates. Mol Cell 2024; 84:1980-1994.e8. [PMID: 38759629 DOI: 10.1016/j.molcel.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Aggregation of proteins containing expanded polyglutamine (polyQ) repeats is the cytopathologic hallmark of a group of dominantly inherited neurodegenerative diseases, including Huntington's disease (HD). Huntingtin (Htt), the disease protein of HD, forms amyloid-like fibrils by liquid-to-solid phase transition. Macroautophagy has been proposed to clear polyQ aggregates, but the efficiency of aggrephagy is limited. Here, we used cryo-electron tomography to visualize the interactions of autophagosomes with polyQ aggregates in cultured cells in situ. We found that an amorphous aggregate phase exists next to the radially organized polyQ fibrils. Autophagosomes preferentially engulfed this amorphous material, mediated by interactions between the autophagy receptor p62/SQSTM1 and the non-fibrillar aggregate surface. In contrast, amyloid fibrils excluded p62 and evaded clearance, resulting in trapping of autophagic structures. These results suggest that the limited efficiency of autophagy in clearing polyQ aggregates is due to the inability of autophagosomes to interact productively with the non-deformable, fibrillar disease aggregates.
Collapse
Affiliation(s)
- Dorothy Y Zhao
- Max Planck Institute of Biochemistry, Molecular Machines and Signaling, 82152 Martinsried, Germany; Max Planck Institute of Biochemistry, Molecular Structural Biology, 82152 Martinsried, Germany; Max Planck Institute of Biophysics, Mechanisms of Cellular Quality Control, 60438 Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Felix J B Bäuerlein
- Max Planck Institute of Biochemistry, Molecular Structural Biology, 82152 Martinsried, Germany; University Medical Center Göttingen, Institute of Neuropathology, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany
| | - Itika Saha
- Max Planck Institute of Biochemistry, Cellular Biochemistry, 82152 Martinsried, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - F Ulrich Hartl
- Max Planck Institute of Biochemistry, Cellular Biochemistry, 82152 Martinsried, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Wolfgang Baumeister
- Max Planck Institute of Biochemistry, Molecular Structural Biology, 82152 Martinsried, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Florian Wilfling
- Max Planck Institute of Biochemistry, Molecular Machines and Signaling, 82152 Martinsried, Germany; Max Planck Institute of Biochemistry, Molecular Structural Biology, 82152 Martinsried, Germany; Max Planck Institute of Biophysics, Mechanisms of Cellular Quality Control, 60438 Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
29
|
Zhang Y, Lin C. Lipid osmosis, membrane tension, and other mechanochemical driving forces of lipid flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574656. [PMID: 38260424 PMCID: PMC10802412 DOI: 10.1101/2024.01.08.574656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Nonvesicular lipid transport among different membranes or membrane domains plays crucial roles in lipid homeostasis and organelle biogenesis. However, the forces that drive such lipid transport are not well understood. We propose that lipids tend to flow towards the membrane area with a higher membrane protein density in a process termed lipid osmosis. This process lowers the membrane tension in the area, resulting in a membrane tension difference called osmotic membrane tension. We examine the thermodynamic basis and experimental evidence of lipid osmosis and osmotic membrane tension. We predict that lipid osmosis can drive bulk lipid flows between different membrane regions through lipid transfer proteins, scramblases, or other similar barriers that selectively pass lipids but not membrane proteins. We also speculate on the biological functions of lipid osmosis. Finally, we explore other driving forces for lipid transfer and describe potential methods and systems to further test our theory.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Chenxiang Lin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Nanobiology Institute, Yale University, West Haven, CT 06516, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
30
|
Shatz O, Fraiberg M, Isola D, Das S, Gogoi O, Polyansky A, Shimoni E, Dadosh T, Dezorella N, Wolf SG, Elazar Z. Rim aperture of yeast autophagic membranes balances cargo inclusion with vesicle maturation. Dev Cell 2024; 59:911-923.e4. [PMID: 38447569 DOI: 10.1016/j.devcel.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 11/28/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
Autophagy eliminates cytoplasmic material by engulfment in membranous vesicles targeted for lysosome degradation. Nonselective autophagy coordinates sequestration of bulk cargo with the growth of the isolation membrane (IM) in a yet-unknown manner. Here, we show that in the budding yeast Saccharomyces cerevisiae, IMs expand while maintaining a rim sufficiently wide for sequestration of large cargo but tight enough to mature in due time. An obligate complex of Atg24/Snx4 with Atg20 or Snx41 assembles locally at the rim in a spatially extended manner that specifically depends on autophagic PI(3)P. This assembly stabilizes the open rim to promote autophagic sequestration of large cargo in correlation with vesicle expansion. Moreover, constriction of the rim by the PI(3)P-dependent Atg2-Atg18 complex and clearance of PI(3)P by Ymr1 antagonize rim opening to promote autophagic maturation and consumption of small cargo. Tight regulation of membrane rim aperture by PI(3)P thus couples the mechanism and physiology of nonselective autophagy.
