1
|
Heneka MT, van der Flier WM, Jessen F, Hoozemanns J, Thal DR, Boche D, Brosseron F, Teunissen C, Zetterberg H, Jacobs AH, Edison P, Ramirez A, Cruchaga C, Lambert JC, Laza AR, Sanchez-Mut JV, Fischer A, Castro-Gomez S, Stein TD, Kleineidam L, Wagner M, Neher JJ, Cunningham C, Singhrao SK, Prinz M, Glass CK, Schlachetzki JCM, Butovsky O, Kleemann K, De Jaeger PL, Scheiblich H, Brown GC, Landreth G, Moutinho M, Grutzendler J, Gomez-Nicola D, McManus RM, Andreasson K, Ising C, Karabag D, Baker DJ, Liddelow SA, Verkhratsky A, Tansey M, Monsonego A, Aigner L, Dorothée G, Nave KA, Simons M, Constantin G, Rosenzweig N, Pascual A, Petzold GC, Kipnis J, Venegas C, Colonna M, Walter J, Tenner AJ, O'Banion MK, Steinert JR, Feinstein DL, Sastre M, Bhaskar K, Hong S, Schafer DP, Golde T, Ransohoff RM, Morgan D, Breitner J, Mancuso R, Riechers SP. Neuroinflammation in Alzheimer disease. Nat Rev Immunol 2025; 25:321-352. [PMID: 39653749 DOI: 10.1038/s41577-024-01104-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/20/2025]
Abstract
Increasing evidence points to a pivotal role of immune processes in the pathogenesis of Alzheimer disease, which is the most prevalent neurodegenerative and dementia-causing disease of our time. Multiple lines of information provided by experimental, epidemiological, neuropathological and genetic studies suggest a pathological role for innate and adaptive immune activation in this disease. Here, we review the cell types and pathological mechanisms involved in disease development as well as the influence of genetics and lifestyle factors. Given the decade-long preclinical stage of Alzheimer disease, these mechanisms and their interactions are driving forces behind the spread and progression of the disease. The identification of treatment opportunities will require a precise understanding of the cells and mechanisms involved as well as a clear definition of their temporal and topographical nature. We will also discuss new therapeutic strategies for targeting neuroinflammation, which are now entering the clinic and showing promise for patients.
Collapse
Affiliation(s)
- Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg.
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jeroen Hoozemanns
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Charlotte Teunissen
- Department of Laboratory Medicine, VUMC Amsterdam, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carlos Cruchaga
- Department of Psychiatry, Washington School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Agustin Ruiz Laza
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Jose Vicente Sanchez-Mut
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Alicante, Spain
| | - Andre Fischer
- Clinic for Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
- Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Disease (DZNE), Göttingen, Germany
| | - Sergio Castro-Gomez
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Michael Wagner
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jonas J Neher
- Biomedical Center Munich, Biochemistry, Medical Faculty, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Sim K Singhrao
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip L De Jaeger
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Hannah Scheiblich
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Guy C Brown
- Deparment of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gary Landreth
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Miguel Moutinho
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Ising
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Karabag
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Darren J Baker
- Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York City, NY, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Malu Tansey
- College of Medicine, University of Florida, Gainsville, FL, USA
| | - Alon Monsonego
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Hôpital Saint-Antoine, Paris, France
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Neta Rosenzweig
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University of Bonn, Bonn, Germany
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Venegas
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Instituto Biosanitario de Granada (ibs.Granada), Granada, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jochen Walter
- Center of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joern R Steinert
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Douglas L Feinstein
- Department of NeuroAnesthesia, University of Illinois at Chicago, Chicago, IL, USA
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Kiran Bhaskar
- Department of Molecular Genetics & Microbiology and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Todd Golde
- Department of Pharmacology and Chemical Biology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | - David Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - John Breitner
- Department of Psychiatry, McGill University Faculty of Medicine, Montreal, Québec, Canada
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sean-Patrick Riechers
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
| |
Collapse
|
2
|
Kline EM, Jernigan JE, Scharer CD, Maurer J, Hicks SL, Herrick MK, Wallings RL, Kelly SD, Chang J, Menees KB, McFarland NR, Boss JM, Tansey MG, Joers V. MHCII reduction is insufficient to protect mice from alpha-synuclein-induced degeneration and the Parkinson's HLA locus exhibits epigenetic regulation. Sci Rep 2025; 15:13705. [PMID: 40258905 PMCID: PMC12012047 DOI: 10.1038/s41598-025-95679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/24/2025] [Indexed: 04/23/2025] Open
Abstract
Major histocompatibility complex class II (MHCII) molecules are antigen presentation proteins and increased in post-mortem Parkinson's disease (PD) brain. Attempts to decrease MHCII expression have led to neuroprotection in PD mouse models. Our group reported that a single nucleotide polymorphism (SNP) at rs3129882 in the MHCII gene Human Leukocyte Antigen (HLA) DRA is associated with increased MHCII transcripts and surface protein and increased risk for late-onset idiopathic PD. We therefore hypothesized that decreased MHCII may mitigate dopaminergic degeneration. During an ongoing α-synuclein lesion, mice with MHCII reduction in systemic and brain innate immune cells (LysMCre + I-Abfl/fl or CRE+) displayed brain T cell repertoire shifts and greater preservation of the dopaminergic phenotype in nigrostriatal terminals. Next, we investigated a human cohort to characterize the immunophenotype of subjects with and without the high-risk GG genotype at the rs3129882 SNP. We confirmed that the high-risk GG genotype is associated with peripheral changes in MHCII inducibility, frequency of CD4 + T cells, and differentially accessible chromatin regions within the MHCII locus. Although our mouse studies indicate that myeloid MHCII reduction coinciding with an intact adaptive immune system is insufficient to fully protect dopamine neurons from α-synuclein-induced degeneration, our data are consistent with the overwhelming evidence implicating antigen presentation in PD pathophysiology.
Collapse
Affiliation(s)
- Elizabeth M Kline
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Janna E Jernigan
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida Health, Gainesville, FL, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeffrey Maurer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sakeenah L Hicks
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mary K Herrick
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida Health, Gainesville, FL, USA
| | - Rebecca L Wallings
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida Health, Gainesville, FL, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sean D Kelly
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jianjun Chang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kelly B Menees
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida Health, Gainesville, FL, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nikolaus R McFarland
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida Health, Gainesville, FL, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Valerie Joers
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida Health, Gainesville, FL, USA.
