1
|
Li J, Guo Y, Zhang W, Xia M, Liu G, Sun Y, Liu C, Zhong J. Cholesterol metabolism: A strategy for overcoming drug resistance in tumors. Biochem Pharmacol 2025; 238:116974. [PMID: 40348096 DOI: 10.1016/j.bcp.2025.116974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/17/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Despite significant advancements in targeted tumor therapies, the emergence of drug resistance remains a complex challenge. Cholesterol accumulation within tumor cells plays a crucial role in mediating drug resistance through various mechanisms, including altered membrane dynamics, enhanced drug efflux, and activation of survival signaling pathways. Targeting cholesterol metabolism presents an innovative strategy to enhance therapeutic sensitivity, particularly in breast cancer. Consequently, ongoing preclinical studies and clinical trials involving cholesterol-lowering agents indicate a promising direction for improving treatment outcomes in tumors. The combination of these agents with existing therapeutic regimens may lead to enhanced efficacy, highlighting the necessity for continued research in this vital area. This review examines the impact of cholesterol metabolism on drug resistance in tumors, particularly solid tumors, identifies therapeutic targets in this metabolic pathway (with a special focus on breast cancer), and discusses recent advances in cholesterol-lowering drugs in preclinical, as well as those that have entered clinical trials.
Collapse
Affiliation(s)
- Jiahui Li
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yinping Guo
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Wenjie Zhang
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Min Xia
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Gaohua Liu
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yan Sun
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Chang Liu
- Department of Endocrinology and Metabolism, The First People's Hospital of Chenzhou, The First Affiliated Clinical College, University of Xiangnan, 423000 Chenzhou, Hunan, China.
| | - Jing Zhong
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.
| |
Collapse
|
2
|
Mózner O, Szabó KS, Bodnár A, Koppány C, Homolya L, Várady G, Hegedűs T, Sarkadi B, Telbisz Á. Revisiting the Role of the Leucine Plug/Valve in the Human ABCG2 Multidrug Transporter. Int J Mol Sci 2025; 26:4010. [PMID: 40362250 PMCID: PMC12071886 DOI: 10.3390/ijms26094010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/02/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
In the human ABCG2 (ATP Binding Casette transporter G2/BCRP/MXR) multidrug transporter, a so-called "leucin plug/valve" (a.a. L554/L555) has been suggested to facilitate substrate exit and the coupling of drug transport to ATPase activity. In this work, we analyzed the effects of selected variants in this region by expressing these variants, both in mammalian and Sf9 insect cells. We found that, in mammalian cells, the L554A, L554F, L555F, and a combination of L554F/L555F variants of ABCG2 were functional, were processed to the plasma membrane, and exhibited substrate transport activity similar to the wild-type ABCG2, while the L555A and L554A/L555A mutants were poorly expressed and processed in mammalian cells. In Sf9 cells, all the variants were expressed at similar levels; still, the L555A and L554A/L555A variants lost all transport-related functions, while the L554F and L555F variants had reduced dye transport and altered substrate-stimulated ATPase activity. In molecular dynamics simulations, the mutant variants exhibited highly rearranged contacts in the central transmembrane helices; thus, alterations in folding, trafficking, and function can be expected to occur. Our current studies reinforce the importance of L554/L555 in ABCG2 folding and function, while they do not support the specific role of this region in selective substrate handling and show a general reduction in the coupling of drug transport to ATPase activity in the mutant versions.
Collapse
Grants
- K137610 National Research, Development and Innovation Office, Hungary
- TKP2021-EGA-23 National Research, Development and Innovation Office, Hungary
- 2024-1.2.3-HU-RIZONT-2024-00003 National Research, Development and Innovation Office, Hungary
- K128123 National Research, Development and Innovation Office, Hungary
- KDP-1017403 National Research, Development and Innovation Office, Hungary
- 2024-1.1.1-KKV_FÓKUSZ-2024-00022 National Research, Development and Innovation Office, Hungary
Collapse
Affiliation(s)
- Orsolya Mózner
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary; (O.M.); (K.S.S.); (A.B.); (C.K.); (L.H.); (G.V.)
- Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | - Kata Sára Szabó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary; (O.M.); (K.S.S.); (A.B.); (C.K.); (L.H.); (G.V.)
| | - Anikó Bodnár
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary; (O.M.); (K.S.S.); (A.B.); (C.K.); (L.H.); (G.V.)
| | - Csenge Koppány
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary; (O.M.); (K.S.S.); (A.B.); (C.K.); (L.H.); (G.V.)
| | - László Homolya
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary; (O.M.); (K.S.S.); (A.B.); (C.K.); (L.H.); (G.V.)
| | - György Várady
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary; (O.M.); (K.S.S.); (A.B.); (C.K.); (L.H.); (G.V.)
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Tuzolto u. 37–47, 1094 Budapest, Hungary;
- HUN-REN TKI-SE Biophysical Virology Research Group, 1052 Budapest, Hungary
| | - Balázs Sarkadi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary; (O.M.); (K.S.S.); (A.B.); (C.K.); (L.H.); (G.V.)
- Doctoral School, Semmelweis University, 1085 Budapest, Hungary
- Salus Kft, Than Károly utca 20, 1119 Budapest, Hungary
| | - Ágnes Telbisz
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary; (O.M.); (K.S.S.); (A.B.); (C.K.); (L.H.); (G.V.)
| |
Collapse
|
3
|
Pant S, Dehghani-Ghahnaviyeh S, Trebesch N, Rasouli A, Chen T, Kapoor K, Wen PC, Tajkhorshid E. Dissecting Large-Scale Structural Transitions in Membrane Transporters Using Advanced Simulation Technologies. J Phys Chem B 2025; 129:3703-3719. [PMID: 40100959 DOI: 10.1021/acs.jpcb.5c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Membrane transporters are integral membrane proteins that act as gatekeepers of the cell, controlling fundamental processes such as recruitment of nutrients and expulsion of waste material. At a basic level, transporters operate using the "alternating access model," in which transported substances are accessible from only one side of the membrane at a time. This model usually involves large-scale structural changes in the transporter, which often cannot be captured using unbiased, conventional molecular simulation techniques. In this article, we provide an overview of some of the major simulation techniques that have been applied to characterize the structural dynamics and energetics involved in the transition of membrane transporters between their functional states. After briefly introducing each technique, we discuss some of their advantages and limitations and provide some recent examples of their application to membrane transporters.