Collapse
Affiliation(s)
- Oren Shatz
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Milana Fraiberg
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Damilola Isola
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Shubhankar Das
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Olee Gogoi
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Alexandra Polyansky
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Eyal Shimoni
- Chemical Research Support, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Tali Dadosh
- Chemical Research Support, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Nili Dezorella
- Chemical Research Support, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Sharon G Wolf
- Chemical Research Support, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Zvulun Elazar
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
31
|
Creekmore BC, Kixmoeller K, Black BE, Lee EB, Chang YW. Ultrastructure of human brain tissue vitrified from autopsy revealed by cryo-ET with cryo-plasma FIB milling. Nat Commun 2024; 15:2660. [PMID: 38531877 PMCID: PMC10965902 DOI: 10.1038/s41467-024-47066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Ultrastructure of human brain tissue has traditionally been examined using electron microscopy (EM) following fixation, staining, and sectioning, which limit resolution and introduce artifacts. Alternatively, cryo-electron tomography (cryo-ET) allows higher resolution imaging of unfixed cellular samples while preserving architecture, but it requires samples to be vitreous and thin enough for transmission EM. Due to these requirements, cryo-ET has yet to be employed to investigate unfixed, never previously frozen human brain tissue. Here we present a method for generating lamellae in human brain tissue obtained at time of autopsy that can be imaged via cryo-ET. We vitrify the tissue via plunge-freezing and use xenon plasma focused ion beam (FIB) milling to generate lamellae directly on-grid at variable depth inside the tissue. Lamellae generated in Alzheimer's disease brain tissue reveal intact subcellular structures including components of autophagy and potential pathologic tau fibrils. Furthermore, we reveal intact compact myelin and functional cytoplasmic expansions. These images indicate that plasma FIB milling with cryo-ET may be used to elucidate nanoscale structures within the human brain.
Collapse
Affiliation(s)
- Benjamin C Creekmore
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn Kixmoeller
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Powell BM, Brant TS, Davis JH, Mosalaganti S. Rapid structural analysis of bacterial ribosomes in situ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586148. [PMID: 38585831 PMCID: PMC10996489 DOI: 10.1101/2024.03.22.586148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Rapid structural analysis of purified proteins and their complexes has become increasingly common thanks to key methodological advances in cryo-electron microscopy (cryo-EM) and associated data processing software packages. In contrast, analogous structural analysis in cells via cryo-electron tomography (cryo-ET) remains challenging due to critical technical bottlenecks, including low-throughput sample preparation and imaging, and laborious data processing methods. Here, we describe the development of a rapid in situ cryo-ET sample preparation and data analysis workflow that results in the routine determination of sub-nm resolution ribosomal structures. We apply this workflow to E. coli, producing a 5.8 Å structure of the 70S ribosome from cells in less than 10 days, and we expect this workflow will be widely applicable to related bacterial samples.
Collapse
Affiliation(s)
- Barrett M. Powell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tyler S. Brant
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Joseph H. Davis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
33
|
McCafferty CL, Klumpe S, Amaro RE, Kukulski W, Collinson L, Engel BD. Integrating cellular electron microscopy with multimodal data to explore biology across space and time. Cell 2024; 187:563-584. [PMID: 38306982 DOI: 10.1016/j.cell.2024.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Biology spans a continuum of length and time scales. Individual experimental methods only glimpse discrete pieces of this spectrum but can be combined to construct a more holistic view. In this Review, we detail the latest advancements in volume electron microscopy (vEM) and cryo-electron tomography (cryo-ET), which together can visualize biological complexity across scales from the organization of cells in large tissues to the molecular details inside native cellular environments. In addition, we discuss emerging methodologies for integrating three-dimensional electron microscopy (3DEM) imaging with multimodal data, including fluorescence microscopy, mass spectrometry, single-particle analysis, and AI-based structure prediction. This multifaceted approach fills gaps in the biological continuum, providing functional context, spatial organization, molecular identity, and native interactions. We conclude with a perspective on incorporating diverse data into computational simulations that further bridge and extend length scales while integrating the dimension of time.