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Zhang L, Yang C, Zhang W, Lui S, Bishop JR. Human leukocyte antigen (HLA) class I and II genetic relationships with brain imaging measures: A systematic review and meta-analysis. Brain Behav Immun 2025; 128:336-351. [PMID: 40222562 DOI: 10.1016/j.bbi.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/14/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025] Open
Abstract
This systematic review and meta-analysis synthesizes current evidence on associations between genetic polymorphisms of human leukocyte antigen (HLA) class I and II molecules, which play key roles in antigen presentation and immune response regulation, and brain imaging phenotypes across various neurological and psychiatric conditions. The strongest associations were observed in multiple sclerosis (MS), where HLA-DRB1*15:01 was linked to increased lesion volume and disease progression. Meta-analyses revealed significant pooled effect sizes for both T1 and T2 lesion volumes. Emerging evidence also suggests that variants in HLA class I and II genes contribute to brain structural changes associated with age-related cognitive decline, schizophrenia, and Gulf War illness. Our findings revealed stronger patterns of association between HLA class II polymorphisms with brain imaging implications as compared to class I in neurodegenerative conditions. Considering HLA class II roles in exogenous protein/peptide presentation, this highlights the potential importance of neuroimmune-environmental interactions as contributing factors to disease pathogenesis and progression. Population-based studies from the UK Biobank highlight the potential influence of HLA class I and II genetic polymorphisms on brain structure beyond disease-specific contexts, suggesting broader implications for neurodevelopment and neurodegeneration. Despite these emerging insights, the limited availability of studies using imaging modalities beyond structural MRI, along with inconsistent findings within specific diseases and across conditions, underscores the need for further investigation into the mechanistic contributions of specific genetic variants on impacting brain structural and functional outcomes. Future research should include larger, more diverse study cohorts and employ advanced genotyping technologies to provide a more comprehensive investigations of HLA's role on brain health across the lifespan.
Collapse
Affiliation(s)
- Lusi Zhang
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Chengmin Yang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wenjing Zhang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States; Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, United States.
| |
Collapse
|
4
|
Wang J, Forrest SL, Dasari S, Tanaka H, Rogaeva E, Tartaglia MC, Fox S, Lang AE, Kalyaanamoorthy S, Kovacs GG. Investigation of the HLA locus in autopsy-confirmed progressive supranuclear palsy. Immunobiology 2025; 230:152892. [PMID: 40132252 DOI: 10.1016/j.imbio.2025.152892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
OBJECTIVES Progressive supranuclear palsy (PSP) is a neurodegenerative disease showing pathological tau accumulation in subcortical neurons and glial cells. The human leukocyte antigen (HLA) locus on chromosome 6 is a polymorphic region with complex linkage patterns that has been implicated in several autoimmune and neurological disorders. The HLA locus has not been systematically examined in PSP. It is unclear whether tau and HLA can interact to induce an autoimmune disease mechanism. METHODS We evaluated an autopsy confirmed PSP cohort (n = 44) and compared allele/haplotype frequencies to those of the reference group of a local deceased Canadian donor pool. We performed HLA-Tau peptide binding prediction and modelling of HLA Class II - Tau Peptide interactions. FINDINGS Odds ratio was 2.94 (95 % CI 1.01 to 8.55; p = 0.047) for DQB1*06:01 allele, and 2.59 (95 % CI 1.39 to 4.83; p = 0.0025) for the narcolepsy-associated haplotype (DRB1*15:01-DQB1*06:02). One patient with 4-repeat tau PSP-type pathology was a carrier of the IgLON5-associated haplotype (DRB1*10:01-DQB1*05:01). HLA-Tau peptide binding prediction and modelling of HLA Class II - Tau Peptide interactions revealed strong-binding tau peptides but not the PSP-protofilament fold for alleles DQA1*01:02-DQB1*06:02 and DQA1*01:03-DQB1*06:01. CONCLUSION Our study suggests that epitopes within the tau peptide may bind to HLA alleles that are found in a subset of PSP patients supporting the notion of an autoimmune pathophysiological component. These findings have implications for subtyping and stratifying patients for therapies, including those targeting immune modulation.
Collapse
Affiliation(s)
- Jinguo Wang
- Laboratory Medicine Program, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Sathish Dasari
- Laboratory Medicine Program, University Health Network, Toronto, Canada; Department of Chemistry, Faculty of Science, University of Waterloo, ON, Canada
| | - Hidetomo Tanaka
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - M Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada; Krembil Brain Institute, University Health Network, Toronto M5T 0S8, Ontario, Canada; Rossy Centre for PSP, Toronto Western Hospital, Toronto M5T 2S8, Ontario, Canada; Division of Neurology, University of Toronto, Toronto M5T 1A8, Ontario, Canada
| | - Susan Fox
- Krembil Brain Institute, University Health Network, Toronto M5T 0S8, Ontario, Canada; Rossy Centre for PSP, Toronto Western Hospital, Toronto M5T 2S8, Ontario, Canada; Division of Neurology, University of Toronto, Toronto M5T 1A8, Ontario, Canada
| | - Anthony E Lang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada; Krembil Brain Institute, University Health Network, Toronto M5T 0S8, Ontario, Canada; Rossy Centre for PSP, Toronto Western Hospital, Toronto M5T 2S8, Ontario, Canada; Division of Neurology, University of Toronto, Toronto M5T 1A8, Ontario, Canada; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, M5T 2S8 Toronto, Ontario, Canada
| | | | - Gabor G Kovacs
- Laboratory Medicine Program, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada; Krembil Brain Institute, University Health Network, Toronto M5T 0S8, Ontario, Canada; Rossy Centre for PSP, Toronto Western Hospital, Toronto M5T 2S8, Ontario, Canada; Division of Neurology, University of Toronto, Toronto M5T 1A8, Ontario, Canada; Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, M5T 2S8 Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Kline EM, Jernigan JE, Scharer CD, Maurer J, Hicks SL S, Herrick M MK, Wallings RL, Kelly SD, Chang J, Menees KB, McFarland NR, Boss JM, Tansey MG, Joers V. MHCII reduction is insufficient to protect mice from alpha-synuclein-induced degeneration and the Parkinson's HLA locus exhibits epigenetic regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.31.610581. [PMID: 40093159 PMCID: PMC11908218 DOI: 10.1101/2024.08.31.610581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Major histocompatibility complex class II (MHCII) molecules are antigen presentation proteins and increased in post-mortem Parkinson's disease (PD) brain. Attempts to decrease MHCII expression have led to neuroprotection in PD mouse models. Our group reported that a SNP at rs3129882 in the MHCII gene Human leukocyte Antigen (HLA) DRA is associated with increased MHCII transcripts and surface protein and increased risk for late-onset idiopathic PD. We therefore hypothesized that decreased MHCII may mitigate dopaminergic degeneration. During an ongoing α-synuclein lesion, mice with MHCII reduction in systemic and brain innate immune cells (LysMCre+I-Abfl/fl or CRE+) displayed brain T cell repertoire shifts and greater preservation of the dopaminergic phenotype in nigrostriatal terminals. Next, we investigated a human cohort to characterize the immunophenotype of subjects with and without the high-risk GG genotype at the rs3129882 SNP. We confirmed that the high-risk GG genotype is associated with peripheral changes in MHCII inducibility, frequency of CD4+ T cells, and differentially accessible chromatin regions within the MHCII locus. Although our mouse studies indicate that myeloid MHCII reduction coinciding with an intact adaptive immune system is insufficient to fully protect dopamine neurons from α-synuclein-induced degeneration, our data are consistent with the overwhelming evidence implicating antigen presentation in PD pathophysiology.
