1
|
Salimi Asl A, Davari M, Ghorbani A, Seddighi N, Arabi K, Saburi E. Neoadjuvant immunotherapy and oncolytic virotherapy in HPV positive and HPV negative skin cancer: A comprehensive review. Int Immunopharmacol 2025; 146:113790. [PMID: 39673996 DOI: 10.1016/j.intimp.2024.113790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Skin cancer is the most common new cancer among Caucasians. This cancer has different types, of which non-melanoma skin cancer is the most common type. Various factors affect this disease, one of which is viral infections, including HPV. This virus plays an important role in skin cancer, especially cSCCs. There are various options for the treatment of skin cancer, and today special attention has been paid to treatments based on therapeutic goals, immunotherapy and combination therapy. In this study, we have investigated treatments based on immunotherapy and virotherapy and the effect of HPV virus on the effectiveness of these treatments in skin cancer. Treatments based on virotherapy are performed for a long time in combination with other common treatments such as radiotherapy and chemotherapy in order to have a greater effect and lower its side effects, which include: shortness of breath, tachycardia, lowering blood pressure in the patient. Also, the most important axis of immunotherapy is to focus on PD1-PDL1, despite abundant evidence on the importance of immunotherapy, many studies investigate the use of immunotherapy inhibitors in the adjuvant and neoadjuvant setting in various cancers. Also, previous findings show conflicting evidence of the effect of HPV status on the response to immunotherapy.
Collapse
Affiliation(s)
- Ali Salimi Asl
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Mohsen Davari
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Atousa Ghorbani
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Narjes Seddighi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Kimia Arabi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Foote AG, Sun X. A Single-Cell Atlas of the Upper Respiratory Epithelium Reveals Heterogeneity in Cell Types and Patterning Strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633456. [PMID: 39896587 PMCID: PMC11785068 DOI: 10.1101/2025.01.16.633456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The upper respiratory tract, organized along the pharyngolaryngeal-to-tracheobronchial axis, is essential for homeostatic functions such as breathing and vocalization. The upper respiratory epithelium is frequently exposed to pollutants and pathogens, making this an area of first-line defense against respiratory injury and infection. The respiratory epithelium is composed of a rich array of specialized cell types, each with unique capabilities in immune defense and injury repair. However, the precise transcriptomic signature and spatial distribution of these cell populations, as well as potential cell subpopulations, have not been well defined. Here, using single cell RNAseq combined with spatial validation, we present a comprehensive atlas of the mouse upper respiratory epithelium. We systematically analyzed our rich RNAseq dataset of the upper respiratory epithelium to reveal 17 cell types, which we further organized into three spatially distinct compartments: the Tmprss11a + pharyngolaryngeal, the Nkx2-1 + tracheobronchial, and the Dmbt1 + submucosal gland epithelium. We profiled/analyzed the pharyngolaryngeal epithelium, composed of stratified squamous epithelium, and identified distinct regional signatures, including a Keratin gene expression code. In profiling the tracheobronchial epithelium, which is composed of a pseudostratified epithelium-with the exception of the hillock structure-we identified that regional luminal cells, such as club cells and basal cells, show varying gradients of marker expression along the proximal-distal and/or dorsal-ventral axis. Lastly, our analysis of the submucosal gland epithelium, composed of an array of cell types, such as the unique myoepithelial cells, revealed the colorful diversity of between and within cell populations. Our single-cell atlas with spatial validation highlights the distinct transcriptional programs of the upper respiratory epithelium and serves as a valuable resource for future investigations to address how cells behave in homeostasis and pathogenesis. Highlights - Defined three spatially distinct epithelial compartments, Tmprss11a + pharyngolaryngeal, Nkx2-1 + tracheobronchial, and Dmbt1 + submucosal gland, comprising 17 total cell types - Profiled Keratin gene expression code along proximal-distal and basal-luminal axes and highlighted "stress-induced" Keratins KRT6A and KRT17 at homeostasis - Demarcated expression gradients of Scgb1a1 + and Scgb3a2+ club cells along the proximal-distal axes - Specified submucosal gland cell heterogeneity including Nkx3-1+ mucin-producing cells, with ACTA2+ basal myoepithelial cells exhibiting gene profile for neuroimmune mediated signaling.
