1
|
Moos M, Overgaard J, Hůla P, Byrge CG, Šmilauer P, Nedvěd O, Koštál V. Metabolomic signatures associated with cold adaptation and seasonal acclimation of Drosophila: profiling of 43 species. J Exp Biol 2025; 228:JEB250076. [PMID: 39911076 DOI: 10.1242/jeb.250076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Cold tolerance is a key determinant of poleward colonization in insects. However, the physiological basis underlying interspecific differences in cold tolerance is not fully understood. Here, we analyzed cold tolerance and metabolomic profiles in warm- and cold-acclimated phenotypes of 43 Drosophila species representing a latitudinal gradient from the tropics to the boreal zone. We found a strong positive correlation between cold tolerance and climatic variables associated with habitat seasonality and temperature. Including the effects of cold acclimation, we found most species have similar 'safety margins', measured as the difference between the average environmental temperature and the lower lethal temperature. Searching for metabolomic signatures of cold tolerance, we found that the warm-acclimated flies of cold-hardy species had moderately but significantly higher constitutive signals of putative cryoprotectants such as trehalose, glucose, glycerol and mannitol/sorbitol. Cold acclimation (and the transition to a winter dormant phenotype) resulted in a strong accumulation of myo-inositol, which occurred only in species of the virilis group. Other temperate and boreal species either showed only moderate, idiosyncratic accumulations of sugars/polyols and free amino acids, or did not accumulate any 'classical' cryoprotectant at all. Thus, our results suggest that the colonization of boreal regions by Drosophila does not necessarily depend on the seasonal accumulation of classical cryoprotectants. In contrast, virtually all cold-acclimated species showed a significant increase in products of phospholipid catabolism, suggesting that remodeling of biological membranes is a clear and ubiquitous signature of cold acclimation in Drosophila.
Collapse
Affiliation(s)
- Martin Moos
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 1160-31, 37005 České Budějovice, Czech Republic
| | - Johannes Overgaard
- Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Petr Hůla
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 1160-31, 37005 České Budějovice, Czech Republic
| | - Clara Garfiel Byrge
- Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Petr Šmilauer
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Oldřich Nedvěd
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Vladimír Koštál
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 1160-31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
2
|
Touzot M, Holmstrup M, Sørensen JG, Slotsbo S. Gain of thermal tolerance through acclimation is quicker than the loss by de-acclimation in the freeze-tolerant potworm, Enchytraeus albidus. J Exp Biol 2025; 228:JEB249675. [PMID: 39895642 DOI: 10.1242/jeb.249675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Environmental temperature variation, naturally occurring or induced by climate change, leads organisms to evolve behavioural and physiological responses to handle thermal fluctuations. Among them, phenotypic plasticity is considered a fundamental response to natural thermal variations. Nevertheless, we know little about the rate of thermal acclimation responses and the physiological mechanisms underpinning phenotypic plasticity in freeze-tolerant invertebrates. We assessed the temporal dynamics of heat and cold tolerance plasticity in the freeze-tolerant potworm Enchytraeus albidus following thermal acclimation. Acclimation responses were investigated in worms cultured at 5 or 20°C and acclimated for varying duration (hours to weeks) at the same temperature or relocated to the opposite temperature. The rate of phenotypic responses of thermal tolerance was evaluated by assessing survival after exposure to high and low stressful temperatures. Worms cultured at 5°C were more cold tolerant and less heat tolerant than worms cultured at 20°C. The plasticity of thermal tolerance in E. albidus varied in scope and response time according to both culture and acclimation temperatures: acclimation at 20°C of worms cultured at 5°C increased heat survival within 1 day and reduced cold tolerance in 5 days, while acclimation at 5°C of worms cultured at 20°C did not affect heat survival but considerably and quickly, within 1 day, increased cold tolerance. Effects of acclimation were also assessed on membrane phospholipid fatty acid (PLFA) composition and glycogen content of worms, and showed that improved tolerance was linked to changes in membrane PLFA desaturation and chain length.
