1
|
Fan L, Tian C, Yang W, Liu X, Dhungana Y, Yang W, Tan H, Glazer ES, Yu J, Peng J, Ma L, Ni M, Zhu L. HKDC1 promotes liver cancer stemness under hypoxia through stabilizing β-catenin. Hepatology 2025; 81:1685-1699. [PMID: 39250463 PMCID: PMC12077336 DOI: 10.1097/hep.0000000000001085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND AND AIMS Hexokinases (HKs), a group of enzymes catalyzing the first step of glycolysis, have been shown to play important roles in liver metabolism and tumorigenesis. Our recent studies identified hexokinase domain containing 1 (HKDC1) as a top candidate associated with liver cancer metastasis. We aimed to compare its cell-type specificity with other HKs upregulated in liver cancer and investigate the molecular mechanisms underlying its involvement in liver cancer metastasis. APPROACH AND RESULTS We found that, compared to HK1 and HK2, the other 2 commonly upregulated HKs in liver cancer, HKDC1 was most strongly associated with the metastasis potential of tumors and organoids derived from 2 liver cancer mouse models we previously established. RNA in situ hybridization and single-cell RNA-seq analysis revealed that HKDC1 was specifically upregulated in malignant cells in HCC and cholangiocarcinoma patient tumors, whereas HK1 and HK2 were widespread across various tumor microenvironment lineages. An unbiased metabolomic profiling demonstrated that HKDC1 overexpression in HCC cells led to metabolic alterations distinct from those from HK1 and HK2 overexpression, with HKDC1 particularly impacting the tricarboxylic acid cycle. HKDC1 was prometastatic in HCC orthotopic and tail vein injection mouse models. Molecularly, HKDC1 was induced by hypoxia and bound to glycogen synthase kinase 3β to stabilize β-catenin, leading to enhanced stemness of HCC cells. CONCLUSIONS Overall, our findings underscore HKDC1 as a prometastatic HK specifically expressed in the malignant compartment of primary liver tumors, thereby providing a mechanistic basis for targeting this enzyme in advanced liver cancer.
Collapse
Affiliation(s)
- Li Fan
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Cheng Tian
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Wentao Yang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Xiaoli Liu
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yogesh Dhungana
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Evan S. Glazer
- Departments of Surgery and Cancer Center, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Min Ni
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Liqin Zhu
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Kumar R, Couly S, Muys BR, Li XL, Grammatikakis I, Singh R, Guest M, Wen X, Tang W, Ambs S, Jenkins LM, Pehrsson EC, Chari R, Su TP, Lal A. p53-induced RNA-binding protein ZMAT3 inhibits transcription of a hexokinase to suppress mitochondrial respiration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.12.653341. [PMID: 40391325 PMCID: PMC12087986 DOI: 10.1101/2025.05.12.653341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
The tumor suppressor p53 is a transcription factor that controls the expression of hundreds of genes. Emerging evidence suggests that the p53-induced RNA-binding protein ZMAT3 is a key splicing regulator that functions in p53-dependent tumor suppression in vitro and in vivo . However, the mechanism by which ZMAT3 functions in the p53 pathway is largely unclear. Here, we discovered a function of ZMAT3 in inhibiting transcription of HKDC1 , a hexokinase that regulates glucose metabolism and mitochondrial respiration. Using quantitative proteomics, we identified HKDC1 as the most significantly upregulated protein in ZMAT3 -depleted colorectal cancer cells. ZMAT3 depletion results in increased mitochondrial respiration that was rescued upon depletion of HKDC1 , suggesting that HKDC1 is a critical downstream effector of ZMAT3 . Unexpectedly, ZMAT3 did not bind to the HKDC1 RNA or DNA but the identification of the ZMAT3-interactome uncovered its interaction with the oncogenic transcription factor JUN. ZMAT3 depletion resulted in increased JUN binding at the HKDC1 promoter and increased HKDC1 transcription that was rescued upon JUN depletion, suggesting that JUN activates HKDC1 transcription in ZMAT3-depleted cells. Collectively, these data reveal a mechanism by which ZMAT3 regulates transcription and demonstrates that HKDC1 is a key component of the ZMAT3-regulated transcriptome in the context of mitochondrial respiration regulation.