Collapse
Affiliation(s)
- Shashank Pant
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801-3028, United States
| | - Sepehr Dehghani-Ghahnaviyeh
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801-3028, United States
| | - Noah Trebesch
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801-3028, United States
| | - Ali Rasouli
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801-3028, United States
| | - Tianle Chen
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801-3028, United States
| | - Karan Kapoor
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801-3028, United States
| | - Po-Chao Wen
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801-3028, United States
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801-3028, United States
| |
Collapse
|
4
|
Stefan K, Puri S, Rafehi M, Latambale G, Neif M, Tägl F, Arlt NS, Yazdi ZN, Bakos É, Chen X, Zhang B, Ismail Al-Khalil W, Busch H, Chen ZS, Özvegy-Laczka C, Namasivayam V, Juvale K, Stefan SM. Functional and structural polypharmacology of indazole-based privileged ligands to tackle the undruggability of membrane transporters. Eur J Med Chem 2025; 287:117234. [PMID: 39892094 DOI: 10.1016/j.ejmech.2024.117234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/25/2024] [Accepted: 12/31/2024] [Indexed: 02/03/2025]
Abstract
Despite the significant roles of solute carrier (SLC) and ATP-binding cassette (ABC) transporters in human health and disease, most remain poorly characterized as intrinsic and/or xenobiotic ligands are unknown, rendering them as 'undruggable'. Polypharmacology, defined as the simultaneous engagement of multiple targets by a single ligand, offers a promising avenue for discovering novel lead compounds addressing these emerging pharmacological challenges - a major focus in contemporary medicinal chemistry. While common structural motifs among phylogenetically diverse proteins have been proposed to underlie polypharmacology through the concept of 'multitarget binding sites', a comprehensive analysis of these functional and structural aspects from a medicinal chemistry perspective has yet to be undertaken. In our study, we synthesized 65 distinct indazole derivatives and evaluated their activity across a broad biological assessment platform encompassing 17 specific and polyspecific SLC and ABC transporters. Notably, ten indazoles exhibited cross-target activity against challenging transporter targets associated with neurodegeneration (ABCA1), metabolic reprogramming (MCT4), and cancer multidrug resistance (ABCC10). Furthermore, molecular blind docking experiments and advanced binding site analyses revealed, for the first time, conserved binding motifs across monocarboxylate transporters (MCTs), organic anion transporting polypeptides (OATPs), organic cation transporters (OCTs), and ABC transporters, characterized by specific and recurring residues of tyrosine, phenylalanine, serine, and threonine. These findings highlight not only the potential of polypharmacology in drug discovery but also provide insights into the structural underpinnings of ligand binding across membrane transporters.
Collapse
Affiliation(s)
- Katja Stefan
- University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck Institute of Experimental Dermatology, Medicinal Chemistry and Systems Polypharmacology, Ratzeburger Allee 160, 23538, Lübeck, Germany; University of Oslo and Oslo University Hospital, Department of Pathology, Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Sachin Puri
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India; SVKM's NMIMS, School of Pharmacy & Technology Management, Plot no. B4, Green Industrial Park, Polepally SEZ, TSIIC, Jadcherla, Mahbubnagar, Dist. Telangana 509 301, Hyderabad, 509301, India
| | - Muhammad Rafehi
- University Hospital of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; Department of Medical Education Augsburg, Faculty of Medicine, University of Augsburg, Am Medizincampus 2, 86156, Augsburg, Germany; University Medical Center Göttingen, Institute of Clinical Pharmacology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Ganesh Latambale
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Maria Neif
- University Medical Center Göttingen, Institute of Clinical Pharmacology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Franziska Tägl
- University Medical Center Göttingen, Institute of Clinical Pharmacology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Nike Sophia Arlt
- University Medical Center Göttingen, Institute of Clinical Pharmacology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Zeinab Nezafat Yazdi
- Institute for Molecular Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
| | - Éva Bakos
- Institute for Molecular Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
| | - Xiang Chen
- St. John's University, College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, New York City, New York, USA
| | - Bohan Zhang
- St. John's University, College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, New York City, New York, USA
| | - Wouroud Ismail Al-Khalil
- University Medical Center Göttingen, Institute of Clinical Pharmacology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Hauke Busch
- University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck Institute of Experimental Dermatology, Medical Systems Biology, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Zhe-Sheng Chen
- St. John's University, College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, New York City, New York, USA
| | - Csilla Özvegy-Laczka
- Institute for Molecular Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
| | - Vigneshwaran Namasivayam
- University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck Institute of Experimental Dermatology, Medicinal Chemistry and Systems Polypharmacology, Ratzeburger Allee 160, 23538, Lübeck, Germany; University of Bonn, Pharmaceutical Institute, Department of Pharmaceutical and Cellbiological Chemistry, An der Immenburg 4, 53121, Bonn, Germany.
| | - Kapil Juvale
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| | - Sven Marcel Stefan
- University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck Institute of Experimental Dermatology, Medicinal Chemistry and Systems Polypharmacology, Ratzeburger Allee 160, 23538, Lübeck, Germany; University of Oslo and Oslo University Hospital, Department of Pathology, Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway; Medical University of Lublin, Department of Biopharmacy, Chodzki 4a, 20-093, Lublin, Poland.
| |
Collapse
|
5
|
Khunweeraphong N, Kuchler K. The human ABCG2 transporter engages three gates to control multidrug extrusion. iScience 2025; 28:112125. [PMID: 40165990 PMCID: PMC11957596 DOI: 10.1016/j.isci.2025.112125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/17/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
The human ABCG2 transporter plays roles in physiological detoxification across barriers and in anticancer multidrug resistance. The translocation pathway for drug extrusion and its gating mechanism remains elusive. Here, we demonstrate that the ABCG2 multidrug transporter holds two cavities that are delineated by three regulatory gates, indicating a substrate translocation channel. Drugs are trapped in the central cavity after entering through the pivotal intracellular entry gate. This flexible cavity is surrounded by a cluster of three highly conserved phenylalanines. Their aromatic side chains enact a "clamp-push-seal" motion to ensure unidirectional substrate movement. The unique residues T435 and N436 act as critical selectors for ligands, determining the broad substrate specificity. The upper cavity is covered by the lid architecture, constituting the final gate before multidrug extrusion. This work unravels deep mechanistic details on how the translocation channel utilizes pivotal gating steps, including the sequence of events that drive ABCG2-mediated multidrug efflux.
