1
|
Zhou P, Chen J, Li HH, Sun J, Gao SX, Zheng QW, Wei L, Jiang CY, Guan JC. Exposure of pregnant rats to staphylococcal enterotoxin B attenuates the response of increased Tregs to re-exposure to SEB in the thymus of adult offspring. Microb Pathog 2020; 145:104225. [PMID: 32353581 DOI: 10.1016/j.micpath.2020.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/06/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022]
Abstract
Regulatory T cells (Tregs) play an essential role during homeostasis and tolerance of the immune system. Based on our previous study that exposure of pregnant rats to staphylococcal enterotoxin B (SEB) can alter the percentage of CD4/CD8 subsets in the thymus of the offspring, in this study, we focus on the influence of exposure of pregnant rats to SEB on number, function and response of Tregs in the thymus of the offspring. Pregnant rats at gestational day of 16 were intravenously injected with 15 μg SEB and the thymuses of the neonatal and adult offspring were harvested for this study. We found that exposure of pregnant rats to SEB could significantly increase the absolute number of Tregs and the FoxP3 expression level in the thymus of not only neonatal but also adult offspring. Re-exposure of adult offspring to SEB remarkably reduced the suppressive capacity of Tregs to CD4+ T cells and the expression levels of TGF-β and IL-10 in the thymus, but had no effect on production of IL-4 and IFN-γ. Furthermore, it also notedly decreased the absolute number of Tregs and the FoxP3 expression level. These data suggest that prenatal exposure of pregnant rats to SEB attenuates the response of increased Tregs to re-exposure to SEB in the thymus of adult offspring.
Collapse
Affiliation(s)
- Ping Zhou
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China; Department of Microbiology, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Jie Chen
- Department of Cardiology, Jiande Branch, Second Affiliated Hospital, Zhejiang University School of Medicine, Jiande, 311600, PR China
| | - Hui-Hui Li
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Jing Sun
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Shu-Xian Gao
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China; Department of Microbiology, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Qing-Wei Zheng
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Li Wei
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Cheng-Yi Jiang
- Department of Otolaryngology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233033, PR China
| | - Jun-Chang Guan
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China; Department of Microbiology, Bengbu Medical College, Bengbu, Anhui, 233030, PR China.
| |
Collapse
|
2
|
Gao SX, Sun J, Li HH, Chen J, Kashif MR, Zhou P, Wei L, Zheng QW, Wu LG, Guan JC. Prenatal exposure of staphylococcal enterotoxin B attenuates the development and function of blood regulatory T cells to repeated staphylococcal enterotoxin B exposure in adult offspring rats. J Med Microbiol 2020; 69:591-599. [PMID: 32043953 PMCID: PMC7440678 DOI: 10.1099/jmm.0.001152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/09/2020] [Indexed: 01/12/2023] Open
Abstract
Introduction. Staphylococcal enterotoxin B (SEB) is an extensively studied super-antigen. A previous study by us suggested that SEB exposure during pregnancy could alter the percentage of CD4+ and CD8+ T cells in the peripheral blood of neonatal offspring rats.Aim. It is unknown whether SEB exposure during pregnancy can influence the development of regulatory T cells (Tregs) in the peripheral blood of neonatal offspring rats.Methodology. Pregnant rats at gestational day 16 were intravenously injected with 15 µg SEB. Peripheral blood was acquired from neonatal offspring rats on days 1, 3 and 5 after delivery and from adult offspring rats for determination of Treg number by cytometry, cytokines by ELISA, and FoxP3 expression by real-time PCR and western blot.Results. SEB given to pregnant rats significantly increased the absolute number of Tregs and the expression levels of FoxP3, IL-10 and TGF-β (P<0.05, P<0.01) in the peripheral blood of not only neonatal but also adult offspring rats. Furthermore, repeated SEB exposure in adult offspring rats significantly decreased the absolute number of Tregs (P<0.01), and the expression levels of FoxP3, IL-10 and TGF-β (P<0.05, P<0.01) in their peripheral blood.Conclusion. Prenatal SEB exposure attenuates the development and function of Tregs to repeated SEB exposure in the peripheral blood of adult offspring rats.