Collapse
Affiliation(s)
- Morgane Touzot
- Section for Terrestrial Ecology, Institute for Ecoscience, Aarhus University, C. F. Møllers Allé 4, 8000 Aarhus C, Denmark
| | - Martin Holmstrup
- Section for Terrestrial Ecology, Institute for Ecoscience, Aarhus University, C. F. Møllers Allé 4, 8000 Aarhus C, Denmark
| | - Jesper Givskov Sørensen
- Section for Genetics, Ecology & Evolution, Department of Biology, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus C, Denmark
| | - Stine Slotsbo
- Section for Terrestrial Ecology, Institute for Ecoscience, Aarhus University, C. F. Møllers Allé 4, 8000 Aarhus C, Denmark
| |
Collapse
|
3
|
Adams VE, van Oirschot ML, Toxopeus J. HSP70 is upregulated after heat but not freezing stress in the freeze-tolerant cricket Gryllus veletis. Comp Biochem Physiol A Mol Integr Physiol 2025; 300:111791. [PMID: 39657844 DOI: 10.1016/j.cbpa.2024.111791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Heat shock proteins (HSPs) are well known to prevent and repair protein damage caused by various abiotic stressors, but their role in low temperature and freezing stress is not well-characterized in insects compared to other thermal challenges such as heat stress. Ice formation in and around cells is hypothesized to cause protein damage, yet many species of insects can survive freezing, suggesting HSPs may be an important mechanism in freeze tolerance. Here, we studied HSP70 in a freeze-tolerant cricket Gryllus veletis to better understand the role of HSPs in this phenomenon. We measured expression of one heat-inducible HSP70 isoform at the mRNA level (using RT-qPCR), as well as the relative abundance of total HSP70 protein (using semi-quantitative Western blotting), in five tissues from crickets exposed to a survivable heat treatment (2 h at 40 °C), a 6-week fall-like acclimation that induces freeze tolerance, and a survivable freezing treatment (1.5 h at -8 °C). While HSP70 expression was upregulated by heat at the mRNA or protein level in all tissues studied (fat body, Malphigian tubules, midgut, femur muscle, nervous system ganglia), no tissue exhibited HSP70 upregulation within 2-24 h following a survivable freezing stress. During fall-like acclimation to mild low temperatures, we only saw moderate upregulation of HSP70 at the protein level in muscle, and at the RNA level in fat body and nervous tissue. Although HSP70 is important for responding to a wide range of stressors, our work suggests that this chaperone may be less critical in the preparation for, and response to, moderate freezing stress.
Collapse
Affiliation(s)
- Victoria E Adams
- Department of Biology, St. Francis Xavier University, 2320 Notre Dame Ave, Antigonish B2G 2W5, NS, Canada
| | - Maranda L van Oirschot
- Department of Biology, St. Francis Xavier University, 2320 Notre Dame Ave, Antigonish B2G 2W5, NS, Canada
| | - Jantina Toxopeus
- Department of Biology, St. Francis Xavier University, 2320 Notre Dame Ave, Antigonish B2G 2W5, NS, Canada.
| |
Collapse
|
4
|
Izadi H, Cuthbert RN, Haubrock PJ, Renault D. Advances in understanding Lepidoptera cold tolerance. J Therm Biol 2024; 125:103992. [PMID: 39418723 DOI: 10.1016/j.jtherbio.2024.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Ambient thermal conditions mediate insect growth, development, reproduction, survival, and distribution. With increasingly frequent and severe cold spells, it is critical to determine low-temperature performance and cold tolerances of ecologically and economically essential insect groups to predict their responses to global environmental change. This review covers the cold tolerance strategies of 49 species of Lepidoptera (moths and butterflies), focusing on species that are known as crop pests and crop storage facilities. We synthesize cold tolerance strategies of well-studied species within this order, finding that diapause is a distinctive mechanism that has independently evolved in different genera and families of Lepidoptera. However, the occurrence of diapause in each life stage is specific to the species, and in most studied lepidopteran species, the feeding stage (as larva) is the predominant overwintering stage. We also found that the onset of diapause and the improvement of cold tolerance are interdependent phenomena that typically occur together. Moreover, adopting a cold tolerance strategy is not an inherent, fixed trait and is greatly influenced by a species' geographic distribution and rearing conditions. This review further finds that freeze avoidance rather than freeze tolerance or chill susceptibility is the primary cold tolerance strategy among lepidopteran species. The cold hardiness of lepidopteran insects primarily depends on the accumulation of cryoprotectants and the depression of the supercooling point. We highlight variations in cold tolerance strategies and mechanisms among a subset of Lepidoptera, however, further work is needed to elucidate these strategies for the vast numbers of neglected species and populations to understand broad-scale responses to global change.