Collapse
|
3
|
Hu Z, Zhan L, Chen X, Li J, Zhang M, Xu P. Comparative transcriptome analysis of midgut of Bombyx mori under a sucrose-supplemented diet. Sci Rep 2025; 15:15643. [PMID: 40325042 PMCID: PMC12053618 DOI: 10.1038/s41598-025-00715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025] Open
Abstract
As a monophagous insect, the silkworm possesses a restricted feeding capacity. To investigate the impact of varying sucrose concentrations on silkworm growth and development, transcriptomic analyses were conducted on the silkworm midgut. A total of 909 differentially expressed genes (DEGs) were identified, with down-regulated genes predominantly associated with starch and sucrose metabolism, fructose and mannose metabolism, galactose metabolism, and amino sugar and nucleotide sugar metabolism. These alterations suggest that excessive sucrose consumption may suppress the carbohydrate metabolism pathway in silkworm. This study offers a comprehensive analysis of transcriptomic studies on high sucrose intake in silkworm, providing insights into the effects of varying sucrose concentrations on these organisms.
Collapse
Affiliation(s)
- Zhenbin Hu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Lijie Zhan
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Xinyi Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Jia Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Meirong Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Pingzhen Xu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| |
Collapse
|
4
|
Machado IF, Palmeira CM, Rolo AP. Sestrin2 is a central regulator of mitochondrial stress responses in disease and aging. Ageing Res Rev 2025; 109:102762. [PMID: 40320152 DOI: 10.1016/j.arr.2025.102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/09/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025]
Abstract
Mitochondria supply most of the energy for cellular functions and coordinate numerous cellular pathways. Their dynamic nature allows them to adjust to stress and cellular metabolic demands, thus ensuring the preservation of cellular homeostasis. Loss of normal mitochondrial function compromises cell survival and has been implicated in the development of many diseases and in aging. Although exposure to continuous or severe stress has adverse effects on cells, mild mitochondrial stress enhances mitochondrial function and potentially extends health span through mitochondrial adaptive responses. Over the past few decades, sestrin2 (SESN2) has emerged as a pivotal regulator of stress responses. For instance, SESN2 responds to genotoxic, oxidative, and metabolic stress, promoting cellular defense against stress-associated damage. Here, we focus on recent findings that establish SESN2 as an orchestrator of mitochondrial stress adaptation, which is supported by its involvement in the integrated stress response, mitochondrial biogenesis, and mitophagy. Additionally, we discuss the integral role of SESN2 in mediating the health benefits of exercise as well as its impact on skeletal muscle, liver and heart injury, and aging.
Collapse
Affiliation(s)
- Ivo F Machado
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CiBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Institute of Interdisciplinary Research, Doctoral Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Carlos M Palmeira
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CiBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Anabela P Rolo
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CiBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
5
|
Guerrero-Navarro L, Monfort-Lanzas P, Krichbaumer V, De Araújo MEG, Monfregola J, Huber LA, Ballabio A, Jansen-Dürr P, Cavinato M. TFEB Orchestrates Stress Recovery and Paves the Way for Senescence Induction in Human Dermal Fibroblasts. Aging Cell 2025:e70083. [PMID: 40312996 DOI: 10.1111/acel.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Abstract
Cells experience oxidative stress and widespread cellular damage during stress-induced premature senescence (SIPS). Senescent cells show an increase in lysosomal content, which may contribute to mitigating cellular damage by promoting autophagy. This study investigates the dynamics of lysosomal quality control in human dermal fibroblasts (HDF), specifically examining lysosomal signaling pathways during oxidative stress-induced SIPS. Our results reveal distinct signaling responses between the initial stress phase and the ensuing senescent phenotype. During the stress phase, treatment with tBHP, which undermines the antioxidant response, leads to elevated reactive oxygen species (ROS) and lysosomal damage. ROS accumulation activates AMP-activated protein kinase (AMPK) and inhibits Akt, which correlates with the suppression of mammalian target of rapamycin (mTOR). Inactivation of mTOR during this phase aligns with the activation of transcription factor EB (TFEB), a key regulator of autophagy and lysosomal biogenesis. TFEB knockdown under stress increased apoptosis, highlighting the protective role of TFEB in the stress response. As cells transition to senescence, TFEB activity, required for the autophagic damage repair, becomes less critical. The decrease in ROS levels leads to the normalization of AMPK and Akt signaling, accompanied by the reactivation of mTOR. This reactivation of mTOR, which is critical for establishing the senescent state, is observed alongside the inactivation of TFEB. Consequently, as damage decreases, TFEB activity decreases. Our results suggest a dynamic interplay between TFEB and mTOR, highlighting a critical role of TFEB in ensuring cellular survival during SIPS induction but becoming dispensable once senescence is established.