Collapse
Affiliation(s)
| | - Sven Klumpe
- Research Group CryoEM Technology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Rommie E Amaro
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wanda Kukulski
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Benjamin D Engel
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
34
|
Sakai Y, Takahashi S, Koyama-Honda I, Saito C, Mizushima N. Experimental determination and mathematical modeling of standard shapes of forming autophagosomes. Nat Commun 2024; 15:91. [PMID: 38167876 PMCID: PMC10762205 DOI: 10.1038/s41467-023-44442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
The formation of autophagosomes involves dynamic morphological changes of a phagophore from a flat membrane cisterna into a cup-shaped intermediate and a spherical autophagosome. However, the physical mechanism behind these morphological changes remains elusive. Here, we determine the average shapes of phagophores by statistically investigating three-dimensional electron micrographs of more than 100 phagophores. The results show that the cup-shaped structures adopt a characteristic morphology; they are longitudinally elongated, and the rim is catenoidal with an outwardly recurved shape. To understand these characteristic shapes, we establish a theoretical model of the shape of entire phagophores. The model quantitatively reproduces the average morphology and reveals that the characteristic shape of phagophores is primarily determined by the relative size of the open rim to the total surface area. These results suggest that the seemingly complex morphological changes during autophagosome formation follow a stable path determined by elastic bending energy minimization.
Collapse
Affiliation(s)
- Yuji Sakai
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan.
- Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) Program, RIKEN, Wako, Saitama, 351-0198, Japan.
| | - Satoru Takahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Ikuko Koyama-Honda
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Chieko Saito
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
35
|
Eskelinen EL. Novel insights into autophagosome biogenesis revealed by cryo-electron tomography. FEBS Lett 2024; 598:9-16. [PMID: 37625816 DOI: 10.1002/1873-3468.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Autophagosome biogenesis, from the appearance of the phagophore to elongation and closure into an autophagosome, is one of the long-lasting open questions in the autophagy field. Recent studies utilising cryo-electron tomography and detailed analysis of the image data have revealed new information on the membrane dynamics of these events, including the shape and dimensions of omegasomes, phagophores and autophagosomes, and their relationships with the organelles around them. One of the important predictions from the new results is that 60-80% of the autophagosome membrane area is delivered by direct lipid transfer or lipid synthesis. Cryo-electron tomography can be expected to provide new directions for autophagy research in the near future.
Collapse
|
36
|
Sakurai HT, Arakawa S, Yamaguchi H, Torii S, Honda S, Shimizu S. An Overview of Golgi Membrane-Associated Degradation (GOMED) and Its Detection Methods. Cells 2023; 12:2817. [PMID: 38132137 PMCID: PMC10741765 DOI: 10.3390/cells12242817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Autophagy is a cellular mechanism that utilizes lysosomes to degrade its own components and is performed using Atg5 and other molecules originating from the endoplasmic reticulum membrane. On the other hand, we identified an alternative type of autophagy, namely, Golgi membrane-associated degradation (GOMED), which also utilizes lysosomes to degrade its own components, but does not use Atg5 originating from the Golgi membranes. The GOMED pathway involves Ulk1, Wipi3, Rab9, and other molecules, and plays crucial roles in a wide range of biological phenomena, such as the regulation of insulin secretion and neuronal maintenance. We here describe the overview of GOMED, methods to detect autophagy and GOMED, and to distinguish GOMED from autophagy.