Collapse
Affiliation(s)
- Elizabeth M Kline
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT USA
| | - Janna E Jernigan
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA USA
| | - Jeffrey Maurer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA USA
| | - Sakeenah Hicks SL
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA USA
| | - Mary K Herrick M
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL USA
| | - Rebecca L Wallings
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL USA
| | - Sean D Kelly
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jianjun Chang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kelly B Menees
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL USA
| | - Nikolaus R McFarland
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL USA
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA USA
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL USA
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL USA
- McKnight Brain Institute, University of Florida Health, Gainesville, FL USA
| | - Valerie Joers
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL USA
- McKnight Brain Institute, University of Florida Health, Gainesville, FL USA
| |
Collapse
|
6
|
Gao S, Wang Z, Huang Y, Yang G, Wang Y, Yi Y, Zhou Q, Jian X, Zhao G, Li B, Xu L, Xia K, Tang B, Li J. Early detection of Parkinson's disease through multiplex blood and urine biomarkers prior to clinical diagnosis. NPJ Parkinsons Dis 2025; 11:35. [PMID: 39994191 PMCID: PMC11850829 DOI: 10.1038/s41531-025-00888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Blood and urine biomarkers are commonly used to diagnose and monitor chronic diseases. We initially screened 67 biomarkers, including 4 urine biomarkers and 63 blood biomarkers, and identified 13 blood biomarkers significantly associated with Parkinson's disease (PD). Among these, we discovered three novel markers demonstrating strong associations: phosphate (P = 1.81 × 10-3), AST/ALT ratio (P = 8.53 × 10-6), and immature reticulocyte fraction (IRF) (P = 3.49 × 10-20). We also substantiated eight well-studied biomarkers and elucidated the roles of two previously ambiguous biomarkers. Our analyses confirmed IGF-1 (P = 7.46 × 10-29) as a risk factor, and C-reactive protein (CRP) (P = 1.43 × 10-3) as protective against PD. Genetic analysis highlighted that IRF, CRP, and IGF-1 share significant genetic loci with PD, notably at MAPT, SETD1A, HLA-DRB1, and HLA-DQA1. Furthermore, Mendelian randomization (MR) analysis suggested potential causal associations between IGF-1, CRP, and PD. We identified several blood biomarkers that may be associated with the risk of developing PD, providing valuable insights for further exploration of PD-related biomarkers.
Collapse
Affiliation(s)
- Shuo Gao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zheng Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuanfeng Huang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Guang Yang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yijing Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha, 410008, Hunan, China
| | - Yan Yi
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha, 410008, Hunan, China
| | - Qiao Zhou
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xingxing Jian
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha, 410008, Hunan, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Linyong Xu
- Hunan Provincial Key Laboratory of Oral Health Research & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Kun Xia
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
7
|
Kostic M, Zivkovic N, Cvetanovic A, Basic J, Stojanovic I. Dissecting the immune response of CD4 + T cells in Alzheimer's disease. Rev Neurosci 2025; 36:139-168. [PMID: 39238424 DOI: 10.1515/revneuro-2024-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
The formation of amyloid-β (Aβ) plaques is a neuropathological hallmark of Alzheimer's disease (AD), however, these pathological aggregates can also be found in the brains of cognitively unimpaired elderly population. In that context, individual variations in the Aβ-specific immune response could be key factors that determine the level of Aβ-induced neuroinflammation and thus the propensity to develop AD. CD4+ T cells are the cornerstone of the immune response that coordinate the effector functions of both adaptive and innate immunity. However, despite intensive research efforts, the precise role of these cells during AD pathogenesis is still not fully elucidated. Both pathogenic and beneficial effects have been observed in various animal models of AD, as well as in humans with AD. Although this functional duality of CD4+ T cells in AD can be simply attributed to the vast phenotype heterogeneity of this cell lineage, disease stage-specific effect have also been proposed. Therefore, in this review, we summarized the current understanding of the role of CD4+ T cells in the pathophysiology of AD, from the aspect of their antigen specificity, activation, and phenotype characteristics. Such knowledge is of practical importance as it paves the way for immunomodulation as a therapeutic option for AD treatment, given that currently available therapies have not yielded satisfactory results.
Collapse
Affiliation(s)
- Milos Kostic
- Department of Immunology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ana Cvetanovic
- Department of Oncology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Jelena Basic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ivana Stojanovic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| |
Collapse
|
8
|
Han S, Cho SA, Choi W, Eilbeck K, Coon H, Nho K, Lee Y. Interaction of genetic variants and methylation in transcript-level expression regulation in Alzheimer's disease by multi-omics data analysis. BMC Genomics 2025; 26:170. [PMID: 39979805 PMCID: PMC11844006 DOI: 10.1186/s12864-025-11362-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 02/13/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) presents a significant public health problem and major cause of dementia. Not only genetic but epigenetic factors contribute to complex and heterogeneous molecular mechanisms underlying AD risk; in particular, single nucleotide polymorphisms (SNPs) and DNA methylation can lead to dysregulation of gene expression in the AD brain. Each of these regulators has been independently studied well in AD progression, however, their interactive roles, particularly when they are located differently, still remains unclear. Here, we aimed to explore the interplay between SNPs and DNA methylation in regulating transcript expression levels in the AD brain through an integrative analysis of whole-genome sequencing, RNA-seq, and methylation data measured from the dorsolateral prefrontal cortex. RESULTS We identified 179 SNP-methylation combination pairs that showed statistically significant interactions associated with the expression of 67 transcripts (63 unique genes), enriched in functional pathways, including immune-related and post-synaptic assembly pathways. Particularly, a number of HLA family genes (HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DRB5, HLA-DPA1, HLA-K, HLA-DQB1, and HLA-DMA) were observed as having expression changes associated with the interplay. CONCLUSIONS Our findings especially implicate immune-related pathways as targets of these regulatory interactions. SNP-methylation interactions may thus contribute to the molecular complexity underlying immune-related pathogenies in AD patients. Our study provides a new molecular knowledge in the context of the interplay between genetic and epigenetic regulations, in that it concerns transcript expression status in AD.