Collapse
Affiliation(s)
- Lena Guerrero-Navarro
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Pablo Monfort-Lanzas
- Institute of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
- Institute of Bioinformatics, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Vinzenz Krichbaumer
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Mariana E G De Araújo
- Biocenter, Division of Cell Biology, Innsbruck Medical University, Innsbruck, Austria
| | | | - Lukas A Huber
- Biocenter, Division of Cell Biology, Innsbruck Medical University, Innsbruck, Austria
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Maria Cavinato
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| |
Collapse
|
6
|
Pinheiro CV, Ribeiro RT, Roginski AC, Brondani M, Zemniaçak ÂB, Hoffmann CIH, Vizuete AFK, Gonçalves CA, Amaral AU, Wajner M, Baldo G, Leipnitz G. Disturbances in mitochondrial quality control and mitochondria-lysosome contact underlie the cerebral cortex and heart damage of mucopolysaccharidosis type II mice. Metab Brain Dis 2025; 40:177. [PMID: 40220021 DOI: 10.1007/s11011-025-01605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
Mucopolysaccharidosis type II (or Hunter syndrome) is a lysosomal disease caused by mutations in the IDS gene, which encodes the enzyme iduronate 2-sulfatase. MPS II patients present with systemic clinical manifestations and, in the most severe cases, with severe central nervous system abnormalities. Cardiac alterations are also commonly observed. In this study, we evaluated the communication between mitochondria and lysosomes, as well as mitochondrial dynamics and bioenergetics, mitophagy/autophagy, and redox homeostasis in the cerebral cortex and heart of 6-month-old MPS II mice. Our findings showed a reduction in the content of protein TBC1D15 in the cerebral cortex and heart of MPS II mice and an increase in Rab7 in the heart of these animals, suggesting disturbances in the communication between mitochondria and lysosomes. Furthermore, decreased Drp1 levels, indicative of reduced fission, and increased VDAC1 and COX IV, suggesting an increase in mitochondrial mass, were seen in both tissues. Tom20 was also augmented in the cortex. Changes in parkin levels were also verified, indicating disrupted mitophagy. In the field of bioenergetics, we observed reduced activities of citrate synthase and malate dehydrogenase in the cortex, as well as decreased activities of isocitrate dehydrogenase, creatine kinase, and pyruvate kinase, along with diminished mitochondrial respiration in the cardiac tissue of deficient mice. However, a mild increase in lipid peroxidation was seen only in the heart. Our findings suggest that mitochondria-lysosome crosstalk disruption and bioenergetic failure contribute to the pathophysiology of brain and heart alterations in MPS II.
Collapse
Affiliation(s)
- Camila Vieira Pinheiro
- Postgraduation Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Rafael Teixeira Ribeiro
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Ana Cristina Roginski
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Morgana Brondani
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Ângela Beatris Zemniaçak
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Chrístofer Ian Hernandez Hoffmann
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Adriana Fernanda K Vizuete
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Carlos-Alberto Gonçalves
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Alexandre Umpierrez Amaral
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Postgraduation Program in Integral Health Care, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, 99709-910, Rio Grande do Sul, Brazil
| | - Moacir Wajner
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Rio Grande do Sul, Brazil
| | - Guilherme Baldo
- Postgraduation Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Rio Grande do Sul, Brazil
- Tecidos e Genes, Hospital de Clínicas de Porto Alegre, Células, Porto Alegre, 90035-903, Rio Grande do Sul, Brazil
| | - Guilhian Leipnitz
- Postgraduation Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Rio Grande do Sul, Brazil.
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil.
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil.
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil.
| |
Collapse
|
7
|
Bian K, Yang C, Zhang F, Huang L. A Novel Prognostic Signature of Mitophagy-Related E3 Ubiquitin Ligases in Breast Cancer. Int J Mol Sci 2025; 26:1551. [PMID: 40004017 PMCID: PMC11855622 DOI: 10.3390/ijms26041551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Mitophagy plays a critical role in maintaining mitochondrial quality and cellular homeostasis. But the specific contribution of mitophagy-related E3 ubiquitin ligases to prognoses remains largely unexplored. In this study, we identified a novel mitophagy-related E3 ubiquitin ligase prognostic signature using least absolute shrinkage and selector operator (LASSO) and multivariate Cox regression analyses in breast cancer. Based on median risk scores, patients were divided into high-risk and low-risk groups. Functional enrichment analyses were conducted to explore the biological differences between the two groups. Immune infiltration, drug sensitivity, and mitochondrial-related phenotypes were also analyzed to evaluate the clinical implications of the model. A four-gene signature (ARIH1, SIAH2, UBR5, and WWP2) was identified, and Kaplan-Meier analysis demonstrated that the high-risk group had significantly worse overall survival (OS). The high-risk patients exhibited disrupted mitochondrial metabolism and immune dysregulation with upregulated immune checkpoint molecules. Additionally, the high-risk group exhibited higher sensitivity to several drugs targeting the Akt/PI3K/mTORC1 signaling axis. Accompanying mitochondrial metabolic dysregulation, mtDNA stress was elevated, contributing to activation of the senescence-associated secretory phenotype (SASP) in the high-risk group. In conclusion, the identified signature provides a robust tool for risk stratification and offers insights into the interplay between mitophagy, immune modulation, and therapeutic responses for breast cancer.
