1
|
Keramati F, Leijte GP, Bruse N, Grondman I, Habibi E, Ruiz-Moreno C, Megchelenbrink W, Peters van Ton AM, Heesakkers H, Bremmers ME, van Grinsven E, Tesselaar K, van Staveren S, van der Velden WJ, Preijers FW, Te Pas B, van de Loop R, Gerretsen J, Netea MG, Stunnenberg HG, Pickkers P, Kox M. Systemic inflammation impairs myelopoiesis and interferon type I responses in humans. Nat Immunol 2025; 26:737-747. [PMID: 40251340 PMCID: PMC12043512 DOI: 10.1038/s41590-025-02136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/17/2025] [Indexed: 04/20/2025]
Abstract
Systemic inflammatory conditions are classically characterized by an acute hyperinflammatory phase, followed by a late immunosuppressive phase that elevates the susceptibility to secondary infections. Comprehensive mechanistic understanding of these phases is largely lacking. To address this gap, we leveraged a controlled, human in vivo model of lipopolysaccharide (LPS)-induced systemic inflammation encompassing both phases. Single-cell RNA sequencing during the acute hyperinflammatory phase identified an inflammatory CD163+SLC39A8+CALR+ monocyte-like subset (infMono) at 4 h post-LPS administration. The late immunosuppressive phase was characterized by diminished expression of type I interferon (IFN)-responsive genes in monocytes, impaired myelopoiesis and a pronounced attenuation of the immune response on a secondary LPS challenge 1 week after the first. The infMono gene program and impaired myelopoiesis were also detected in patient cohorts with bacterial sepsis and coronavirus disease. IFNβ treatment restored type-I IFN responses and proinflammatory cytokine production and induced monocyte maturation, suggesting a potential treatment option for immunosuppression.
Collapse
Affiliation(s)
- Farid Keramati
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Guus P Leijte
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Niklas Bruse
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Inge Grondman
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ehsan Habibi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Québec, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Québec, Canada
| | - Cristian Ruiz-Moreno
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Wout Megchelenbrink
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Hidde Heesakkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Manita E Bremmers
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erinke van Grinsven
- Department of Respiratory Medicine and Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kiki Tesselaar
- Department of Respiratory Medicine and Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Selma van Staveren
- Department of Respiratory Medicine and Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- TmonoCOAST, Amsterdam, The Netherlands
| | | | - Frank W Preijers
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Brigit Te Pas
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Raoul van de Loop
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jelle Gerretsen
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands.
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Holicek P, Guilbaud E, Klapp V, Truxova I, Spisek R, Galluzzi L, Fucikova J. Type I interferon and cancer. Immunol Rev 2024; 321:115-127. [PMID: 37667466 DOI: 10.1111/imr.13272] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Type I interferon (IFN) is a class of proinflammatory cytokines with a dual role on malignant transformation, tumor progression, and response to therapy. On the one hand, robust, acute, and resolving type I IFN responses have been shown to mediate prominent anticancer effects, reflecting not only their direct cytostatic/cytotoxic activity on (at least some) malignant cells, but also their pronounced immunostimulatory functions. In line with this notion, type I IFN signaling has been implicated in the antineoplastic effects of various immunogenic therapeutics, including (but not limited to) immunogenic cell death (ICD)-inducing agents and immune checkpoint inhibitors (ICIs). On the other hand, weak, indolent, and non-resolving type I IFN responses have been demonstrated to support tumor progression and resistance to therapy, reflecting the ability of suboptimal type I IFN signaling to mediate cytoprotective activity, promote stemness, favor tolerance to chromosomal instability, and facilitate the establishment of an immunologically exhausted tumor microenvironment. Here, we review fundamental aspects of type I IFN signaling and their context-dependent impact on malignant transformation, tumor progression, and response to therapy.
Collapse
Affiliation(s)
- Peter Holicek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Vanessa Klapp
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York, USA
- Sandra and Edward Meyer Cancer Center, New York, New York, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, New York, USA
| | - Jitka Fucikova
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
3
|
Shi F, Su J, Wang J, Liu Z, Wang T. Activation of STING inhibits cervical cancer tumor growth through enhancing the anti-tumor immune response. Mol Cell Biochem 2021; 476:1015-1024. [PMID: 33141310 DOI: 10.1007/s11010-020-03967-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/27/2020] [Indexed: 01/07/2023]
Abstract
Cervical cancer remains the second leading cause of gynecologic cancer-related mortality among women worldwide. STING (stimulator of interferon genes) was reported to be involved in the immune surveillance of tumors. However, the specific role of STING in cervical cancer remains unclear. In this study, we found that the cGAS (Cyclic GMP-AMP synthase)/STING signal decreased in cervical cancer cells. Knockdown of STING by siRNA enhanced the cell viability and migration of cervical cancer cells, while activation of STING by ADU-S100 inhibited the cell viability of cervical cancer cells, with no effect on the migration and apoptosis. In addition, ADU-S100 promoted the secretion of IFNβ and IL-6, and the activation of TBK1 (TANK-binding kinase 1)/NF-κB (nuclear factor kappa-B) pathway. Meanwhile, knockdown of STING inhibited the production of IFNβ and IL-6 that were triggered by dsDNA and suppressed the TBK1/NF-κB signaling. ADU-S100 also suppressed tumor growth in vivo and increased the tumor-infiltrating CD8+ T cell and CD103+ dendritic cell numbers. The NF-κB signal inhibitor limited the increasing numbers of CD8+ T cell and CD103+ dendritic cells induced by ADU-S100, without influence on tumor growth. Hence, our study suggested that STING could serve as a potential novel immunotherapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Fan Shi
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West yanta road, Xi'an, 710061, China
| | - Jin Su
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West yanta road, Xi'an, 710061, China
| | - Juan Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West yanta road, Xi'an, 710061, China
| | - Zi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West yanta road, Xi'an, 710061, China
| | - Tao Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West yanta road, Xi'an, 710061, China.
| |
Collapse
|
4
|
Kalafati L, Kourtzelis I, Schulte-Schrepping J, Li X, Hatzioannou A, Grinenko T, Hagag E, Sinha A, Has C, Dietz S, de Jesus Domingues AM, Nati M, Sormendi S, Neuwirth A, Chatzigeorgiou A, Ziogas A, Lesche M, Dahl A, Henry I, Subramanian P, Wielockx B, Murray P, Mirtschink P, Chung KJ, Schultze JL, Netea MG, Hajishengallis G, Verginis P, Mitroulis I, Chavakis T. Innate Immune Training of Granulopoiesis Promotes Anti-tumor Activity. Cell 2020; 183:771-785.e12. [PMID: 33125892 PMCID: PMC7599076 DOI: 10.1016/j.cell.2020.09.058] [Citation(s) in RCA: 353] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/19/2020] [Accepted: 09/23/2020] [Indexed: 01/05/2023]
Abstract
Trained innate immunity, induced via modulation of mature myeloid cells or their bone marrow progenitors, mediates sustained increased responsiveness to secondary challenges. Here, we investigated whether anti-tumor immunity can be enhanced through induction of trained immunity. Pre-treatment of mice with β-glucan, a fungal-derived prototypical agonist of trained immunity, resulted in diminished tumor growth. The anti-tumor effect of β-glucan-induced trained immunity was associated with transcriptomic and epigenetic rewiring of granulopoiesis and neutrophil reprogramming toward an anti-tumor phenotype; this process required type I interferon signaling irrespective of adaptive immunity in the host. Adoptive transfer of neutrophils from β-glucan-trained mice to naive recipients suppressed tumor growth in the latter in a ROS-dependent manner. Moreover, the anti-tumor effect of β-glucan-induced trained granulopoiesis was transmissible by bone marrow transplantation to recipient naive mice. Our findings identify a novel and therapeutically relevant anti-tumor facet of trained immunity involving appropriate rewiring of granulopoiesis.
Collapse
Affiliation(s)
- Lydia Kalafati
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden and German Cancer Research Center, Heidelberg, 69120 Heidelberg, Germany
| | - Ioannis Kourtzelis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden and German Cancer Research Center, Heidelberg, 69120 Heidelberg, Germany; Hull York Medical School, York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| | - Jonas Schulte-Schrepping
- Department of Genomics and Immunoregulation, Life and Medical Science Institute, University of Bonn, 53115 Bonn, Germany
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aikaterini Hatzioannou
- Laboratory of Immune Regulation and Tolerance, Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Tatyana Grinenko
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Eman Hagag
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anupam Sinha
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden and German Cancer Research Center, Heidelberg, 69120 Heidelberg, Germany
| | - Canan Has
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Sevina Dietz
- DFG-Center for Regenerative Therapies Dresden, 01307 Dresden, Germany
| | | | - Marina Nati
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Sundary Sormendi
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ales Neuwirth
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Antonios Chatzigeorgiou
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Athanasios Ziogas
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mathias Lesche
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ian Henry
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Pallavi Subramanian
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Peter Murray
- Immunoregulation Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Peter Mirtschink
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Joachim L Schultze
- Department of Genomics and Immunoregulation, Life and Medical Science Institute, University of Bonn, 53115 Bonn, Germany; PRECISE - Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, 53115 Bonn, Germany
| | - Mihai G Netea
- Department of Genomics and Immunoregulation, Life and Medical Science Institute, University of Bonn, 53115 Bonn, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525 XZ, the Netherlands
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Panayotis Verginis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; Laboratory of Immune Regulation and Tolerance, Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ioannis Mitroulis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden and German Cancer Research Center, Heidelberg, 69120 Heidelberg, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
5
|
Interferon-β Plays a Detrimental Role in Experimental Traumatic Brain Injury by Enhancing Neuroinflammation That Drives Chronic Neurodegeneration. J Neurosci 2020; 40:2357-2370. [PMID: 32029532 DOI: 10.1523/jneurosci.2516-19.2020] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 02/07/2023] Open
Abstract
DNA damage and type I interferons (IFNs) contribute to inflammatory responses after traumatic brain injury (TBI). TBI-induced activation of microglia and peripherally-derived inflammatory macrophages may lead to tissue damage and neurological deficits. Here, we investigated the role of IFN-β in secondary injury after TBI using a controlled cortical impact model in adult male IFN-β-deficient (IFN-β-/-) mice and assessed post-traumatic neuroinflammatory responses, neuropathology, and long-term functional recovery. TBI increased expression of DNA sensors cyclic GMP-AMP synthase and stimulator of interferon genes in wild-type (WT) mice. IFN-β and other IFN-related and neuroinflammatory genes were also upregulated early and persistently after TBI. TBI increased expression of proinflammatory mediators in the cortex and hippocampus of WT mice, whereas levels were mitigated in IFN-β-/- mice. Moreover, long-term microglia activation, motor, and cognitive function impairments were decreased in IFN-β-/- TBI mice compared with their injured WT counterparts; improved neurological recovery was associated with reduced lesion volume and hippocampal neurodegeneration in IFN-β-/- mice. Continuous central administration of a neutralizing antibody to the IFN-α/β receptor (IFNAR) for 3 d, beginning 30 min post-injury, reversed early cognitive impairments in TBI mice and led to transient improvements in motor function. However, anti-IFNAR treatment did not improve long-term functional recovery or decrease TBI neuropathology at 28 d post-injury. In summary, TBI induces a robust neuroinflammatory response that is associated with increased expression of IFN-β and other IFN-related genes. Inhibition of IFN-β reduces post-traumatic neuroinflammation and neurodegeneration, resulting in improved neurological recovery. Thus, IFN-β may be a potential therapeutic target for TBI.SIGNIFICANCE STATEMENT TBI frequently causes long-term neurological and psychiatric changes in head injury patients. TBI-induced secondary injury processes including persistent neuroinflammation evolve over time and can contribute to chronic neurological impairments. The present study demonstrates that TBI is followed by robust activation of type I IFN pathways, which have been implicated in microglial-associated neuroinflammation and chronic neurodegeneration. We examined the effects of genetic or pharmacological inhibition of IFN-β, a key component of type I IFN mechanisms to address its role in TBI pathophysiology. Inhibition of IFN-β signaling resulted in reduced neuroinflammation, attenuated neurobehavioral deficits, and limited tissue loss long after TBI. These preclinical findings suggest that IFN-β may be a potential therapeutic target for TBI.