Collapse
|
3
|
Gonzalez J, DeSmet M, Androphy EJ. A Conserved Di-Lysine Motif in the E2 Transactivation Domain Regulates MmuPV1 Replication and Disease Progression. Pathogens 2025; 14:84. [PMID: 39861045 PMCID: PMC11768324 DOI: 10.3390/pathogens14010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
The papillomavirus E2 protein regulates the transcription, replication, and segregation of viral episomes within the host cell. A multitude of post-translational modifications have been identified which control E2 functions. A highly conserved di-lysine motif within the transactivation domain (TAD) has been shown to regulate the normal functions of the E2 proteins of BPV-1, SfPV1, HPV-16, and HPV-31. This motif is similarly conserved in the E2 of the murine papillomavirus, MmuPV1. Using site-directed mutagenesis, we show that the first lysine (K) residue within the motif, K112, is absolutely required for E2-mediated transcription and transient replication in vitro. Furthermore, mutation of the second lysine residue, K113, to the potential acetyl-lysine mimic glutamine (Q) abrogated E2 transcription and decreased transient replication in vitro, while the acetylation defective arginine (R) mutant remained functional. Both K113 mutants were able to induce wart formation in vivo, though disease progression appeared to be delayed in the K113Q group. These findings suggest that acetylation of K113 may act as a mechanism for repressing MmuPV1 E2 activity.
Collapse
Affiliation(s)
- Jessica Gonzalez
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.D.)
| | - Marsha DeSmet
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.D.)
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Elliot J. Androphy
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.D.)
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Hasche D, Hufbauer M, Braspenning-Wesch I, Stephan S, Silling S, Schmidt G, Krieg S, Kreuter A, Akgül B. Cytokeratin 17 expression is commonly observed in keratinocytic skin tumours and controls tissue homeostasis impacting human papillomavirus protein expression. Br J Dermatol 2024; 191:949-963. [PMID: 38878280 DOI: 10.1093/bjd/ljae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 07/26/2024]
Abstract
BACKGROUND The structured expression of several keratins in the skin is associated with differentiation status of the epidermal layers, whereas other keratins are upregulated only during wound healing, in skin disorders and in cancers. One of these stress keratins, K17, is correlated with poor prognosis in various cancer types and its loss has been shown to decelerate tumour growth. K17 expression can also be detected in cutaneous squamous cell carcinomas, where ultraviolet irradiation and infection with cutaneous human papillomaviruses are important cofactors. It was previously reported that K17 is upregulated in papillomavirus (PV)-induced benign skin lesions in mice and induces an immunological status that is beneficial for tumour growth. OBJECTIVES In order to investigate whether K17 upregulation is induced by PVs, we analysed K17 levels in skin tumour specimens of different animal models and humans. METHODS Various immunofluorescence stainings were performed to identify K17 expression as well as levels of E-cadherin, vimentin and CD271. Tissues were further analysed by polymerase chain reaction (PCR), quantitative (q)PCR and enzyme-linked immunosorbent assay to control for PV activity. K17 knockdown cells were generated and effects on viral life cycle were investigated by infection assays, qPCR and Western blotting. RESULTS We showed that K17 is commonly expressed in skin tumours and that its presence is not directly linked to viral oncoprotein expression. Rather, K17 expression seems to be a marker of epithelial differentiation and its absence in tumour tissue is associated with an epithelial-to-mesenchymal transition. We further demonstrated that the absence of K17 in skin tumours increases markers of cancer stem-like cells and negatively affects viral protein synthesis. CONCLUSIONS Collectively, our data indicate that K17 expression is a common feature in skin tumorigenesis. While K17 is not primarily targeted by PV oncoproteins, our in vivo and in vitro data suggest that it is an important regulator of epithelial differentiation and thus may play a role in controlling viral protein synthesis.
Collapse
Affiliation(s)
- Daniel Hasche
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Hufbauer
- National Reference Center for Papilloma- and Polyomaviruses and Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Ilona Braspenning-Wesch
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja Stephan
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffi Silling
- National Reference Center for Papilloma- and Polyomaviruses and Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Gabriele Schmidt
- Light Microscopy Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Krieg
- Helmholtz-University Group Cell Plasticity and Epigenetic Remodeling, German Cancer Research Center (DKFZ) & Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Alexander Kreuter
- Department of Dermatology, Venereology and Allergology, Helios St. Elisabeth Hospital Oberhausen, University of Witten/Herdecke, Oberhausen, Germany
| | - Baki Akgül
- National Reference Center for Papilloma- and Polyomaviruses and Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
5
|
de Brito M, O'Toole EA. Exploring the role of cytokeratin 17 in skin tumorigenesis and human papillomavirus persistence. Br J Dermatol 2024; 191:862-863. [PMID: 39049691 DOI: 10.1093/bjd/ljae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/23/2024] [Indexed: 07/27/2024]
Affiliation(s)
- Marianne de Brito
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University London
| | - Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University London
| |
Collapse
|
6
|
Zhou B, Li D, Chen X, Cai F, Cui J, Liu S, Wang W, Yu D. Transformation zone at the vallate papillae: a significant source of papillomavirus infection at the base of the tongue? J Cancer Res Clin Oncol 2024; 150:492. [PMID: 39527322 PMCID: PMC11554903 DOI: 10.1007/s00432-024-06016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE The aim of this study was to investigate whether the base of the tongue harbours a transformation zone (TZ), i.e., an initiation site for papillomavirus infection, analogous to that in the uterine cervix by examining the histological structure of Von Ebner's gland ducts in the vallate papillae. METHODS Immunohistochemical staining and immunofluorescence techniques were used to detect markers associated with the uterine cervical TZ in the vallate papillae, and these results were compared with those in uterine cervical tissue. Additionally, tongue samples from mouse papillomavirus (MmuPV1)-infected mice were analysed to test our hypothesis. RESULTS The specific expression of CK17 in the squamous epithelium of the vallate papillae indicated the presence of immature squamous epithelium, arising from the transformation of reserve cells in this region. Moreover, a s determined using virus-infected mice, the TZ at the base of the tongue was a significant site for papilloma virus infection. CONCLUSIONS This is the first study to reveal the presence of a TZ in the vallate papillae, as determined by the presence of reserve cells and immature squamous epithelium, suggesting that the base of the tongue is a significant site for papillomavirus infection. This finding provides an entry point for the early prevention and diagnosis of HPV-associated lesions in the oropharynx.