Collapse
Affiliation(s)
- Hamzeh Izadi
- Division of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, United Kingdom
| | - Phillip J Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, 389 25, Vodňany, Czech Republic
| | - David Renault
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], 35000, Rennes, France
| |
Collapse
|
5
|
Xu Y, Song X, Li Y, Niu Y, Zhi L, Zong S, Tao J. Glycerol Metabolism is Important for the Low-Temperature Adaptation of a Global Quarantine Pest Anoplophora glabripennis Larvae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17868-17879. [PMID: 39083594 DOI: 10.1021/acs.jafc.4c03896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Anoplophora glabripennis is a critical global quarantine pest. Recently, its distribution has been extended to colder and higher-latitude regions. The adaptation to low temperatures is vital for the successful colonization of insects in new environments. However, the metabolic pathways of A. glabripennis larvae under cold stress remain undefined. This study analyzed the larval hemolymph under different low-temperature treatments using LC-MS/MS. The results showed that differential metabolites associated with sugar and lipid metabolism are pivotal in the larval chill coma process. Under low-temperature treatments, the glycerol content increased significantly compared with the control group. Cold stress significantly induced the expression of AglaGK2 and AglaGPDHs. After undergoing RNAi treatment for 48 h, larvae exposed to -20 °C for 1 h showed reduced recovery when injected with ds-AglaGK2 and ds-AglaGPDH1 compared to the control group, indicating that glycerol biosynthesis plays a role in the low-temperature adaptation of A. glabripennis larvae. Our results provide a theoretical basis for clarifying the molecular mechanism of A. glabripennis larvae in response to environmental stresses.
Collapse
Affiliation(s)
- Yabei Xu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Xue Song
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Yurong Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Yiming Niu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Lingxu Zhi
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Teng Z, Chen L, Li S, Pan K, Liu D, Gu Z, Wang Y, Huang L, Chen Y. Assessing the efficacy of natural soil biotin on soil quality, microbial diversity, and Rhododendron simsii growth for sustainable landscape architecture. Front Microbiol 2024; 15:1421647. [PMID: 39171256 PMCID: PMC11335535 DOI: 10.3389/fmicb.2024.1421647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Fertilization significantly influences soil quality and its sustainable use in urban garden maintenance. The widespread application of inorganic fertilizers has raised ecological concerns due to their potential environmental impacts. Organic fertilizers, while beneficial, often have slow effects and are costly. Biofertilizers, with their eco-friendly nature and low carbon footprint, are gaining attention for their multifaceted role in supporting plant growth. Despite the focus on fruit trees, vegetables, and medicinal plants, ornamental plants have been understudied. This study aims to evaluate the efficacy of a novel microbial fertilizer, 'natural soil biotin', on Rhododendron plants, specifically the Azalea hybrid 'Carnation'. The study employed a comparative approach to assess the impact of different fertilization strategies on soil properties, microbial diversity, enzyme activity, plant morphology, and physiological parameters. The application of 'natural soil biotin' was compared with the use of inorganic and organic fertilizers. The combined application of 'natural soil biotin' was found to effectively enhance soil properties and mitigate the impact of other fertilizers on soil pH. It also improved the relative abundance of beneficial microbial groups such as Proteobacteria, Ascomycota, and Basidiomycota. Furthermore, the mixed application significantly increased the activities of urease and sucrase in Rhododendron plants, which promoted their growth, development, and stress resistance. The results indicate that the mixed application of 'natural soil biotin' with inorganic and organic fertilizers not only improved the soil quality but also enhanced the efficiency of fertilizer utilization. This approach led to increased economic and environmental benefits in Rhododendron cultivation. The findings contribute to the foundation for soil improvement and ecological restoration, suggesting that 'natural soil biotin' could be a promising alternative or supplement to traditional fertilization methods in sustainable landscape architecture.