Collapse
|
6
|
Muendlein HI, Sarhan J, Liu BC, Connolly WM, Schworer SA, Smirnova I, Tang AY, Ilyukha V, Pietruska J, Tahmasebi S, Sonenberg N, Degterev A, Poltorak A. Constitutive Interferon Attenuates RIPK1/3-Mediated Cytokine Translation. Cell Rep 2020; 30:699-713.e4. [PMID: 31968247 PMCID: PMC7183097 DOI: 10.1016/j.celrep.2019.12.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 11/24/2019] [Accepted: 12/18/2019] [Indexed: 01/15/2023] Open
Abstract
Receptor-interacting protein kinase 1 (RIPK1) and 3 (RIPK3) are well known for their capacity to drive necroptosis via mixed-lineage kinase-like domain (MLKL). Recently, RIPK1/3 kinase activity has been shown to drive inflammation via activation of MAPK signaling. However, the regulatory mechanisms underlying this kinase-dependent cytokine production remain poorly understood. In the present study, we establish that the kinase activity of RIPK1/3 regulates cytokine translation in mouse and human macrophages. Furthermore, we show that this inflammatory response is downregulated by type I interferon (IFN) signaling, independent of type I IFN-promoted cell death. Specifically, low-level constitutive IFN signaling attenuates RIPK-driven activation of cap-dependent translation initiation pathway components AKT, mTORC1, 4E-BP and eIF4E, while promoting RIPK-dependent cell death. Altogether, these data characterize constitutive IFN signaling as a regulator of RIPK-dependent inflammation and establish cap-dependent translation as a crucial checkpoint in the regulation of cytokine production.
Collapse
Affiliation(s)
- Hayley I Muendlein
- Graduate Program in Genetics, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Joseph Sarhan
- Medical Scientist Training Program (MSTP), Tufts University School of Medicine, Boston, MA 02111, USA; Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Beiyun C Liu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38104, USA
| | - Wilson M Connolly
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Stephen A Schworer
- Allergy and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Irina Smirnova
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Amy Y Tang
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Vladimir Ilyukha
- Petrozavodsk State University, Petrozavodsk, Republic of Karelia 185910, Russia
| | - Jodie Pietruska
- Department of Cell, Molecular & Developmental Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Soroush Tahmasebi
- Department of Biochemistry, Goodman Cancer Research Center McGill University, Montreal, QC H3A 1A3, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, Goodman Cancer Research Center McGill University, Montreal, QC H3A 1A3, Canada
| | - Alexei Degterev
- Department of Cell, Molecular & Developmental Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Alexander Poltorak
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; Petrozavodsk State University, Petrozavodsk, Republic of Karelia 185910, Russia.
| |
Collapse
|
7
|
Hubert M, Gobbini E, Bendriss-Vermare N, Caux C, Valladeau-Guilemond J. Human Tumor-Infiltrating Dendritic Cells: From in Situ Visualization to High-Dimensional Analyses. Cancers (Basel) 2019; 11:E1082. [PMID: 31366174 PMCID: PMC6721288 DOI: 10.3390/cancers11081082] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022] Open
Abstract
The interaction between tumor cells and the immune system is considered to be a dynamic process. Dendritic cells (DCs) play a pivotal role in anti-tumor immunity owing to their outstanding T cell activation ability. Their functions and activities are broad ranged, triggering different mechanisms and responses to the DC subset. Several studies identified in situ human tumor-infiltrating DCs by immunostaining using a limited number of markers. However, considering the heterogeneity of DC subsets, the identification of each subtype present in the immune infiltrate is essential. To achieve this, studies initially relied on flow cytometry analyses to provide a precise characterization of tumor-associated DC subsets based on a combination of multiple markers. The concomitant development of advanced technologies, such as mass cytometry or complete transcriptome sequencing of a cell population or at a single cell level, has provided further details on previously identified populations, has unveiled previously unknown populations, and has finally led to the standardization of the DCs classification across tissues and species. Here, we review the evolution of tumor-associated DC description, from in situ visualization to their characterization with high-dimensional technologies, and the clinical use of these findings specifically focusing on the prognostic impact of DCs in cancers.
Collapse
Affiliation(s)
- Margaux Hubert
- Cancer Research Center Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon, France
| | - Elisa Gobbini
- Cancer Research Center Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon, France
| | - Nathalie Bendriss-Vermare
- Cancer Research Center Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon, France
| | | | | |
Collapse
|
8
|
Abstract
Outbreaks of severe virus infections with the potential to cause global pandemics are increasing. In many instances these outbreaks have been newly emerging (SARS coronavirus), re-emerging (Ebola virus, Zika virus) or zoonotic (avian influenza H5N1) virus infections. In the absence of a targeted vaccine or a pathogen-specific antiviral, broad-spectrum antivirals would function to limit virus spread. Given the direct antiviral effects of type I interferons (IFNs) in inhibiting the replication of both DNA and RNA viruses at different stages of their replicative cycles, and the effects of type I IFNs on activating immune cell populations to clear virus infections, IFNs-α/β present as ideal candidate broad-spectrum antivirals.
Collapse
Affiliation(s)
- Ben X Wang
- Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Eleanor N Fish
- Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada; Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
9
|
Hamilton JA, Wu Q, Yang P, Luo B, Liu S, Hong H, Li J, Walter MR, Fish EN, Hsu HC, Mountz JD. Cutting Edge: Endogenous IFN-β Regulates Survival and Development of Transitional B Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:2618-2623. [PMID: 28904124 DOI: 10.4049/jimmunol.1700888] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
Abstract
The transitional stage of B cell development is a formative stage in the spleen where autoreactive specificities are censored as B cells gain immune competence, but the intrinsic and extrinsic factors regulating survival of transitional stage 1 (T1) B cells are unknown. We report that B cell expression of IFN-β is required for optimal survival and TLR7 responses of transitional B cells in the spleen and was overexpressed in T1 B cells from BXD2 lupus-prone mice. Single-cell gene expression analysis of B6 Ifnb+/+ versus B6 Ifnb-⁄- T1 B cells revealed heterogeneous expression of Ifnb in wild-type B cells and distinct gene expression patterns associated with endogenous IFN-β. Single-cell analysis of BXD2 T1 B cells revealed that Ifnb is expressed in early T1 B cell development with subsequent upregulation of Tlr7 and Ifna1 Together, these data suggest that T1 B cell expression of IFN-β plays a key role in regulating responsiveness to external factors.
Collapse
Affiliation(s)
- Jennie A Hamilton
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Qi Wu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - PingAr Yang
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Bao Luo
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Shanrun Liu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Huixian Hong
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jun Li
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Mark R Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Eleanor N Fish
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5G 2M1, Canada; and
| | - Hui-Chen Hsu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - John D Mountz
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; .,Birmingham Veterans Administration Medical Center, Birmingham, AL 35233
| |
Collapse
|
10
|
Pennell LM, Fish EN. Interferon-β regulates dendritic cell activation and migration in experimental autoimmune encephalomyelitis. Immunology 2017. [PMID: 28646573 DOI: 10.1111/imm.12781] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CD11c+ dendritic cells (DCs) exert a critical role as antigen-presenting cells in regulating pathogenic T cells in multiple sclerosis (MS). To determine whether the therapeutic benefit of interferon-β (IFN-β) treatment for MS is in part influenced by IFN regulation of DC function, we examined the immunophenotype of DCs derived from IFN-β+/+ and IFN-β-/- mice using a myelin oligodendrocyte glycoprotein (MOG) peptide-induced mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Our earlier work identified that IFN-β-/- mice exhibit earlier onset and more rapid progression of neurological impairment compared with IFN-β+/+ mice. In this study we show that lipopolysaccharide-/MOG peptide-stimulated IFN-β-/- DCs secrete cytokines associated with pathological T helper type 17 rather than regulatory T-cell polarization and exhibit increased CD80 and MHCII expression when compared with stimulated IFN-β+/+ DCs. IFN-β-/- DCs from mice immunized to develop EAE induce greater proliferation of MOG-transgenic CD4+ T cells and promote interleukin-17 production by these T cells. Adoptive transfer of MOG peptide-primed IFN-β-/- DCs into IFN-β+/+ and IFN-β-/- mice immunized to develop EAE resulted in their rapid migration into the central nervous system of recipient mice, before onset of disease, which we attribute to failed signal transducer and activator of transcription 1-mediated inhibition of CCR7. Taken together, our data support immunoregulatory roles for IFN-β in the activation and migration of DCs during EAE.
Collapse
Affiliation(s)
- Leesa M Pennell
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Eleanor N Fish
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
de Weerd NA, Matthews AY, Pattie PR, Bourke NM, Lim SS, Vivian JP, Rossjohn J, Hertzog PJ. A hot spot on interferon α/β receptor subunit 1 (IFNAR1) underpins its interaction with interferon-β and dictates signaling. J Biol Chem 2017; 292:7554-7565. [PMID: 28289093 DOI: 10.1074/jbc.m116.773788] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
The interaction of IFN-β with its receptor IFNAR1 (interferon α/β receptor subunit 1) is vital for host-protective anti-viral and anti-proliferative responses, but signaling via this interaction can be detrimental if dysregulated. Whereas it is established that IFNAR1 is an essential component of the IFNAR signaling complex, the key residues underpinning the IFN-β-IFNAR1 interaction are unknown. Guided by the crystal structure of the IFN-β-IFNAR1 complex, we used truncation variants and site-directed mutagenesis to investigate domains and residues enabling complexation of IFN-β to IFNAR1. We have identified an interface on IFNAR1-subdomain-3 that is differentially utilized by IFN-β and IFN-α for signal transduction. We used surface plasmon resonance and cell-based assays to investigate this important IFN-β binding interface that is centered on IFNAR1 residues Tyr240 and Tyr274 binding the C and N termini of the B and C helices of IFN-β, respectively. Using IFNAR1 and IFN-β variants, we show that this interface contributes significantly to the affinity of IFN-β for IFNAR1, its ability to activate STAT1, the expression of interferon stimulated genes, and ultimately to the anti-viral and anti-proliferative properties of IFN-β. These results identify a key interface created by IFNAR1 residues Tyr240 and Tyr274 interacting with IFN-β residues Phe63, Leu64, Glu77, Thr78, Val81, and Arg82 that underlie IFN-β-IFNAR1-mediated signaling and biological processes.