Collapse
Affiliation(s)
- Bosen Zhou
- College of Stomatology, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, China
| | - Dan Li
- National Center of Technology Innovation for animal model. National Human Diseases Animal Model Resource Center. Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education. NHC Key Laboratory of Comparative Medicine. Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, 100020, China
| | - Xinyu Chen
- College of Stomatology, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, China
| | - Fangzhou Cai
- National Center of Technology Innovation for animal model. National Human Diseases Animal Model Resource Center. Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education. NHC Key Laboratory of Comparative Medicine. Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, 100020, China
| | - Jiarui Cui
- National Center of Technology Innovation for animal model. National Human Diseases Animal Model Resource Center. Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education. NHC Key Laboratory of Comparative Medicine. Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, 100020, China
| | - Siyu Liu
- College of Stomatology, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, China
| | - Wei Wang
- National Center of Technology Innovation for animal model. National Human Diseases Animal Model Resource Center. Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education. NHC Key Laboratory of Comparative Medicine. Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, 100020, China.
| | - Dahai Yu
- First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
7
|
James CD, Lewis RL, Fakunmoju AL, Witt AJ, Youssef AH, Wang X, Rais NM, Prabhakar AT, Machado JM, Otoa R, Bristol ML. Fibroblast stromal support model for predicting human papillomavirus-associated cancer drug responses. J Virol 2024; 98:e0102424. [PMID: 39269177 PMCID: PMC11494926 DOI: 10.1128/jvi.01024-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Currently, there are no specific antiviral therapeutic approaches targeting Human papillomaviruses (HPVs), which cause around 5% of all human cancers. Specific antiviral reagents are particularly needed for HPV-related oropharyngeal cancers (HPV+OPCs) whose incidence is increasing and for which there are no early diagnostic tools available. We and others have demonstrated that the estrogen receptor alpha (ERα) is overexpressed in HPV+OPCs, compared to HPV-negative cancers in this region, and that these elevated levels are associated with an improved disease outcome. Utilizing this HPV+-specific overexpression profile, we previously demonstrated that estrogen attenuates the growth and cell viability of HPV+ keratinocytes and HPV+ cancer cells in vitro. Expansion of this work in vivo failed to replicate this sensitization. The role of stromal support from the tumor microenvironment (TME) has previously been tied to both the HPV lifecycle and in vivo therapeutic responses. Our investigations revealed that in vitro co-culture with fibroblasts attenuated HPV+-specific estrogen growth responses. Continuing to monopolize on the HPV+-specific overexpression of ERα, our co-culture models then assessed the suitability of the selective estrogen receptor modulators (SERMs), raloxifene and tamoxifen, and showed growth attenuation in a variety of our models to one or both of these drugs in vitro. Utilization of these SERMs in vivo closely resembled the sensitization predicted by our co-culture models. Therefore, the in vitro fibroblast co-culture model better predicts in vivo responses. We propose that utilization of our co-culture in vitro model can accelerate cancer therapeutic drug discovery. IMPORTANCE Human papillomavirus-related cancers (HPV+ cancers) remain a significant public health concern, and specific clinical approaches are desperately needed. In translating drug response data from in vitro to in vivo, the fibroblasts of the adjacent stromal support network play a key role. Our study presents the utilization of a fibroblast 2D co-culture system to better predict translational drug assessments for HPV+ cancers. We also suggest that this co-culture system should be considered for other translational approaches. Predicting even a portion of treatment paradigms that may fail in vivo with a co-culture model will yield significant time, effort, resource, and cost efficiencies.