Collapse
Affiliation(s)
| | | | - Feng Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Huang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
8
|
Gao P, Cheng X, Liu M, Peng H, Li G, Shang T, Wang J, Gao Q, Zhu C, Qiu Z, Zhang C. GADD45α is a direct target of TFEB and contributes to tacrolimus-induced chronic nephrotoxicity. JCI Insight 2025; 10:e183560. [PMID: 39913188 PMCID: PMC11949043 DOI: 10.1172/jci.insight.183560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/28/2025] [Indexed: 03/25/2025] Open
Abstract
Tacrolimus-induced chronic nephrotoxicity (TICN) hinders long-term use of tacrolimus, but its mechanism remains unclear. Tacrolimus exerts its pharmacological effect by inhibiting calcineurin and its substrate nuclear factor of activated T cells. Whether the inhibition of other calcineurin substrates is related to TICN remains to be explored. Transcription factor EB (TFEB), a substrate of calcineurin, plays a crucial role in homeostasis. Herein, we found that tacrolimus inhibited TFEB nuclear translocation and activity in mouse kidneys and HK-2 cells. Then, TFEB gain and loss of function rescued and exacerbated, respectively, the effect of tacrolimus in HK-2 cells. Furthermore, TFEB activation by both phosphorylation site mutation and agonist rescued TICN in mice. To elucidate the mechanism of TFEB, we analyzed ChIP-Seq data. We identified growth arrest and DNA damage-inducible 45α (GADD45α) as a transcriptional target of TFEB via ChIP and dual-luciferase reporter assays. Then we revealed that GADD45α overexpression rescued DNA damage and kidney injury caused by tacrolimus or TFEB knockdown in vitro and vice versa. The protective effect of GADD45α against TICN and DNA damage was further demonstrated by overexpressing it in mice. In conclusion, the persistent inhibition of the TFEB/GADD45α pathway by tacrolimus contributes to TICN. This study identifies a specific target for intervention in TICN.
Collapse
Affiliation(s)
- Ping Gao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Wuhan Children’s Hospital, Tongji Medical College, and
| | - Xinwei Cheng
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maochang Liu
- Wuhan Children’s Hospital, Tongji Medical College, and
| | - Hui Peng
- Wuhan Children’s Hospital, Tongji Medical College, and
| | - Guodong Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianze Shang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianqiao Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianyan Gao
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenglong Zhu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenpeng Qiu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, China
| | - Chengliang Zhang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Wang K, Ho C, Li X, Hou J, Luo Q, Wu J, Yang Y, Zhang X. Matrix stiffness regulates mitochondria-lysosome contacts to modulate the mitochondrial network, alleviate the senescence of MSCs. Cell Prolif 2025; 58:e13746. [PMID: 39353686 PMCID: PMC11839199 DOI: 10.1111/cpr.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
The extracellular microenvironment encompasses the extracellular matrix, neighbouring cells, cytokines, and fluid components. Anomalies in the microenvironment can trigger aging and a decreased differentiation capacity in mesenchymal stem cells (MSCs). MSCs can perceive variations in the firmness of the extracellular matrix and respond by regulating mitochondrial function. Diminished mitochondrial function is intricately linked to cellular aging, and studies have shown that mitochondria-lysosome contacts (M-L contacts) can regulate mitochondrial function to sustain cellular equilibrium. Nonetheless, the influence of M-L contacts on MSC aging under varying matrix stiffness remains unclear. In this study, utilizing single-cell RNA sequencing and atomic force microscopy, we further demonstrate that reduced matrix stiffness in older individuals leads to MSC aging and subsequent decline in osteogenic ability. Mechanistically, augmented M-L contacts under low matrix stiffness exacerbate MSC aging by escalating mitochondrial oxidative stress and peripheral division. Moreover, under soft matrix stiffness, cytoskeleton reorganization facilitates rapid movement of lysosomes. The M-L contacts inhibitor ML282 ameliorates MSC aging by reinstating mitochondrial network and function. Overall, our findings confirm that MSC aging is instigated by disruption of the mitochondrial network and function induced by matrix stiffness, while also elucidating the potential mechanism by which M-L Contact regulates mitochondrial homeostasis. Crucially, this presents promise for cellular anti-aging strategies centred on mitochondria, particularly in the realm of stem cell therapy.