Collapse
Affiliation(s)
- Nicole A de Weerd
- From the Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia, .,Department of Molecular and Translational Sciences, School of Clinical Sciences at Monash Health, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | - Antony Y Matthews
- From the Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Sciences, School of Clinical Sciences at Monash Health, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | - Phillip R Pattie
- From the Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | - Nollaig M Bourke
- From the Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Sciences, School of Clinical Sciences at Monash Health, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | - San S Lim
- From the Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Sciences, School of Clinical Sciences at Monash Health, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | - Julian P Vivian
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia, and
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia, and.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Paul J Hertzog
- From the Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia, .,Department of Molecular and Translational Sciences, School of Clinical Sciences at Monash Health, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| |
Collapse
|
12
|
Pylaeva E, Lang S, Jablonska J. The Essential Role of Type I Interferons in Differentiation and Activation of Tumor-Associated Neutrophils. Front Immunol 2016; 7:629. [PMID: 28066438 PMCID: PMC5174087 DOI: 10.3389/fimmu.2016.00629] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/08/2016] [Indexed: 12/20/2022] Open
Abstract
Type I interferons (IFNs) were first characterized in the process of viral interference. However, since then, IFNs are found to be involved in a wide range of biological processes. In the mouse, type I IFNs comprise a large family of cytokines. At least 12 IFN-α and one IFN-β can be found and they all signal through the same receptor (IFNAR). A hierarchy of expression has been established for type I IFNs, where IFN-β is induced first and it activates in a paracrine and autocrine fashion a cascade of other type I IFNs. Besides its importance in the induction of the IFN cascade, IFN-β is also constitutively expressed in low amounts under normal non-inflammatory conditions, thus facilitating "primed" state of the immune system. In the context of cancer, type I IFNs show strong antitumor function as they play a key role in mounting antitumor immune responses through the modulation of neutrophil differentiation, activation, and migration. Owing to their plasticity, neutrophils play diverse roles during cancer development and metastasis since they possess both tumor-promoting (N2) and tumor-limiting (N1) properties. Notably, the differentiation into antitumor phenotype is strongly supported by type I IFNs. It could also be shown that these cytokines are critical for the suppression of neutrophil migration into tumor and metastasis site by regulating chemokine receptors, e.g., CXCR2 on these cells and by influencing their longevity. Type I IFNs limit the life span of neutrophils by influencing both, the extrinsic as well as the intrinsic apoptosis pathways. Such antitumor neutrophils efficiently suppress the pro-angiogenic factors expression, e.g., vascular endothelial growth factor and matrix metallopeptidase 9. This in turn restricts tumor vascularization and growth. Thus, type I IFNs appear to be the part of the natural tumor surveillance mechanism. Here we provide an up to date review of how type I IFNs influence the pro- and antitumor properties of neutrophils. Understanding these mechanisms is particularly important from a therapeutic point of view.
Collapse
Affiliation(s)
- Ekaterina Pylaeva
- Translational Oncology, Department of Otolaryngology, University Hospital Essen , Essen , Germany
| | - Stephan Lang
- Translational Oncology, Department of Otolaryngology, University Hospital Essen , Essen , Germany
| | - Jadwiga Jablonska
- Translational Oncology, Department of Otolaryngology, University Hospital Essen , Essen , Germany
| |
Collapse
|
13
|
Kavrochorianou N, Markogiannaki M, Haralambous S. IFN-β differentially regulates the function of T cell subsets in MS and EAE. Cytokine Growth Factor Rev 2016; 30:47-54. [DOI: 10.1016/j.cytogfr.2016.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/21/2016] [Indexed: 12/30/2022]
|
14
|
Andzinski L, Spanier J, Kasnitz N, Kröger A, Jin L, Brinkmann MM, Kalinke U, Weiss S, Jablonska J, Lienenklaus S. Growing tumors induce a local STING dependent Type I IFN response in dendritic cells. Int J Cancer 2016; 139:1350-7. [DOI: 10.1002/ijc.30159] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/22/2016] [Accepted: 04/11/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Lisa Andzinski
- Molecular Immunology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Julia Spanier
- Institute for Experimental Infection Research, Twincore, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School; Germany Hannover
| | - Nadine Kasnitz
- Molecular Immunology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Andrea Kröger
- Innate Immunity and Infection, Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute of Medical Microbiology, Otto-von-Guericke-University; Magdeburg Germany
| | - Lei Jin
- Center for Immunology and Microbial Disease, Albany Medical College; Albany NY
| | - Melanie M. Brinkmann
- Viral Immune Modulation, Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute of Virology, Hannover Medical School; Hannover Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, Twincore, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School; Germany Hannover
| | - Siegfried Weiss
- Molecular Immunology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute of Immunology, Hannover Medical School; Hannover Germany
| | - Jadwiga Jablonska
- Molecular Immunology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Translational Oncology, Department of Otorhinolaryngology, University Hospital, University of Duisburg-Essen; Essen Germany
| | - Stefan Lienenklaus
- Molecular Immunology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute for Experimental Infection Research, Twincore, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School; Germany Hannover
- Institute for Laboratory Animal Science, Hannover Medical School; Hannover Germany
| |
Collapse
|
15
|
Abstract
The interferons (IFNs) are a family of cytokines that protect against disease by direct effects on target cells and by activating immune responses. The production and actions of IFNs are finely tuned to achieve maximal protection and avoid the potential toxicity associated with excessive responses. IFNs are back in the spotlight owing to mounting evidence that is reshaping how we can exploit this pathway therapeutically. As IFNs can be produced by, and act on, both tumour cells and immune cells, understanding this reciprocal interaction will enable the development of improved single-agent or combination therapies that exploit IFN pathways and new 'omics'-based biomarkers to indicate responsive patients.
Collapse
Affiliation(s)
- Belinda S Parker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Jai Rautela
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
16
|
de Jong TD, Vosslamber S, Mantel E, de Ridder S, Wesseling JG, van der Pouw Kraan TCTM, Leurs C, Hegen H, Deisenhammer F, Killestein J, Lundberg IE, Vencovsky J, Nurmohamed MT, van Schaardenburg D, Bultink IEM, Voskuyl AE, Pegtel DM, van der Laken CJ, Bijlsma JWJ, Verweij CL. Physiological evidence for diversification of IFNα- and IFNβ-mediated response programs in different autoimmune diseases. Arthritis Res Ther 2016; 18:49. [PMID: 26882897 PMCID: PMC4756531 DOI: 10.1186/s13075-016-0946-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/01/2016] [Indexed: 12/24/2022] Open
Abstract
Background Activation of the type I interferon (IFN) response program is described for several autoimmune diseases, including systemic lupus erythematosus (SLE), multiple sclerosis (MS), myositis (IIM) and rheumatoid arthritis (RA). While IFNα contributes to SLE pathology, IFNβ therapy is often beneficial in MS, implying different immunoregulatory roles for these IFNs. This study was aimed to investigate potential diversification of IFNα-and IFNβ-mediated response programs in autoimmune diseases. Methods Peripheral blood gene expression of 23 prototypical type I IFN response genes (IRGs) was determined in 54 healthy controls (HCs), 69 SLE (47 test, 22 validation), 149 IFNβ-treated MS (71 test, 78 validation), 160 untreated MS, 78 IIM and 76 RA patients. Patients with a type I IFN signature were selected for analysis. Results We identified IFNα- and IFNβ-specific response programs (GC-A and GC-B, respectively) in SLE and IFNβ-treated MS patients. Concordantly, the GC-A/GC-B log-ratio was positive for all SLE patients and negative for virtually all IFNβ-treated MS patients, which was confirmed in additional cohorts. Applying this information to other autoimmune diseases, IIM patients displayed positive GC-A/GC-B log-ratios, indicating predominant IFNα activity. The GC-A/GC-B log-ratio in RA was lower and approached zero in part of the patients, implying relative importance of both clusters. Remarkably, GC-A/GC-B log-ratios appeared most heterogeneous in untreated MS; half of the patients displayed GC-A dominance, whereas others showed GC-B dominance or log-ratios near zero. Conclusions Our findings show diversification of the type I IFN response in autoimmune diseases, suggesting different pathogenic roles of the type I IFNs. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-0946-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tamarah D de Jong
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Saskia Vosslamber
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Elise Mantel
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Sander de Ridder
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | - John G Wesseling
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | - Cyra Leurs
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Harald Hegen
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria.
| | | | - Joep Killestein
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Ingrid E Lundberg
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Solna, Karolinska Institutet, Stockholm, Sweden.
| | | | - Mike T Nurmohamed
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, Reade, Amsterdam, The Netherlands.
| | - Dirkjan van Schaardenburg
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, Reade, Amsterdam, The Netherlands.
| | - Irene E M Bultink
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, VUmc, Amsterdam, The Netherlands.
| | - Alexandre E Voskuyl
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, VUmc, Amsterdam, The Netherlands.
| | - D Michiel Pegtel
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Conny J van der Laken
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, VUmc, Amsterdam, The Netherlands.
| | - Johannes W J Bijlsma
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, Reade, Amsterdam, The Netherlands. .,Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, VUmc, Amsterdam, The Netherlands.
| | - Cornelis L Verweij
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands. .,Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, VUmc, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Inácio AR, Liu Y, Clausen BH, Svensson M, Kucharz K, Yang Y, Stankovich T, Khorooshi R, Lambertsen KL, Issazadeh-Navikas S, Deierborg T. Endogenous IFN-β signaling exerts anti-inflammatory actions in experimentally induced focal cerebral ischemia. J Neuroinflammation 2015; 12:211. [PMID: 26581581 PMCID: PMC4652356 DOI: 10.1186/s12974-015-0427-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/05/2015] [Indexed: 12/21/2022] Open
Abstract
Background Interferon (IFN)-β exerts anti-inflammatory effects, coupled to remarkable neurological improvements in multiple sclerosis, a neuroinflammatory condition of the central nervous system. Analogously, it has been hypothesized that IFN-β, by limiting inflammation, decreases neuronal death and promotes functional recovery after stroke. However, the core actions of endogenous IFN-β signaling in stroke are unclear. Methods To address this question, we used two clinically relevant models of focal cerebral ischemia, transient and permanent middle cerebral artery occlusion, and two genetically modified mouse lines, lacking either IFN-β or its receptor, the IFN-α/β receptor. Subsets of inflammatory and immune cells isolated from the brain, blood, and spleen were studied using flow cytometry. Sensorimotor deficits were assessed by a modified composite neuroscore, the rotating pole and grip strength tests, and cerebral infarct volumes were given by lack of neuronal nuclei immunoreactivity. Results Here, we report alterations in local and systemic inflammation in IFN-β knockout (IFN-βKO) mice over 8 days after induction of focal cerebral ischemia. Notably, IFN-βKO mice showed a higher number of infiltrating leukocytes in the brain 2 days after stroke. Concomitantly, in the blood of IFN-βKO mice, we found a higher percentage of total B cells but a similar percentage of mature and activated B cells, collectively indicating a higher proliferation rate. The additional differential regulation of circulating cytokines and splenic immune cell populations in wild-type and IFN-βKO mice further supports an important immunoregulatory function of IFN-β in stroke. Moreover, we observed a significant weight loss 2–3 days and a reduction in grip strength 2 days after stroke in the IFN-βKO group, while endogenous IFN-β signaling did not affect the infarct volume. Conclusions We conclude that endogenous IFN-β signaling attenuates local inflammation, regulates peripheral immune cells, and, thereby, may contribute positively to stroke outcome. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0427-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana R Inácio
- Laboratory for Experimental Brain Research, Department of Clinical Sciences, Lund University, BMC A13, Sölvegatan 17, 22184, Lund, Sweden. .,Present Address: INMED, INSERM U901, Parc Scientifique de Luminy, 163 route de Luminy, BP13, 13273, Marseille cedex 09, France. .,Present Address: Aix-Marseille Université, UMR S901, 13009, Marseille, France.