Collapse
Affiliation(s)
- Zhiyan Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lan Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sheng Li
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou, China
| | - Kexuan Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Dandan Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zaiyuan Gu
- Aupro (Hangzhou) Ecological Industry Operations Co., Ltd., Hangzhou, China
| | - Yijie Wang
- Aupro (Hangzhou) Ecological Industry Operations Co., Ltd., Hangzhou, China
| | - Li Huang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunwen Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Guerreiro BM, Dionísio MM, Lima JC, Silva JC, Freitas F. Cryoprotective Polysaccharides with Ordered Gel Structures Induce Ice Growth Anticipation and Survival Enhancement during Cell Cryopreservation. Biomacromolecules 2024; 25:3384-3397. [PMID: 38739855 DOI: 10.1021/acs.biomac.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This work cross-correlated rheological, thermodynamic, and conformational features of several natural polysaccharides to their cryoprotective performance. The basis of cryoprotection of FucoPol, pectin, and agar revealed a causal combination of (i) an emerging sol-gel transition (p = 0.014) at near-hypothermia (4 °C), (ii) noncolligative attenuated supercooling of the kinetic freezing point of water (p = 0.026) supporting ice growth anticipation, and (iii) increased conformational order (p < 0.0001), where helix-/sheet-like features boost cryoprotection. FucoPol, of highest cryoprotective performance, revealed a predominantly helical structure (α/β = 1.5) capable of forming a gel state at 4 °C and the highest degree of supercooling attenuation (TH = 6.2 °C). Ice growth anticipation with gel-like polysaccharides suggests that the gel matrix neutralizes elastic deformations and lethal cell volumetric fluctuations during freezing, thus preventing the loss of homeostasis and increasing post-thaw viability. Ultimately, structured gels capable of attenuated supercooling enable cryoprotective action at the polymer-cell interface, in addition to polymer-ice interactions. This rationale potentiates implementing alternative, biobased, noncytotoxic polymers in cryobiology.
Collapse
Affiliation(s)
- Bruno M Guerreiro
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - M Madalena Dionísio
- LAQV-REQUIMTE, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - João Carlos Lima
- LAQV-REQUIMTE, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Jorge Carvalho Silva
- CENIMAT/I3N, Department of Physics, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Filomena Freitas
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| |
Collapse
|
8
|
Guerreiro BM, Concórdio-Reis P, Pericão H, Martins F, Moppert X, Guézennec J, Lima JC, Silva JC, Freitas F. Elevated fucose content enhances the cryoprotective performance of anionic polysaccharides. Int J Biol Macromol 2024; 261:129577. [PMID: 38246459 DOI: 10.1016/j.ijbiomac.2024.129577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Biological cryopreservation often involves using a cryoprotective agent (CPA) to mitigate lethal physical stressors cells endure during freezing and thawing, but effective CPA concentrations are cytotoxic. Hence, natural polysaccharides have been studied as biocompatible alternatives. Here, a subset of 26 natural polysaccharides of various chemical composition was probed for their potential in enhancing the metabolic post-thaw viability (PTV) of cryopreserved Vero cells. The best performing cryoprotective polysaccharides contained significant fucose amounts, resulting in average PTV 2.8-fold (up to 3.1-fold) compared to 0.8-fold and 2.2-fold for all non-cryoprotective and cryoprotective polysaccharides, respectively, outperforming the optimized commercial CryoStor™ CS5 formulation (2.6-fold). Stoichiometrically, a balance between fucose (18-35.7 mol%), uronic acids (UA) (13.5-26 mol%) and high molecular weight (MW > 1 MDa) generated optimal PTV. Principal component analysis (PCA) revealed that fucose enhances cell survival by a charge-independent, MW-scaling mechanism (PC1), drastically different from the charge-dominated ice growth disruption of UA (PC2). Its neutral nature and unique properties distinguishable from other neutral monomers suggest fucose may play a passive role in conformational adaptability of polysaccharide to ice growth inhibition, or an active role in cell membrane stabilization through binding. Ultimately, fucose-rich anionic polysaccharides may indulge in polymer-ice and polymer-cell interactions that actively disrupt ice and minimize lethal volumetric fluctuations due to a balanced hydrophobic-hydrophilic character. Our research showed the critical role neutral fucose plays in enhancing cellular cryopreservation outcomes, disputing previous assumptions of polyanionicity being the sole governing predictor of cryoprotection.