Collapse
Affiliation(s)
- Narakorn Khunweeraphong
- Medical University of Vienna, Max Perutz Labs Vienna, Center for Medical Biochemistry Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - Karl Kuchler
- Medical University of Vienna, Max Perutz Labs Vienna, Center for Medical Biochemistry Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| |
Collapse
|
6
|
Crespi V, Tóth Á, Janaszkiewicz A, Falguières T, Di Meo F. Membrane-dependent dynamics and dual translocation mechanisms of ABCB4: Insights from molecular dynamics simulations. Comput Struct Biotechnol J 2025; 27:1215-1232. [PMID: 40206349 PMCID: PMC11979951 DOI: 10.1016/j.csbj.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 04/11/2025] Open
Abstract
ABCB4 is an ATP-binding cassette transporter expressed at the canalicular membrane of hepatocytes and responsible for translocating phosphatidylcholine into bile. Despite the recent cryo-EM structures of ABCB4, knowledge about the molecular mechanism of phosphatidylcholine transport remains fragmented. In this study, we used all-atom molecular dynamics simulations to investigate ABCB4 dynamics during its transport cycle, leveraging both symmetric and asymmetric membrane models. Our results demonstrate that membrane composition influences the local conformational dynamics of ABCB4, revealing distinct lipid-binding patterns across different conformers, particularly for cholesterol. We explored the two potential mechanisms for phosphatidylcholine translocation: the canonical ATP-driven alternating access model and the "credit-card swipe" model. Critical residues were identified for phosphatidylcholine binding and transport pathway modulation, supporting the canonical mechanism while also indicating a possible additional pathway. The conformer-specific roles of kinking in transmembrane helices (TMH4 and TMH10) were highlighted as key events in substrate translocation. Overall, ABCB4 may utilize a cooperative transport mechanism, integrating elements of both models to facilitate efficient phosphatidylcholine motion across the membrane. This study provides new insights into the relationship between membrane environment and ABCB4 function, contributing to our understanding of its role in bile physiology and susceptibility to genetic and xenobiotic influences.
Collapse
Affiliation(s)
- Veronica Crespi
- Inserm U1248 Pharmacology & Transplantation, Univ. Limoges, Limoges, France
| | - Ágota Tóth
- Inserm U1248 Pharmacology & Transplantation, Univ. Limoges, Limoges, France
- InSilibio, Limoges, France
| | - Angelika Janaszkiewicz
- Inserm U1248 Pharmacology & Transplantation, Univ. Limoges, Limoges, France
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Thomas Falguières
- Inserm U1193 Physiopathogenesis and Treatment of Liver Diseases - Hepatinov, Univ. Paris, Saclay, France
| | - Florent Di Meo
- Inserm U1248 Pharmacology & Transplantation, Univ. Limoges, Limoges, France
- Inserm US042/CNRS UAR 2015 Integrative Biology Health Chemistry & Environment, Univ. Limoges, Limoges, France
| |
Collapse
|
7
|
Tang Q, Sinclair M, Bisignano P, Zhang Y, Tajkhorshid E, Mchaourab HS. Lipid-mediated mechanism of drug extrusion by a heterodimeric ABC exporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640354. [PMID: 40060395 PMCID: PMC11888453 DOI: 10.1101/2025.02.26.640354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Multidrug transport by ATP binding cassette (ABC) exporters entails a mechanism to modulate drug affinity across the transport cycle. Here, we combine cryo-EM and molecular dynamics (MD) simulations to illuminate how lipid competition modulates substrate affinity to drive its translocation by ABC exporters. We determined cryo-EM structures of the ABC transporter BmrCD in drug-loaded inward-facing (IF) and outward-facing (OF) conformations in lipid nanodiscs to reveal the structural basis of alternating access, details of drug-transporter interactions, and the scale of drug movement between the two conformations. Remarkably, the structures uncovered lipid molecules bound in or near the transporter vestibule along with the drugs. MD trajectories from the IF structure show that these lipids stimulate drug disorder and translocation towards the vestibule apex. Similarly, bound lipids enter the OF vestibule and weaken drug-transporter interactions facilitating drug release. Our results complete a near-atomic model of BmrCD's conformational cycle and advance a general mechanism of lipid-driven drug transport by ABC exporters.
Collapse
Affiliation(s)
- Qingyu Tang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232,USA
| | - Matt Sinclair
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Paola Bisignano
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232,USA
| | - Yunsen Zhang
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232,USA
- Center for Applied AI in Protein Dynamics, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
8
|
Berner B, Daoutsali G, Melén E, Remper N, Weszelovszká E, Rothnie A, Hedfalk K. Successful strategies for expression and purification of ABC transporters. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184401. [PMID: 39537006 DOI: 10.1016/j.bbamem.2024.184401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ATP-binding cassette (ABC) transporters are proteins responsible for active transport of various compounds, from small ions to macromolecules, across membranes. Proteins from this superfamily also pump drugs out of the cell resulting in multidrug resistance. Based on the cellular functions of ABC-transporters they are commonly associated with diseases like cancer and cystic fibrosis. To understand the molecular mechanism of this critical family of integral membrane proteins, structural characterization is a powerful tool which in turn requires successful recombinant production of stable and functional protein in good yields. In this review we have used high resolution structures of ABC transporters as a measure of successful protein production and summarized strategies for prokaryotic and eukaryotic proteins, respectively. In general, Escherichia coli is the most frequently used host for production of prokaryotic ABC transporters while human embryonic kidney 293 (HEK293) cells are the preferred host system for eukaryotic proteins. Independent of origin, at least two-steps of purification were required after solubilization in the most used detergent DDM. The purification tag was frequently cleaved off before structural characterization using cryogenic electron microscopy, or crystallization and X-ray analysis for prokaryotic proteins.
Collapse
Affiliation(s)
- Bea Berner
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Georgia Daoutsali
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emilia Melén
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Natália Remper
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emma Weszelovszká
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Alice Rothnie
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Kristina Hedfalk
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden.
| |
Collapse
|
9
|
Elbahnsi A, Dudas B, Callebaut I, Hinzpeter A, Miteva MA. ATP-Binding Cassette and Solute Carrier Transporters: Understanding Their Mechanisms and Drug Modulation Through Structural and Modeling Approaches. Pharmaceuticals (Basel) 2024; 17:1602. [PMID: 39770445 PMCID: PMC11676857 DOI: 10.3390/ph17121602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
The ATP-binding cassette (ABC) and solute carrier (SLC) transporters play pivotal roles in cellular transport mechanisms, influencing a wide range of physiological processes and impacting various medical conditions. Recent advancements in structural biology and computational modeling have provided significant insights into their function and regulation. This review provides an overview of the current knowledge of human ABC and SLC transporters, emphasizing their structural and functional relationships, transport mechanisms, and the contribution of computational approaches to their understanding. Current challenges and promising future research and methodological directions are also discussed.