Collapse
Affiliation(s)
- Shu-xian Gao
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
- Department of Microbiology, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Jing Sun
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Hui-hui Li
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Jie Chen
- Department of Cardiology, Jiande Branch, Second Affiliated Hospital, Zhejian University School of Medicine, Jiande 311600, PR China
| | - Mohsin Raza Kashif
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Ping Zhou
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
- Department of Microbiology, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Li Wei
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Qing-wei Zheng
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Li-gao Wu
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Jun-chang Guan
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
- Department of Microbiology, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| |
Collapse
|
3
|
Deng G, Song X, Fujimoto S, Piccirillo CA, Nagai Y, Greene MI. Foxp3 Post-translational Modifications and Treg Suppressive Activity. Front Immunol 2019; 10:2486. [PMID: 31681337 PMCID: PMC6813729 DOI: 10.3389/fimmu.2019.02486] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
Regulatory T cells (Tregs) are engaged in maintaining immune homeostasis and preventing autoimmunity. Treg cells include thymic Treg cells and peripheral Treg cells, both of which can suppress the immune response via multiple distinct mechanisms. The differentiation, proliferation, suppressive function and survival of Treg cells are affected by distinct energy metabolic programs. Tissue-resident Treg cells hold unique features in comparison with the lymphoid organ Treg cells. Foxp3 transcription factor is a lineage master regulator for Treg cell development and suppressive activity. Accumulating evidence indicates that the activity of Foxp3 protein is modulated by various post-translational modifications (PTMs), including phosphorylation, O-GlcNAcylation, acetylation, ubiquitylation and methylation. These modifications affect multiple aspects of Foxp3 function. In this review, we define features of Treg cells and roles of Foxp3 in Treg biology, and summarize current research in PTMs of Foxp3 protein involved in modulating Treg function. This review also attempts to define Foxp3 dimer modifications relevant to mediating Foxp3 activity and Treg suppression. Understanding Foxp3 protein features and modulation mechanisms may help in the design of rational therapies for immune diseases and cancer.
Collapse
Affiliation(s)
- Guoping Deng
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Xiaomin Song
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | | | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Centre of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Yasuhiro Nagai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Eroukhmanoff L, Oderup C, Ivars F. T-cell tolerance induced by repeated antigen stimulation: selective loss of Foxp3- conventional CD4 T cells and induction of CD4 T-cell anergy. Eur J Immunol 2009; 39:1078-87. [PMID: 19283777 DOI: 10.1002/eji.200838653] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Repeated immunization of mice with bacterial superantigens induces extensive deletion and anergy of reactive CD4 T cells. Here we report that the in vitro proliferation anergy of CD4 T cells from TCR transgenic mice immunized three times with staphylococcal enterotoxin B (SEB) (3 x SEB) is partially due to an increased frequency of Foxp3(+) CD4 T cells. Importantly, reduced number of conventional CD25(-) Foxp3(-) cells, rather than conversion of such cells to Foxp3(+) cells, was the cause of that increase and was also seen in mice repeatedly immunized with OVA (3 x OVA) and OVA-peptide (OVAp) (3 x OVAp). Cell-transfer experiments revealed profound but transient anergy of CD4 T cells isolated from 3 x OVAp and 3x SEB mice. However, the in vivo anergy was CD4 T-cell autonomous and independent of Foxp3(+) Treg. Finally, proliferation of transferred CD4 T cells was inhibited in repeatedly immunized mice but inhibition was lost when transfer was delayed, despite the maintenance of elevated frequency of Foxp3(+) cells. These data provide important implications for Foxp3(+) cell-mediated tolerance in situations of repeated antigen exposure such as human persistent infections.