Collapse
Affiliation(s)
- Bruno M Guerreiro
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Patrícia Concórdio-Reis
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Helena Pericão
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Filipa Martins
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Xavier Moppert
- Pacific Biotech SAS, BP 140 289, 98 701 Arue, Tahiti, French Polynesia.
| | - Jean Guézennec
- AiMB (Advices in Marine Biotechnology), 17 Rue d'Ouessant, 29280 Plouzané, France
| | - João C Lima
- LAQV-REQUIMTE, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Jorge C Silva
- CENIMAT/I3N, Department of Physics, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Filomena Freitas
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| |
Collapse
|
9
|
Štětina T, Koštál V. Extracellular freezing induces a permeability transition in the inner membrane of muscle mitochondria of freeze-sensitive but not freeze-tolerant Chymomyza costata larvae. Front Physiol 2024; 15:1358190. [PMID: 38384799 PMCID: PMC10880108 DOI: 10.3389/fphys.2024.1358190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
Background: Many insect species have evolved the ability to survive extracellular freezing. The search for the underlying principles of their natural freeze tolerance remains hampered by our poor understanding of the mechanistic nature of freezing damage itself. Objectives: Here, in search of potential primary cellular targets of freezing damage, we compared mitochondrial responses (changes in morphology and physical integrity, respiratory chain protein functionality, and mitochondrial inner membrane (IMM) permeability) in freeze-sensitive vs. freeze-tolerant phenotypes of the larvae of the drosophilid fly, Chymomyza costata. Methods: Larvae were exposed to freezing stress at -30°C for 1 h, which is invariably lethal for the freeze-sensitive phenotype but readily survived by the freeze-tolerant phenotype. Immediately after melting, the metabolic activity of muscle cells was assessed by the Alamar Blue assay, the morphology of muscle mitochondria was examined by transmission electron microscopy, and the functionality of the oxidative phosphorylation system was measured by Oxygraph-2K microrespirometry. Results: The muscle mitochondria of freeze-tolerant phenotype larvae remained morphologically and functionally intact after freezing stress. In contrast, most mitochondria of the freeze-sensitive phenotype were swollen, their matrix was diluted and enlarged in volume, and the structure of the IMM cristae was lost. Despite this morphological damage, the electron transfer chain proteins remained partially functional in lethally frozen larvae, still exhibiting strong responses to specific respiratory substrates and transferring electrons to oxygen. However, the coupling of electron transfer to ATP synthesis was severely impaired. Based on these results, we formulated a hypothesis linking the observed mitochondrial swelling to a sudden loss of barrier function of the IMM.
Collapse
Affiliation(s)
| | - Vladimír Koštál
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| |
Collapse
|
10
|
Tao YD, Liu Y, Wan XS, Xu J, Fu DY, Zhang JZ. High and Low Temperatures Differentially Affect Survival, Reproduction, and Gene Transcription in Male and Female Moths of Spodoptera frugiperda. INSECTS 2023; 14:958. [PMID: 38132631 PMCID: PMC10743771 DOI: 10.3390/insects14120958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
In this study, we found that both heat and cold stresses significantly affected the survival and reproduction of both sexes in Spodoptera frugiperda adults, with larvae showing relatively higher extreme temperature tolerance. Further transcriptomic analysis in adults found remarkable differences and similarities between sexes in terms of temperature stress responses. Metabolism-related processes were suppressed in heat stressed females, which did not occur to the same extend in males. Moreover, both heat and cold stress reduced immune activities in both sexes. Heat stress induced the upregulation of many heat shock proteins in both sexes, whereas the response to cold stress was insignificant. More cold tolerance-related genes, such as cuticle proteins, UDP-glucuronosyltransferase, and facilitated trehalose transporter Tret1, were found upregulated in males, whereas most of these genes were downregulated in females. Moreover, a large number of fatty acid-related genes, such as fatty acid synthases and desaturases, were differentially expressed under heat and cold stresses in both sexes. Heat stress in females induced the upregulation of a large number of zinc finger proteins and reproduction-related genes; whereas cold stress induced downregulation in genes linked to reproduction. In addition, TRPA1-like encoding genes (which have functions involved in detecting temperature changes) and sex peptide receptor-like genes were found to be differentially expressed in stressed moths. These results indicate sex-specific heat and cold stress responses and adaptive mechanisms and suggest sex-specific trade-offs between stress-resistant progresses and fundamental metabolic processes as well as between survival and reproduction.