Collapse
Affiliation(s)
- Seonggyun Han
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Soo-Ah Cho
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Wongyung Choi
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Karen Eilbeck
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Hilary Coon
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences and Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Younghee Lee
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
9
|
Elyaman W, Stern LJ, Jiang N, Dressman D, Bradley P, Klatzmann D, Bradshaw EM, Farber DL, Kent SC, Chizari S, Funk K, Devanand D, Thakur KT, Raj T, Dalahmah OA, Sarkis RA, Weiner HL, Shneider NA, Przedborski S. Exploring the role of T cells in Alzheimer's and other neurodegenerative diseases: Emerging therapeutic insights from the T Cells in the Brain symposium. Alzheimers Dement 2025; 21:e14548. [PMID: 39868844 PMCID: PMC11851166 DOI: 10.1002/alz.14548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/02/2024] [Accepted: 12/21/2024] [Indexed: 01/28/2025]
Abstract
This proceedings article summarizes the inaugural "T Cells in the Brain" symposium held at Columbia University. Experts gathered to explore the role of T cells in neurodegenerative diseases. Key topics included characterization of antigen-specific immune responses, T cell receptor (TCR) repertoire, microbial etiology in Alzheimer's disease (AD), and microglia-T cell crosstalk, with a focus on how T cells affect neuroinflammation and AD biomarkers like amyloid beta and tau. The symposium also examined immunotherapies for AD, including the Valacyclovir Treatment of Alzheimer's Disease (VALAD) trial, and two clinical trials leveraging regulatory T cell approaches for multiple sclerosis and amyotrophic lateral sclerosis therapy. Additionally, single-cell RNA/TCR sequencing of T cells and other immune cells provided insights into immune dynamics in neurodegenerative diseases. This article highlights key findings from the symposium and outlines future research directions to further understand the role of T cells in neurodegeneration, offering innovative therapeutic approaches for AD and other neurodegenerative diseases. HIGHLIGHTS: Researchers gathered to discuss approaches to study T cells in brain disorders. New technologies allow high-throughput screening of antigen-specific T cells. Microbial infections can precede several serious and chronic neurological diseases. Central and peripheral T cell responses shape neurological disease pathology. Immunotherapy can induce regulatory T cell responses in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Wassim Elyaman
- Division of Translational NeurobiologyDepartment of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- The Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Medical CenterNew YorkNew YorkUSA
- Center for Motor Neuron Biology and DiseaseColumbia University Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
| | - Lawrence J. Stern
- Department of Pathology, and Immunology and Microbiology ProgramUMass Chan Medical SchoolWorcesterMassachusettsUSA
| | - Ning Jiang
- Department of BioengineeringInstitute for Immunology and Immune HealthCenter for Cellular ImmunotherapiesAbramson Cancer CenterInstitute for RNA InnovationCenter for Precision Engineering for HealthUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dallin Dressman
- Division of Translational NeurobiologyDepartment of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- The Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Medical CenterNew YorkNew YorkUSA
- Center for Motor Neuron Biology and DiseaseColumbia University Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
| | - Philip Bradley
- Computational Biology ProgramPublic Health Sciences DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - David Klatzmann
- INSERM UMRS 959Immunology‐Immunopathology‐Immunotherapy (i3)Sorbonne UniversitéParisFrance
| | - Elizabeth M. Bradshaw
- Division of Translational NeurobiologyDepartment of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- The Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Medical CenterNew YorkNew YorkUSA
- Center for Motor Neuron Biology and DiseaseColumbia University Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Carol and Gene Ludwig Center for Research on NeurodegenerationDepartment of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
| | - Donna L. Farber
- Department of Microbiology and Immunology, and Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - Sally C. Kent
- Diabetes Center of ExcellenceDepartment of MedicineUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Shahab Chizari
- Department of BioengineeringInstitute for Immunology and Immune HealthCenter for Cellular ImmunotherapiesAbramson Cancer CenterInstitute for RNA InnovationCenter for Precision Engineering for HealthUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kristen Funk
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
| | - Davangere Devanand
- Department of PsychiatryColumbia University Medical CenterNew YorkNew YorkUSA
| | - Kiran T. Thakur
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
| | - Towfique Raj
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Osama Al Dalahmah
- Department of Pathology and Cell BiologyVagelos College of Physicians and SurgeonsColumbia University Irving Medical Center and the New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Rani A. Sarkis
- Epilepsy DivisionDepartment of NeurologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Howard L. Weiner
- Ann Romney Center for Neurologic DiseasesBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Neil A. Shneider
- Center for Motor Neuron Biology and DiseaseColumbia University Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Eleanor and Lou Gehrig ALS CenterColumbia UniversityNew YorkNew YorkUSA
| | - Serge Przedborski
- Center for Motor Neuron Biology and DiseaseColumbia University Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
10
|
Chew EG, Liu Z, Li Z, Chung SJ, Lian MM, Tandiono M, Heng YJ, Ng EY, Tan LC, Chng WL, Tan TJ, Peh EK, Ho YS, Chen XY, Lim EY, Chang CH, Leong JJ, Peh TX, Chan LL, Chao Y, Au WL, Prakash KM, Lim JL, Tay YW, Mok V, Chan AY, Lin JJ, Jeon BS, Song K, Tham CC, Pang CP, Ahn J, Park KH, Wiggs JL, Aung T, Tan AH, Ahmad Annuar A, Makarious MB, Blauwendraat C, Nalls MA, Robak LA, Alcalay RN, Gan-Or Z, Reynolds R, Lim SY, Xia Y, Khor CC, Tan EK, Wang Z, Foo JN. Exome sequencing in Asian populations identifies low-frequency and rare coding variation influencing Parkinson's disease risk. NATURE AGING 2025; 5:205-218. [PMID: 39572736 PMCID: PMC11839463 DOI: 10.1038/s43587-024-00760-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/24/2024] [Indexed: 02/21/2025]
Abstract
Parkinson's disease (PD) is an incurable, progressive and common movement disorder that is increasing in incidence globally because of population aging. We hypothesized that the landscape of rare, protein-altering variants could provide further insights into disease pathogenesis. Here we performed whole-exome sequencing followed by gene-based tests on 4,298 PD cases and 5,512 controls of Asian ancestry. We showed that GBA1 and SMPD1 were significantly associated with PD risk, with replication in a further 5,585 PD cases and 5,642 controls. We further refined variant classification using in vitro assays and showed that SMPD1 variants with reduced enzymatic activity display the strongest association (<44% activity, odds ratio (OR) = 2.24, P = 1.25 × 10-15) with PD risk. Moreover, 80.5% of SMPD1 carriers harbored the Asian-specific p.Pro332Arg variant (OR = 2.16; P = 4.47 × 10-8). Our findings highlight the utility of performing exome sequencing in diverse ancestry groups to identify rare protein-altering variants in genes previously unassociated with disease.