Collapse
Affiliation(s)
- Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Rachel L. Lewis
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Alexis L. Fakunmoju
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Austin J. Witt
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Aya H. Youssef
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Xu Wang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Nabiha M. Rais
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Apurva T. Prabhakar
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - J. Mathew Machado
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Raymonde Otoa
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Molly L. Bristol
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
8
|
Wang W, Pope A, Ward-Shaw E, Buehler D, Bachelerie F, Lambert PF. Increased Susceptibility of WHIM Mice to Papillomavirus-induced Disease is Dependent upon Immune Cell Dysfunction. PLoS Pathog 2024; 20:e1012472. [PMID: 39226327 PMCID: PMC11398641 DOI: 10.1371/journal.ppat.1012472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
Warts, Hypogammaglobulinemia, Infections, and Myelokathexis (WHIM) syndrome is a rare primary immunodeficiency disease in humans caused by a gain of function in CXCR4, mostly due to inherited heterozygous mutations in CXCR4. One major clinical symptom of WHIM patients is their high susceptibility to human papillomavirus (HPV) induced disease, such as warts. Persistent high risk HPV infections cause 5% of all human cancers, including cervical, anogenital, head and neck and some skin cancers. WHIM mice bearing the same mutation identified in WHIM patients were created to study the underlying causes for the symptoms manifest in patients suffering from the WHIM syndrome. Using murine papillomavirus (MmuPV1) as an infection model in mice for HPV-induced disease, we demonstrate that WHIM mice are more susceptible to MmuPV1-induced warts (papillomas) compared to wild type mice. Namely, the incidence of papillomas is higher in WHIM mice compared to wild type mice when mice are exposed to low doses of MmuPV1. MmuPV1 infection facilitated both myeloid and lymphoid cell mobilization in the blood of wild type mice but not in WHIM mice. Higher incidence and larger size of papillomas in WHIM mice correlated with lower abundance of infiltrating T cells within the papillomas. Finally, we demonstrate that transplantation of bone marrow from wild type mice into WHIM mice normalized the incidence and size of papillomas, consistent with the WHIM mutation in hematopoietic cells contributing to higher susceptibility of WHIM mice to MmuPV1-induced disease. Our results provide evidence that MmuPV1 infection in WHIM mice is a powerful preclinical infectious model to investigate treatment options for alleviating papillomavirus infections in WHIM syndrome.
Collapse
Affiliation(s)
- Wei Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, Michigan, United States of America
| | - Ali Pope
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Francoise Bachelerie
- Inflammation, Microbiome and Immunosurveillance, INSERM UMR-996, Université Paris-Saclay, Orsay, France
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
9
|
Atkins HM, Uslu AA, Li JJ, Shearer DA, Brendle SA, Han C, Kozak M, Lopez P, Nayar D, Balogh KK, Abendroth C, Copper J, Cheng KC, Christensen ND, Zhu Y, Avril S, Burgener AD, Murooka TT, Hu J. Monitoring mouse papillomavirus-associated cancer development using longitudinal Pap smear screening. mBio 2024; 15:e0142024. [PMID: 39012151 PMCID: PMC11323795 DOI: 10.1128/mbio.01420-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
A substantial percentage of the population remains at risk for cervical cancer due to pre-existing human papillomavirus (HPV) infections, despite prophylactic vaccines. Early diagnosis and treatment are crucial for better disease outcomes. The development of new treatments heavily relies on suitable preclinical model systems. Recently, we established a mouse papillomavirus (MmuPV1) model that is relevant to HPV genital pathogenesis. In the current study, we validated the use of Papanicolaou (Pap) smears, a valuable early diagnostic tool for detecting HPV cervical cancer, to monitor disease progression in the MmuPV1 mouse model. Biweekly cervicovaginal swabs were collected from the MmuPV1-infected mice for viral DNA quantitation and cytology assessment. The Pap smear slides were evaluated for signs of epithelial cell abnormalities using the 2014 Bethesda system criteria. Tissues from the infected mice were harvested at various times post-viral infection for additional histological and virological assays. Over time, increased viral replication was consistent with higher levels of viral DNA, and it coincided with an uptick in epithelial cell abnormalities with higher severity scores noted as early as 10 weeks after viral infection. The cytological results also correlated with the histological evaluation of tissues harvested simultaneously. Both immunocompromised and immunocompetent mice with squamous cell carcinoma (SCC) cytology also developed vaginal SCCs. Notably, samples from the MmuPV1-infected mice exhibited similar cellular abnormalities compared to the corresponding human samples at similar disease stages. Hence, Pap smear screening proves to be an effective tool for the longitudinal monitoring of disease progression in the MmuPV1 mouse model. IMPORTANCE Papanicolaou (Pap) smear has saved millions of women's lives as a valuable early screening tool for detecting human papillomavirus (HPV) cervical precancers and cancer. However, more than 200,000 women in the United States alone remain at risk for cervical cancer due to pre-existing HPV infection-induced precancers, as there are currently no effective treatments for HPV-associated precancers and cancers other than invasive procedures including a loop electrosurgical excision procedure (LEEP) to remove abnormal tissues. In the current study, we validated the use of Pap smears to monitor disease progression in our recently established mouse papillomavirus model. To the best of our knowledge, this is the first study that provides compelling evidence of applying Pap smears from cervicovaginal swabs to monitor disease progression in mice. This HPV-relevant cytology assay will enable us to develop and test novel antiviral and anti-tumor therapies using this model to eliminate HPV-associated diseases and cancers.