Collapse
Affiliation(s)
- Ahmad Elbahnsi
- Inserm U1268 MCTR, CiTCoM UMR 8038 CNRS, Université Paris Cité, 75006 Paris, France
| | - Balint Dudas
- Inserm U1268 MCTR, CiTCoM UMR 8038 CNRS, Université Paris Cité, 75006 Paris, France
| | - Isabelle Callebaut
- Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie—IMPMC, Sorbonne Université, 75005 Paris, France
| | - Alexandre Hinzpeter
- CNRS, INSERM, Institut Necker Enfants Malades—INEM, Université Paris Cité, 75015 Paris, France
| | - Maria A. Miteva
- Inserm U1268 MCTR, CiTCoM UMR 8038 CNRS, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
10
|
Sinclair M, Tajkhorshid E. The Role of Protein-Lipid Interactions in Priming the Bacterial Translocon. MEMBRANES 2024; 14:249. [PMID: 39728699 DOI: 10.3390/membranes14120249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Protein-lipid interactions demonstrate important regulatory roles in the function of membrane proteins. Nevertheless, due to the semi-liquid nature and heterogeneity of biological membranes, and dissecting the details of such interactions at high resolutions continues to pose a major challenge to experimental biophysical techniques. Computational techniques such as molecular dynamics (MD) offer an alternative approach with both temporally and spatially high resolutions. Here, we present an extensive series of MD simulations focused on the inner membrane protein YidC (PDB: 6AL2) from Escherichia coli, a key insertase responsible for the integration and folding of membrane proteins. Notably, we observed rare lipid fenestration events, where lipids fully penetrate the vestibule of YidC, providing new insights into the lipid-mediated regulation of protein insertion mechanisms. Our findings highlight the direct involvement of lipids in modulating the greasy slide of YidC and suggest that lipids enhance the local flexibility of the C1 domain, which is crucial for recruiting substrate peptides. These results contribute to a deeper understanding of how protein-lipid interactions facilitate the functional dynamics of membrane protein insertases, with implications for broader studies of membrane protein biology.
Collapse
Affiliation(s)
- Matt Sinclair
- Department of Biochemistry, University of Illinois Urbana, Champaign, IL 61801, USA
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana, Champaign, IL 61801, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois Urbana, Champaign, IL 61801, USA
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana, Champaign, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana, Champaign, IL 61801, USA
| |
Collapse
|
11
|
Yu Q, Dehghani-Ghahnaviyeh S, Rasouli A, Sadurni A, Kowal J, Bang-Soerensen R, Wen PC, Tinzl-Zechner M, Irobalieva RN, Ni D, Stahlberg H, Altmann KH, Tajkhorshid E, Locher KP. Modulation of ABCG2 Transporter Activity by Ko143 Derivatives. ACS Chem Biol 2024; 19:2304-2313. [PMID: 39445888 PMCID: PMC11574751 DOI: 10.1021/acschembio.4c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/29/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
ABCG2 is a multidrug transporter that protects tissues from xenobiotics, affects drug pharmacokinetics, and contributes to multidrug resistance of cancer cells. Here, we present tetracyclic fumitremorgin C analog Ko143 derivatives, evaluate their in vitro modulation of purified ABCG2, and report four high-resolution cryo-EM structures and computational analyses to elucidate their interactions with ABCG2. We found that Ko143 derivatives that are based on a ring-opened scaffold no longer inhibit ABCG2-mediated transport activity. In contrast, closed-ring, tetracyclic analogs were highly potent inhibitors. Strikingly, the least potent of these compounds, MZ82, bound deeper into the central ABCG2 cavity than the other inhibitors and it led to partial closure of the transmembrane domains and increased flexibility of the nucleotide-binding domains. Minor structural modifications can thus convert a potent inhibitor into a compound that induces conformational changes in ABCG2 similar to those observed during binding of a substrate. Molecular dynamics simulations and free energy binding calculations further supported the correlation between reduced potency and distinct binding pose of the compounds. We introduce the highly potent inhibitor AZ99 that may exhibit improved in vivo stability.
Collapse
Affiliation(s)
- Qin Yu
- Institute
of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Sepehr Dehghani-Ghahnaviyeh
- Theoretical
and Computational Biophysics Group, NIH Center for Macromolecular
Modeling and Visualization, Beckman Institute for Advanced Science
and Technology, Department of Biochemistry, and Center for Biophysics
and Quantitative Biology, University of
Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ali Rasouli
- Theoretical
and Computational Biophysics Group, NIH Center for Macromolecular
Modeling and Visualization, Beckman Institute for Advanced Science
and Technology, Department of Biochemistry, and Center for Biophysics
and Quantitative Biology, University of
Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Anna Sadurni
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Julia Kowal
- Institute
of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Rose Bang-Soerensen
- Institute
of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Po-Chao Wen
- Theoretical
and Computational Biophysics Group, NIH Center for Macromolecular
Modeling and Visualization, Beckman Institute for Advanced Science
and Technology, Department of Biochemistry, and Center for Biophysics
and Quantitative Biology, University of
Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Melanie Tinzl-Zechner
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Rossitza N. Irobalieva
- Institute
of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Dongchun Ni
- Laboratory
of Biological Electron Microscopy, Institute of Physics, SB, EPFL, Lausanne 1015, Switzerland
| | - Henning Stahlberg
- Laboratory
of Biological Electron Microscopy, Institute of Physics, SB, EPFL, Lausanne 1015, Switzerland
| | - Karl-Heinz Altmann
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Emad Tajkhorshid
- Theoretical
and Computational Biophysics Group, NIH Center for Macromolecular
Modeling and Visualization, Beckman Institute for Advanced Science
and Technology, Department of Biochemistry, and Center for Biophysics
and Quantitative Biology, University of
Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kaspar P. Locher
- Institute
of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
12
|
Lin BH, Li YC, Murakami M, Wu YS, Huang YH, Hung TH, Ambudkar SV, Wu CP. Epertinib counteracts multidrug resistance in cancer cells by antagonizing the drug efflux function of ABCB1 and ABCG2. Biomed Pharmacother 2024; 180:117542. [PMID: 39388999 DOI: 10.1016/j.biopha.2024.117542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
A significant hurdle in cancer treatment arises from multidrug resistance (MDR), often due to overexpression of ATP-binding cassette (ABC) transporters like ABCB1 and/or ABCG2 in cancer cells. These transporters actively diminish the efficacy of cytotoxic drugs by facilitating ATP hydrolysis-dependent drug efflux and reducing intracellular drug accumulation in cancer cells. Addressing multidrug-resistant cancers poses a significant challenge due to the lack of approved treatments, prompting the exploration of alternative avenues like drug repurposing (also referred to as drug repositioning) of molecularly targeted agents to reverse MDR-mediated by ABCB1 and/or ABCG2 in multidrug-resistant cancer cells. Epertinib, a potent inhibitor of EGFR and HER2 currently in clinical trials for solid tumors, was investigated for its potential to resensitize ABCB1- and ABCG2-overexpressing multidrug-resistant cancer cells to chemotherapeutic agents. Our findings reveal that at sub-toxic, submicromolar concentrations, epertinib restores the sensitivity of multidrug-resistant cancer cells to cytotoxic drugs in a concentration-dependent manner. The results demonstrate that epertinib enhances drug-induced apoptosis in these cancer cells by impeding the drug-efflux function of ABCB1 and ABCG2 without altering their expression. ATPase activity and molecular docking were employed to reveal potential interaction sites between epertinib and the drug-binding pockets of ABCB1 and ABCG2. In summary, our study demonstrates an additional pharmacological capability of epertinib against the activity of ABCB1 and ABCG2. These findings suggest that incorporating epertinib into combination therapy could be advantageous for a specific patient subset with tumors exhibiting high levels of ABCB1 or ABCG2, warranting further exploration.