Collapse
Grants
- MOE-T2EP30220-0008 Ministry of Education - Singapore (MOE)
- MOH-000435 MOH | National Medical Research Council (NMRC)
- MOH-001110 MOH | National Medical Research Council (NMRC)
- OT2 OD032100 NIH HHS
- OT2 OD027060 NIH HHS
- MOH-000207 MOH | National Medical Research Council (NMRC)
- R01 EY015473 NEI NIH HHS
- MOH-001329 Ministry of Health -Singapore (MOH)
- MOH-001110 Ministry of Health -Singapore (MOH)
- MOE-MOET32020-0004 Ministry of Education - Singapore (MOE)
- MOH-001072 MOH | National Medical Research Council (NMRC)
- MOH-000559 MOH | National Medical Research Council (NMRC)
- OT2 OD027852 NIH HHS
- MOE-T2EP30220-0005 Ministry of Education - Singapore (MOE)
- P30 EY014104 NEI NIH HHS
- MOH-001214 MOH | National Medical Research Council (NMRC)
- Agency for Science, Technology and Research (A*STAR)
- University of Malaya Parkinson’s Disease and Movement Disorders Research Program (PV035-2017)
- Intramural Research Program of the NIH, National Institute on Aging, National Institutes of Health, Department of Health and Human Services; project number ZO1 AG000534, the National Institute of Neurological Disorders and Stroke, the Office of Intramural research, Office of the director NIH, and utilized the computational resources of the NIH STRIDES Initiative (https://cloud.nih.gov) through the Other Transaction agreement - Azure: OT2OD032100, Google Cloud Platform: OT2OD027060, Amazon Web Services: OT2OD027852, and the NIH HPC Biowulf cluster (https://hpc.nih.gov).
- Michael J. Fox Foundation for Parkinson's Research (Michael J. Fox Foundation)
- Parkinson's Foundation (Parkinson's Foundation, Inc.)
- Silverstein Foundation
- Singapore National Research Foundation (NRF-NRFI2018-01)
Collapse
Affiliation(s)
- Elaine Gy Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Zhehao Liu
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Zheng Li
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Michelle M Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Moses Tandiono
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Yue Jing Heng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Ebonne Y Ng
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Louis Cs Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Wee Ling Chng
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Tiak Ju Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Esther Kl Peh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Xiao Yin Chen
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Erin Yt Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Chu Hua Chang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Jonavan J Leong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Ting Xuan Peh
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ling Ling Chan
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neuroradiology, Singapore General Hospital, Singapore, Singapore
| | - Yinxia Chao
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Wing-Lok Au
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Kumar M Prakash
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vincent Mok
- Department of Medicine and Therapeutics, Division of Neurology, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Lui Che Woo Institute of Innovative Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Institute, Li Ka Shing Institute of Health Sciences, Hong Kong, China
| | - Anne Yy Chan
- Department of Medicine and Therapeutics, Division of Neurology, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Lui Che Woo Institute of Innovative Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Juei-Jueng Lin
- Department of Neurology, Chushang Show-Chwan Hospital, Nantou, Taiwan
| | - Beom S Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jeeyun Ahn
- Department of Ophthalmology, Seoul Metropolitan Government, Seoul National University Boramae Medical Center, Seoul, South Korea
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Tin Aung
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Azlina Ahmad Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, LLC, Bethesda, MD, USA
| | - Laurie A Robak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Roy N Alcalay
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Columbia University Irving Medical Center, New York, NY, USA
| | - Ziv Gan-Or
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Richard Reynolds
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Chiea Chuen Khor
- Duke-National University of Singapore Medical School, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
- Singapore Eye Research Institute, Singapore, Singapore.
| | - Eng-King Tan
- Duke-National University of Singapore Medical School, Singapore, Singapore.
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore.
| | - Zhenxun Wang
- Duke-National University of Singapore Medical School, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
11
|
Yao M, Miller GW, Vardarajan BN, Baccarelli AA, Guo Z, Liu Z. Deciphering proteins in Alzheimer's disease: A new Mendelian randomization method integrated with AlphaFold3 for 3D structure prediction. CELL GENOMICS 2024; 4:100700. [PMID: 39637861 DOI: 10.1016/j.xgen.2024.100700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Hidden confounding biases hinder identifying causal protein biomarkers for Alzheimer's disease in non-randomized studies. While Mendelian randomization (MR) can mitigate these biases using protein quantitative trait loci (pQTLs) as instrumental variables, some pQTLs violate core assumptions, leading to biased conclusions. To address this, we propose MR-SPI, a novel MR method that selects valid pQTL instruments using Leo Tolstoy's Anna Karenina principle and performs robust post-selection inference. Integrating MR-SPI with AlphaFold3, we developed a computational pipeline to identify causal protein biomarkers and predict 3D structural changes. Applied to genome-wide proteomics data from 54,306 UK Biobank participants and 455,258 subjects (71,880 cases and 383,378 controls) for a genome-wide association study of Alzheimer's disease, we identified seven proteins (TREM2, PILRB, PILRA, EPHA1, CD33, RET, and CD55) with structural alterations due to missense mutations. These findings offer insights into the etiology and potential drug targets for Alzheimer's disease.
Collapse
Affiliation(s)
- Minhao Yao
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong SAR, China
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Badri N Vardarajan
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA
| | - Andrea A Baccarelli
- Office of the Dean, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zijian Guo
- Department of Statistics, Rutgers University, Piscataway, NJ, USA.
| | - Zhonghua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Morató X, Puerta R, Cano A, Orellana A, de Rojas I, Capdevila M, Montrreal L, Rosende-Roca M, García-González P, Olivé C, García-Gutiérrez F, Blázquez J, Miguel A, Núñez-Llaves R, Pytel V, Alegret M, Fernández MV, Marquié M, Valero S, Cavazos JE, Mañes S, Boada M, Cabrera-Socorro A, Ruiz A. Associations of plasma SMOC1 and soluble IL6RA levels with the progression from mild cognitive impairment to dementia. Brain Behav Immun Health 2024; 42:100899. [PMID: 39640195 PMCID: PMC11617377 DOI: 10.1016/j.bbih.2024.100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/12/2024] [Accepted: 10/27/2024] [Indexed: 12/07/2024] Open
Abstract
Despite the central role attributed to neuroinflammation in the etiology and pathobiology of Alzheimer's disease (AD), the direct link between levels of inflammatory mediators in blood and cerebrospinal fluid (CSF) compartments, as well as their potential implications for AD diagnosis and progression, remains inconclusive. Moreover, there is debate on whether inflammation has a protective or detrimental effect on disease onset and progression. Indeed, distinct immunological mechanisms may govern protective and damaging effects at early and late stages, respectively. This study aims to (i) identify inflammatory mediators demonstrating robust correlations between peripheral and central nervous system (CNS) compartments by means of plasma and CSF analysis, respectively, and (ii) assess their potential significance in the context of AD and disease progression from mild cognitive impairment (MCI) to dementia. To achieve this, we have examined the inflammatory profile of a well-defined subcohort comprising 485 individuals from the Ace Alzheimer Center Barcelona (ACE). Employing a hierarchical clustering approach, we thoroughly evaluated the intercompartmental correlations of 63 distinct inflammation mediators, quantified in paired CSF and plasma samples, using advanced SOMAscan technology. Of the array of mediators investigated, only six mediators (CRP, IL1RAP, ILRL1, IL6RA, PDGFRB, and YKL-40) exhibited robust correlations between the central and peripheral compartments (proximity scores <400). To strengthen the validity of our findings, these identified mediators were subsequently validated in a second subcohort of individuals from ACE (n = 873). The observed plasma correlations across the entire cohort consistently have a Spearman rho value above 0.51 (n = 1,360, p < 1.77E-93). Of the high CSF-plasma correlated proteins, only soluble IL6RA (sIL6RA) displayed a statistically significant association with the conversion from MCI to dementia. This association remained robust even after applying a stringent Bonferroni correction (Cox proportional hazard ratio [HR] = 1.936 per standard deviation; p = 0.0018). This association retained its significance when accounting for various factors, including CSF amyloid (Aβ42) and Thr181-phosphorylated tau (p-tau) levels, age, sex, baseline Mini-Mental State Examination (MMSE) score, and potential sampling biases identified through principal component analysis (PCA) modeling. Furthermore, our study confirmed the association of both plasma and CSF levels of SPARC-related modular calcium-binding protein 1 (SMOC1) with amyloid and tau accumulation, indicating their role as early surrogate biomarkers for AD pathology. Despite the lack of a statistically significant correlation between SMOC1 levels in CSF and plasma, both acted as independent biomarkers of disease progression (HR > 1.3, p < 0.002). In conclusion, our study unveils that sIL6RA and SMOC1 are associated with MCI progression. The absence of correlations among inflammatory mediators between the central and peripheral compartments appears to be a common pattern, with only a few intriguing exceptions.