| | - Yawei Liu
- Neuroinflammation Unit, Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Bettina H Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, JB Winsloewsvej 21, st + 25, 2, 5000, Odense C, Denmark
| | - Martina Svensson
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Lund University, BMC B11, Sölvegatan 19, 22184, Lund, Sweden
| | - Krzysztof Kucharz
- Laboratory for Experimental Brain Research, Department of Clinical Sciences, Lund University, BMC A13, Sölvegatan 17, 22184, Lund, Sweden.,7Present Address: Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Yiyi Yang
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Lund University, BMC B11, Sölvegatan 19, 22184, Lund, Sweden
| | - Totte Stankovich
- Laboratory for Experimental Brain Research, Department of Clinical Sciences, Lund University, BMC A13, Sölvegatan 17, 22184, Lund, Sweden
| | - Reza Khorooshi
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, JB Winsloewsvej 21, st + 25, 2, 5000, Odense C, Denmark
| | - Kate L Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, JB Winsloewsvej 21, st + 25, 2, 5000, Odense C, Denmark
| | - Shohreh Issazadeh-Navikas
- Neuroinflammation Unit, Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| | - Tomas Deierborg
- Laboratory for Experimental Brain Research, Department of Clinical Sciences, Lund University, BMC A13, Sölvegatan 17, 22184, Lund, Sweden.,Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Lund University, BMC B11, Sölvegatan 19, 22184, Lund, Sweden
| |
Collapse
|
18
|
Kavrochorianou N, Evangelidou M, Markogiannaki M, Tovey M, Thyphronitis G, Haralambous S. IFNAR signaling directly modulates T lymphocyte activity, resulting in milder experimental autoimmune encephalomyelitis development. J Leukoc Biol 2015; 99:175-88. [PMID: 26232452 DOI: 10.1189/jlb.3a1214-598r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 07/03/2015] [Indexed: 01/12/2023] Open
Abstract
Although interferon-β is used as first-line therapy for multiple sclerosis, the cell type-specific activity of type I interferons in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis, remains obscure. In this study, we have elucidated the in vivo immunomodulatory role of type I interferon signaling in T cells during experimental autoimmune encephalomyelitis by use of a novel transgenic mouse, carrying a cd2-ifnar1 transgene on a interferon-α/β receptor 1 null genetic background, thus allowing expression of the interferon-α/β receptor 1 and hence, a functional type I interferon receptor exclusively on T cells. These transgenic mice exhibited milder experimental autoimmune encephalomyelitis with reduced T cell infiltration, demyelination, and axonal damage in the central nervous system. It is noteworthy that interferon-β administration in transgenic mice generated a more pronounced, protective effect against experimental autoimmune encephalomyelitis compared with untreated littermates. In vivo studies demonstrated that before experimental autoimmune encephalomyelitis onset, endogenous type I interferon receptor signaling in T cells led to impaired T-helper 17 responses, with a reduced fraction of CCR6(+) CD4(+) T cells in the periphery. At the acute phase, an increased proportion of interleukin-10- and interferon-γ-producing CD4(+) T cells was detected in the periphery of the transgenic mice, accompanied by up-regulation of the interferon-γ-induced gene Irgm1 in peripheral T cells. Together, these results reveal a hitherto unknown T cell-associated protective role of type I interferon in experimental autoimmune encephalomyelitis that may provide valuable clues for designing novel therapeutic strategies for multiple sclerosis.
Collapse
Affiliation(s)
- Nadia Kavrochorianou
- *Inflammation Research Group, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Evangelidou
- †Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Melina Markogiannaki
- *Inflammation Research Group, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Michael Tovey
- ‡Laboratory of Biotechnology and Applied Pharmacology Ecole Normale Supérieure de Cachan, Cachan, France
| | - George Thyphronitis
- §Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece,Correspondence: G.T., Dept. of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece. E-mail:
| | - Sylva Haralambous
- *Inflammation Research Group, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens, Greece,Correspondence: S.H., Inflammation Research Group, Transgenic Technology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece. E-mail:
| |
Collapse
|
19
|
Boivin N, Baillargeon J, Doss PMIA, Roy AP, Rangachari M. Interferon-β suppresses murine Th1 cell function in the absence of antigen-presenting cells. PLoS One 2015; 10:e0124802. [PMID: 25885435 PMCID: PMC4401451 DOI: 10.1371/journal.pone.0124802] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/19/2015] [Indexed: 01/08/2023] Open
Abstract
Interferon (IFN)-β is a front-line therapy for the treatment of the relapsing-remitting form of multiple sclerosis. However, its immunosuppressive mechanism of function remains incompletely understood. While it has been proposed that IFN-β suppresses the function of inflammatory myelin antigen-reactive T cells by promoting the release of immunomodulatory cytokines such as IL-27 from antigen-presenting cells (APCs), its direct effects on inflammatory CD4+ Th1 cells are less clear. Here, we establish that IFN-β inhibits mouse IFN-γ+ Th1 cell function in the absence of APCs. CD4+ T cells express the type I interferon receptor, and IFN-β can suppress Th1 cell proliferation under APC-free stimulation conditions. IFN-β-treated myelin antigen-specific Th1 cells are impaired in their ability to induce severe experimental autoimmune encephalomyelitis (EAE) upon transfer to lymphocyte-deficient Rag1-/- mice. Polarized Th1 cells downregulate IFN-γ and IL-2, and upregulate the negative regulatory receptor Tim-3, when treated with IFN-β in the absence of APCs. Further, IFN-β treatment of Th1 cells upregulates phosphorylation of Stat1, and downregulates phosphorylation of Stat4. Our data indicate that IFN-γ-producing Th1 cells are directly responsive to IFN-β and point to a novel mechanism of IFN-β-mediated T cell suppression that is independent of APC-derived signals.
Collapse
Affiliation(s)
- Nicolas Boivin
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
| | - Joanie Baillargeon
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
| | - Prenitha Mercy Ignatius Arokia Doss
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
- Graduate Programme in Microbiology and Immunology, Faculty of Medicine, Université Laval, Québec QC, Canada G1V 0A6
| | - Andrée-Pascale Roy
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
- Graduate Programme in Microbiology and Immunology, Faculty of Medicine, Université Laval, Québec QC, Canada G1V 0A6
| | - Manu Rangachari
- Department of Neuroscience, Centre de recherche du CHU de Québec—Université Laval, Québec QC, Canada G1V 4G2
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec QC, Canada G1V 0A6
- * E-mail:
| |
Collapse
|
20
|
Suppression of proliferation, tumorigenicity and metastasis of lung cancer cells after their transduction by interferon-beta gene in baculovirus vector. Cytokine 2015; 71:318-26. [DOI: 10.1016/j.cyto.2014.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 08/06/2014] [Accepted: 10/28/2014] [Indexed: 02/06/2023]
|
21
|
Mizutani T, Neugebauer N, Putz EM, Moritz N, Simma O, Zebedin-Brandl E, Gotthardt D, Warsch W, Eckelhart E, Kantner HP, Kalinke U, Lienenklaus S, Weiss S, Strobl B, Müller M, Sexl V, Stoiber D. Conditional IFNAR1 ablation reveals distinct requirements of Type I IFN signaling for NK cell maturation and tumor surveillance. Oncoimmunology 2014; 1:1027-1037. [PMID: 23170251 PMCID: PMC3494617 DOI: 10.4161/onci.21284] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mice with an impaired Type I interferon (IFN) signaling (IFNAR1- and IFNβ-deficient mice) display an increased susceptibility toward v-ABL-induced B-cell leukemia/lymphoma. The enhanced leukemogenesis in the absence of an intact Type I IFN signaling is caused by alterations within the tumor environment. Deletion of Ifnar1 in tumor cells (as obtained in Ifnar1f/f CD19-Cre mice) failed to impact on disease latency or type. In line with this observation, the initial transformation and proliferative capacity of tumor cells were unaltered irrespective of whether the cells expressed IFNAR1 or not. v-ABL-induced leukemogenesis is mainly subjected to natural killer (NK) cell-mediated tumor surveillance. Thus, we concentrated on NK cell functions in IFNAR1 deficient animals. Ifnar1-/- NK cells displayed maturation defects as well as an impaired cytolytic activity. When we deleted Ifnar1 selectively in mature NK cells (by crossing Ncr1-iCre mice to Ifnar1f/f animals), maturation was not altered. However, NK cells derived from Ifnar1f/f Ncr1-iCre mice showed a significant cytolytic defect in vitro against the hematopoietic cell lines YAC-1 and RMA-S, but not against the melanoma cell line B16F10. Interestingly, this defect was not related to an in vivo phenotype as v-ABL-induced leukemogenesis was unaltered in Ifnar1f/f Ncr1-iCre compared with Ifnar1f/f control mice. Moreover, the ability of Ifnar1f/f Ncr1-iCre NK cells to kill B16F10 melanoma cells was unaltered, both in vitro and in vivo. Our data reveal that despite the necessity for Type I IFN in NK cell maturation the expression of IFNAR1 on mature murine NK cells is not required for efficient tumor surveillance.
Collapse
|
22
|
Khsheibun R, Paperna T, Volkowich A, Lejbkowicz I, Avidan N, Miller A. Gene expression profiling of the response to interferon beta in Epstein-Barr-transformed and primary B cells of patients with multiple sclerosis. PLoS One 2014; 9:e102331. [PMID: 25025430 PMCID: PMC4099420 DOI: 10.1371/journal.pone.0102331] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/16/2014] [Indexed: 01/03/2023] Open
Abstract
The effects of interferon-beta (IFN-β), one of the key immunotherapies used in multiple sclerosis (MS), on peripheral blood leukocytes and T cells have been extensively studied. B cells are a less abundant leukocyte type, and accordingly less is known about the B cell-specific response to IFN-β. To identify gene expression changes and pathways induced by IFN-β in B cells, we studied the in vitro response of human Epstein Barr-transformed B cells (lymphoblast cell lines-LCLs), and validated our results in primary B cells. LCLs were derived from an MS patient repository. Whole genome expression analysis identified 115 genes that were more than two-fold differentially up-regulated following IFN-β exposure, with over 50 previously unrecognized as IFN-β response genes. Pathways analysis demonstrated that IFN-β affected LCLs in a similar manner to other cell types by activating known IFN-β canonical pathways. Additionally, IFN-β increased the expression of innate immune response genes, while down-regulating many B cell receptor pathway genes and genes involved in adaptive immune responses. Novel response genes identified herein, NEXN, DDX60L, IGFBP4, and HAPLN3, B cell receptor pathway genes, CD79B and SYK, and lymphocyte activation genes, LAG3 and IL27RA, were validated as IFN-β response genes in primary B cells. In this study new IFN-β response genes were identified in B cells, with possible implications to B cell-specific functions. The study's results emphasize the applicability of LCLs for studies of human B cell drug response. The usage of LCLs from patient-based repositories may facilitate future studies of drug response in MS and other immune-mediated disorders with a B cell component.