Collapse
Affiliation(s)
- Hajime Tajima Sakurai
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
- Department of Biochemistry and Molecular Biology, Graduate School of Science, University of Hyogo, Harima Science Garden City, Himeji 678-1205, Hyogo, Japan
| | - Satoko Arakawa
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
| | - Hirofumi Yamaguchi
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
| | - Satoru Torii
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
| | - Shinya Honda
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
| |
Collapse
|
37
|
Puri C, Gratian MJ, Rubinsztein DC. Mammalian autophagosomes form from finger-like phagophores. Dev Cell 2023; 58:2746-2760.e5. [PMID: 37683632 DOI: 10.1016/j.devcel.2023.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/12/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
The sequence of morphological intermediates that leads to mammalian autophagosome formation and closure is a crucial yet poorly understood issue. Previous studies have shown that yeast autophagosomes evolve from cup-shaped phagophores with only one closure point, and mammalian studies have inferred that mammalian phagophores also have single openings. Our superresolution microscopy studies in different human cell lines in conditions of basal and nutrient-deprivation-induced autophagy identified autophagosome precursors with multifocal origins that evolved into unexpected finger-like phagophores with multiple openings before becoming more spherical structures. Compatible phagophore structures were observed with whole-mount and conventional electron microscopy. This sequence of events was visualized using advanced SIM2 superresolution live microscopy. The finger-shaped phagophore apertures remained open when ESCRT function was compromised. The efficient closure of autophagic structures is important for their release from the recycling endosome. This has important implications for understanding how autophagosomes form and capture various cargoes.
Collapse
Affiliation(s)
- Claudia Puri
- Department of Medical Genetics, University of Cambridge, Cambridge, UK; Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Biomedical Campus, University of Cambridge, The Keith Peters Building Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Matthew J Gratian
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge, UK; Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Biomedical Campus, University of Cambridge, The Keith Peters Building Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
38
|
Boyle E, Wilfling F. Autophagy as a caretaker of nuclear integrity. FEBS Lett 2023; 597:2728-2738. [PMID: 37567863 DOI: 10.1002/1873-3468.14719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Due to their essential functions, dysregulation of nuclear pore complexes (NPCs) is strongly associated with numerous human diseases, including neurodegeneration and cancer. On a cellular level, longevity of scaffold nucleoporins in postmitotic cells of both C. elegans and mammals renders them vulnerable to age-related damage, which is associated with an increase in pore leakiness and accumulation of intranuclear aggregates in rat brain cells. Thus, understanding the mechanisms which underpin the homeostasis of this complex, as well as other nuclear proteins, is essential. In this review, autophagy-mediated degradation pathways governing nuclear components in yeast will be discussed, with a particular focus on NPCs. Furthermore, the various nuclear degradation mechanisms identified thus far in diverse eukaryotes will also be highlighted.
Collapse
Affiliation(s)
- Emily Boyle
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Florian Wilfling
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
| |
Collapse
|
39
|
Creekmore BC, Kixmoeller K, Black BE, Lee EB, Chang YW. Native ultrastructure of fresh human brain vitrified directly from autopsy revealed by cryo-electron tomography with cryo-plasma focused ion beam milling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557623. [PMID: 37745569 PMCID: PMC10516044 DOI: 10.1101/2023.09.13.557623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Ultrastructure of human brain tissue has traditionally been examined using electron microscopy (EM) following chemical fixation, staining, and mechanical sectioning, which limit attainable resolution and introduce artifacts. Alternatively, cryo-electron tomography (cryo-ET) offers the potential to image unfixed cellular samples at higher resolution while preserving their native structures, but it requires samples to be frozen free from crystalline ice and thin enough to image via transmission EM. Due to these requirements, cryo-ET has yet to be employed to investigate the native ultrastructure of unfixed, never previously frozen human brain tissue. Here we present a method for generating lamellae in human brain tissue obtained at time of autopsy that can be imaged via cryo-ET. We vitrify the tissue directly on cryo-EM grids via plunge-freezing, as opposed to high pressure freezing which is generally used for thick samples. Following vitrification, we use xenon plasma focused ion beam (FIB) milling to generate lamellae directly on-grid. In comparison to gallium FIB, which is commonly used for biological samples, xenon plasma FIB is powerful enough to efficiently mill large volume samples, such as human brain tissue. Additionally, our approach allows for lamellae to be generated at variable depth inside the tissue as opposed to being limited to starting at the surface of the tissue. Lamellae generated in Alzheimer's disease brain tissue and imaged by cryo-ET reveal intact subcellular structures including components of autophagy and potential tau fibrils. Furthermore, we visualize myelin revealing intact compact myelin and functional cytoplasmic expansions such as cytoplasmic channels and the inner tongue. From these images we also measure the dimensions of myelin membranes, providing insight into how myelin basic protein forces out oligodendrocyte cytoplasm to form compact myelin and tightly links intracellular polar head groups of the oligodendrocyte plasma membrane. This approach provides a first view of unfixed, never previously frozen human brain tissue prepared by cryo-plasma FIB milling and imaged at high resolution by cryo-ET.