Collapse
Affiliation(s)
- Hannah M. Atkins
- Department of Pathology and Laboratory Medicine, Division of Comparative Medicine, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - Aysegul Aksakal Uslu
- Department of Pathology and Laboratory Medicine, Division of Comparative Medicine, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jingwei J. Li
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Debra A. Shearer
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Sarah A. Brendle
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Chen Han
- TEM facility, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Michael Kozak
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Paul Lopez
- Department of Immunology, The University of Manitoba, Winnipeg, Manitoba, Canada
| | - Deesha Nayar
- Department of Immunology, The University of Manitoba, Winnipeg, Manitoba, Canada
| | - Karla K. Balogh
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Catherine Abendroth
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jean Copper
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Keith C. Cheng
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Neil D. Christensen
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Microbiology and immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Yusheng Zhu
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Stefanie Avril
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Adam D. Burgener
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Global Health and Diseases, University of Manitoba, Winnipeg, Canada
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Manitoba, Winnipeg, Canada
- Department of Medicine, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Thomas T. Murooka
- Department of Immunology, The University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
10
|
James CD, Lewis RL, Fakunmoju AL, Witt A, Youssef AH, Wang X, Rais NM, Tadimari Prabhakar A, Machado JM, Otoa R, Bristol ML. Fibroblast Stromal Support Model for Predicting Human Papillomavirus-Associated Cancer Drug Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588680. [PMID: 38644998 PMCID: PMC11030318 DOI: 10.1101/2024.04.09.588680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Currently, there are no specific antiviral therapeutic approaches targeting Human papillomaviruses (HPVs), which cause around 5% of all human cancers. Specific antiviral reagents are particularly needed for HPV-related oropharyngeal cancers (HPV+OPCs) whose incidence is increasing and for which there are no early diagnostic tools available. We and others have demonstrated that the estrogen receptor alpha (ERalpha) is overexpressed in HPV+OPCs, compared to HPV-negative cancers in this region, and that these elevated levels are associated with an improved disease outcome. Utilizing this HPV+ specific overexpression profile, we previously demonstrated that estrogen attenuates the growth and cell viability of HPV+ keratinocytes and HPV+ cancer cells in vitro. Expansion of this work in vivo failed to replicate this sensitization. The role of stromal support from the tumor microenvironment (TME) has previously been tied to both the HPV lifecycle and in vivo therapeutic responses. Our investigations revealed that in vitro co-culture with fibroblasts attenuated HPV+ specific estrogen growth responses. Continuing to monopolize on the HPV+ specific overexpression of ERalpha, our co-culture models then assessed the suitability of the selective estrogen receptor modulators (SERMs), raloxifene and tamoxifen, and showed growth attenuation in a variety of our models to one or both of these drugs in vitro. Utilization of these SERMs in vivo closely resembled the sensitization predicted by our co-culture models. Therefore, the in vitro fibroblast co-culture model better predicts in vivo responses. We propose that utilization of our co-culture in vitro model can accelerate cancer therapeutic drug discovery.