Collapse
Affiliation(s)
- Xavier Morató
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Puerta
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Universitat de Barcelona (UB), Spain
| | - Amanda Cano
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Spain
| | - Adelina Orellana
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - María Capdevila
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Spain
| | - Laura Montrreal
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Maitée Rosende-Roca
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Pablo García-González
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Claudia Olivé
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Josep Blázquez
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Andrea Miguel
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Raúl Núñez-Llaves
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Vanesa Pytel
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
| | - Montserrat Alegret
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Marta Marquié
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergi Valero
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Enrique Cavazos
- South Texas Medical Science Training Program, University of Texas Health San Antonio, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
| | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), 28049, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Agustín Ruiz
- Ace Alzheimer Center Barcelona-Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
13
|
Minibajeva O, Karelis G, Zolovs M, Ķēniņa V. Human Leukocyte Antigen Polymorphism and Blood Biomarker Profiles in Parkinson's Disease: A Pilot Study in a Latvian Cohort. Biomedicines 2024; 12:2709. [PMID: 39767615 PMCID: PMC11673695 DOI: 10.3390/biomedicines12122709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Parkinson's disease (PD) is a neurodegenerative disorder characterised by a high prevalence of sporadic cases. Various molecular mechanisms are involved in its pathogenesis. This pilot study aimed to identify potential risk and protective human leukocyte antigen (HLA) alleles in PD, discover candidate alleles for further research, and evaluate potential blood biomarkers. Methods: A total of 43 PD patients and 79 unrelated sex-matched controls were enrolled in this study. We analysed the polymorphism of HLA-DRB1, HLA-DQA1, and HLA-DQB1 alleles and the blood levels of biomarkers such as S100 calcium-binding protein A9 (S1000A9), kynurenic acid (KYNA), neurofilament light chain (NfL), and glutamate decarboxylase (GAD1). Results: We found that the frequencies of the HLA-DRB1*04, -DQA1*02:01, and -DQA1*03:01 alleles were significantly higher in the PD patients than in the controls, suggesting that these alleles are potential risk factors. Furthermore, the HLA-DQA1*02:01 allele was detected more frequently in the PD group when the disease onset was at 60 years or older. On the contrary, the HLA-DRB1*01 and HLA-DQA1*05:01 alleles were less common in the PD patients, indicating a possible protective effect. Regarding biomarkers, the blood levels of S100 calcium-binding protein A9 were significantly higher, and the kynurenic acid levels were significantly lower in the PD group. The NfL levels were also higher in the PD group but did not reach statistical significance, possibly due to the sensitivity limitations of the ELISA method used. The GAD1 levels showed no significant differences between the two groups. Conclusions: Our findings indicate that the HLA-DRB1*01 and -DRB1*04 alleles and the HLA-DQA1*02:01, -DQA1*03:01, and -DQA1*05:01 alleles are associated with PD. Moreover, S100 calcium-binding protein A9 and kynurenic acid can be considered potential blood biomarkers for PD. These findings contribute to the growing body of knowledge on PD and offer new directions for further research in Latvian cohorts.
Collapse
Affiliation(s)
- Olga Minibajeva
- Department of Doctoral Studies, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1079 Riga, Latvia
| | - Guntis Karelis
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1079 Riga, Latvia
- Department of Infectology, Rīga Stradiņš University, LV-1006 Riga, Latvia
| | - Maksims Zolovs
- Statistics Unit, Rīga Stradiņš University, LV-1048 Riga, Latvia
- Institute of Life Sciences and Technology, Daugavpils University, LV-5401 Daugavpils, Latvia
| | - Viktorija Ķēniņa
- Department of Neurology, Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia
- Department of Biology and Microbiology, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Institute of Oncology and Molecular Genetics, Rīga Stradiņš University, LV-1002 Riga, Latvia
| |
Collapse
|
14
|
Cătană CS, Marta MM, Văleanu M, Dican L, Crișan CA. Human Leukocyte Antigen and microRNAs as Key Orchestrators of Mild Cognitive Impairment and Alzheimer's Disease: A Systematic Review. Int J Mol Sci 2024; 25:8544. [PMID: 39126112 PMCID: PMC11312697 DOI: 10.3390/ijms25158544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The expression of inflamma-miRs and human leukocyte antigen (HLA) haplotypes could indicate mild cognitive impairment (MCI) and Alzheimer's disease (AD). We used international databases to conduct a systematic review of studies on HLA variants and a meta-analysis of research on microRNAs (miRNAs). We aimed to analyze the discriminative value of HLA variants and miRNAs in MCI, AD and controls to evaluate the protective or causative effect of HLA in cognitive decline, establish the role of miRNAs as biomarkers for the early detection of AD, and find a possible link between miRNAs and HLA. Statistical analysis was conducted using Comprehensive Meta-analysis software, version 2.2.050 (Biostat Inc., Englewood, NJ, USA). The effect sizes were estimated by the logarithm base 2 of the fold change. The systematic review revealed that some HLA variants, such as HLA-B*4402, HLA-A*33:01, HLA-A*33:01, HLA-DPB1, HLA-DR15, HLA-DQB1*03:03, HLA-DQB1*06:01, HLA-DQB1*03:01, SNPs on HLA-DRB1/DQB1, and HLA-DQA1, predisposed to cognitive decline before the occurrence of AD, while HLA-A1*01, HLA-DRB1∗13:02, HLA-DRB1*04:04, and HLA-DRB1*04:01 demonstrated a protective role. The meta-analysis identified let-7 and miR-15/16 as biomarkers for the early detection of AD. The association between these two miRNA families and the HLA variants that predispose to AD could be used for the early screening and prevention of MCI.