Collapse
Affiliation(s)
- Bing-Huan Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Yen-Ching Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan.
| | - Yang-Hui Huang
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan.
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
13
|
Qian R, Xue J, Xu Y, Huang J. Alchemical Transformations and Beyond: Recent Advances and Real-World Applications of Free Energy Calculations in Drug Discovery. J Chem Inf Model 2024; 64:7214-7237. [PMID: 39360948 DOI: 10.1021/acs.jcim.4c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Computational methods constitute efficient strategies for screening and optimizing potential drug molecules. A critical factor in this process is the binding affinity between candidate molecules and targets, quantified as binding free energy. Among various estimation methods, alchemical transformation methods stand out for their theoretical rigor. Despite challenges in force field accuracy and sampling efficiency, advancements in algorithms, software, and hardware have increased the application of free energy perturbation (FEP) calculations in the pharmaceutical industry. Here, we review the practical applications of FEP in drug discovery projects since 2018, covering both ligand-centric and residue-centric transformations. We show that relative binding free energy calculations have steadily achieved chemical accuracy in real-world applications. In addition, we discuss alternative physics-based simulation methods and the incorporation of deep learning into free energy calculations.
Collapse
Affiliation(s)
- Runtong Qian
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Jing Xue
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - You Xu
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Jing Huang
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
14
|
McCormick LA, McCormick JW, Park C, Follit CA, Wise JG, Vogel PD. Computationally accelerated identification of P-glycoprotein inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583428. [PMID: 39345515 PMCID: PMC11430104 DOI: 10.1101/2024.03.05.583428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Overexpression of the polyspecific efflux transporter, P-glycoprotein (P-gp, MDR1, ABCB1 ), is a major mechanism by which cancer cells acquire multidrug resistance (MDR), the resistance to diverse chemotherapeutic drugs. Inhibiting drug transport by P-gp can resensitize cancer cells to chemotherapy, but there are no P-gp inhibitors available to patients. Clinically unsuccessful P-gp inhibitors tend to bind at the pump's transmembrane drug binding domains and are often P-gp transport substrates, resulting in lowered intracellular concentration of the drug and altered pharmacokinetics. In prior work, we used computationally accelerated drug discovery to identify novel P-gp inhibitors that target the pump's cytoplasmic nucleotide binding domains. Our first-draft study provided conclusive evidence that the nucleotide binding domains of P-gp are viable targets for drug discovery. Here we develop an enhanced, computationally accelerated drug discovery pipeline that expands upon our prior work by iteratively screening compounds against multiple conformations of P-gp with molecular docking. Targeted molecular dynamics simulations with our homology model of human P-gp were used to generate docking receptors in conformations mimicking a putative drug transport cycle. We offset the increased computational complexity using custom Tanimoto chemical datasets, which maximize the chemical diversity of ligands screened by docking. Using our expanded, virtual-assisted pipeline, we identified nine novel P-gp inhibitors that reverse MDR in two types of P-gp overexpressing human cancer cell lines, reflecting a 13.4% hit rate. Of these inhibitors, all were non-toxic to non-cancerous human cells, and six were not likely to be transport substrates of P-gp. Our novel P-gp inhibitors are chemically diverse and are good candidates for lead optimization. Our results demonstrate that the nucleotide binding domains of P-gp are an underappreciated target in the effort to reverse P-gp-mediated multidrug resistance in cancer.
Collapse
|
15
|
Arango AS, Park H, Tajkhorshid E. Topological Learning Approach to Characterizing Biological Membranes. J Chem Inf Model 2024; 64:5242-5252. [PMID: 38912752 PMCID: PMC12009557 DOI: 10.1021/acs.jcim.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Biological membranes play key roles in cellular compartmentalization, structure, and its signaling pathways. At varying temperatures, individual membrane lipids sample from different configurations, a process that frequently leads to higher-order phase behavior and phenomena. Here, we present a persistent homology (PH)-based method for quantifying the structural features of individual and bulk lipids, providing local and contextual information on lipid tail organization. Our method leverages the mathematical machinery of algebraic topology and machine learning to infer temperature-dependent structural information on lipids from static coordinates. To train our model, we generated multiple molecular dynamics trajectories of dipalmitoyl-phosphatidylcholine membranes at varying temperatures. A fingerprint was then constructed for each set of lipid coordinates by PH filtration, in which interaction spheres were grown around the lipid atoms while tracking their intersections. The sphere filtration formed a simplicial complex that captures enduring key topological features of the configuration landscape using homology, yielding persistence data. Following fingerprint extraction for physiologically relevant temperatures, the persistence data were used to train an attention-based neural network for assignment of effective temperature values to selected membrane regions. Our persistence homology-based method captures the local structural effects, via effective temperature, of lipids adjacent to other membrane constituents, e.g., sterols and proteins. This topological learning approach can predict lipid effective temperatures from static coordinates across multiple spatial resolutions. The tool, called MembTDA, can be accessed at https://github.com/hyunp2/Memb-TDA.
