1
|
McCormick EL, Famiglietti CA, Feng D, Michalak AM, Konings AG. Susceptibility to Photosynthesis Suppression From Extreme Storms Is Highly Site-Dependent. GLOBAL CHANGE BIOLOGY 2025; 31:e70257. [PMID: 40400371 PMCID: PMC12096146 DOI: 10.1111/gcb.70257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/06/2025] [Accepted: 05/03/2025] [Indexed: 05/23/2025]
Abstract
Extreme storms are becoming more intense and frequent under climate change. Although these extreme wet events are smaller in extent and duration than drought events, recent evidence suggests the global impact of both extremes is similar. However, the impact of individual extreme storms on photosynthesis-and therefore on vegetation and the carbon cycle-remains difficult to predict, as photosynthesis may be suppressed via waterlogging or increased by the alleviation of moisture stress. Here, we use random forest models to calculate daily photosynthesis anomalies attributable to extreme soil moisture using data from 54 FLUXNET sites across the globe. We hypothesize that photosynthesis' response to a given extreme event is primarily controlled by storm intensity, and to a lesser degree by site vegetation, climate, soil, and topography. However, we find instead that photosynthesis responses are better explained by site characteristics (soil texture, climate, topography, and vegetation density) than by storm intensity, such that the likelihood of waterlogging from a given storm is heavily site-dependent. Although storms that induce waterlogging are roughly as common as those that induce stress alleviation overall, photosynthesis rarely declines at sites not prone to waterlogging. Instead, photosynthesis anomalies at these sites show a much weaker relationship with storm intensity. Increasingly intense storms are therefore unlikely to impact all locations equally. This highlights the potential to use site characteristics to enhance prediction of storm effects on ecosystems and the land carbon sink.
Collapse
Affiliation(s)
- Erica L. McCormick
- Department of Earth System ScienceStanford UniversityStanfordCaliforniaUSA
| | - Caroline A. Famiglietti
- Department of Earth System ScienceStanford UniversityStanfordCaliforniaUSA
- Hydrosat Inc.WashingtonDCUSA
| | - Dapeng Feng
- Department of Earth System ScienceStanford UniversityStanfordCaliforniaUSA
- Stanford Institute for Human‐Centered Artificial Intelligence (HAI)Stanford UniversityStanfordCaliforniaUSA
| | - Anna M. Michalak
- Department of Earth System ScienceStanford UniversityStanfordCaliforniaUSA
- Department of Global EcologyCarnegie Institution for ScienceStanfordCaliforniaUSA
| | | |
Collapse
|
2
|
Schulz KA, Barry AM, Kenefic LS, Wason JW. Contrasting survival strategies for seedlings of two northern conifer species to extreme droughts and floods. TREE PHYSIOLOGY 2024; 44:tpae117. [PMID: 39244705 DOI: 10.1093/treephys/tpae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Lowland northern white-cedar (Thuja occidentalis L.) forests are increasingly exposed to extreme droughts and floods that cause tree mortality. However, it is not clear the extent to which these events may differentially affect regeneration of cedar and its increasingly common associate, balsam fir (Abies balsamea (L.) Mill.). To test this, we measured how seedlings of cedar and fir were able to avoid, resist and recover from experimental drought and flood treatments of different lengths (8 to 66 days). Overall, we found that cedar exhibited a strategy of stress resistance and growth recovery (resilience) from moderate drought and flood stress. Fir, on the other hand, appears to be adapted to avoid drought and flood stress and exhibited overall lower growth resilience. In drought treatments, we found evidence of different stomatal behaviors. Cedar used available water quickly and therefore experienced more drought stress than fir, but cedar was able to survive at water potentials > 3 MPa below key hydraulic thresholds. On the other hand, fir employed a more conservative water-use strategy and therefore avoided extremely low water potential. In response to flood treatments, cedar survival was higher and only reached 50% if exposed to 23.1 days of flooding in contrast to only 7.4 days to reach 50% mortality for fir. In both droughts and floods, many stressed cedar were able to maintain partially brown canopies and often survived the stress, albeit with reduced growth, suggesting a strategy of resistance and resilience. In contrast, fir that experienced drought or flood stress had a threshold-type responses and they either had full live canopies with little effect on growth or they died suggesting reliance on a strategy of drought avoidance. Combined with increasingly variable precipitation regimes, seasonal flooding and complex microtopography that can provide safe sites in these forests, these results inform conservation and management of lowland cedar stands.