Collapse
|
5
|
Liao YP, Wang CC, Schaue D, Iwamoto KS, McBride WH. Local irradiation of murine melanoma affects the development of tumour-specific immunity. Immunology 2009; 128:e797-804. [PMID: 19740341 DOI: 10.1111/j.1365-2567.2009.03084.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Radiation therapy affects the immune system. In addition to killing radiosensitive immune cells, it can induce functional changes in those cells that survive. Our recent studies showed that the exposure of dendritic cells (DCs) to radiation in vitro influences their ability to present tumour antigen in vivo. Here we show that local radiation therapy of B16 melanoma tumours inhibits the development of systemic immunity to the melanoma antigen MART-1. This inhibition could not be overcome by intratumoral injection of DCs expressing human MART-1 after radiation therapy, suggesting that a form of immune suppression might have developed. On the other hand, injection of MART-expressing DCs prior to tumour irradiation was able to prevent inhibition from developing. These results suggest that local radiation therapy may block the generation of immunity under some circumstances and that strategies may be required to prevent this and allow radiation-induced cell death to translate fully into the development of systemic immunity.
Collapse
Affiliation(s)
- Yu-Pei Liao
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095-1714, USA
| | | | | | | | | |
Collapse
|
6
|
Thomas RM, Saouaf SJ, Wells AD. Superantigen-induced CD4+ T cell tolerance is associated with DNA methylation and histone hypo-acetylation at cytokine gene loci. Genes Immun 2007; 8:613-8. [PMID: 17671507 DOI: 10.1038/sj.gene.6364415] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Anergy is an important mechanism of peripheral tolerance in which T cells lose the capacity to produce proinflammatory cytokines such as interleukin-2 (IL-2) and interferon-gamma (IFNgamma). To determine whether the induction of T-cell anergy in vivo is associated with epigenetic changes that oppose cytokine gene expression, we measured DNA methylation and histone acetylation at the IL2 and IFNgamma loci in CD4+ T cells from mice tolerant to a viral superantigen. Tolerant T cells exhibited more DNA methylation and less histone acetylation at the regulatory regions of the IL2 and IFNgamma genes than effector T cells, which are able to produce IL-2 and IFNgamma. These data show that T-cell anergy in this model is associated with epigenetic modifications that oppose gene expression, and suggest that these mechanisms may be important in the maintenance of tolerance.
Collapse
Affiliation(s)
- R M Thomas
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | |
Collapse
|
7
|
Field EH, Kulhankova K, Nasr ME. Natural Tregs, CD4+CD25+ inhibitory hybridomas, and their cell contact dependent suppression. Immunol Res 2007; 39:62-78. [DOI: 10.1007/s12026-007-0064-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/30/2022]
|
8
|
Li B, Samanta A, Song X, Furuuchi K, Iacono KT, Kennedy S, Katsumata M, Saouaf SJ, Greene MI. FOXP3 ensembles in T-cell regulation. Immunol Rev 2006; 212:99-113. [PMID: 16903909 DOI: 10.1111/j.0105-2896.2006.00405.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our recent studies have identified dynamic protein ensembles containing forkhead box protein 3 (FOXP3) that provide insight into the molecular complexity of suppressor T-cell activities, and it is our goal to determine how these ensembles regulate FOXP3's transcriptional activity in vivo. In this review, we summarize our current understanding of how FOXP3 expression is induced and how FOXP3 functions in vivo as a transcriptional regulator by assembling a multisubunit complex involved in histone modification as well as chromatin remodeling.