Collapse
Affiliation(s)
- Andres S Arango
- Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hyun Park
- Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
Badiee SA, Hettige J, Moradi M. Lipid-dependent conformational dynamics of bacterial ATP-binding cassette transporter Sav1866. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590185. [PMID: 38659884 PMCID: PMC11042323 DOI: 10.1101/2024.04.18.590185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Sav1866, a bacterial ATP-binding cassette (ABC) exporter, plays a crucial role in cellular processes by facilitating the efflux of a diverse range of substrates, including drugs, chemotherapeutic agents, peptides, and lipids. This efflux activity significantly impacts the effectiveness of various therapies against bacterial infections. In our recent investigation, we focused on understanding the conformational dynamics of Sav1866 within different lipid environments. Specifically, we explored its behavior in environments composed of DMPC and POPE lipids, which exhibit crucial distinctions not only in their headgroup polarity but also in the length and saturation of their hydrophobic tails. Our extensive set of equilibrium microsecond-level all-atom molecular dynamics (MD) simulations revealed significant distinctions in transporter behavior influenced by these lipid compositions. We observed a rapid transition to an occluded-inward-facing (IF-occ) conformation in POPE environments, contrasting with a channel-like behavior in DMPC environments, deviating from the expected alternating access mechanism (AAM). These findings underscore the significant impact of lipid compositions on ABC transporter function, offering new perspectives on membrane transport mechanisms.
Collapse
|
17
|
Gao Y, Wei C, Luo L, Tang Y, Yu Y, Li Y, Xing J, Pan X. Membrane-assisted tariquidar access and binding mechanisms of human ATP-binding cassette transporter P-glycoprotein. Front Mol Biosci 2024; 11:1364494. [PMID: 38560519 PMCID: PMC10979361 DOI: 10.3389/fmolb.2024.1364494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
The human multidrug transporter P-glycoprotein (P-gp) is physiologically essential and of key relevance to biomedicine. Recent structural studies have shed light on the mode of inhibition of the third-generation inhibitors for human P-gp, but the molecular mechanism by which these inhibitors enter the transmembrane sites remains poorly understood. In this study, we utilized all-atom molecular dynamics (MD) simulations to characterize human P-gp dynamics under a potent inhibitor, tariquidar, bound condition, as well as the atomic-level binding pathways in an explicit membrane/water environment. Extensive unbiased simulations show that human P-gp remains relatively stable in tariquidar-free and bound states, while exhibiting a high dynamic binding mode at either the drug-binding pocket or the regulatory site. Free energy estimations by partial nudged elastic band (PNEB) simulations and Molecular Mechanics Generalized Born Surface Area (MM/GBSA) method identify two energetically favorable binding pathways originating from the cytoplasmic gate with an extended tariquidar conformation. Interestingly, free tariquidar in the lipid membrane predominantly adopts extended conformations similar to those observed at the regulatory site. These results suggest that membrane lipids may preconfigure tariquidar into an active ligand conformation for efficient binding to the regulatory site. However, due to its conformational plasticity, tariquidar ultimately moves toward the drug-binding pocket in both pathways, explaining how it acts as a substrate at low concentrations. Our molecular findings propose a membrane-assisted mechanism for the access and binding of the third-generation inhibitors to the binding sites of human P-gp, and offer deeper insights into the molecule design of more potent inhibitors against P-gp-mediated drug resistance.
Collapse
Affiliation(s)
- Yingjie Gao
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Caiyan Wei
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lanxin Luo
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Tang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yongzhen Yu
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Juan Xing
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
| | - Xianchao Pan
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
18
|
Fan W, Shao K, Luo M. Structural View of Cryo-Electron Microscopy-Determined ATP-Binding Cassette Transporters in Human Multidrug Resistance. Biomolecules 2024; 14:231. [PMID: 38397468 PMCID: PMC10886794 DOI: 10.3390/biom14020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
ATP-binding cassette (ABC) transporters, acting as cellular "pumps," facilitate solute translocation through membranes via ATP hydrolysis. Their overexpression is closely tied to multidrug resistance (MDR), a major obstacle in chemotherapy and neurological disorder treatment, hampering drug accumulation and delivery. Extensive research has delved into the intricate interplay between ABC transporter structure, function, and potential inhibition for MDR reversal. Cryo-electron microscopy has been instrumental in unveiling structural details of various MDR-causing ABC transporters, encompassing ABCB1, ABCC1, and ABCG2, as well as the recently revealed ABCC3 and ABCC4 structures. The newly obtained structural insight has deepened our understanding of substrate and drug binding, translocation mechanisms, and inhibitor interactions. Given the growing body of structural information available for human MDR transporters and their associated mechanisms, we believe it is timely to compile a comprehensive review of these transporters and compare their functional mechanisms in the context of multidrug resistance. Therefore, this review primarily focuses on the structural aspects of clinically significant human ABC transporters linked to MDR, with the aim of providing valuable insights to enhance the effectiveness of MDR reversal strategies in clinical therapies.
Collapse
Affiliation(s)
| | | | - Min Luo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; (W.F.); (K.S.)
| |
Collapse
|
19
|
Li YC, Hsiao SH, Murakami M, Huang YH, Chang YT, Hung TH, Wu YS, Ambudkar SV, Wu CP. Epidermal Growth Factor Receptor Inhibitor Mobocertinib Resensitizes Multidrug-Resistant Cancer Cells by Attenuating the Human ATP-Binding Cassette Subfamily B Member 1 and Subfamily G Member 2. ACS Pharmacol Transl Sci 2024; 7:161-175. [PMID: 38230272 PMCID: PMC10789147 DOI: 10.1021/acsptsci.3c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
ATP-binding cassette (ABC) transporters, notably ABCB1 (P-glycoprotein) and ABCG2, play a crucial role in the development of multidrug resistance (MDR) during the administration of chemotherapy for cancer patients. With a lack of approved treatments for addressing multidrug-resistant cancers, MDR remains a substantial challenge to the effective management of cancer. Rather than focusing on developing novel synthetic inhibitors, a promising approach to combat MDR involves repurposing approved therapeutic agents to enhance the sensitivity to cytotoxic antiproliferative drugs of multidrug-resistant cancer cells with high expression of ABCB1 or ABCG2. In this investigation, we observed a substantial reversal of MDR conferred by ABCB1 and ABCG2 in multidrug-resistant cancer cells through the use of mobocertinib, an approved third-generation inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase. Mobocertinib demonstrated the ability to hinder drug transport function without causing changes in protein expression. The interactions between mobocertinib and ABCB1, as well as ABCG2, were validated through ATPase assays. Furthermore, in silico docking simulations were utilized to substantiate the binding of mobocertinib within the drug-binding pockets of both ABCB1 and ABCG2. We conclude that further testing of mobocertinib in combination therapy is warranted for patients with tumors expressing elevated levels of the ABC drug transporters ABCB1 and ABCG2.