Collapse
Affiliation(s)
- Katlyn A Schulz
- University of Maine, School of Forest Resources, 5755 Nutting Hall, Orono, ME 04469, USA
| | - Alexandra M Barry
- University of Maine, School of Forest Resources, 5755 Nutting Hall, Orono, ME 04469, USA
| | - Laura S Kenefic
- US Forest Service, Northern Research Station, 54 Government Road, Bradley, ME 04411, USA
| | - Jay W Wason
- University of Maine, School of Forest Resources, 5755 Nutting Hall, Orono, ME 04469, USA
| |
Collapse
|
3
|
Prokisch J, Ferroudj A, Labidi S, El-Ramady H, Brevik EC. Biological Nano-Agrochemicals for Crop Production as an Emerging Way to Address Heat and Associated Stresses. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1253. [PMID: 39120358 PMCID: PMC11314061 DOI: 10.3390/nano14151253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Climate change is a global problem facing all aspects of the agricultural sector. Heat stress due to increasing atmospheric temperature is one of the most common climate change impacts on agriculture. Heat stress has direct effects on crop production, along with indirect effects through associated problems such as drought, salinity, and pathogenic stresses. Approaches reported to be effective to mitigate heat stress include nano-management. Nano-agrochemicals such as nanofertilizers and nanopesticides are emerging approaches that have shown promise against heat stress, particularly biogenic nano-sources. Nanomaterials are favorable for crop production due to their low toxicity and eco-friendly action. This review focuses on the different stresses associated with heat stress and their impacts on crop production. Nano-management of crops under heat stress, including the application of biogenic nanofertilizers and nanopesticides, are discussed. The potential and limitations of these biogenic nano-agrochemicals are reviewed. Potential nanotoxicity problems need more investigation at the local, national, and global levels, as well as additional studies into biogenic nano-agrochemicals and their effects on soil, plant, and microbial properties and processes.
Collapse
Affiliation(s)
- József Prokisch
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
| | - Aya Ferroudj
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
| | - Safa Labidi
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
| | - Hassan El-Ramady
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Eric C. Brevik
- College of Agricultural, Life, and Physical Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
4
|
Xie C, Liu C, Wang H, Liu D, Jim CY. Distribution pattern of large old Ginkgo biloba in China under climate change scenarios. Ecol Evol 2024; 14:e11367. [PMID: 38756689 PMCID: PMC11097006 DOI: 10.1002/ece3.11367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Large old Ginkgo biloba trees (LOGTs), with profound ecological and cultural significance in China, face increasing threats from climate change and human activities. We employed the BIOCLIM and DOMAIN species distribution models to predict their spatial patterns under the present climate and doubled-CO2 climate change scenario in 2100. We collected 604 validated LOGT occurrence records and data on 19 bioclimate factors for the analysis. Our study yielded a LOGT geographic distribution pattern covering a wide latitudinal belt extending from south subtropical to temperate zones in central and eastern China, concentrating in low elevations and coastal regions. The principal component analysis identified the dominant bioclimatic factors shaping their distribution, namely annual precipitation and low winter temperatures. BIOCLIM and DOMAIN generated predicted suitable habitats that match the present distribution range well. However, under the future climate scenario, the models indicated habitat retentions mainly in the core distribution areas and habitat losses mainly in the southern edge of the present range and scattered pockets elsewhere. Some retained habitats, including excellent ones, will suffer from fragmentation. The predicted new habitats may permit some range expansion and migration but are beset by small patch size and large interpatch distance, bringing fragmentation and gene flow restrictions. The anticipated projected range decline highlights considerable threats climate change poses to the long-term survival of the precious natural-cum-cultural resource. Understanding the distribution patterns and underlying drivers and distillation of practical conservation measures can foster sustainable management vis-a-vis the looming global change.