Collapse
Affiliation(s)
- Rana Khsheibun
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tamar Paperna
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Anat Volkowich
- Division of Neuroimmunology and Multiple Sclerosis Center, Carmel Medical Center, Haifa, Israel
| | - Izabella Lejbkowicz
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nili Avidan
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ariel Miller
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Division of Neuroimmunology and Multiple Sclerosis Center, Carmel Medical Center, Haifa, Israel
- * E-mail:
| |
Collapse
|
23
|
Tang Q, Jiang D, Harfuddin Z, Cheng K, Moh MC, Schwarz H. Regulation of myelopoiesis by CD137L signaling. Int Rev Immunol 2014; 33:454-69. [PMID: 24941289 DOI: 10.3109/08830185.2014.921163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CD137 ligand (CD137L) has emerged as a powerful regulator of myelopoiesis that links emergency situations, such as infections, to the generation of additional myeloid cells, and to their activation and maturation. CD137L is expressed on the cell surface of hematopoietic stem and progenitor cells (HSPC) and antigen presenting cells (APC) as a transmembrane protein. The signaling of CD137L into HSPC induces their proliferation and differentiation to monocytes and macrophages, and in monocytes CD137L signaling induces differentiation to potent dendritic cells (DC). CD137L signaling is initiated by CD137 which is expressed by T cells, once they become activated. Some of these activated, CD137-expressing T cells migrate from the site of infection to the bone marrow where they interact with HSPC to induce myelopoiesis, or they induce monocyte to DC differentiation locally at the site of infection. Therapeutically, induction of CD137L signaling can be utilized to reinitiate myeloid differentiation in acute myeloid leukemia cells, and to generate potent DC for immunotherapy.
Collapse
|
24
|
Andzinski L, Wu CF, Lienenklaus S, Kröger A, Weiss S, Jablonska J. Delayed apoptosis of tumor associated neutrophils in the absence of endogenous IFN-β. Int J Cancer 2014; 136:572-83. [PMID: 24806531 DOI: 10.1002/ijc.28957] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/24/2014] [Indexed: 01/12/2023]
Abstract
The importance of neutrophils in tumor immune surveillance, invasive growth and angiogenesis becomes increasingly clear. Many of neutrophil activities are controlled by endogenous IFN-β. Here, we provide evidence that endogenous IFN-β is regulating the apoptosis of pro-angiogenic tumor infiltrating neutrophils by influencing both, the extrinsic as well as the intrinsic apoptosis pathways. Accordingly, the life span of tumor associated neutrophils (TANs) is remarkably prolonged in tumor bearing Ifnb1(-/-) mice compared to wild type controls. Lower expression of Fas, reactive oxygen species, active Caspase 3 and 9, as well as a change in expression pattern of proapoptotic and antiapoptotic members of the Bcl-2 family and the major apoptosome constituent Apaf-1 is observed under such conditions. In line with inhibition of apoptosis and the prolonged neutrophil survival, in the absence of endogenous IFN-β, a strong enhancement of G-CSF expression and PI3 Kinase phosphorylation is detected. These data explain the increased longevity of tumor infiltrating neutrophils and the accumulation of such cells in tumors. Taken together, our findings add to the important role of Type I IFN in immune surveillance against cancer.
Collapse
Affiliation(s)
- Lisa Andzinski
- Molecular Immunology, Helmholtz Centre for Infection Research, HZI, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Pennell LM, Fish EN. Immunoregulatory effects of interferon-β in suppression of Th17 cells. J Interferon Cytokine Res 2013; 34:330-41. [PMID: 24175628 DOI: 10.1089/jir.2013.0088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To investigate the immunoregulatory effects of interferon (IFN)-β on CD4+ T cells, we examined the response of CD4+ T cells from IFN-β(+/+) and IFN-β(-/-) mice to CD3/CD28 activation and to differentiation to Th17 lineage, analyzing the expression of signaling effectors, cell surface receptors, production of IL-17, and gene expression profiles. We provide evidence of increased phosphorylation of the membrane proximal kinase associated with TCR activation, ZAP-70, in IFN-β(-/-) T cells compared with IFN-β(+/+) T cells. Anti-CD3/anti-CD28 antibody stimulation of whole splenocytes or CD4+ T cells from IFN-β(-/-) mice results in secretion of IL-17A, in contrast to identical stimulation of cells from IFN-β(+/+) mice, which fails to increase IL-17A production. After CD3/CD28 activation, IFN-β(-/-) CD4+ T cells express higher levels of IRF-4, required for Th17 differentiation, and increased expression of CCR6, IL-23R, IL-6R, and CXCR4, compared with activated IFN-β(+/+) T cells. Notably, cell surface expression of IL-6R and IL-23R is significantly higher in the IFN-β(-/-) CD4+ T cells, with an increased number of double-positive CCR6+IL-23R+ and IL-6R+IL-23R+ CD4+ T cells. On polarization to Th17 lineage, CD4+ T cells from IFN-β(-/-) mice exhibit a more Th17-primed transcriptome compared with CD4+ T cells from IFN-β(+/+) mice. Indeed, when CD4+ T cells from IFN-β(+/+) mice are polarized to Th17 lineage in the presence of IFN-β, many Th17-associated genes are down-regulated. Employing a MOG-peptide-induced experimental autoimmune encephalomyelitis model of multiple sclerosis, we identify a greater proportion of Th17 cells in the lymph nodes of IFN-β(-/-) mice compared with IFN-β(+/+) mice, and increased numbers of CD4+ T cells in the central nervous system of IFN-β(-/-) mice, regardless of the stage of disease. Taken together, our data indicate an immunoregulatory role for IFN-β in the suppression of Th17 cells.
Collapse
Affiliation(s)
- Leesa M Pennell
- 1 Toronto General Research Institute, University Health Network , Toronto, Canada
| | | |
Collapse
|
26
|
Siegfried A, Berchtold S, Manncke B, Deuschle E, Reber J, Ott T, Weber M, Kalinke U, Hofer MJ, Hatesuer B, Schughart K, Gailus-Durner V, Fuchs H, Hrabe de Angelis M, Weber F, Hornef MW, Autenrieth IB, Bohn E. IFIT2 is an effector protein of type I IFN-mediated amplification of lipopolysaccharide (LPS)-induced TNF-α secretion and LPS-induced endotoxin shock. THE JOURNAL OF IMMUNOLOGY 2013; 191:3913-21. [PMID: 24014876 DOI: 10.4049/jimmunol.1203305] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Type I IFN signaling amplifies the secretion of LPS-induced proinflammatory cytokines such as TNF-α or IL-6 and might thus contribute to the high mortality associated with Gram-negative septic shock in humans. The underlying molecular mechanism, however, is ill defined. In this study, we report the generation of mice deficient in IFN-induced protein with tetratricopeptide repeats 2 (Ifit2) and demonstrate that Ifit2 is a critical signaling intermediate for LPS-induced septic shock. Ifit2 expression was significantly upregulated in response to LPS challenge in an IFN-α receptor- and IFN regulatory factor (Irf)9-dependent manner. Also, LPS induced secretion of IL-6 and TNF-α by bone marrow-derived macrophages (BMDMs) was significantly enhanced in the presence of Ifit2. In accordance, Ifit2-deficient mice exhibited significantly reduced serum levels of IL-6 and TNF-α and reduced mortality in an endotoxin shock model. Investigation of the underlying signal transduction events revealed that Ifit2 upregulates Irf3 phosphorylation. In the absence of Irf3, reduced Ifn-β mRNA expression and Ifit2 protein expression after LPS stimulation was found. Also, Tnf-α and Il-6 secretion but not Tnf-α and Il-6 mRNA expression levels were reduced. Thus, IFN-stimulated Ifit2 via enhanced Irf3 phosphorylation upregulates the secretion of proinflammatory cytokines. It thereby amplifies LPS-induced cytokine production and critically influences the outcome of endotoxin shock.
Collapse
Affiliation(s)
- Alexandra Siegfried
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karl Universität Tuebingen, 72076 Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Structural basis of a unique interferon-β signaling axis mediated via the receptor IFNAR1. Nat Immunol 2013; 14:901-7. [DOI: 10.1038/ni.2667] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/19/2013] [Indexed: 12/22/2022]
|
28
|
LI AIMEI, QIAN JUN, HE JUNMING, ZHANG QINGMENG, ZHAI AIXIA, SONG WUQI, LI YUJUN, LING HONG, ZHONG ZHAOHUA, ZHANG FENGMIN. Modulation of miR-122 expression affects the interferon response in human hepatoma cells. Mol Med Rep 2012; 7:585-90. [PMID: 23241652 DOI: 10.3892/mmr.2012.1233] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/11/2012] [Indexed: 11/06/2022] Open
|
29
|
Raghavendran HRB, Sathyanath R, Shin J, Kim HK, Han JM, Cho J, Son CG. Panax ginseng modulates cytokines in bone marrow toxicity and myelopoiesis: ginsenoside Rg1 partially supports myelopoiesis. PLoS One 2012; 7:e33733. [PMID: 22523542 PMCID: PMC3327696 DOI: 10.1371/journal.pone.0033733] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 02/16/2012] [Indexed: 01/15/2023] Open
Abstract
In this study, we have demonstrated that Korean Panax ginseng (KG) significantly enhances myelopoiesis in vitro and reconstitutes bone marrow after 5-flurouracil-induced (5FU) myelosuppression in mice. KG promoted total white blood cell, lymphocyte, neutrophil and platelet counts and improved body weight, spleen weight, and thymus weight. The number of CFU-GM in bone marrow cells of mice and serum levels of IL-3 and GM-CSF were significantly improved after KG treatment. KG induced significant c-Kit, SCF and IL-1 mRNA expression in spleen. Moreover, treatment with KG led to marked improvements in 5FU-induced histopathological changes in bone marrow and spleen, and partial suppression of thymus damage. The levels of IL-3 and GM-CSF in cultured bone marrow cells after 24 h stimulation with KG were considerably increased. The mechanism underlying promotion of myelopoiesis by KG was assessed by monitoring gene expression at two time-points of 4 and 8 h. Treatment with Rg1 (0.5, 1 and 1.5 µmol) specifically enhanced c-Kit, IL-6 and TNF-α mRNA expression in cultured bone marrow cells. Our results collectively suggest that the anti-myelotoxicity activity and promotion of myelopoiesis by KG are mediated through cytokines. Moreover, the ginsenoside, Rg1, supports the role of KG in myelopoiesis to some extent.