Collapse
|
11
|
Spurgeon ME, Townsend EC, Blaine-Sauer S, McGregor SM, Horswill M, den Boon JA, Ahlquist P, Kalan L, Lambert PF. Key aspects of papillomavirus infection influence the host cervicovaginal microbiome in a preclinical murine papillomavirus (MmuPV1) infection model. mBio 2024; 15:e0093324. [PMID: 38742830 PMCID: PMC11237646 DOI: 10.1128/mbio.00933-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Human papillomaviruses (HPVs) are the most common sexually transmitted infection in the United States and are a major etiological agent of cancers in the anogenital tract and oral cavity. Growing evidence suggests changes in the host microbiome are associated with the natural history and ultimate outcome of HPV infection. We sought to define changes in the host cervicovaginal microbiome during papillomavirus infection, persistence, and pathogenesis using the murine papillomavirus (MmuPV1) cervicovaginal infection model. Cervicovaginal lavages were performed over a time course of MmuPV1 infection in immunocompetent female FVB/N mice and extracted DNA was analyzed by qPCR to track MmuPV1 viral copy number. 16S ribosomal RNA (rRNA) gene sequencing was used to determine the composition and diversity of microbial communities throughout this time course. We also sought to determine whether specific microbial communities exist across the spectrum of MmuPV1-induced neoplastic disease. We, therefore, performed laser-capture microdissection to isolate regions of disease representing all stages of neoplastic disease progression (normal, low- and high-grade dysplasia, and cancer) from female reproductive tract tissue sections from MmuPV1-infected mice and performed 16S rRNA sequencing. Consistent with other studies, we found that the natural murine cervicovaginal microbiome is highly variable across different experiments. Despite these differences in initial microbiome composition between experiments, we observed that MmuPV1 persistence, viral load, and severity of disease influenced the composition of the cervicovaginal microbiome. These studies demonstrate that papillomavirus infection can alter the cervicovaginal microbiome.IMPORTANCEHuman papillomaviruses (HPVs) are the most common sexually transmitted infection in the United States. A subset of HPVs that infect the anogenital tract (cervix, vagina, anus) and oral cavity cause at least 5% of cancers worldwide. Recent evidence indicates that the community of microbial organisms present in the human cervix and vagina, known as the cervicovaginal microbiome, plays a role in HPV-induced cervical cancer. However, the mechanisms underlying this interplay are not well-defined. In this study, we infected the female reproductive tract of mice with a murine papillomavirus (MmuPV1) and found that key aspects of papillomavirus infection and disease influence the host cervicovaginal microbiome. This is the first study to define changes in the host microbiome associated with MmuPV1 infection in a preclinical animal model of HPV-induced cervical cancer. These results pave the way for using MmuPV1 infection models to further investigate the interactions between papillomaviruses and the host microbiome.
Collapse
Affiliation(s)
- Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elizabeth C. Townsend
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Simon Blaine-Sauer
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Stephanie M. McGregor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark Horswill
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Johan A. den Boon
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Paul Ahlquist
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Lindsay Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Delgado-Coka L, Horowitz M, Torrente-Goncalves M, Roa-Peña L, Leiton CV, Hasan M, Babu S, Fassler D, Oentoro J, Bai JDK, Petricoin EF, Matrisian LM, Blais EM, Marchenko N, Allard FD, Jiang W, Larson B, Hendifar A, Chen C, Abousamra S, Samaras D, Kurc T, Saltz J, Escobar-Hoyos LF, Shroyer KR. Keratin 17 modulates the immune topography of pancreatic cancer. J Transl Med 2024; 22:443. [PMID: 38730319 PMCID: PMC11087249 DOI: 10.1186/s12967-024-05252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The immune microenvironment impacts tumor growth, invasion, metastasis, and patient survival and may provide opportunities for therapeutic intervention in pancreatic ductal adenocarcinoma (PDAC). Although never studied as a potential modulator of the immune response in most cancers, Keratin 17 (K17), a biomarker of the most aggressive (basal) molecular subtype of PDAC, is intimately involved in the histogenesis of the immune response in psoriasis, basal cell carcinoma, and cervical squamous cell carcinoma. Thus, we hypothesized that K17 expression could also impact the immune cell response in PDAC, and that uncovering this relationship could provide insight to guide the development of immunotherapeutic opportunities to extend patient survival. METHODS Multiplex immunohistochemistry (mIHC) and automated image analysis based on novel computational imaging technology were used to decipher the abundance and spatial distribution of T cells, macrophages, and tumor cells, relative to K17 expression in 235 PDACs. RESULTS K17 expression had profound effects on the exclusion of intratumoral CD8+ T cells and was also associated with decreased numbers of peritumoral CD8+ T cells, CD16+ macrophages, and CD163+ macrophages (p < 0.0001). The differences in the intratumor and peritumoral CD8+ T cell abundance were not impacted by neoadjuvant therapy, tumor stage, grade, lymph node status, histologic subtype, nor KRAS, p53, SMAD4, or CDKN2A mutations. CONCLUSIONS Thus, K17 expression correlates with major differences in the immune microenvironment that are independent of any tested clinicopathologic or tumor intrinsic variables, suggesting that targeting K17-mediated immune effects on the immune system could restore the innate immunologic response to PDAC and might provide novel opportunities to restore immunotherapeutic approaches for this most deadly form of cancer.