Collapse
Affiliation(s)
- Benjamin C. Creekmore
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Kathryn Kixmoeller
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B. Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
40
|
Liang Y. Phagophore-lysosome/vacuole fusion in mutant yeast and mammalian cells. Autophagy 2023; 19:2595-2600. [PMID: 37083184 PMCID: PMC10392725 DOI: 10.1080/15548627.2023.2205272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023] Open
Abstract
Macroautophagy/autophagy is a process through which the phagophores engulf non-essential or damaged cellular materials, forming double-membrane autophagosomes (APs) and fusing with lysosomes/vacuoles, after which the materials are degraded for recycling purposes. Autophagy is associated with increased cell survival under different stress conditions. AP-lysosome/vacuole fusion is a critical step in autophagy. Some mutant cells can accumulate phagophores under autophagy-induction conditions. Autophagy is interrupted when accumulated phagophores cannot fuse with lysosomes/vacuoles, resulting in a significant decrease in cell survivability. However, phagophore-lysosome/vacuole fusion has been reported in related mammalian cells and yeast mutant cells. This observation indicates that it is possible to restore a partial autophagy process after interruption. Furthermore, these findings indicate that phagophore closure is not a prerequisite for its fusion with the lysosome/vacuole in the mutant cells. The phagophore-lysosome/vacuole fusion strategy can significantly rescue defective autophagy due to failed phagophore closure. This commentary discusses the fusion of phagophores and lysosomes/vacuoles and implications of such fusion events.Abbreviations: AB: autophagic body; AL: autolysosome; AP: autophagosome; ATG: autophagy related; EM: electron microscopy; ESCRT: endosomal sorting complex required for transport; ET: electron tomography; FIB: focus ion beam; IM: inner membrane; KO: knockout; LAMP1: lysosomal-associated membrane protein 1; OM; outer membrane; STX17: syntaxin 17; TEM: transmission electron microscopy; TM: transmembrane domain; Vps: vacuolar protein sorting; WT: wild-type.
Collapse
Affiliation(s)
- Yongheng Liang
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
41
|
Korfhage JL, Wan N, Elhan H, Kauffman L, Pineda M, Fuller DM, Thiam AR, Reinisch KM, Melia TJ. ATG2A-mediated bridge-like lipid transport regulates lipid droplet accumulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553257. [PMID: 37645754 PMCID: PMC10461963 DOI: 10.1101/2023.08.14.553257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
ATG2 proteins facilitate bulk lipid transport between membranes. ATG2 is an essential autophagy protein, but ATG2 also localizes to lipid droplets (LDs), and genetic depletion of ATG2 increases LD numbers while impairing fatty acid transport from LDs to mitochondria. How ATG2 supports LD homeostasis and whether lipid transport regulates this homeostasis remains unknown. Here we demonstrate that ATG2 is preferentially recruited to phospholipid monolayers such as those surrounding LDs rather than to phospholipid bilayers. In vitro, ATG2 can drive phospholipid transport from artificial LDs with rates that correlate with the binding affinities, such that phospholipids are moved much more efficiently when one of the ATG2-interacting structures is an artificial LD. ATG2 is thought to exhibit 'bridge-like" lipid transport, with lipids flowing across the protein between membranes. We mutated key amino acids within the bridge to form a transport-dead ATG2 mutant (TD-ATG2A) which we show specifically blocks bridge-like, but not shuttle-like, lipid transport in vitro. TD-ATG2A still localizes to LDs, but is unable to rescue LD accumulation in ATG2 knockout cells. Thus, ATG2 has a natural affinity for, and an enhanced activity upon LD surfaces and uses bridge-like lipid transport to support LD dynamics in cells.
Collapse
Affiliation(s)
- Justin L. Korfhage
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
| | - Neng Wan
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
| | - Helin Elhan
- Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Lisa Kauffman
- Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Mia Pineda
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
| | - Devin M. Fuller
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Karin M. Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
| | - Thomas J. Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
42
|
Wang N, Shibata Y, Paulo JA, Gygi SP, Rapoport TA. A conserved membrane curvature-generating protein is crucial for autophagosome formation in fission yeast. Nat Commun 2023; 14:4765. [PMID: 37553386 PMCID: PMC10409813 DOI: 10.1038/s41467-023-40530-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
Organelles are shaped by curvature-generating proteins, which include the reticulons and REEPs that are involved in forming the endoplasmic reticulum (ER). A conserved REEP subfamily differs from the ER-shaping REEPs in abundance and membrane topology and has unidentified functions. Here, we show that Rop1, the single member of this family in the fission yeast Schizosacharomyces pombe, is crucial for the macroautophagy of organelles and cytosolic proteins. Rop1 is needed for the formation of phagophores, cup-like structures consisting of two closely apposed membrane sheets that encapsulate cargo. It is recruited at early stages to phagophores and is required for their maturation into autophagosomes. Rop1 function relies on its ability to generate high membrane curvature and on its colocalization with the autophagy component Atg2 that is thought to reside at the phagophore rim. We propose that Rop1 facilitates the formation and growth of the double-membrane structure of the autophagosome.