Collapse
Affiliation(s)
- Yi-Dong Tao
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Yu Liu
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Xiao-Shuang Wan
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Jin Xu
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| | - Da-Ying Fu
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Jun-Zhong Zhang
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| |
Collapse
|
11
|
Zheng X, Zhang C, Cao H, Zhou X, Liu Z, Wang J. Zinc Cations Uniquely Stabilize Cell Membrane for Cell Cryopreservation. NANO LETTERS 2023; 23:9920-9927. [PMID: 37847595 DOI: 10.1021/acs.nanolett.3c02866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
We report, for the first time, merely using a small amount of (0.039% w/w) Zn(II) instead of very high concentration (25%-50% w/w) of conventional cryoprotective agents (CPAs), i.e., glycerol, during the cryopreservation of red blood cells (RBCs) can lead to a comparable post-thaw recovery rate of ∼95% while avoiding the tedious gradient washout process for the removal of CPA afterward. The result is remarkable, since Zn(II) does not have the ice-controlling ability reported to be critical for CPA. It benefits from its moderate interaction with lipid molecules, facilitating the formation of small and dynamic lipid clusters. Consequently, the membrane fluidity is maintained, and the cells are resilient to osmotic and mechanical stresses during cryopreservation. This study first reports the ion-specific effect on stabilizing the cell membrane; meanwhile, reversibly tuning the structure of biological samples against injuries during the cooling and rewarming provides a new strategy for cryopreservation.
Collapse
Affiliation(s)
- Xia Zheng
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuanbiao Zhang
- College of Physics and Electronic Engineering, Heze University, Heze, Shandong 274015, P. R. China
| | - Huimei Cao
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Zhou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, P. R. China
| | - Zhang Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianjun Wang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, P. R. China
| |
Collapse
|
12
|
Štětina T, Koštál V. Mortality caused by extracellular freezing is associated with fragmentation of nuclear DNA in larval haemocytes of two drosophilid flies. J Exp Biol 2023; 226:jeb246456. [PMID: 37846596 DOI: 10.1242/jeb.246456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
The great complexity of extracellular freezing stress, involving mechanical, osmotic, dehydration and chemical perturbations of the cellular milieu, hampers progress in understanding the nature of freezing injury and the mechanisms to cope with it in naturally freeze-tolerant insects. Here, we show that nuclear DNA fragmentation begins to occur in larval haemocytes of two fly species, Chymomyza costata and Drosophila melanogaster, before or at the same time as the sub-zero temperature is reached that causes irreparable freezing injury and mortality in freeze-sensitive larval phenotypes. However, when larvae of the freeze-tolerant phenotype (diapausing-cold acclimated-hyperprolinemic) of C. costata were subjected to severe freezing stress in liquid nitrogen, no DNA damage was observed. Artificially increasing the proline concentration in freeze-sensitive larvae of both species by feeding them a proline-enriched diet resulted in a decrease in the proportion of nuclei with fragmented DNA during freezing stress. Our results suggest that proline accumulated in diapausing C. costata larvae during cold acclimation may contribute to the protection of nuclear DNA against fragmentation associated with freezing stress.