Collapse
Affiliation(s)
- Lyanne Delgado-Coka
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
- Program of Public Health and Department of Preventative Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Michael Horowitz
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Mariana Torrente-Goncalves
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Lucia Roa-Peña
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
- Department of Pathology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Cindy V Leiton
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Mahmudul Hasan
- Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
| | - Sruthi Babu
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Danielle Fassler
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Jaymie Oentoro
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Ji-Dong K Bai
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA, USA
- Perthera, McLean, VA, USA
| | - Lynn M Matrisian
- Scientific and Medical Affairs, Pancreatic Cancer Action Network, Manhattan Beach, CA, USA
| | | | - Natalia Marchenko
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Felicia D Allard
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Wei Jiang
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Brent Larson
- Departments of Pathology and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrew Hendifar
- Departments of Pathology and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chao Chen
- Department of Biomedical Informatics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Shahira Abousamra
- Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
| | - Dimitris Samaras
- Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
| | - Tahsin Kurc
- Department of Biomedical Informatics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Joel Saltz
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA.
- Department of Biomedical Informatics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Luisa F Escobar-Hoyos
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA.
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
- Division of Oncology, Department of Medicine, Yale University, New Haven, CT, USA.
| | - Kenneth R Shroyer
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA.
| |
Collapse
|
13
|
King RE, Rademacher J, Ward-Shaw ET, Hu R, Bilger A, Blaine-Sauer S, Spurgeon ME, Thibeault SL, Lambert PF. The Larynx is Protected from Secondary and Vertical Papillomavirus Infection in Immunocompetent Mice. Laryngoscope 2024; 134:2322-2330. [PMID: 38084790 PMCID: PMC11006576 DOI: 10.1002/lary.31228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVE Mouse papillomavirus MmuPV1 causes both primary and secondary infections of the larynx in immunocompromised mice. Understanding lateral and vertical transmission of papillomavirus to the larynx would benefit patients with recurrent respiratory papillomatosis (RRP). To test the hypothesis that the larynx is uniquely vulnerable to papillomavirus infection, and to further develop a mouse model of RRP, we assessed whether immunocompetent mice were vulnerable to secondary or vertical laryngeal infection with MmuPV1. METHODS Larynges were collected from 405 immunocompetent adult mice that were infected with MmuPV1 in the oropharynx, oral cavity, or anus, and 31 mouse pups born to immunocompetent females infected in the cervicovaginal tract. Larynges were analyzed via polymerase chain reaction (PCR) of lavage fluid or whole tissues for viral DNA, histopathology, and/or in situ hybridization for MmuPV1 transcripts. RESULTS Despite some positive laryngeal lavage PCR screens, all laryngeal tissue PCR and histopathology results were negative for MmuPV1 DNA, transcripts, and disease. There was no evidence for lateral spread of MmuPV1 to the larynges of immunocompetent mice that were infected in the oral cavity, oropharynx, or anus. Pups born to infected mothers were negative for laryngeal MmuPV1 infection from birth through weaning age. CONCLUSION Secondary and vertical laryngeal MmuPV1 infections were not found in immunocompetent mice. Further work is necessary to explore immunologic control of laryngeal papillomavirus infection in a mouse model and to improve preclinical models of RRP. LEVEL OF EVIDENCE NA Laryngoscope, 134:2322-2330, 2024.
Collapse
Affiliation(s)
- Renee E. King
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
- Division of Surgical Oncology, Department of Surgery, University of Wisconsin-Madison, Madison, WI
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Josef Rademacher
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Ella T. Ward-Shaw
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Andrea Bilger
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
| | - Simon Blaine-Sauer
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
| | - Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
| | - Susan L. Thibeault
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
14
|
Liang W, Jie H, Xie H, Zhou Y, Li W, Huang L, Liang Z, Liu H, Zheng X, Zeng Z, Kang L. High KRT17 expression in tumour budding indicates immunologically 'hot' tumour budding and predicts good survival in patients with colorectal cancer. Clin Transl Immunology 2024; 13:e1495. [PMID: 38433762 PMCID: PMC10903186 DOI: 10.1002/cti2.1495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024] Open
Abstract
Objectives Emerging evidence has demonstrated that tumour budding (TB) is negatively associated with T-lymphocyte infiltration in CRC. Despite extensive research, the molecular characteristics of immunologically 'hot' TB remain poorly understood. Methods We quantified the number of TB by haematoxylin-eosin (H&E) sections and the densities of CD3+ and CD8+ T-lymphocytes by immunohistochemistry in a CRC cohort of 351 cases who underwent curative resection. We analysed the differential expression and T-lymphocyte infiltration score of 37 human epithelial keratins in CRC using RNA sequencing from the TCGA dataset. In 278 TB-positive cases, KRT17 expression was evaluated in tumour centre (TC) and TB with a staining score. Patient demographic, clinicopathological features and survival rates were analysed. Results In a CRC cohort of 351 cases, low-grade TB was associated with high CD3+ and CD8+ T-cell densities in the invasive margin (IM) but not in the TC. Of 37 human epithelial keratins, only KRT17 expression in TB had an apparent association with TB-grade and T-lymphocyte infiltration. In 278 TB-positive cases, high KRT17 expression in TB (KRT17TB) was negatively associated with low-grade TB and positively associated with high CD3+ and CD8+ T-cell densities in IM. High KRT17TB predicted early tumour grade, absence of lymph node metastasis and absence of tumour deposits. Additionally, patients with high KRT17TB had good overall survival and disease-free survival. Notably, low KRT17TB can specifically identify those patients with a poor prognosis among colorectal cancer patients with low TB and high T-lymphocyte infiltration. Conclusions KRT17 can be employed as a new indicator for distinguishing different immunological TBs.