Collapse
Affiliation(s)
- Ning Wang
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Yoko Shibata
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
43
|
Melia TJ. Growing thin - How bulk lipid transport drives expansion of the autophagosome membrane but not of its lumen. Curr Opin Cell Biol 2023; 83:102190. [PMID: 37385155 PMCID: PMC10528516 DOI: 10.1016/j.ceb.2023.102190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023]
Abstract
The key event in macroautophagy is the de novo formation of a new organelle called the autophagosome which when complete, will have captured bits of cytoplasm within its double-membrane structure. Eventual fusion with the lysosome allows this captured material to be degraded back to simple molecules which can be recycled to support cell function during starvation. How autophagosomes form has been a challenging question for over 60 years. This review highlights work that forms the basis for an autophagosome membrane expansion model grounded in protein-mediated lipid transport.
Collapse
|
44
|
Olivas TJ, Wu Y, Yu S, Luan L, Choi P, Guinn ED, Nag S, De Camilli PV, Gupta K, Melia TJ. ATG9 vesicles comprise the seed membrane of mammalian autophagosomes. J Cell Biol 2023; 222:e202208088. [PMID: 37115958 PMCID: PMC10148236 DOI: 10.1083/jcb.202208088] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 04/30/2023] Open
Abstract
As the autophagosome forms, its membrane surface area expands rapidly, while its volume is kept low. Protein-mediated transfer of lipids from another organelle to the autophagosome likely drives this expansion, but as these lipids are only introduced into the cytoplasmic-facing leaflet of the organelle, full membrane growth also requires lipid scramblase activity. ATG9 harbors scramblase activity and is essential to autophagosome formation; however, whether ATG9 is integrated into mammalian autophagosomes remains unclear. Here we show that in the absence of lipid transport, ATG9 vesicles are already competent to collect proteins found on mature autophagosomes, including LC3-II. Further, we use styrene-maleic acid lipid particles to reveal the nanoscale organization of protein on LC3-II membranes; ATG9 and LC3-II are each fully integrated into expanding autophagosomes. The ratios of these two proteins at different stages of maturation demonstrate that ATG9 proteins are not continuously integrated, but rather are present on the seed vesicles only and become diluted in the expanding autophagosome membrane.
Collapse
Affiliation(s)
- Taryn J. Olivas
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
| | - Yumei Wu
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, CT, USA
- Program in Cellular Neuroscience Neurodegeneration and Repair, School of Medicine, Yale University, New Haven, CT, USA
| | - Shenliang Yu
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
| | - Lin Luan
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
| | - Peter Choi
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
| | - Emily D. Guinn
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
| | - Shanta Nag
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
| | - Pietro V. De Camilli
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, CT, USA
- Program in Cellular Neuroscience Neurodegeneration and Repair, School of Medicine, Yale University, New Haven, CT, USA
| | - Kallol Gupta
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Thomas J. Melia
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
45
|
Dabrowski R, Tulli S, Graef M. Parallel phospholipid transfer by Vps13 and Atg2 determines autophagosome biogenesis dynamics. J Cell Biol 2023; 222:e202211039. [PMID: 37115156 PMCID: PMC10148235 DOI: 10.1083/jcb.202211039] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
During autophagy, rapid membrane assembly expands small phagophores into large double-membrane autophagosomes. Theoretical modeling predicts that the majority of autophagosomal phospholipids are derived from highly efficient non-vesicular phospholipid transfer (PLT) across phagophore-ER contacts (PERCS). Currently, the phagophore-ER tether Atg2 is the only PLT protein known to drive phagophore expansion in vivo. Here, our quantitative live-cell imaging analysis reveals a poor correlation between the duration and size of forming autophagosomes and the number of Atg2 molecules at PERCS of starving yeast cells. Strikingly, we find that Atg2-mediated PLT is non-rate limiting for autophagosome biogenesis because membrane tether and the PLT protein Vps13 localizes to the rim and promotes the expansion of phagophores in parallel with Atg2. In the absence of Vps13, the number of Atg2 molecules at PERCS determines the duration and size of forming autophagosomes with an apparent in vivo transfer rate of ∼200 phospholipids per Atg2 molecule and second. We propose that conserved PLT proteins cooperate in channeling phospholipids across organelle contact sites for non-rate-limiting membrane assembly during autophagosome biogenesis.