Collapse
Affiliation(s)
| | - Rekha Sathyanath
- Liver and Immunology Research Center, Daejeon Oriental Hospital Daejeon, University, Daejeon, Republic of Korea
| | - JangWoo Shin
- Liver and Immunology Research Center, Daejeon Oriental Hospital Daejeon, University, Daejeon, Republic of Korea
| | - Hyeong Keug Kim
- Liver and Immunology Research Center, Daejeon Oriental Hospital Daejeon, University, Daejeon, Republic of Korea
| | - Jong Min Han
- Liver and Immunology Research Center, Daejeon Oriental Hospital Daejeon, University, Daejeon, Republic of Korea
| | - JungHyo Cho
- Liver and Immunology Research Center, Daejeon Oriental Hospital Daejeon, University, Daejeon, Republic of Korea
| | - Chang Gue Son
- Liver and Immunology Research Center, Daejeon Oriental Hospital Daejeon, University, Daejeon, Republic of Korea
| |
Collapse
|
30
|
Lazear HM, Pinto AK, Vogt MR, Gale M, Diamond MS. Beta interferon controls West Nile virus infection and pathogenesis in mice. J Virol 2011; 85:7186-94. [PMID: 21543483 PMCID: PMC3126609 DOI: 10.1128/jvi.00396-11] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/27/2011] [Indexed: 12/21/2022] Open
Abstract
Studies with mice lacking the common plasma membrane receptor for type I interferon (IFN-αβR(-)(/)(-)) have revealed that IFN signaling restricts tropism, dissemination, and lethality after infection with West Nile virus (WNV) or several other pathogenic viruses. However, the specific functions of individual IFN subtypes remain uncertain. Here, using IFN-β(-)(/)(-) mice, we defined the antiviral and immunomodulatory function of this IFN subtype in restricting viral infection. IFN-β(-)(/)(-) mice were more vulnerable to WNV infection than wild-type mice, succumbing more quickly and with greater overall mortality, although the phenotype was less severe than that of IFN-αβR(-)(/)(-) mice. The increased susceptibility of IFN-β(-)(/)(-) mice was accompanied by enhanced viral replication in different tissues. Consistent with a direct role for IFN-β in control of WNV replication, viral titers in ex vivo cultures of macrophages, dendritic cells, fibroblasts, and cerebellar granule cell neurons, but not cortical neurons, from IFN-β(-)(/)(-) mice were greater than in wild-type cells. Although detailed immunological analysis revealed no major deficits in the quality or quantity of WNV-specific antibodies or CD8(+) T cells, we observed an altered CD4(+) CD25(+) FoxP3(+) regulatory T cell response, with greater numbers after infection. Collectively, these results suggest that IFN-β controls WNV pathogenesis by restricting infection in key cell types and by modulating T cell regulatory networks.
Collapse
Affiliation(s)
| | | | | | - Michael Gale
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98195-7650
| | - Michael S. Diamond
- Departments of Medicine
- Pathology & Immunology
- Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
31
|
Macrophage activation and differentiation signals regulate schlafen-4 gene expression: evidence for Schlafen-4 as a modulator of myelopoiesis. PLoS One 2011; 6:e15723. [PMID: 21249125 PMCID: PMC3017543 DOI: 10.1371/journal.pone.0015723] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/28/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The ten mouse and six human members of the Schlafen (Slfn) gene family all contain an AAA domain. Little is known of their function, but previous studies suggest roles in immune cell development. In this report, we assessed Slfn regulation and function in macrophages, which are key cellular regulators of innate immunity. METHODOLOGY/PRINCIPAL FINDINGS Multiple members of the Slfn family were up-regulated in mouse bone marrow-derived macrophages (BMM) by the Toll-like Receptor (TLR)4 agonist lipopolysaccharide (LPS), the TLR3 agonist Poly(I∶C), and in disease-affected joints in the collagen-induced model of rheumatoid arthritis. Of these, the most inducible was Slfn4. TLR agonists that signal exclusively through the MyD88 adaptor protein had more modest effects on Slfn4 mRNA levels, thus implicating MyD88-independent signalling and autocrine interferon (IFN)-β in inducible expression. This was supported by the substantial reduction in basal and LPS-induced Slfn4 mRNA expression in IFNAR-1⁻/⁻ BMM. LPS causes growth arrest in macrophages, and other Slfn family genes have been implicated in growth control. Slfn4 mRNA levels were repressed during macrophage colony-stimulating factor (CSF-1)-mediated differentiation of bone marrow progenitors into BMM. To determine the role of Slfn4 in vivo, we over-expressed the gene specifically in macrophages in mice using a csf1r promoter-driven binary expression system. Transgenic over-expression of Slfn4 in myeloid cells did not alter macrophage colony formation or proliferation in vitro. Monocyte numbers, as well as inflammatory macrophages recruited to the peritoneal cavity, were reduced in transgenic mice that specifically over-expressed Slfn4, while macrophage numbers and hematopoietic activity were increased in the livers and spleens. CONCLUSIONS Slfn4 mRNA levels were up-regulated during macrophage activation but down-regulated during differentiation. Constitutive Slfn4 expression in the myeloid lineage in vivo perturbs myelopoiesis. We hypothesise that the down-regulation of Slfn4 gene expression during macrophage differentiation is a necessary step in development of this lineage.
Collapse
|
32
|
Galligan CL, Pennell LM, Murooka TT, Baig E, Majchrzak-Kita B, Rahbar R, Fish EN. Interferon-beta is a key regulator of proinflammatory events in experimental autoimmune encephalomyelitis. Mult Scler 2010; 16:1458-73. [PMID: 20935030 DOI: 10.1177/1352458510381259] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Interferon (IFN)-β is an effective therapy for relapsing-remitting multiple sclerosis, yet its mechanism of action remains ill-defined. OBJECTIVES Our objective was to characterize the role of IFN-β in immune regulation in experimental autoimmune encephalomyelitis (EAE). METHODS IFN-β(+/+) and IFN-β(-/-) mice were immunized with myelin oligodendrocyte glycoprotein peptide in the presence or absence of IFN-β, to induce EAE. Disease pathogenesis was monitored in the context of incidence, time of onset, clinical score, and immune cell activation in the brains, spleens and lymph nodes of affected mice. RESULTS Compared with IFN-β(+/+) mice, IFN-β(-/-) mice exhibited an earlier onset and a more rapid progression of EAE, increased numbers of CD11b(+) leukocytes infiltrating affected brains and an increased percentage of Th17 cells in the central nervous system and draining lymph nodes. IFN-β treatment delayed disease onset and reduced disease severity. Ex vivo experiments revealed that the lack of IFN-β results in enhanced generation of autoreactive T cells, a likely consequence of the absence of IFN-β-regulated events in both the CD4(+) T cells and antigen-presenting dendritic cells. Gene expression analysis of IFN-β-treated bone marrow macrophages (CD11b(+)) identified modulation of genes affecting T cell proliferation and Th17 differentiation. CONCLUSIONS We conclude that IFN-β acts to suppress the generation of autoimmune-inducing Th17 cells during the development of disease as well as modulating pro-inflammatory mediators.
Collapse
Affiliation(s)
- C L Galligan
- Toronto General Research Institute, University Health Network, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Yoo JK, Baker DP, Fish EN. Interferon-β modulates type 1 immunity during influenza virus infection. Antiviral Res 2010; 88:64-71. [DOI: 10.1016/j.antiviral.2010.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 07/09/2010] [Accepted: 07/20/2010] [Indexed: 01/12/2023]
|
34
|
Zeng L, Liu YP, Sha H, Chen H, Qi L, Smith JA. XBP-1 couples endoplasmic reticulum stress to augmented IFN-beta induction via a cis-acting enhancer in macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:2324-30. [PMID: 20660350 PMCID: PMC2916979 DOI: 10.4049/jimmunol.0903052] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Perturbation of the endoplasmic reticulum (ER) results in a conserved stress response called the unfolded protein response (UPR). Macrophages undergoing a UPR respond to LPS with log-fold increased production of IFN-beta, a cytokine with diverse roles in innate and adaptive immunity. In this study, we found that thapsigargin-induced ER stress augmented recruitment of IFN regulatory factor-3, CREB binding protein/p300, and transcriptional machinery to the murine ifnb1 promoter during LPS stimulation. Although full synergistic IFN-beta production requires X-box binding protein 1 (XBP-1), this UPR-regulated transcription factor did not appreciably bind the ifnb1 promoter. However, XBP-1 bound a conserved site 6.1 kb downstream of ifnb1, along with IFN regulatory factor-3 and CREB binding protein only during concomitant UPR and LPS stimulation. XBP-1 physically associates with p300, suggesting a mechanism of multimolecular assembly at the +6.1 kb site. Luciferase reporter assays provide evidence this +6 kb region functions as an XBP-1-dependent enhancer of ifnb1 promoter activity. Thus, this study identifies a novel role for a UPR-dependent transcription factor in the regulation of an inflammatory cytokine. Our findings have broader mechanistic implications for the pathogenesis of diseases involving ER stress and type I IFN, including viral infection, ischemia-reperfusion injury, protein misfolding, and inflammatory diseases.
Collapse
Affiliation(s)
- Ling Zeng
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-4108, USA
| | - Yi-Ping Liu
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-4108, USA
| | - Haibo Sha
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Hui Chen
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Ling Qi
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Judith A. Smith
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-4108, USA
| |
Collapse
|
35
|
Gran B, Yu S, Zhang GX, Rostami A. Accelerated thymocyte maturation in IL-12Rβ2-deficient mice contributes to increased susceptibility to autoimmune inflammatory demyelination. Exp Mol Pathol 2010; 89:126-34. [PMID: 20599940 DOI: 10.1016/j.yexmp.2010.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 06/14/2010] [Indexed: 11/25/2022]
Abstract
IL-12Rβ2(-/-) mice, which are unresponsive to IL-12, develop severe experimental autoimmune encephalomyelitis (EAE). The mechanisms for enhanced autoimmunity are incompletely understood. We report that in IL-12Rβ2(-/-) mice, thymocytes undergo markedly accelerated maturation. This occurs at the transition from a double positive (DP) to a single positive (SP) phenotype, resulting in higher numbers of CD4 and CD8 SP cells, and to a lesser extent at the transition from double negative (DN) to DP cells. Accelerated maturation is observed in mice injected with anti-CD3 to mimic pre-T-cell receptor stimulation, and also in mice immunized with myelin oligodendrocyte glycoprotein (MOG) peptide to induce EAE.
Collapse
Affiliation(s)
- B Gran
- Department of Neurology, Thomas Jefferson University, 300 JHN Building, 900 Walnut Street, Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|
36
|
Stromal cells and integrins: conforming to the needs of the tumor microenvironment. Neoplasia 2010; 11:1264-71. [PMID: 20019834 DOI: 10.1593/neo.91302] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/10/2009] [Accepted: 09/14/2009] [Indexed: 02/06/2023] Open
Abstract
The microenvironment of a tumor is constituted of a heterogenous population of stromal cells, extracellular matrix components, and secreted factors, all of which make the tumor microenvironment distinct from that of normal tissue. Unlike healthy cells, tumor cells require these unique surroundings to metastasize, spread, and form a secondary tumor at a distant site. In this review, we discuss that stromal cells such as fibroblasts and immune cells including macrophages, their secreted factors, such as vascular endothelial growth factor, transforming growth factor beta, and various chemokines, and the integrins that connect the various cell types play a particularly vital role in the survival of a growing tumor mass. Macrophages and fibroblasts are uniquely plastic cells because they are not only able to switch from tumor suppressing to tumor supporting phenotypes but also able to adopt various tumor-supporting functions based on their location within the microenvironment. Integrins serve as the backbone for all of these prometastatic operations because their function as cell-cell and cell-matrix signal transducers are important for the heterogenous components of the microenvironment to communicate.