Collapse
Affiliation(s)
- Wenfeng Liang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Haiqing Jie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Hao Xie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yebohao Zhou
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Wenxin Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Liang Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhenxing Liang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Huashan Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiaobin Zheng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ziwei Zeng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Liang Kang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
15
|
Stern PL. Is immunotherapy a potential game changer in managing human papillomavirus (HPV) infection and intraepithelial neoplasia? Tumour Virus Res 2023; 16:200263. [PMID: 37236509 PMCID: PMC10774942 DOI: 10.1016/j.tvr.2023.200263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023] Open
Abstract
The International Papillomavirus Conference was held in Washington DC in April 2023 and encompassed wide ranging basic, clinical and public health research relating to animal and human papillomaviruses. This editorial is a personal reflection, it does not attempt to be comprehensive and reports on some key aspects centred on the prospects for immune interventions in prevention and treatment of HPV infections and early precancers with a focus on cervical neoplasia. There is optimism for the future impact of immunotherapy in treating early HPV associated disease. This will depend on developing an appropriate design of vaccines and delivery vehicles which then need to be properly tested in clinical trials that are able to measure a useful clinical endpoint. Thereafter vaccines (prophylactic or therapeutic) still need global access and sufficient uptake to deliver impact and a key and necessary driver is education.
Collapse
Affiliation(s)
- Peter L Stern
- Division of Molecular & Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK.
| |
Collapse
|
16
|
Lozar T, Wang W, Gavrielatou N, Christensen L, Lambert PF, Harari PM, Rimm DL, Burtness B, Grasic Kuhar C, Carchman EH. Emerging Prognostic and Predictive Significance of Stress Keratin 17 in HPV-Associated and Non HPV-Associated Human Cancers: A Scoping Review. Viruses 2023; 15:2320. [PMID: 38140561 PMCID: PMC10748233 DOI: 10.3390/v15122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
A growing body of literature suggests that the expression of cytokeratin 17 (K17) correlates with inferior clinical outcomes across various cancer types. In this scoping review, we aimed to review and map the available clinical evidence of the prognostic and predictive value of K17 in human cancers. PubMed, Web of Science, Embase (via Scopus), Cochrane Central Register of Controlled Trials, and Google Scholar were searched for studies of K17 expression in human cancers. Eligible studies were peer-reviewed, published in English, presented original data, and directly evaluated the association between K17 and clinical outcomes in human cancers. Of the 1705 studies identified in our search, 58 studies met criteria for inclusion. Studies assessed the prognostic significance (n = 54), predictive significance (n = 2), or both the prognostic and predictive significance (n = 2). Altogether, 11 studies (19.0%) investigated the clinical relevance of K17 in cancers with a known etiologic association to HPV; of those, 8 (13.8%) were focused on head and neck squamous cell carcinoma (HNSCC), and 3 (5.1%) were focused on cervical squamous cell carcinoma (SCC). To date, HNSCC, as well as triple-negative breast cancer (TNBC) and pancreatic cancer, were the most frequently studied cancer types. K17 had prognostic significance in 16/17 investigated cancer types and 43/56 studies. Our analysis suggests that K17 is a negative prognostic factor in the majority of studied cancer types, including HPV-associated types such as HNSCC and cervical cancer (13/17), and a positive prognostic factor in 2/17 studied cancer types (urothelial carcinoma of the upper urinary tract and breast cancer). In three out of four predictive studies, K17 was a negative predictive factor for chemotherapy and immune checkpoint blockade therapy response.
Collapse
Affiliation(s)
- Taja Lozar
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (T.L.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Wei Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (T.L.)
| | - Niki Gavrielatou
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Leslie Christensen
- Ebling Library, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (T.L.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
| | - Paul M. Harari
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - David L. Rimm
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Barbara Burtness
- Department of Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Cvetka Grasic Kuhar
- University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Evie H. Carchman
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| |
Collapse
|