Collapse
Affiliation(s)
- Bin Li
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang GX, Yu S, Calida D, Zhao Z, Gran B, Kamoun M, Rostami A. Loss of the surface antigen 3G11 characterizes a distinct population of anergic/regulatory T cells in experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2006; 176:3366-73. [PMID: 16517704 DOI: 10.4049/jimmunol.176.6.3366] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell anergy is an important mechanism in the induction of peripheral tolerance against autoimmune diseases, yet no surface marker unique to anergic T cells in these diseases has been identified. In this study we induced in vivo anergy by i.v. tolerance against experimental autoimmune encephalomyelitis in myelin basic protein TCR transgenic mice, and showed that the hyporesponsiveness of autoantigen-reactive T cells from tolerized mice was associated with a dramatic loss of 3G11, a cell surface molecule on the surface of CD4+ T cells. Purified 3G11-CD4+ T cells lost autoantigen-induced proliferation and IL-2 production, whereas 3G11+CD4+ T cells retained responsiveness. Furthermore, 3G11- T cells actively suppressed proliferation and Th1 cytokine production of 3G11+ T cells and splenocytes of nontolerized mice. Active suppression by 3G11- T cells was at least partially due to soluble immunoregulatory factors, including IL-10. The T regulatory property of 3G11- T cells was confirmed in vivo because the transfer of purified 3G11- T cells effectively suppressed clinical experimental autoimmune encephalomyelitis. We conclude that loss of the surface molecule 3G11 characterizes a distinct population of anergic/regulatory T cells. This is the first demonstration of the ability to identify and purify anergic T cells by a distinct cell surface marker in an autoimmune disease and paves the way for a better understanding of the mechanism of tolerance in autoimmune diseases.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Cell Proliferation
- Cells, Cultured
- Clonal Anergy/immunology
- Disease Models, Animal
- Down-Regulation
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Immunosuppressive Agents/pharmacology
- Interleukin-10/pharmacology
- Interleukin-4/pharmacology
- L-Selectin/metabolism
- Mice
- Mice, Transgenic
- Myelin Basic Protein/pharmacology
- Peptide Fragments/pharmacology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Brennan PJ, Saouaf SJ, Van Dyken S, Marth JD, Li B, Bhandoola A, Greene MI. Sialylation regulates peripheral tolerance in CD4+ T cells. Int Immunol 2005; 18:627-35. [PMID: 16291658 DOI: 10.1093/intimm/dxh344] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Decreased binding by the 6C10 auto-antibody serves as a unique marker for CD4+ T cell unresponsiveness after the induction of T cell tolerance in Vbeta8.1 TCR transgenic mice. We further define the nature of the epitope recognized by the 6C10 antibody to be a subset of Thy-1 bearing incompletely sialylated N-linked glycans, and furthermore, we demonstrate that tolerant CD4+ T cells have an increased degree of cell-surface sialylation. To test the significance of the altered glycosylation state identified by the 6C10 auto-antibody in the tolerant CD4+ T cell population, surface sialic acid was cleaved enzymatically. Treatment of purified peripheral CD4+ T cells with Vibrio cholerae sialidase (VCS) leads to increased 6C10 binding, significantly enhances proliferation in the tolerant CD4+ population and corrects defects in phosphotyrosine signaling observed in the tolerant CD4+ T cell. Furthermore, in vivo administration of VCS enhances proliferation in both tolerant and naive CD4+ T cell subsets. These studies suggest that sialylation of glycoproteins on the surface of the CD4+ T cell contributes to the regulation of T cell responsiveness in the tolerant state.
Collapse
Affiliation(s)
- Patrick J Brennan
- Department of Pathology and Laboratory Medicine, 252 John Morgan Building, 36th & Hamilton Walk, Philadelphia, PA 19104-6082, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Bushell A, Jones E, Gallimore A, Wood K. The Generation of CD25+CD4+Regulatory T Cells That Prevent Allograft Rejection Does Not Compromise Immunity to a Viral Pathogen. THE JOURNAL OF IMMUNOLOGY 2005; 174:3290-7. [PMID: 15749860 DOI: 10.4049/jimmunol.174.6.3290] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In all but a small minority of cases, continued survival of solid organ grafts after transplantation depends on lifelong, nonselective immunosuppression that, although effective, results in increased rates of infection, cancer, and vascular disease. Therapeutic strategies that engage or mimic self-tolerance may allow prolonged allograft survival without the disadvantages of nonspecific immunotherapy. Pretreatment of recipient mice with donor alloantigen combined with transient modulation of the peripheral T cell pool with anti-CD4 Ab leads to the indefinite survival of MHC-incompatible cardiac allografts without further therapy. Tolerance is dependent on CD25+ CD4+ regulatory T cells that arise from naive CD25- precursors and regulate rejection via both IL-10 and CTLA-4. Although these cells are clearly effective at controlling rejection, the proven ability of recently activated CD25+ cells to mediate bystander regulation raises the possibility that tolerized individuals might also have a reduced capacity to respond to environmental pathogens. We have examined anti-influenza responses in tolerized primary heart recipients, secondary recipients following adoptive transfer of regulatory populations, and tolerized mice in which bystander regulation has been deliberately induced. Neither virus-specific CTL activity in vitro nor the clearance of virus in vivo was significantly diminished in any of these treatment groups compared with infected unmanipulated controls. The data suggest that the induction of dominant allograft tolerance dependent on regulatory T cells does not necessarily result in attenuated responses to pathogens providing further support for the development of tolerance induction protocols in clinical transplantation.