Collapse
|
37
|
Jablonska J, Leschner S, Westphal K, Lienenklaus S, Weiss S. Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. J Clin Invest 2010; 120:1151-64. [PMID: 20237412 DOI: 10.1172/jci37223] [Citation(s) in RCA: 456] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 01/13/2010] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is a hallmark of malignant neoplasias, as the formation of new blood vessels is required for tumors to acquire oxygen and nutrients essential for their continued growth and metastasis. However, the signaling pathways leading to tumor vascularization are not fully understood. Here, using a transplantable mouse tumor model, we have demonstrated that endogenous IFN-beta inhibits tumor angiogenesis through repression of genes encoding proangiogenic and homing factors in tumor-infiltrating neutrophils. We determined that IFN-beta-deficient mice injected with B16F10 melanoma or MCA205 fibrosarcoma cells developed faster-growing tumors with better-developed blood vessels than did syngeneic control mice. These tumors displayed enhanced infiltration by CD11b+Gr1+ neutrophils expressing elevated levels of the genes encoding the proangiogenic factors VEGF and MMP9 and the homing receptor CXCR4. They also expressed higher levels of the transcription factors c-myc and STAT3, known regulators of VEGF, MMP9, and CXCR4. In vitro, treatment of these tumor-infiltrating neutrophils with low levels of IFN-beta restored expression of proangiogenic factors to control levels. Moreover, depletion of these neutrophils inhibited tumor growth in both control and IFN-beta-deficient mice. We therefore suggest that constitutively produced endogenous IFN-beta is an important mediator of innate tumor surveillance. Further, we believe our data help to explain the therapeutic effect of IFN treatment during the early stages of cancer development.
Collapse
Affiliation(s)
- Jadwiga Jablonska
- Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
38
|
Dynamic accumulation of plasmacytoid dendritic cells in lymph nodes is regulated by interferon-β. Blood 2009; 114:2623-31. [DOI: 10.1182/blood-2008-10-183301] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Plasmacytoid dendritic cells (pDCs) represent a major cellular component of our front-line defense against viruses because of their capacity to rapidly secrete type I interferon (IFN)–α and -β after infection. Constant immunosurveillance of the host requires that lymphocytes traffic through lymph nodes (LNs) to sample antigen, yet little is known about the dynamics of pDC accumulation within the secondary lymphoid organs. Here we show that pDCs readily accumulate within the secondary lymphoid organs of mice after virus infection. Interestingly, retention of pDC within LNs is enhanced in the presence of the sphingoshine-1-phosphate receptor agonist FTY720 in a manner similar to that observed for B and T lymphocytes. Ex vivo comparison of mouse pDCs with lymphocytes revealed that pDCs express sphingoshine-1-phosphate 4 and also constitutively express CD69, which is further up-regulated upon virus infection. In IFN-β−/− mice, accumulation of pDC and lymphocytes within LNs is reduced both during viral infection and under steady state conditions, and these defects can be reversed by adding recombinant IFN-β in vivo. These data suggest that pDC and lymphocytes use similar mechanisms for retention within LNs and that these processes are influenced by IFN-β even in the absence of viral infection.
Collapse
|
39
|
Lienenklaus S, Cornitescu M, Ziętara N, Łyszkiewicz M, Gekara N, Jabłońska J, Edenhofer F, Rajewsky K, Bruder D, Hafner M, Staeheli P, Weiss S. Novel Reporter Mouse Reveals Constitutive and Inflammatory Expression of IFN-β In Vivo. THE JOURNAL OF IMMUNOLOGY 2009; 183:3229-36. [DOI: 10.4049/jimmunol.0804277] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Green NM, Laws A, Kiefer K, Busconi L, Kim YM, Brinkmann MM, Trail EH, Yasuda K, Christensen SR, Shlomchik MJ, Vogel S, Connor JH, Ploegh H, Eilat D, Rifkin IR, van Seventer JM, Marshak-Rothstein A. Murine B cell response to TLR7 ligands depends on an IFN-beta feedback loop. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:1569-76. [PMID: 19587008 PMCID: PMC2929820 DOI: 10.4049/jimmunol.0803899] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type I IFNs play an important, yet poorly characterized, role in systemic lupus erythematosus. To better understand the interplay between type I IFNs and the activation of autoreactive B cells, we evaluated the effect of type I IFN receptor (IFNAR) deficiency in murine B cell responses to common TLR ligands. In comparison to wild-type B cells, TLR7-stimulated IFNAR(-/-) B cells proliferated significantly less well and did not up-regulate costimulatory molecules. By contrast, IFNAR1(-/-) B cells did not produce cytokines, but did proliferate and up-regulate activation markers in response to other TLR ligands. These defects were not due to a difference in the distribution of B cell populations or a failure to produce a soluble factor other than a type I IFN. Instead, the compromised response pattern reflected the disruption of an IFN-beta feedback loop and constitutively low expression of TLR7 in the IFNAR1(-/-) B cells. These results highlight subtle differences in the IFN dependence of TLR7 responses compared with other TLR-mediated B cell responses.
Collapse
Affiliation(s)
- Nathaniel M. Green
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| | - Amy Laws
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| | - Kerstin Kiefer
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| | - Liliana Busconi
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| | - You-Me Kim
- Whitehead Institute of Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02115
| | - Melanie M. Brinkmann
- Whitehead Institute of Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02115
| | - Erin Hodges Trail
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| | - Kei Yasuda
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Sean R. Christensen
- Section of Immunology, Yale University School of Medicine, New Haven, CT 06520
| | - Mark J. Shlomchik
- Section of Immunology, Yale University School of Medicine, New Haven, CT 06520
| | | | - John H. Connor
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| | - Hidde Ploegh
- Whitehead Institute of Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02115
| | - Dan Eilat
- Division of Medicine, Hadassah University Hospital, Jerusalem, Israel
| | - Ian R. Rifkin
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | | | | |
Collapse
|
41
|
Katsoulidis E, Carayol N, Woodard J, Konieczna I, Majchrzak-Kita B, Jordan A, Sassano A, Eklund EA, Fish EN, Platanias LC. Role of Schlafen 2 (SLFN2) in the generation of interferon alpha-induced growth inhibitory responses. J Biol Chem 2009; 284:25051-64. [PMID: 19592487 DOI: 10.1074/jbc.m109.030445] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The precise STAT-regulated gene targets that inhibit cell growth and generate the antitumor effects of Type I interferons (IFNs) remain unknown. We provide evidence that Type I IFNs regulate expression of Schlafens (SLFNs), a group of genes involved in the control of cell cycle progression and growth inhibitory responses. Using cells with targeted disruption of different STAT proteins and/or the p38 MAP kinase, we demonstrate that the IFN-dependent expression of distinct Schlafen genes is differentially regulated by STAT complexes and the p38 MAP kinase pathway. We also provide evidence for a key functional role of a member of the SLFN family, SLFN2, in the induction of the growth-suppressive effects of IFNs. This is shown in studies demonstrating that knockdown of SLFN2 enhances hematopoietic progenitor colony formation and reverses the growth-suppressive effects of IFNalpha on normal hematopoietic progenitors. Importantly, NIH3T3 or L929 cells with stable knockdown of SLFN2 form more colonies in soft agar, implicating this protein in the regulation of anchorage-independent growth. Altogether, our data implicate SLFN2 as a negative regulator of the metastatic and growth potential of malignant cells and strongly suggest a role for the SLFN family of proteins in the generation of the antiproliferative effects of Type I IFNs.
Collapse
Affiliation(s)
- Efstratios Katsoulidis
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lienenklaus S, Walisko R, te Boekhorst A, May T, Samuelsson C, Michiels T, Weiss S. PCR-based simultaneous analysis of the interferon-alpha family reveals distinct kinetics for early interferons. J Interferon Cytokine Res 2009; 28:653-60. [PMID: 18844580 DOI: 10.1089/jir.2008.0082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Here we describe a PCR-based analysis system that allows the simple simultaneous assessment of murine interferons (IFN)-alpha and IFN-beta induction in a single reaction. In this analysis, the so-called early IFN-alpha4 can be distinguished from the so-called late IFN-nonalpha4 by employing a primer mixture that amplifies a part of the IFN-alpha genes in which IFN-alpha4 exhibits a deletion of 15 nucleotides compared to IFN-nonalpha4. By including a final denaturation and a slow cooling step at the end of the PCR procedure, hybrid formation was avoided that regularly occurred when standard protocols were used. Separation of the amplification products on 4.5% agarose gels allowed the comparative assessment of the classical type I IFNs. Using this analysis system, we could show that in immortalized adult fibroblasts, IFN-beta is induced first and the two types of IFN-alpha are induced later and simultaneously. When similar fibroblasts derived from mice that lack IFN-beta were tested, the IFN response was delayed. However, now IFN-alpha4 appeared first and apparently induced the cascade of IFN-nonalpha4. This confirms the role of IFN-beta as master regulator of the normal IFN response.
Collapse
Affiliation(s)
- Stefan Lienenklaus
- Molecular Immunology, HZI, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Berchtold S, Manncke B, Klenk J, Geisel J, Autenrieth IB, Bohn E. Forced IFIT-2 expression represses LPS induced TNF-alpha expression at posttranscriptional levels. BMC Immunol 2008; 9:75. [PMID: 19108715 PMCID: PMC2632614 DOI: 10.1186/1471-2172-9-75] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 12/24/2008] [Indexed: 12/28/2022] Open
Abstract
Background Interferon induced tetratricopeptide repeat protein 2 (IFIT-2, P54) belongs to the type I interferon response genes and is highly induced after stimulation with LPS. The biological function of this protein is so far unclear. Previous studies indicated that IFIT-2 binds to the initiation factor subunit eIF-3c, affects translation initiation and inhibits protein synthesis. The aim of the study was to further characterize the function of IFIT-2. Results Stimulation of RAW264.7 macrophages with LPS or IFN-γ leads to the expression of IFIT-2 in a type I interferon dependent manner. By using stably transfected RAW264.7 macrophages overexpressing IFIT-2 we found that IFIT-2 inhibits selectively LPS induced expression of TNF-α, IL-6, and MIP-2 but not of IFIT-1 or EGR-1. In IFIT-2 overexpressing cells TNF-α mRNA expression was lower after LPS stimulation due to reduced mRNA stability. Further experiments suggest that characteristics of the 3'UTR of transcripts discriminate whether IFIT-2 has a strong impact on protein expression or not. Conclusion Our data suggest that IFIT-2 may affect selectively LPS induced protein expression probably by regulation at different posttranscriptional levels.
Collapse
Affiliation(s)
- Susanne Berchtold
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Smith JA, Turner MJ, DeLay ML, Klenk EI, Sowders DP, Colbert RA. Endoplasmic reticulum stress and the unfolded protein response are linked to synergistic IFN-beta induction via X-box binding protein 1. Eur J Immunol 2008; 38:1194-203. [PMID: 18412159 PMCID: PMC2838478 DOI: 10.1002/eji.200737882] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Type I IFN are strongly induced upon engagement of certain pattern recognition receptors by microbial products, and play key roles in regulating innate and adaptive immunity. It has become apparent that the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR), in addition to restoring ER homeostasis, also influences the expression of certain inflammatory cytokines. However, the extent to which UPR signaling regulates type I IFN remains unclear. Here we show that cells undergoing a UPR respond to TLR4 and TLR3 ligands, and intracellular dsRNA, with log-fold greater IFN-beta induction. This synergy is not dependent on autocrine type I IFN signaling, but unexpectedly requires the UPR transcription factor X-box binding protein 1 (XBP-1). Synergistic IFN-beta induction also occurs in HLA-B27/human beta(2)m-transgenic rat macrophages exhibiting a UPR as a consequence of HLA-B27 up-regulation, where it correlates with activation of XBP-1 splicing. Together these findings indicate that the cellular response to endogenous 'danger' that disrupts ER homeostasis is coupled to IFN-beta induction by XBP-1, which has implications for the immune response and the pathogenesis of diseases involving the UPR.