Collapse
Affiliation(s)
- Rahel Dabrowski
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Susanna Tulli
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Martin Graef
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
46
|
Abstract
Recent advances in cryo-electron microscopy have marked only the beginning of the potential of this technique. To bring structure into cell biology, the modality of cryo-electron tomography has fast developed into a bona fide in situ structural biology technique where structures are determined in their native environment, the cell. Nearly every step of the cryo-focused ion beam-assisted electron tomography (cryo-FIB-ET) workflow has been improved upon in the past decade, since the first windows were carved into cells, unveiling macromolecular networks in near-native conditions. By bridging structural and cell biology, cryo-FIB-ET is advancing our understanding of structure-function relationships in their native environment and becoming a tool for discovering new biology.
Collapse
Affiliation(s)
- Lindsey N Young
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA;
| | - Elizabeth Villa
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA;
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
47
|
Popelka H, Klionsky DJ. Autophagic structures revealed by cryo-electron tomography: new clues about autophagosome biogenesis. Autophagy 2023; 19:1375-1377. [PMID: 36722820 PMCID: PMC10240971 DOI: 10.1080/15548627.2023.2175305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transitions from the early to late phagophore, which occur to engulf cytoplasmic material within an autophagosome for macroautophagic/autophagic degradation, involve dynamic ultrastructural changes that are not fully understood. A recent study combined cryo-electron tomography (cryo-ET) with extensive computational analysis to get a better insight into autophagosome biogenesis in situ within yeast cells. This approach disclosed new information on the shape of autophagic structures, their contacts with surrounding organelles, membrane sources, and mechanisms of transition. Together, these results provide new directions for autophagy research, and show the potential of cryo-ET in cell biology.Abbreviations: Cryo-ET, cryo-electron tomography; ER, endoplasmic reticulum; IMDa, intermembrane distance in the autophagosome; IMDp, intermembrane distance in the phagophore; LD, lipid droplets.
Collapse
Affiliation(s)
- Hana Popelka
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
48
|
Liu L, Tang Y, Zhou Z, Huang Y, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Membrane Curvature: The Inseparable Companion of Autophagy. Cells 2023; 12:1132. [PMID: 37190041 PMCID: PMC10136490 DOI: 10.3390/cells12081132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Autophagy is a highly conserved recycling process of eukaryotic cells that degrades protein aggregates or damaged organelles with the participation of autophagy-related proteins. Membrane bending is a key step in autophagosome membrane formation and nucleation. A variety of autophagy-related proteins (ATGs) are needed to sense and generate membrane curvature, which then complete the membrane remodeling process. The Atg1 complex, Atg2-Atg18 complex, Vps34 complex, Atg12-Atg5 conjugation system, Atg8-phosphatidylethanolamine conjugation system, and transmembrane protein Atg9 promote the production of autophagosomal membranes directly or indirectly through their specific structures to alter membrane curvature. There are three common mechanisms to explain the change in membrane curvature. For example, the BAR domain of Bif-1 senses and tethers Atg9 vesicles to change the membrane curvature of the isolation membrane (IM), and the Atg9 vesicles are reported as a source of the IM in the autophagy process. The amphiphilic helix of Bif-1 inserts directly into the phospholipid bilayer, causing membrane asymmetry, and thus changing the membrane curvature of the IM. Atg2 forms a pathway for lipid transport from the endoplasmic reticulum to the IM, and this pathway also contributes to the formation of the IM. In this review, we introduce the phenomena and causes of membrane curvature changes in the process of macroautophagy, and the mechanisms of ATGs in membrane curvature and autophagosome membrane formation.