Collapse
Affiliation(s)
- Kang Wang
- Hospital of Stomatology, Guanghua School of StomatologySun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhouPeople's Republic of China
| | - Chingchun Ho
- Hospital of Stomatology, Guanghua School of StomatologySun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhouPeople's Republic of China
| | - Xiangyu Li
- The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenPeople's Republic of China
| | - Jianfeng Hou
- Department of Joint and Trauma SurgeryThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Qipei Luo
- Hospital of Stomatology, Guanghua School of StomatologySun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhouPeople's Republic of China
| | - Jiahong Wu
- School of MedicineSun Yat‐sen UniversityShenzhenPeople's Republic of China
| | - Yuxin Yang
- Hospital of Stomatology, Guanghua School of StomatologySun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhouPeople's Republic of China
| | - Xinchun Zhang
- Hospital of Stomatology, Guanghua School of StomatologySun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhouPeople's Republic of China
| |
Collapse
|
10
|
Abokyi S, Tse DYY. Age-related driving mechanisms of retinal diseases and neuroprotection by transcription factor EB-targeted therapy. Neural Regen Res 2025; 20:366-377. [PMID: 38819040 PMCID: PMC11317960 DOI: 10.4103/nrr.nrr-d-23-02033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 06/01/2024] Open
Abstract
Retinal aging has been recognized as a significant risk factor for various retinal disorders, including diabetic retinopathy, age-related macular degeneration, and glaucoma, following a growing understanding of the molecular underpinnings of their development. This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches, focusing on the activation of transcription factor EB. Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies, such as exercise, calorie restriction, rapamycin, and metformin, in patients and animal models of these common retinal diseases. The review critically assesses the role of transcription factor EB in retinal biology during aging, its neuroprotective effects, and its therapeutic potential for retinal disorders. The impact of transcription factor EB on retinal aging is cell-specific, influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways. In vascular endothelial cells, transcription factor EB controls important processes, including endothelial cell proliferation, endothelial tube formation, and nitric oxide levels, thereby influencing the inner blood-retinal barrier, angiogenesis, and retinal microvasculature. Additionally, transcription factor EB affects vascular smooth muscle cells, inhibiting vascular calcification and atherogenesis. In retinal pigment epithelial cells, transcription factor EB modulates functions such as autophagy, lysosomal dynamics, and clearance of the aging pigment lipofuscin, thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization. These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis, neuronal synapse plasticity, energy metabolism, microvasculature, and inflammation, ultimately offering protection against retinal aging and diseases. The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases. Therefore, it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects.
Collapse
Affiliation(s)
- Samuel Abokyi
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
- Research Center for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Dennis Yan-yin Tse
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
- Research Center for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
- Center for Eye and Vision Research, Sha Tin, Hong Kong Special Administrative Region, China
| |
Collapse
|
11
|
Kiraly S, Stanley J, Eden ER. Lysosome-Mitochondrial Crosstalk in Cellular Stress and Disease. Antioxidants (Basel) 2025; 14:125. [PMID: 40002312 PMCID: PMC11852311 DOI: 10.3390/antiox14020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 01/11/2025] [Indexed: 02/27/2025] Open
Abstract
The perception of lysosomes and mitochondria as entirely separate and independent entities that degrade material and produce ATP, respectively, has been challenged in recent years as not only more complex roles for both organelles, but also an unanticipated level of interdependence are being uncovered. Coupled lysosome and mitochondrial function and dysfunction involve complex crosstalk between the two organelles which goes beyond mitochondrial quality control and lysosome-mediated clearance of damaged mitochondria through mitophagy. Our understanding of crosstalk between these two essential metabolic organelles has been transformed by major advances in the field of membrane contact sites biology. We now know that membrane contact sites between lysosomes and mitochondria play central roles in inter-organelle communication. This importance of mitochondria-lysosome contacts (MLCs) in cellular homeostasis, evinced by the growing number of diseases that have been associated with their dysregulation, is starting to be appreciated. How MLCs are regulated and how their coordination with other pathways of lysosome-mitochondria crosstalk is achieved are the subjects of ongoing scrutiny, but this review explores the current understanding of the complex crosstalk governing the function of the two organelles and its impact on cellular stress and disease.