Collapse
Affiliation(s)
- Chunping Xie
- Tropical Biodiversity and Bioresource Utilization LaboratoryQiongtai Normal UniversityHaikouChina
| | - Chang Liu
- Nanjing Institute for Comprehensive Utilization of Wild Plants, China Co‐opsNanjingChina
| | - Houhe Wang
- Tropical Biodiversity and Bioresource Utilization LaboratoryQiongtai Normal UniversityHaikouChina
| | - Dawei Liu
- Faculty of Criminal Science & TechnologyNanjing Police UniversityNanjingChina
| | - Chi Yung Jim
- Department of Social Sciences and Policy StudiesEducation University of Hong KongTai Po, Hong KongChina
| |
Collapse
|
5
|
Flores BM, Montoya E, Sakschewski B, Nascimento N, Staal A, Betts RA, Levis C, Lapola DM, Esquível-Muelbert A, Jakovac C, Nobre CA, Oliveira RS, Borma LS, Nian D, Boers N, Hecht SB, Ter Steege H, Arieira J, Lucas IL, Berenguer E, Marengo JA, Gatti LV, Mattos CRC, Hirota M. Critical transitions in the Amazon forest system. Nature 2024; 626:555-564. [PMID: 38356065 PMCID: PMC10866695 DOI: 10.1038/s41586-023-06970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/13/2023] [Indexed: 02/16/2024]
Abstract
The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.
Collapse
Affiliation(s)
- Bernardo M Flores
- Graduate Program in Ecology, Federal University of Santa Catarina, Florianopolis, Brazil.
| | - Encarni Montoya
- Geosciences Barcelona, Spanish National Research Council, Barcelona, Spain
| | - Boris Sakschewski
- Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
| | | | - Arie Staal
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Richard A Betts
- Met Office Hadley Centre, Exeter, UK
- Global Systems Institute, University of Exeter, Exeter, UK
| | - Carolina Levis
- Graduate Program in Ecology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - David M Lapola
- Center for Meteorological and Climatic Research Applied to Agriculture, University of Campinas, Campinas, Brazil
| | - Adriane Esquível-Muelbert
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Catarina Jakovac
- Department of Plant Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Carlos A Nobre
- Institute of Advanced Studies, University of São Paulo, São Paulo, Brazil
| | - Rafael S Oliveira
- Department of Plant Biology, University of Campinas, Campinas, Brazil
| | - Laura S Borma
- Division of Impacts, Adaptation and Vulnerabilities (DIIAV), National Institute for Space Research, São José dos Campos, Brazil
| | - Da Nian
- Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
| | - Niklas Boers
- Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
- Earth System Modelling, School of Engineering and Design, Technical University of Munich, Munich, Germany
| | - Susanna B Hecht
- Luskin School for Public Affairs and Institute of the Environment, University of California, Los Angeles, CA, USA
| | - Hans Ter Steege
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Quantitative Biodiversity Dynamics, Utrecht University, Utrecht, The Netherlands
| | - Julia Arieira
- Science Panel for the Amazon (SPA), São José dos Campos, Brazil
| | | | - Erika Berenguer
- Environmental Change Institute, University of Oxford, Oxford, UK
| | - José A Marengo
- Centro Nacional de Monitoramento e Alerta de Desastres Naturais, São José dos Campos, Brazil
- Graduate Program in Natural Disasters, UNESP/CEMADEN, São José dos Campos, Brazil
- Graduate School of International Studies, Korea University, Seoul, Korea
| | - Luciana V Gatti
- Division of Impacts, Adaptation and Vulnerabilities (DIIAV), National Institute for Space Research, São José dos Campos, Brazil
| | - Caio R C Mattos
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
| | - Marina Hirota
- Graduate Program in Ecology, Federal University of Santa Catarina, Florianopolis, Brazil.
- Department of Plant Biology, University of Campinas, Campinas, Brazil.
- Group IpES, Department of Physics, Federal University of Santa Catarina, Florianopolis, Brazil.
| |
Collapse
|
6
|
Wang H, Ciais P, Sitch S, Green JK, Tao S, Fu Z, Albergel C, Bastos A, Wang M, Fawcett D, Frappart F, Li X, Liu X, Li S, Wigneron JP. Anthropogenic disturbance exacerbates resilience loss in the Amazon rainforests. GLOBAL CHANGE BIOLOGY 2024; 30:e17006. [PMID: 37909670 DOI: 10.1111/gcb.17006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/03/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
Uncovering the mechanisms that lead to Amazon forest resilience variations is crucial to predict the impact of future climatic and anthropogenic disturbances. Here, we apply a previously used empirical resilience metrics, lag-1 month temporal autocorrelation (TAC), to vegetation optical depth data in C-band (a good proxy of the whole canopy water content) in order to explore how forest resilience variations are impacted by human disturbances and environmental drivers in the Brazilian Amazon. We found that human disturbances significantly increase the risk of critical transitions, and that the median TAC value is ~2.4 times higher in human-disturbed forests than that in intact forests, suggesting a much lower resilience in disturbed forests. Additionally, human-disturbed forests are less resilient to land surface heat stress and atmospheric water stress than intact forests. Among human-disturbed forests, forests with a more closed and thicker canopy structure, which is linked to a higher forest cover and a lower disturbance fraction, are comparably more resilient. These results further emphasize the urgent need to limit deforestation and degradation through policy intervention to maintain the resilience of the Amazon rainforests.