Collapse
Affiliation(s)
- Yen-Ching Li
- Graduate
Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Sung-Han Hsiao
- Graduate
Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Megumi Murakami
- Laboratory
of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
| | - Yang-Hui Huang
- Department
of Obstetrics and Gynecology, Taipei Chang
Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Yu-Tzu Chang
- Graduate
Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Ho Hung
- Department
of Obstetrics and Gynecology, Taipei Chang
Gung Memorial Hospital, Taipei 10507, Taiwan
- Department
of Medicine, College of Medicine, Chang
Gung University, Taoyuan 33302, Taiwan
- Department
of Obstetrics and Gynecology, Keelung Chang
Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Yu-Shan Wu
- Department
of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Suresh. V. Ambudkar
- Laboratory
of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
| | - Chung-Pu Wu
- Graduate
Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department
of Obstetrics and Gynecology, Taipei Chang
Gung Memorial Hospital, Taipei 10507, Taiwan
- Department
of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular
Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
20
|
Arango AS, Park H, Tajkhorshid E. Topological Learning Approach to Characterizing Biological Membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569053. [PMID: 38076911 PMCID: PMC10705453 DOI: 10.1101/2023.11.28.569053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Biological membranes play key roles in cellular compartmentalization, structure, and its signaling pathways. At varying temperatures, individual membrane lipids sample from different configurations, a process that frequently leads to higher-order phase behavior and phenomena. Here we present a persistent homology-based method for quantifying the structural features of individual and bulk lipids, providing local and contextual information on lipid tail organization. Our method leverages the mathematical machinery of algebraic topology and machine learning to infer temperature-dependent structural information of lipids from static coordinates. To train our model, we generated multiple molecular dynamics trajectories of DPPC membranes at varying temperatures. A fingerprint was then constructed for each set of lipid coordinates by a persistent homology filtration, in which interactions spheres were grown around the lipid atoms while tracking their intersections. The sphere filtration formed a simplicial complex that captures enduring key topological features of the configuration landscape, using homology, yielding persistence data. Following fingerprint extraction for physiologically relevant temperatures, the persistence data were used to train an attention-based neural network for assignment of effective temperature values to selected membrane regions. Our persistence homology-based method captures the local structural effects, via effective temperature, of lipids adjacent to other membrane constituents, e.g. sterols and proteins. This topological learning approach can predict lipid effective temperatures from static coordinates across multiple spatial resolutions. The tool, called MembTDA, can be accessed at https://github.com/hyunp2/Memb-TDA.
Collapse
Affiliation(s)
- Andres S Arango
- Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Hyun Park
- Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
21
|
Guan R, Liu W, Li N, Cui Z, Cai R, Wang Y, Zhao C. Machine learning models based on residue interaction network for ABCG2 transportable compounds recognition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122620. [PMID: 37769706 DOI: 10.1016/j.envpol.2023.122620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/03/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
As the one of the most important protein of placental transport of environmental substances, the identification of ABCG2 transport molecules is the key step for assessing the risk of placental exposure to environmental chemicals. Here, residue interaction network (RIN) was used to explore the difference of ABCG2 binding conformations between transportable and non-transportable compounds. The RIN were treated as a kind of special quantitative data of protein conformation, which not only reflected the changes of single amino acid conformation in protein, but also indicated the changes of distance and action type between amino acids. Based on the quantitative RIN, four machine learning algorithms were applied to establish the classification and recognition model for 1100 compounds with transported by ABCG2 potential. The random forest (RF) models constructed with RIN presented the best and satisfied predictive ability with an accuracy of training set of 0.97 and the test set of 0.96 respectively. In conclusion, the construction of residue interaction network provided a new perspective for the quantitative characterization of protein conformation and the establishment of prediction models for transporter molecular recognition. The ABCG2 transport molecular recognition model based on residue interaction network provides a possible way for screening environmental chemistry transported through placenta.
Collapse
Affiliation(s)
- Ruining Guan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Wencheng Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Ningqi Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zeyang Cui
- School of Information Science & Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Ruitong Cai
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yawei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
22
|
Braconi L, Dei S, Contino M, Riganti C, Bartolucci G, Manetti D, Romanelli MN, Perrone MG, Colabufo NA, Guglielmo S, Teodori E. Tetrazole and oxadiazole derivatives as bioisosteres of tariquidar and elacridar: New potent P-gp modulators acting as MDR reversers. Eur J Med Chem 2023; 259:115716. [PMID: 37573829 DOI: 10.1016/j.ejmech.2023.115716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
New 2,5- and 1,5-disubstituted tetrazoles, and 2,5-disubstituted-1,3,4-oxadiazoles were synthesized as tariquidar and elacridar derivatives and studied as multidrug resistance (MDR) reversers. Their behaviour on the three ABC transporters P-gp, MRP1 and BCRP was investigated. All compounds inhibited the P-gp transport activity in MDCK-MDR1 cells overexpressing P-gp, showing EC50 values even in the low nanomolar range (compounds 15, 22). Oxadiazole derivatives were able to increase the antiproliferative effect of doxorubicin in MDCK-MDR1 and in HT29/DX cells confirming their nature of P-gp modulators, with derivative 15 being the most potent in these assays. Compound 15 also displayed a dual inhibitory effect showing good activities towards both P-gp and BCRP. A computational study suggested a common interaction pattern on P-gp for most of the potent compounds. The bioisosteric substitution of the amide group of lead compounds allowed identifying a new set of potent oxadiazole derivatives that modulate MDR through inhibition of the P-gp efflux activity. If compared to previous amide derivatives, the introduction of the heterocycle rings greatly enhances the activity on P-gp, introduces in two compounds a moderate inhibitory activity on MRP1 and maintains in some cases the effect on BCRP, leading to the unveiling of dual inhibitor 15.