Collapse
Affiliation(s)
- Andrew Bushell
- Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| | | | | | | |
Collapse
|
12
|
Brennan PJ, Saouaf SJ, Greene MI, Shen Y. Anergy and suppression as coexistent mechanisms for the maintenance of peripheral T cell tolerance. Immunol Res 2004; 27:295-302. [PMID: 12857976 DOI: 10.1385/ir:27:2-3:295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Using T cell receptor (TCR) V(beta)8.1 transgenic mice, we have developed an in vivo system for the study of peripheral T cell tolerance, in which two distinct mechanisms of peripheral tolerance are observed to act simultaneously during the maintenance phase of the nonresponsive state. These two mechanisms, anergy and suppression, have been studied using the CD4+ T cell lineage markers 6C10 and CD25, which can be employed to purify the cells involved in each form of tolerance. Findings and perspectives gained through the study of peripheral tolerance in our model, as well as relevant observations from the literature, will be reviewed.
Collapse
Affiliation(s)
- Patrick J Brennan
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
13
|
Rothermel AL, Wang Y, Schechner J, Mook-Kanamori B, Aird WC, Pober JS, Tellides G, Johnson DR. Endothelial cells present antigens in vivo. BMC Immunol 2004; 5:5. [PMID: 15113397 PMCID: PMC394319 DOI: 10.1186/1471-2172-5-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Accepted: 03/16/2004] [Indexed: 02/03/2023] Open
Abstract
Background Immune recognition of vascular endothelial cells (EC) has been implicated in allograft rejection, protection against pathogens, and lymphocyte recruitment. However, EC pervade nearly all tissues and predominate in none, complicating any direct test of immune recognition. Here, we examined antigen presentation by EC in vivo by testing immune responses against E. coli β-galactosidase (β-gal) in two lines of transgenic mice that express β-gal exclusively in their EC. TIE2-lacZ mice express β-gal in all EC and VWF-lacZ mice express β-gal in heart and brain microvascular EC. Results Transgenic and congenic wild type FVB mice immunized with β-gal expression vector DNA or β-gal protein generated high titer, high affinity antisera containing comparable levels of antigen-specific IgG1 and IgG2a isotypes, suggesting equivalent activation of T helper cell subsets. The immunized transgenic mice remained healthy, their EC continued to express β-gal, and their blood vessels showed no histological abnormalities. In response to β-gal in vitro, CD4+ and CD8+ T cells from immunized transgenic and FVB mice proliferated, expressed CD25, and secreted IFN-γ. Infection with recombinant vaccinia virus encoding β-gal raised equivalent responses in transgenic and FVB mice. Hearts transplanted from transgenic mice into FVB mice continued to beat and the graft EC continued to express β-gal. These results suggested immunological ignorance of the transgene encoded EC protein. However, skin transplanted from TIE2-lacZ onto FVB mice lost β-gal+ EC and the hosts developed β-gal-specific antisera, demonstrating activation of host immune effector mechanisms. In contrast, skin grafted from TIE2-lacZ onto VWF-lacZ mice retained β-gal+ EC and no antisera developed, suggesting a tolerant host immune system. Conclusion Resting, β-gal+ EC in transgenic mice tolerize specific lymphocytes that would otherwise respond against β-gal expressed by EC within transplanted skin. We conclude that EC effectively present intracellular "self" proteins to the immune system. However, antigen presentation by EC does not delete or anergize a large population of specific lymphocytes that respond to the same protein following conventional immunization with protein or expression vector DNA. These results clearly demonstrate striking context sensitivity in the immune recognition of EC, a subtlety that must be better understood in order to treat immune diseases and complications involving the vasculature.