Collapse
Affiliation(s)
- Tomáš Štětina
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 1160-31, 370505 České Budějovice, Czech Republic
| | - Vladimír Koštál
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 1160-31, 370505 České Budějovice, Czech Republic
| |
Collapse
|
13
|
Lebenzon JE, Overgaard J, Jørgensen LB. Chilled, starved or frozen: Insect mitochondrial adaptations to overcome the cold. CURRENT OPINION IN INSECT SCIENCE 2023:101076. [PMID: 37331596 DOI: 10.1016/j.cois.2023.101076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Physiological adaptations to tackle cold exposure are crucial for insects living in temperate and arctic environments and here we review how cold adaptation is manifested in terms of mitochondrial function. Cold challenges are diverse, and different insect species have evolved metabolic and mitochondrial adaptations to: i) energize homeostatic regulation at low temperature, ii) stretch energy reserves during prolonged cold exposure, and iii) preserve structural organization of organelles following extracellular freezing. While the literature is still sparse, our review suggests that cold-adapted insects preserve ATP production at low temperatures by maintaining preferred mitochondrial substrate oxidation, which is otherwise challenged in cold-sensitive species. Chronic cold exposure and metabolic depression during dormancy is linked to reduced mitochondrial metabolism and may involve mitochondrial degradation. Finally, adaptation to extracellular freezing could be associated with superior structural integrity of the mitochondrial inner membrane following freezing which is linked to cellular and organismal survival.
Collapse
Affiliation(s)
- Jacqueline E Lebenzon
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Johannes Overgaard
- Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark.
| | | |
Collapse
|
14
|
Ndou N, Rakgotho T, Nkuna M, Doumbia IZ, Mulaudzi T, Ajayi RF. Green Synthesis of Iron Oxide (Hematite) Nanoparticles and Their Influence on Sorghum bicolor Growth under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:1425. [PMID: 37050053 PMCID: PMC10096534 DOI: 10.3390/plants12071425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Drought is a major abiotic stress that confronts plant growth and productivity, thus compromising food security. Plants use physiological and biochemical mechanisms to cope with drought stress, but at the expense of growth. Green-synthesized nanoparticles (NPs) have gained great attention in agriculture due to their environmental friendliness and affordability while serving as potential biofertilizers. This study investigates the role of hematite (αFe2O3) NPs, synthesized from Aspalathus linearis (rooibos), to improve Sorghum bicolor growth under drought stress. About 18 nm, spherical, and highly agglomerated hematite (αFe2O3) NPs were obtained. Sorghum seeds were primed with 5, 10, and 15 mg/L αFe2O3 NPs, and, after seven days of germination, the seedlings were transferred into potting soil, cultivated for fourteen days, and were subsequently water deprived (WD) for a further seven days. A reduction in plant height (78%), fresh (FW; 35%) and dry (DW; 36%) weights, and chlorophyll (chl) content ((total chl (81%), chla (135%), and chlb (1827%)) was observed in WD plants, and this correlated with low nutrients (Mg, Si, P, and K) and alteration in the anatomic structure (epidermis and vascular bundle tissues). Oxidative damage was observed as deep blue (O2●-) and brown (H2O2) spots on the leaves of WD plants, in addition to a 25% and 40% increase in oxidative stress markers (H2O2 and MDA) and osmolytes (proline and total soluble sugars), respectively. Seed priming with 10 mg/L αFe2O3 NPs improved plant height (70%), FW (56%), DW (34%), total Chl (104%), chla (160%) and chlb (1936%), anatomic structure, and nutrient distribution. Priming with 10 mg/L αFe2O3 NPs also protected sorghum plants from drought-induced oxidative damage by reducing ROS formation and osmolytes accumulation and prevented biomolecule degradation. The study concludes that green synthesized hematite NPs positively influenced sorghum growth and prevented oxidative damage of biomolecules by improving nutrient uptake and osmoregulation under drought stress.
Collapse
Affiliation(s)
- Nzumbululo Ndou
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
- SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Tessia Rakgotho
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
- SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Mulisa Nkuna
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Ibrahima Zan Doumbia
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Takalani Mulaudzi
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Rachel Fanelwa Ajayi
- SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|