Collapse
Affiliation(s)
| | | | - Emily R. Eden
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (S.K.); (J.S.)
| |
Collapse
|
12
|
Liang X, Zhang T, Cheng X, Yuan H, Yang N, Yi Y, Li X, Zhang F, Sun J, Li Z, Wang X. Sesamin alleviates lipid accumulation induced by elaidic acid in L02 cells through TFEB regulated autophagy. Front Nutr 2024; 11:1511682. [PMID: 39758315 PMCID: PMC11695222 DOI: 10.3389/fnut.2024.1511682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD) is a common chronic disease seriously threatening human health, with limited treatment means, however. Sesamin, a common lignan in sesame seed oil, exhibits anti-inflammatory, antioxidant, and anticancer properties. Our previous studies have shown an ameliorative effect of sesamin on lipid accumulation in human hepatocellular carcinoma (HePG2) induced by oleic acid, with its protective effects unclear in the case of 9-trans-C18:1 elaidic acid (9-trans-C18,1). Methods L02 cells, an important tool in scientific researches due to its high proliferation ability, preserved hepatocyte function, and specificity in response to exogenous factors, were incubated with 9-trans-C18:1 to establish an in vitro model of NAFLD in our study. The lipid accumulation in cells and the morphology of mitochondria and autolysosomes were observed by Oil Red O staining and transmission electron microscopy. The effects of sesamin on oxidative stress, apoptosis, mitochondrial function, autophagy as well as related protein levels in L02 cells were also investigated in the presence of 9-trans-C18:1. Results The results showed that sesamin significantly accelerated the autophagy flux of L02 cells induced by 9-trans-C18:1 as well as elevated protein levels of transcription factor EB (TFEB) and its downstream target lysosome-associated membrane protein 1(LAMP1), along with up-regulated levels of TFEB and LAMP1 in the nucleus indicated by Immunofluorescence. In addition, PTEN-induced putative kinase 1 and Parkin mediated mitophagy was activated by sesamin. The direct inhibitor Eltrombopag and indirect inhibitor MHY1485 of TFEB reversed the protective effect of sesamin, suggesting the involvement of autophagy in the lipid-lowering process of sesamin. Discussion This work suggests that sesamin regulates autophagy through TFEB to alleviate lipid accumulation in L02 cells induced by 9-trans-C18:1, providing a potential target for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Xueli Liang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Tianliang Zhang
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, China
| | - Xinyi Cheng
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Hang Yuan
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Ning Yang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Yanlei Yi
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Xiaozhou Li
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Fengxiang Zhang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Jinyue Sun
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Zhenfeng Li
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, China
| | - Xia Wang
- School of Public Health, Shandong Second Medical University, Weifang, China
| |
Collapse
|
13
|
Nakamura J, Yamamoto T, Takabatake Y, Namba-Hamano T, Takahashi A, Matsuda J, Minami S, Sakai S, Yonishi H, Maeda S, Matsui S, Kawai H, Matsui I, Yamamuro T, Edahiro R, Takashima S, Takasawa A, Okada Y, Yoshimori T, Ballabio A, Isaka Y. Age-related TFEB downregulation in proximal tubules causes systemic metabolic disorders and occasional apolipoprotein A4-related amyloidosis. JCI Insight 2024; 10:e184451. [PMID: 39699959 PMCID: PMC11948592 DOI: 10.1172/jci.insight.184451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
With the aging of society, the incidence of chronic kidney disease (CKD), a common cause of death, has been increasing. Transcription factor EB (TFEB), the master transcriptional regulator of the autophagy/lysosomal pathway, is regarded as a promising candidate for preventing various age-related diseases. However, whether TFEB in the proximal tubules plays a significant role in elderly patients with CKD remains unknown. First, we found that nuclear TFEB localization in proximal tubular epithelial cells (PTECs) declined with age in both mice and humans. Next, we generated PTEC-specific Tfeb-deficient mice and bred them for up to 24 months. We found that TFEB deficiency in the proximal tubules caused metabolic disorders and occasionally led to apolipoprotein A4 (APOA4) amyloidosis. Supporting this result, we identified markedly decreased nuclear TFEB localization in the proximal tubules of elderly patients with APOA4 amyloidosis. The metabolic disturbances were accompanied by mitochondrial dysfunction due to transcriptional changes involved in fatty acid oxidation and oxidative phosphorylation pathways, as well as decreased mitochondrial clearance. This decreased clearance was reflected by the accumulation of mitochondria-lysosome-related organelles, which depended on lysosomal function. These results shed light on the presumptive mechanisms of APOA4 amyloidosis pathogenesis and provide a therapeutic strategy for CKD-related metabolic disorders and APOA4 amyloidosis.