Collapse
Affiliation(s)
- Judith A. Smith
- William S. Rowe Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew J. Turner
- William S. Rowe Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Monica L. DeLay
- William S. Rowe Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Erin I. Klenk
- William S. Rowe Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Dawn P. Sowders
- William S. Rowe Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Robert A. Colbert
- William S. Rowe Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
45
|
Tjandra SS, Hsu C, Goh YI, Goh I, Gurung A, Poon R, Nadesan P, Alman BA. IFN-{beta} signaling positively regulates tumorigenesis in aggressive fibromatosis, potentially by modulating mesenchymal progenitors. Cancer Res 2007; 67:7124-31. [PMID: 17671179 DOI: 10.1158/0008-5472.can-07-0686] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aggressive fibromatosis (also called desmoid tumor) is a benign, locally invasive, soft tissue tumor composed of cells with mesenchymal characteristics. These tumors are characterized by increased levels of beta-catenin-mediated T-cell factor (TCF)-dependent transcriptional activation. We found that type 1 IFN signaling is activated in human and murine aggressive fibromatosis tumors and that the expression of associated response genes is regulated by beta-catenin. When mice deficient for the type 1 IFN receptor (Ifnar1-/-) were crossed with mice predisposed to developing aggressive fibromatosis tumors (Apc/Apc1638N), a significant decrease in aggressive fibromatosis tumor formation was observed compared with littermate controls, showing a novel role for type 1 IFN signaling in promoting tumor formation. Type 1 IFN activation inhibits cell proliferation but does not alter cell apoptosis or the level of beta-catenin-mediated TCF-dependent transcriptional activation in aggressive fibromatosis cell cultures. Thus, these changes cannot explain our in vivo results. Intriguingly, Ifnar1-/- mice have smaller numbers of mesenchymal progenitor cells compared with littermate controls, and treatment of aggressive fibromatosis cell cultures with IFN increases the proportion of cells that exclude Hoechst dye and sort to the side population, raising the possibility that type 1 IFN signaling regulates the number of precursor cells present that drive aggressive fibromatosis tumor formation and maintenance. This study identified a novel role for IFN type 1 signaling as a positive regulator of neoplasia and suggests that IFN treatment is a less than optimal therapy for this tumor type.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Proliferation
- Cell Transformation, Neoplastic
- Colony-Forming Units Assay
- Female
- Fibroblasts/metabolism
- Fibromatosis, Aggressive/metabolism
- Fibromatosis, Aggressive/pathology
- Flow Cytometry
- Genes, APC/physiology
- Humans
- Interferon-beta/physiology
- Male
- Mesenchymal Stem Cells
- Mice
- Neoplasm Invasiveness/pathology
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/metabolism
- Receptor, Interferon alpha-beta/physiology
- Signal Transduction/physiology
- T Cell Transcription Factor 1/metabolism
- Transcription, Genetic
- Transgenes/physiology
- Tumor Cells, Cultured
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Sean S Tjandra
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Dunn IS, Haggerty TJ, Kono M, Durda PJ, Butera D, Macdonald DB, Benson EM, Rose LB, Kurnick JT. Enhancement of Human Melanoma Antigen Expression by IFN-β. THE JOURNAL OF IMMUNOLOGY 2007; 179:2134-42. [PMID: 17675472 DOI: 10.4049/jimmunol.179.4.2134] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although many immunotherapeutic investigations have focused on improving the effector limb of the antitumor response, few studies have addressed preventing the loss of tumor-associated Ag (TAA) expression, associated with immune escape by tumors. We found that TAA loss from human melanomas usually results from reversible gene down-regulation, rather than gene deletion or mutation. Previously, we showed that inhibitors of MAPK-signaling pathways up-regulate TAA expression in melanoma cell lines. We have now identified IFN-beta as an additional stimulus to TAA expression, including Melan-A/MART-1, gp100, and MAGE-A1. IFN-beta (but neither IFN-alpha nor IFN-gamma) augmented both protein and mRNA expression of melanocytic TAA in 15 melanoma lines (irrespective of initial Ag-expression levels). Treatment of low Ag melanoma lines with IFN-beta increased expression of melanocyte-lineage Ags, inducing susceptibility to lysis by specific CTLs. Treatment with IFN-beta also enhances expression of class I HLA molecules, thereby inducing both nominal TAA and the presenting HLA molecule. Data from fluorescent cellular reporter systems demonstrated that IFN-beta triggers promoter activation, resulting in augmentation of Ag expression. In addition to enhancing TAA expression in melanomas, IFN-beta also stimulated expression of the melanocytic Ag gp100 in cells of other neural crest-derived tumor lines (gliomas) and certain unrelated tumors. Because IFN-beta is already approved for human clinical use in other contexts, it may prove useful as a cotreatment for augmenting tumor Ag expression during immunotherapy.
Collapse
|
47
|
Swann JB, Hayakawa Y, Zerafa N, Sheehan KCF, Scott B, Schreiber RD, Hertzog P, Smyth MJ. Type I IFN Contributes to NK Cell Homeostasis, Activation, and Antitumor Function. THE JOURNAL OF IMMUNOLOGY 2007; 178:7540-9. [PMID: 17548588 DOI: 10.4049/jimmunol.178.12.7540] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study demonstrates that type I IFNs are an early and critical regulator of NK cell numbers, activation, and antitumor activity. Using both IFNAR1- and IFNAR2-deficient mice, as well as an IFNAR1-blocking Ab, we demonstrate that endogenous type I IFN is critical for controlling NK cell-mediated antitumor responses in many experimental tumor models, including protection from methylcholanthrene-induced sarcomas, resistance to the NK cell-sensitive RMA-S tumor and cytokine immunotherapy of lung metastases. Protection from RMA-S afforded by endogenous type I IFN is more potent than that of other effector molecules such as IFN-gamma, IL-12, IL-18, and perforin. Furthermore, cytokine immunotherapy using IL-12, IL-18, or IL-21 was effective in the absence of endogenous type I IFN, however the antimetastatic activity of IL-2 was abrogated in IFNAR-deficient mice, primarily due to a defect in IL-2-induced cytotoxic activity. This study demonstrates that endogenous type I IFN is a central mediator of NK cell antitumor responses.
Collapse
Affiliation(s)
- Jeremy B Swann
- Cancer Immunology Program, Trescowthick Laboratories, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, 8006 Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Niu L, Strahotin S, Hewes B, Zhang B, Zhang Y, Archer D, Spencer T, Dillehay D, Kwon B, Chen L, Vella AT, Mittler RS. Cytokine-mediated disruption of lymphocyte trafficking, hemopoiesis, and induction of lymphopenia, anemia, and thrombocytopenia in anti-CD137-treated mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:4194-213. [PMID: 17371976 PMCID: PMC2770095 DOI: 10.4049/jimmunol.178.7.4194] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CD137-mediated signals costimulate T cells and protect them from activation-induced apoptosis; they induce curative antitumor immunity and enhance antiviral immune responses in mice. In contrast, anti-CD137 agonistic mAbs can suppress T-dependent humoral immunity and reverse the course of established autoimmune disease. These results have provided a rationale for assessing the therapeutic potential of CD137 ligands in human clinical trials. In this study, we report that a single 200-mug injection of anti-CD137 given to otherwise naive BALB/c or C57BL/6 mice led to the development of a series of immunological anomalies. These included splenomegaly, lymphadenopathy, hepatomegaly, multifocal hepatitis, anemia, altered trafficking of B cells and CD8 T cells, loss of NK cells, and a 10-fold increase in bone marrow (BM) cells bearing the phenotype of hemopoietic stem cells. These events were dependent on CD8 T cells, TNF-alpha, IFN-gamma, and type I IFNs. BM cells up-regulated Fas, and there was a significant increase in the number of CD8+ T cells that correlated with a loss of CD19+ and Ab-secreting cells in the BM. TCR Valphabeta usage was random and polyclonal among liver-infiltrating CD8 T cells, and multifocal CD8+ T cell infiltrates were resolved upon termination of anti-CD137 treatment. Anti-CD137-treated mice developed lymphopenia, thrombocytopenia, and anemia, and had lowered levels of hemoglobin and increased numbers of reticulocytes.
Collapse
Affiliation(s)
- Liguo Niu
- Emory Vaccine Research Center, Emory University School of Medicine, Atlanta, GA 30329
| | - Simona Strahotin
- Emory Vaccine Research Center, Emory University School of Medicine, Atlanta, GA 30329
| | - Becker Hewes
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30329
| | - Benyue Zhang
- Emory Vaccine Research Center, Emory University School of Medicine, Atlanta, GA 30329
| | - Yuanyuan Zhang
- Emory Vaccine Research Center, Emory University School of Medicine, Atlanta, GA 30329
| | - David Archer
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30329
| | - Trent Spencer
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30329
| | - Dirck Dillehay
- Department of Animal Resources, Emory University School of Medicine, Atlanta, GA 30329
| | - Byoung Kwon
- The Immunomodulation Research Center, University of Ulsan, Ulsan, Republic of Korea
| | - Lieping Chen
- Johns Hopkins University School of Medicine, Department of Dermatology, Baltimore, MD 21205
| | - Anthony T. Vella
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Robert S. Mittler
- Emory Vaccine Research Center, Emory University School of Medicine, Atlanta, GA 30329
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30329
| |
Collapse
|
49
|
Mancuso G, Midiri A, Biondo C, Beninati C, Zummo S, Galbo R, Tomasello F, Gambuzza M, Macrì G, Ruggeri A, Leanderson T, Teti G. Type I IFN signaling is crucial for host resistance against different species of pathogenic bacteria. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:3126-33. [PMID: 17312160 DOI: 10.4049/jimmunol.178.5.3126] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It is known that host cells can produce type I IFNs (IFN-alphabeta) after exposure to conserved bacterial products, but the functional consequences of such responses on the outcome of bacterial infections are incompletely understood. We show in this study that IFN-alphabeta signaling is crucial for host defenses against different bacteria, including group B streptococci (GBS), pneumococci, and Escherichia coli. In response to GBS challenge, most mice lacking either the IFN-alphabetaR or IFN-beta died from unrestrained bacteremia, whereas all wild-type controls survived. The effect of IFN-alphabetaR deficiency was marked, with mortality surpassing that seen in IFN-gammaR-deficient mice. Animals lacking both IFN-alphabetaR and IFN-gammaR displayed additive lethality, suggesting that the two IFN types have complementary and nonredundant roles in host defenses. Increased production of IFN-alphabeta was detected in macrophages after exposure to GBS. Moreover, in the absence of IFN-alphabeta signaling, a marked reduction in macrophage production of IFN-gamma, NO, and TNF-alpha was observed after stimulation with live bacteria or with purified LPS. Collectively, our data document a novel, fundamental function of IFN-alphabeta in boosting macrophage responses and host resistance against bacterial pathogens. These data may be useful to devise alternative strategies to treat bacterial infections.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Dipartimento di Patologia e Microbiologia Sperimentale, Università degli Studi di Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Koliakos G, Alamdari D, Tsagias N, Kouzi-Koliakos K, Michaloudi E, Karagiannis V. A novel high-yield volume-reduction method for the cryopreservation of UC blood units. Cytotherapy 2007; 9:654-9. [DOI: 10.1080/14653240701508445] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|