Collapse
Affiliation(s)
- Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy.
| | - Marialessandra Contino
- Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", via Orabona 4, 70125, Bari, Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126, Torino, Italy
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Dina Manetti
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Maria Grazia Perrone
- Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", via Orabona 4, 70125, Bari, Italy
| | - Nicola Antonio Colabufo
- Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", via Orabona 4, 70125, Bari, Italy
| | - Stefano Guglielmo
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Torino, Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
23
|
Banerjee A, Pata J, Chaptal V, Boumendjel A, Falson P, Prasad R. Structure, function, and inhibition of catalytically asymmetric ABC transporters: Lessons from the PDR subfamily. Drug Resist Updat 2023; 71:100992. [PMID: 37567064 DOI: 10.1016/j.drup.2023.100992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
ATP-binding cassette (ABC) superfamily comprises a large group of ubiquitous transmembrane proteins that play a crucial role in transporting a diverse spectrum of substrates across cellular membranes. They participate in a wide array of physiological and pathological processes including nutrient uptake, antigen presentation, toxin elimination, and drug resistance in cancer and microbial cells. ABC transporters couple ATP binding and hydrolysis to undergo conformational changes allowing substrate translocation. Within this superfamily, a set of ABC transporters has lost the capacity to hydrolyze ATP at one of their nucleotide-binding sites (NBS), called the non-catalytic NBS, whose importance became evident with extensive biochemistry carried out on yeast pleiotropic drug resistance (PDR) transporters. Recent single-particle cryogenic electron microscopy (cryo-EM) advances have further catapulted our understanding of the architecture of these pumps. We provide here a comprehensive overview of the structural and functional aspects of catalytically asymmetric ABC pumps with an emphasis on the PDR subfamily. Furthermore, given the increasing evidence of efflux-mediated antifungal resistance in clinical settings, we also discuss potential grounds to explore PDR transporters as therapeutic targets.
Collapse
Affiliation(s)
- Atanu Banerjee
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, India.
| | - Jorgaq Pata
- Drug Resistance & Membrane Proteins group, CNRS-Lyon 1 University Laboratory 5086, IBCP, Lyon, France
| | - Vincent Chaptal
- Drug Resistance & Membrane Proteins group, CNRS-Lyon 1 University Laboratory 5086, IBCP, Lyon, France
| | | | - Pierre Falson
- Drug Resistance & Membrane Proteins group, CNRS-Lyon 1 University Laboratory 5086, IBCP, Lyon, France.
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, India.
| |
Collapse
|
24
|
Wu CP, Li YC, Murakami M, Hsiao SH, Lee YC, Huang YH, Chang YT, Hung TH, Wu YS, Ambudkar SV. Furmonertinib, a Third-Generation EGFR Tyrosine Kinase Inhibitor, Overcomes Multidrug Resistance through Inhibiting ABCB1 and ABCG2 in Cancer Cells. Int J Mol Sci 2023; 24:13972. [PMID: 37762275 PMCID: PMC10531071 DOI: 10.3390/ijms241813972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
ATP-binding cassette transporters, including ABCB1 (P-glycoprotein) and ABCG2 (BCRP/MXR/ABCP), are pivotal in multidrug resistance (MDR) development in cancer patients undergoing conventional chemotherapy. The absence of approved therapeutic agents for multidrug-resistant cancers presents a significant challenge in effectively treating cancer. Researchers propose repurposing existing drugs to sensitize multidrug-resistant cancer cells, which overexpress ABCB1 or ABCG2, to conventional anticancer drugs. The goal of this study is to assess whether furmonertinib, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor overcomes drug resistance mediated by ABCB1 and ABCG2 transporters. Furmonertinib stands out due to its ability to inhibit drug transport without affecting protein expression. The discovery of this characteristic was validated through ATPase assays, which revealed interactions between furmonertinib and ABCB1/ABCG2. Additionally, in silico docking of furmonertinib offered insights into potential interaction sites within the drug-binding pockets of ABCB1 and ABCG2, providing a better understanding of the underlying mechanisms responsible for the reversal of MDR by this repurposed drug. Given the encouraging results, we propose that furmonertinib should be explored as a potential candidate for combination therapy in patients with tumors that have high levels of ABCB1 and/or ABCG2. This combination therapy holds the potential to enhance the effectiveness of conventional anticancer drugs and presents a promising strategy for overcoming MDR in cancer treatment.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Yen-Ching Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yun-Chieh Lee
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yang-Hui Huang
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Yu-Tzu Chang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Baril SA, Gose T, Schuetz JD. How Cryo-EM Has Expanded Our Understanding of Membrane Transporters. Drug Metab Dispos 2023; 51:904-922. [PMID: 37438132 PMCID: PMC10353158 DOI: 10.1124/dmd.122.001004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 07/14/2023] Open
Abstract
Over the past two decades, technological advances in membrane protein structural biology have provided insight into the molecular mechanisms that transporters use to move diverse substrates across the membrane. However, the plasticity of these proteins' ligand binding pockets, which allows them to bind a range of substrates, also poses a challenge for drug development. Here we highlight the structure, function, and transport mechanism of ATP-binding cassette/solute carrier transporters that are related to several diseases and multidrug resistance: ABCB1, ABCC1, ABCG2, SLC19A1, and SLC29A1. SIGNIFICANCE STATEMENT: ATP-binding cassette transporters and solute carriers play vital roles in clinical chemotherapeutic outcomes. This paper describes the current understanding of the structure of five pharmacologically relevant transporters and how they interact with their ligands.
Collapse
Affiliation(s)
- Stefanie A Baril
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tomoka Gose
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John D Schuetz
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
26
|
Bailly C, Vergoten G. Interaction of Camptothecin Anticancer Drugs with Ribosomal Proteins L15 and L11: A Molecular Docking Study. Molecules 2023; 28:molecules28041828. [PMID: 36838813 PMCID: PMC9967338 DOI: 10.3390/molecules28041828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The antitumor drug topotecan (TPT) is a potent inhibitor of topoisomerase I, triggering DNA breaks lethal for proliferating cancer cells. The mechanism is common to camptothecins SN38 (the active metabolite of irinotecan) and belotecan (BLT). Recently, TPT was shown to bind the ribosomal protein L15, inducing an antitumor immune activation independent of topoisomerase I. We have modeled the interaction of four camptothecins with RPL15 derived from the 80S human ribosome. Two potential drug-binding sites were identified at Ile135 and Phe129. SN38 can form robust RPL15 complexes at both sites, whereas BLT essentially gave stable complexes with site Ile135. The empirical energy of interaction (ΔE) for SN38 binding to RPL15 is similar to that determined for TPT binding to the topoisomerase I-DNA complex. Molecular models with the ribosomal protein L11 sensitive to topoisomerase inhibitors show that SN38 can form a robust complex at a single site (Cys25), much more stable than those with TPT and BLT. The main camptothecin structural elements implicated in the ribosomal protein interaction are the lactone moiety, the aromatic system and the 10-hydroxyl group. The study provides guidance to the design of modulators of ribosomal proteins L11 and L15, both considered anticancer targets.
Collapse
Affiliation(s)
- Christian Bailly
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France
- CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France
- OncoWitan, Consulting Scientific Office, Wasquehal, F-59290 Lille, France
- Correspondence:
| | - Gérard Vergoten
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France
| |
Collapse
|