Collapse
Affiliation(s)
- Jun Nakamura
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Takahashi
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Matsuda
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Minami
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinsuke Sakai
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Yonishi
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shihomi Maeda
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sho Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideaki Kawai
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Yamamuro
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Ryuya Edahiro
- Department of Statistical Genetics and
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Akira Takasawa
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yukinori Okada
- Department of Statistical Genetics and
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe) and
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Tamotsu Yoshimori
- Health Promotion System Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli, Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Via Pansini 5, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
14
|
Zhu X, Wu Y, Li Y, Zhou X, Watzlawik JO, Chen YM, Raybuck AL, Billadeau DD, Shapiro VS, Springer W, Sun J, Boothby MR, Zeng H. The nutrient-sensing Rag-GTPase complex in B cells controls humoral immunity via TFEB/TFE3-dependent mitochondrial fitness. Nat Commun 2024; 15:10163. [PMID: 39580479 PMCID: PMC11585635 DOI: 10.1038/s41467-024-54344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024] Open
Abstract
Germinal center (GC) formation, which is an integrant part of humoral immunity, involves energy-consuming metabolic reprogramming. Rag-GTPases are known to signal amino acid availability to cellular pathways that regulate nutrient distribution such as the mechanistic target of rapamycin complex 1 (mTORC1) pathway and the transcription factors TFEB and TFE3. However, the contribution of these factors to humoral immunity remains undefined. Here, we show that B cell-intrinsic Rag-GTPases are critical for the development and activation of B cells. RagA/RagB deficient B cells fail to form GCs, produce antibodies, and to generate plasmablasts during both T-dependent (TD) and T-independent (TI) humoral immune responses. Deletion of RagA/RagB in GC B cells leads to abnormal dark zone (DZ) to light zone (LZ) ratio and reduced affinity maturation. Mechanistically, the Rag-GTPase complex constrains TFEB/TFE3 activity to prevent mitophagy dysregulation and maintain mitochondrial fitness in B cells, which are independent of canonical mTORC1 activation. TFEB/TFE3 deletion restores B cell development, GC formation in Peyer's patches and TI humoral immunity, but not TD humoral immunity in the absence of Rag-GTPases. Collectively, our data establish the Rag GTPase-TFEB/TFE3 pathway as a likely mTORC1 independent mechanism to coordinating nutrient sensing and mitochondrial metabolism in B cells.
Collapse
Affiliation(s)
- Xingxing Zhu
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| | - Yue Wu
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yanfeng Li
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| | - Xian Zhou
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| | | | - Yin Maggie Chen
- Department of Immunology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Ariel L Raybuck
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN, USA
| | | | | | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark R Boothby
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN, USA
| | - Hu Zeng
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic Rochester, Rochester, MN, USA.
| |
Collapse
|
15
|
Wen C, Yu X, Zhu J, Zeng J, Kuang X, Zhang Y, Tang S, Zhang Q, Yan J, Shen H. Gastrodin ameliorates oxidative stress-induced RPE damage by facilitating autophagy and phagocytosis through PPARα-TFEB/CD36 signal pathway. Free Radic Biol Med 2024; 224:103-116. [PMID: 39173893 DOI: 10.1016/j.freeradbiomed.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Age-related macular degeneration (AMD), the leading cause of irreversible blindness in the elderly, is primarily characterized by the degeneration of the retinal pigment epithelium (RPE). However, effective therapeutic options for dry AMD are currently lacking, necessitating further exploration into preventive and pharmaceutical interventions. This study aimed to investigate the protective effects of gastrodin on RPE cells exposed to oxidative stress. We constructed an in vitro oxidative stress model of 4-hydroxynonenal (4-HNE) and performed RNA-seq, and demonstrated the protective effect of gastrodin through mouse experiments. Our findings reveal that gastrodin can inhibit 4-HNE-induced oxidative stress, effectively improving the mitochondrial and lysosomal dysfunction of RPE cells. We further elucidated that gastrodin promotes autophagy and phagocytosis through activating the PPARα-TFEB/CD36 signaling pathway. Interestingly, these outcomes were corroborated in a mouse model, in which gastrodin maintained retinal integrity and reduced RPE disorganization and degeneration under oxidative stress. The accumulation of LC3B and SQSTM1 in mouse RPE-choroid was also reduced. Moreover, activating PPARα and downstream pathways to restore autophagy and phagocytosis, thereby countering RPE injury from oxidative stress. In conclusion, this study demonstrated that gastrodin maintains the normal function of RPE cells by reducing oxidative stress, enhancing their phagocytic function, and restoring the level of autophagic flow. These findings suggest that gastrodin is a novel formulation with potential applications in the development of AMD disease.