Collapse
Affiliation(s)
- Cristina Sorina Cătană
- Department of Medical Biochemistry, Faculty of Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Monica Mihaela Marta
- Department of Medical Education, Faculty of Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Mădălina Văleanu
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Lucia Dican
- Department of Medical Biochemistry, Faculty of Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Clinical Institute of Urology and Renal Transplantation, 400000 Cluj-Napoca, Romania
| | - Cătălina Angela Crișan
- Department of Neurosciences, Faculty of Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
15
|
Prapas P, Anagnostouli M. Macrophages and HLA-Class II Alleles in Multiple Sclerosis: Insights in Therapeutic Dynamics. Int J Mol Sci 2024; 25:7354. [PMID: 39000461 PMCID: PMC11242320 DOI: 10.3390/ijms25137354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Antigen presentation is a crucial mechanism that drives the T cell-mediated immune response and the development of Multiple Sclerosis (MS). Genetic alterations within the highly variable Major Histocompatibility Complex Class II (MHC II) have been proven to result in significant changes in the molecular basis of antigen presentation and the clinical course of patients with both Adult-Onset MS (AOMS) and Pediatric-Onset MS (POMS). Among the numerous polymorphisms of the Human Leucocyte Antigens (HLA), within MHC II complex, HLA-DRB1*15:01 has been labeled, in Caucasian ethnic groups, as a high-risk allele for MS due to the ability of its structure to increase affinity to Myelin Basic Protein (MBP) epitopes. This characteristic, among others, in the context of the trimolecular complex or immunological synapsis, provides the foundation for autoimmunity triggered by environmental or endogenous factors. As with all professional antigen presenting cells, macrophages are characterized by the expression of MHC II and are often implicated in the formation of MS lesions. Increased presence of M1 macrophages in MS patients has been associated both with progression and onset of the disease, each involving separate but similar mechanisms. In this critical narrative review, we focus on macrophages, discussing how HLA genetic alterations can promote dysregulation of this population's homeostasis in the periphery and the Central Nervous System (CNS). We also explore the potential interconnection in observed pathological macrophage mechanisms and the function of the diverse structure of HLA alleles in neurodegenerative CNS, seen in MS, by comparing available clinical with molecular data through the prism of HLA-immunogenetics. Finally, we discuss available and experimental pharmacological approaches for MS targeting the trimolecular complex that are based on cell phenotype modulation and HLA genotype involvement and try to reveal fertile ground for the potential development of novel drugs.
Collapse
Affiliation(s)
- Petros Prapas
- Research Immunogenetics Laboratory, First Department of Neurology, Aeginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, Vas. Sofias 72-74, 11528 Athens, Greece
| | - Maria Anagnostouli
- Research Immunogenetics Laboratory, First Department of Neurology, Aeginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, Vas. Sofias 72-74, 11528 Athens, Greece
- Multiple Sclerosis and Demyelinating Diseases Unit, Center of Expertise for Rare Demyelinating and Autoimmune Diseases of CNS, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens NKUA, Aeginition University Hospital, Vas. Sofias 72-74, 11528 Athens, Greece
| |
Collapse
|
16
|
Lin S, Gao B, Xu R, Shang H, Xiong Y, Zhou J, Yang Z, Jiang C, Yan S. Multiple myeloma, IL6, and risk of schizophrenia: A Mendelian randomization, transcriptome, and Bayesian colocalization study. EJHAEM 2024; 5:462-473. [PMID: 38895088 PMCID: PMC11182408 DOI: 10.1002/jha2.890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 06/21/2024]
Abstract
Numerous clinical studies speculated the association between multiple myeloma (MM) and inflammatory diseases; however, there is limited validation of these claims via establishing a causal relationship and revealing the underlying mechanism. This exploratory study employed bidirectional Mendelian randomization (MR) analysis to investigate the causal relationships between MM and inflammatory diseases, including atherosclerosis, asthma, ankylosing spondylitis, Alzheimer's disease (AD), Parkinson's disease (PD), sarcoidosis, inflammatory bowel disease, nonalcoholic fatty liver disease, type II diabetes, and schizophrenia (SZ). Transcriptomic and genome-wide Bayesian colocalization analyses were further applied to reveal the underlying mechanism. A significant and previously unrecognized positive association was identified between genetic predisposition to MM and the risk of SZ. Two independent case reports showed that treatment-resistant psychosis is due to underlying MM and is resolved by treating MM. From our MR analyses, various statistical methods confirmed this association without detecting heterogeneity or pleiotropy effects. Transcriptomic analysis revealed shared inflammation-relevant pathways in MM and SZ patients, suggesting inflammation as a potential pathophysiological mediator of MM's causal effect on SZ. Bayesian colocalization analysis identified rs9273086, which maps to the protein-coding region of HLA-DRB1, as a common risk variant for both MM and SZ. Polymorphism of the HLA-DRB1 allele has been implicated in AD and PD, further highlighting the impact of our results. Additionally, we confirmed that interleukin-6 (IL-6) is a risk factor for SZ through secondary MR, reinforcing the role of neuroinflammation in SZ etiology. Overall, our findings showed that genetic predisposition to MM, HLA-DRB1 polymorphism, and enhanced IL-6 signaling are associated with the increased risk of SZ, providing evidence for a causal role for neuroinflammation in SZ etiology.