Collapse
Affiliation(s)
- Lei Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yu Tang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Zijuan Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yuan Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Cefan Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jingfeng Tang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
49
|
Barad BA, Medina M, Fuentes D, Wiseman RL, Grotjahn DA. Quantifying organellar ultrastructure in cryo-electron tomography using a surface morphometrics pipeline. J Cell Biol 2023; 222:e202204093. [PMID: 36786771 PMCID: PMC9960335 DOI: 10.1083/jcb.202204093] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/22/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
Cellular cryo-electron tomography (cryo-ET) enables three-dimensional reconstructions of organelles in their native cellular environment at subnanometer resolution. However, quantifying ultrastructural features of pleomorphic organelles in three dimensions is challenging, as is defining the significance of observed changes induced by specific cellular perturbations. To address this challenge, we established a semiautomated workflow to segment organellar membranes and reconstruct their underlying surface geometry in cryo-ET. To complement this workflow, we developed an open-source suite of ultrastructural quantifications, integrated into a single pipeline called the surface morphometrics pipeline. This pipeline enables rapid modeling of complex membrane structures and allows detailed mapping of inter- and intramembrane spacing, curvedness, and orientation onto reconstructed membrane meshes, highlighting subtle organellar features that are challenging to detect in three dimensions and allowing for statistical comparison across many organelles. To demonstrate the advantages of this approach, we combine cryo-ET with cryo-fluorescence microscopy to correlate bulk mitochondrial network morphology (i.e., elongated versus fragmented) with membrane ultrastructure of individual mitochondria in the presence and absence of endoplasmic reticulum (ER) stress. Using our pipeline, we demonstrate ER stress promotes adaptive remodeling of ultrastructural features of mitochondria including spacing between the inner and outer membranes, local curvedness of the inner membrane, and spacing between mitochondrial cristae. We show that differences in membrane ultrastructure correlate to mitochondrial network morphologies, suggesting that these two remodeling events are coupled. Our pipeline offers opportunities for quantifying changes in membrane ultrastructure on a single-cell level using cryo-ET, opening new opportunities to define changes in ultrastructural features induced by diverse types of cellular perturbations.
Collapse
Affiliation(s)
- Benjamin A. Barad
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Michaela Medina
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Daniel Fuentes
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Danielle A. Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
50
|
Li M, Tripathi-Giesgen I, Schulman BA, Baumeister W, Wilfling F. In situ snapshots along a mammalian selective autophagy pathway. Proc Natl Acad Sci U S A 2023; 120:e2221712120. [PMID: 36917659 PMCID: PMC10041112 DOI: 10.1073/pnas.2221712120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/08/2023] [Indexed: 03/16/2023] Open
Abstract
Selective macroautophagy (hereafter referred to as autophagy) describes a process in which cytosolic material is engulfed in a double membrane organelle called an autophagosome. Autophagosomes are carriers responsible for delivering their content to a lytic compartment for destruction. The cargo can be of diverse origin, ranging from macromolecular complexes to protein aggregates, organelles, and even invading pathogens. Each cargo is unique in composition and size, presenting different challenges to autophagosome biogenesis. Among the largest cargoes targeted by the autophagy machinery are intracellular bacteria, which can, in the case of Salmonella, range from 2 to 5 μm in length and 0.5 to 1.5 μm in width. How phagophores form and expand on such a large cargo remains mechanistically unclear. Here, we used HeLa cells infected with an auxotrophic Salmonella to study the process of phagophore biogenesis using in situ correlative cryo-ET. We show that host cells generate multiple phagophores at the site of damaged Salmonella-containing vacuoles (SCVs). The observed double membrane structures range from disk-shaped to expanded cup-shaped phagophores, which have a thin intermembrane lumen with a dilating rim region and expand using the SCV, the outer membrane of Salmonella, or existing phagophores as templates. Phagophore rims establish different forms of contact with the endoplasmic reticulum (ER) via structurally distinct molecular entities for membrane formation and expansion. Early omegasomes correlated with the marker Double-FYVE domain-Containing Protein 1 (DFCP1) are observed in close association with the ER without apparent membrane continuity. Our study provides insights into the formation of phagophores around one of the largest selective cargoes.
Collapse
Affiliation(s)
- Meijing Li
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry,82152Martinsried, Germany
| | - Ishita Tripathi-Giesgen
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry,82152Martinsried, Germany
| | - Brenda A. Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry,82152Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry,82152Martinsried, Germany
| | - Florian Wilfling
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry,82152Martinsried, Germany
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, 60438Frankfurt a. M., Germany
| |
Collapse
|