Collapse
Affiliation(s)
- Huan Wang
- College of Urban and Environmental Sciences, Peking University, Beijing, China
- INRAE, UMR1391 ISPA, Université de Bordeaux, Villenave d'Ornon, France
- Laboratoire des Sciences du Climat et de l'Environnement, CEA/CNRS/UVSQ/Université Paris Saclay, Gif-sur-Yvette, France
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, CEA/CNRS/UVSQ/Université Paris Saclay, Gif-sur-Yvette, France
| | - Stephen Sitch
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Julia K Green
- Department of Environmental Science, The University of Arizona, Tucson, Arizona, USA
| | - Shengli Tao
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Zheng Fu
- Laboratoire des Sciences du Climat et de l'Environnement, CEA/CNRS/UVSQ/Université Paris Saclay, Gif-sur-Yvette, France
| | | | - Ana Bastos
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Mengjia Wang
- School of Geoscience and Technology, Zhengzhou University, Zhengzhou, China
| | - Dominic Fawcett
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Frédéric Frappart
- INRAE, UMR1391 ISPA, Université de Bordeaux, Villenave d'Ornon, France
| | - Xiaojun Li
- INRAE, UMR1391 ISPA, Université de Bordeaux, Villenave d'Ornon, France
| | - Xiangzhuo Liu
- INRAE, UMR1391 ISPA, Université de Bordeaux, Villenave d'Ornon, France
| | - Shuangcheng Li
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | | |
Collapse
|
7
|
Hoffmann WA. Seasonal flooding shapes forest-savanna transitions. Proc Natl Acad Sci U S A 2023; 120:e2312279120. [PMID: 37611064 PMCID: PMC10483644 DOI: 10.1073/pnas.2312279120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Affiliation(s)
- William A. Hoffmann
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC27695
| |
Collapse
|
8
|
Mattos CRC, Hirota M, Oliveira RS, Flores BM, Miguez-Macho G, Pokhrel Y, Fan Y. Double stress of waterlogging and drought drives forest-savanna coexistence. Proc Natl Acad Sci U S A 2023; 120:e2301255120. [PMID: 37549286 PMCID: PMC10438376 DOI: 10.1073/pnas.2301255120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/21/2023] [Indexed: 08/09/2023] Open
Abstract
Forest-savanna boundaries are ecotones that support complex ecosystem functions and are sensitive to biotic/abiotic perturbations. What drives their distribution today and how it may shift in the future are open questions. Feedbacks among climate, fire, herbivory, and land use are known drivers. Here, we show that alternating seasonal drought and waterlogging stress favors the dominance of savanna-like ecosystems over forests. We track the seasonal water-table depth as an indicator of water stress when too deep and oxygen stress when too shallow and map forest/savanna occurrence within this double-stress space in the neotropics. We find that under a given annual precipitation, savannas are favored in landscape positions experiencing double stress, which is more common as the dry season strengthens (climate driver) but only found in waterlogged lowlands (terrain driver). We further show that hydrological changes at the end of the century may expose some flooded forests to savanna expansion, affecting biodiversity and soil carbon storage. Our results highlight the importance of land hydrology in understanding/predicting forest-savanna transitions in a changing world.
Collapse
Affiliation(s)
- Caio R. C. Mattos
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ08854
| | - Marina Hirota
- Department of Physics, Federal University of Santa Catarina, Florianópolis88040-900, Brazil
- Department of Plant Biology, University of Campinas, Campinas13083-862, Brazil
- Graduate Program in Ecology, Federal University of Santa Catarina, Florianópolis88040-900, Brazil
| | - Rafael S. Oliveira
- Department of Plant Biology, University of Campinas, Campinas13083-862, Brazil
| | - Bernardo M. Flores
- Graduate Program in Ecology, Federal University of Santa Catarina, Florianópolis88040-900, Brazil
| | - Gonzalo Miguez-Macho
- CRETUS, Non-Linear Physics Group, Faculty of Physics, Universidade de Santiago de Compostela, Santiago de Compostela15782, Spain
| | - Yadu Pokhrel
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI48824
| | - Ying Fan
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ08854
| |
Collapse
|