Collapse
Affiliation(s)
- Shuyang Lin
- Division of Hematology, Department of MedicineWashington University School of Medicine in St LouisSt LouisMissouriUSA
| | - Bei Gao
- Division of Genetics and Genomic Medicine, Department of PediatricsWashington University School of Medicine in St. LouisSt LouisMissouriUSA
| | - Rui Xu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Hongming Shang
- Department of Medical Oncology, Dana‐Farber Cancer InstituteHarvard Medical SchoolBostonMassachusettsUSA
| | - Yan Xiong
- Division of Genetics and Genomic Medicine, Department of PediatricsWashington University School of Medicine in St. LouisSt LouisMissouriUSA
| | - Jiayi Zhou
- Department of HematologyFujian Medical University Union HospitalFuzhouFujianChina
| | - Zhe Yang
- Department of MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Chao Jiang
- Department of Cancer CenterThe People's Hospital of BaoanShenzhenGuangdongChina
| | - Shumei Yan
- Department of Pathology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerGuangzhouChina
| |
Collapse
|
17
|
Wetering JV, Geut H, Bol JJ, Galis Y, Timmermans E, Twisk JWR, Hepp DH, Morella ML, Pihlstrom L, Lemstra AW, Rozemuller AJM, Jonkman LE, van de Berg WDJ. Neuroinflammation is associated with Alzheimer's disease co-pathology in dementia with Lewy bodies. Acta Neuropathol Commun 2024; 12:73. [PMID: 38715119 PMCID: PMC11075309 DOI: 10.1186/s40478-024-01786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Neuroinflammation and Alzheimer's disease (AD) co-pathology may contribute to disease progression and severity in dementia with Lewy bodies (DLB). This study aims to clarify whether a different pattern of neuroinflammation, such as alteration in microglial and astroglial morphology and distribution, is present in DLB cases with and without AD co-pathology. METHODS The morphology and load (% area of immunopositivity) of total (Iba1) and reactive microglia (CD68 and HLA-DR), reactive astrocytes (GFAP) and proteinopathies of alpha-synuclein (KM51/pser129), amyloid-beta (6 F/3D) and p-tau (AT8) were assessed in a cohort of mixed DLB + AD (n = 35), pure DLB (n = 15), pure AD (n = 16) and control (n = 11) donors in limbic and neocortical brain regions using immunostaining, quantitative image analysis and confocal microscopy. Regional and group differences were estimated using a linear mixed model analysis. RESULTS Morphologically, reactive and amoeboid microglia were common in mixed DLB + AD, while homeostatic microglia with a small soma and thin processes were observed in pure DLB cases. A higher density of swollen astrocytes was observed in pure AD cases, but not in mixed DLB + AD or pure DLB cases. Mixed DLB + AD had higher CD68-loads in the amygdala and parahippocampal gyrus than pure DLB cases, but did not differ in astrocytic loads. Pure AD showed higher Iba1-loads in the CA1 and CA2, higher CD68-loads in the CA2 and subiculum, and a higher astrocytic load in the CA1-4 and subiculum than mixed DLB + AD cases. In mixed DLB + AD cases, microglial load associated strongly with amyloid-beta (Iba1, CD68 and HLA-DR), and p-tau (CD68 and HLA-DR), and minimally with alpha-synuclein load (CD68). In addition, the highest microglial activity was found in the amygdala and CA2, and astroglial load in the CA4. Confocal microscopy demonstrated co-localization of large amoeboid microglia with neuritic and classic-cored plaques of amyloid-beta and p-tau in mixed DLB + AD cases. CONCLUSIONS In conclusion, microglial activation in DLB was largely associated with AD co-pathology, while astrocytic response in DLB was not. In addition, microglial activity was high in limbic regions, with prevalent AD pathology. Our study provides novel insights into the molecular neuropathology of DLB, highlighting the importance of microglial activation in mixed DLB + AD.
Collapse
Affiliation(s)
- Janna van Wetering
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Hanne Geut
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - John J Bol
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Yvon Galis
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Evelien Timmermans
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Biostatistics, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Dagmar H Hepp
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Martino L Morella
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Lasse Pihlstrom
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Afina W Lemstra
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, De Boelelaan 1117, The Netherlands
- Alzheimer Center, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands.
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Wu YS, Zheng WH, Liu TH, Sun Y, Xu YT, Shao LZ, Cai QY, Tang YQ. Joint-tissue integrative analysis identifies high-risk genes for Parkinson's disease. Front Neurosci 2024; 18:1309684. [PMID: 38576865 PMCID: PMC10991821 DOI: 10.3389/fnins.2024.1309684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Abstract
The loss of dopaminergic neurons in the substantia nigra and the abnormal accumulation of synuclein proteins and neurotransmitters in Lewy bodies constitute the primary symptoms of Parkinson's disease (PD). Besides environmental factors, scholars are in the early stages of comprehending the genetic factors involved in the pathogenic mechanism of PD. Although genome-wide association studies (GWAS) have unveiled numerous genetic variants associated with PD, precisely pinpointing the causal variants remains challenging due to strong linkage disequilibrium (LD) among them. Addressing this issue, expression quantitative trait locus (eQTL) cohorts were employed in a transcriptome-wide association study (TWAS) to infer the genetic correlation between gene expression and a particular trait. Utilizing the TWAS theory alongside the enhanced Joint-Tissue Imputation (JTI) technique and Mendelian Randomization (MR) framework (MR-JTI), we identified a total of 159 PD-associated genes by amalgamating LD score, GTEx eQTL data, and GWAS summary statistic data from a substantial cohort. Subsequently, Fisher's exact test was conducted on these PD-associated genes using 5,152 differentially expressed genes sourced from 12 PD-related datasets. Ultimately, 29 highly credible PD-associated genes, including CTX1B, SCNA, and ARSA, were uncovered. Furthermore, GO and KEGG enrichment analyses indicated that these genes primarily function in tissue synthesis, regulation of neuron projection development, vesicle organization and transportation, and lysosomal impact. The potential PD-associated genes identified in this study not only offer fresh insights into the disease's pathophysiology but also suggest potential biomarkers for early disease detection.
Collapse
Affiliation(s)
- Ya-Shi Wu
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Wen-Han Zheng
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Tai-Hang Liu
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yan Sun
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yu-Ting Xu
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Li-Zhen Shao
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Qin-Yu Cai
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Ya Qin Tang
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
He R, Zeng Y, Wang C, Chen L, Cai G, Chen Y, Wang Y, Ye Q, Chen X. Associative role of HLA-DRB1 as a protective factor for susceptibility and progression of Parkinson's disease: a Chinese cross-sectional and longitudinal study. Front Aging Neurosci 2024; 16:1361492. [PMID: 38586829 PMCID: PMC10995924 DOI: 10.3389/fnagi.2024.1361492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/13/2024] [Indexed: 04/09/2024] Open
Abstract
Background Previous genome-wide association studies investigating the relationship between the HLA-DRB1 and the risk of Parkinson's disease (PD) have shown limited racial diversity and have not explored clinical heterogeneity extensively. Methods The study consisted of three parts: a case-control study, a cross-sectional study, and a longitudinal cohort study. The case-control study included 477 PD patients and 477 healthy controls to explore the relationship between rs660895 and PD susceptibility. The cross-sectional study utilized baseline data from 429 PD patients to examine the correlation between rs660895 and PD features. The longitudinal study included 388 PD patients who completed a 3-year follow-up to investigate the effects of rs660895 on PD progression. Results In the case-control study, HLA-DRB1 rs660895-G allele was associated with a decreased risk of PD in allele model (adjusted OR=0.72, p = 0.003) and dominant model (AG + GG vs. AA: adjusted OR = 0.67, p = 0.003). In the cross-sectional analysis, there was no association between rs660895 and the onset age, motor phenotype, or initial motor symptoms. In the longitudinal analysis, PD patients with the G allele exhibited a slower progression of motor symptoms (MDS-UPDRS-III total score: β = -5.42, p < 0.001, interaction ptime × genotype < 0.001) and non-motor symptoms (NMSS score: β = -4.78, p = 0.030, interaction ptime × genotype < 0.001). Conclusion Our findings support HLA-DRB1 rs660895-G allele is a protective genetic factor for PD risk in Chinese population. Furthermore, we also provide new evidence for the protective effect of rs660895-G allele in PD progression.
Collapse
Affiliation(s)
- Raoli He
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Yuqi Zeng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Chaodong Wang
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Lina Chen
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Ying Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Yingqing Wang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Xiaochun Chen
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|