Collapse
Affiliation(s)
- Annette L Rothermel
- Department of Pathology, Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Yinong Wang
- Department of Surgery, Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Jeffrey Schechner
- Department of Dermatology, Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Barry Mook-Kanamori
- Department of Pathology, Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - William C Aird
- Beth Israel Deaconess Medical Center, Division of Molecular and Vascular Medicine, Boston, MA 02215, USA
| | - Jordan S Pober
- Department of Pathology, Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - George Tellides
- Department of Surgery, Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - David R Johnson
- Department of Pathology, Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| |
Collapse
|
14
|
Grundström S, Cederbom L, Sundstedt A, Scheipers P, Ivars F. Superantigen-induced regulatory T cells display different suppressive functions in the presence or absence of natural CD4+CD25+ regulatory T cells in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5008-17. [PMID: 12734345 DOI: 10.4049/jimmunol.170.10.5008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Repeated exposures to both microbial and innocuous Ags in vivo have been reported to both eliminate and tolerize T cells after their initial activation and expansion. The remaining tolerant T cells have been shown to suppress the response of naive T cells in vitro. This feature is reminiscent of natural CD4(+)CD25(+) regulatory T cells. However, it is not known whether the regulatory function of in vivo-tolerized T cells is similar to the function of natural CD4(+)CD25(+) regulatory T cells. In this study, we demonstrate that CD4(+)CD25(+) as well as CD4(+)CD25(-) T cells isolated from mice treated with superantigen three consecutive times to induce tolerance were functionally comparable to natural CD4(+)CD25(+) regulatory T cells, albeit more potent. The different subpopulations of in vivo-tolerized CD4(+) T cells efficiently down-modulated costimulatory molecules on dendritic cells, and their suppressive functions were strictly cell contact dependent. Importantly, we demonstrate that conventional CD4(+)CD25(-) T cells could also be induced to acquire regulatory functions by the same regimen in the absence of natural regulatory T cells in vivo, but that such regulatory cells were functionally different.
Collapse
MESH Headings
- Abatacept
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, CD
- Antigens, Differentiation/biosynthesis
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CTLA-4 Antigen
- Cell Communication/genetics
- Cell Communication/immunology
- Cells, Cultured
- Clonal Anergy/genetics
- Clonal Anergy/immunology
- Clonal Deletion/genetics
- Clonal Deletion/immunology
- Cytokines/physiology
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Dose-Response Relationship, Immunologic
- Down-Regulation/genetics
- Down-Regulation/immunology
- Drug Administration Schedule
- Enterotoxins/administration & dosage
- Enterotoxins/pharmacology
- Female
- Genes, T-Cell Receptor beta/immunology
- Immunity, Innate/genetics
- Immunoconjugates
- Injections, Intravenous
- Interleukin-10/antagonists & inhibitors
- Interleukin-10/metabolism
- Leukocyte Common Antigens/biosynthesis
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, SCID
- Mice, Transgenic
- Receptors, Interleukin-2/biosynthesis
- Staphylococcus aureus/immunology
- Superantigens/administration & dosage
- Superantigens/pharmacology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta/physiology
Collapse
|
15
|
Abstract
The immune system is naturally unresponsive to 'self' antigens. Improved knowledge of mechanisms underlying self tolerance is giving rise to a new generation of immunosuppressive agents, that can exploit these mechanisms and so reduce the nature and level of medication that needs to be given long-term to control diseases where the immune system does harm.
Collapse
Affiliation(s)
- H Waldmann
- Sir William Dunn School of Pathology, Oxford, UK.
| | | | | | | |
Collapse
|
16
|
Waldmann H, Cobbold S. Regulating the immune response to transplants. a role for CD4+ regulatory cells? Immunity 2001; 14:399-406. [PMID: 11336685 DOI: 10.1016/s1074-7613(01)00120-0] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- H Waldmann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom.
| | | |
Collapse
|