Collapse
Affiliation(s)
- Chaojuan Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xinyue Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jingya Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jingshu Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Eye Biobank, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Youao Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Shiyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jianhua Yan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Eye Biobank, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
16
|
Yu Z, Wu A, Ke H, Liu J, Zhao Y, Zhu Y, Wang XY, Xiang Y, Xin HB, Tian XL. Age-Disturbed Vascular Extracellular Matrix Links to Abdominal Aortic Aneurysms. J Gerontol A Biol Sci Med Sci 2024; 79:glae201. [PMID: 39312673 DOI: 10.1093/gerona/glae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Indexed: 09/25/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a common but life-threatening vascular condition in men at an advanced age. However, the underlying mechanisms of age-increased incidence and mortality of AAA remain elusive. Here, we performed RNA sequencing (RNA-seq) of mouse aortas from males (young: 3-month, n = 4 vs old: 23-month, n = 4) and integrated with the data sets of human aortas (young: 20-39, n = 47 vs old: 60-79 years, n = 92) from GTEx project and the data set (GSE183464) for AAA to search for age-shifted aortic aneurysm genes, their relevant biological processes, and signaling pathways. Angiotensin II-induced AAA in mice was used to verify the critical findings. We found 1 001 genes transcriptionally changed with ages in both mouse and human. Most age-increased genes were enriched intracellularly and the relevant biological processes included mitochondrial function and translational controls, whereas the age-decreased genes were largely localized in extracellular regions and cell periphery and the involved biological processes were associated with extracellular matrix (ECM). Fifty-one were known genes for AAA and found dominantly in extracellular region. The common age-shifted vascular genes and known aortic aneurysm genes had shared functional influences on ECM organization, apoptosis, and angiogenesis. Aorta with angiotensin II-induced AAA exhibited similar phenotypic changes in ECM to that in old mice. Together, we present a conserved transcriptional signature for aortic aging and provide evidence that mitochondrial dysfunction and the imbalanced ribosomal homeostasis act likely as driven-forces for aortic aging and age-disturbed ECM is the substrate for developing AAA.
Collapse
Affiliation(s)
- Zhenping Yu
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Andong Wu
- Aging and Vascular Diseases, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China
| | - Hao Ke
- Cancer and Cell Senescence, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China
| | - Jiankun Liu
- Aging and Vascular Diseases, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China
| | - Yuanzheng Zhu
- Aging and Vascular Diseases, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China
| | - Xiao-Yu Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Yang Xiang
- Metabolic Control and Aging, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China
| | - Hong-Bo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China
| |
Collapse
|
17
|
Yamamoto T, Isaka Y. Pathological mechanisms of kidney disease in ageing. Nat Rev Nephrol 2024; 20:603-615. [PMID: 39025993 DOI: 10.1038/s41581-024-00868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
The kidney is a metabolically active organ that requires energy to drive processes such as tubular reabsorption and secretion, and shows a decline in function with advancing age. Various molecular mechanisms, including genomic instability, telomere attrition, inflammation, autophagy, mitochondrial function, and changes to the sirtuin and Klotho signalling pathways, are recognized regulators of individual lifespan and pivotal factors that govern kidney ageing. Thus, mechanisms that contribute to ageing not only dictate renal outcomes but also exert a substantial influence over life expectancy. Conversely, kidney dysfunction, in the context of chronic kidney disease (CKD), precipitates an expedited ageing trajectory in individuals, leading to premature ageing and a disconnect between biological and chronological age. As CKD advances, age-related manifestations such as frailty become increasingly conspicuous. Hence, the pursuit of healthy ageing necessitates not only the management of age-related complications but also a comprehensive understanding of the processes and markers that underlie systemic ageing. Here, we examine the hallmarks of ageing, focusing on the mechanisms by which they affect kidney health and contribute to premature organ ageing. We also review diagnostic methodologies and interventions for premature ageing, with special consideration given to the potential of emerging therapeutic avenues to target age-related kidney diseases.
Collapse
Affiliation(s)
- Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
18
|
Wang G, Zou X, Chen Q, Nong W, Miao W, Luo H, Qu S. The relationship and clinical significance of lactylation modification in digestive system tumors. Cancer Cell Int 2024; 24:246. [PMID: 39010066 PMCID: PMC11251390 DOI: 10.1186/s12935-024-03429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
Lactylation, an emerging post-translational modification, plays a pivotal role in the initiation and progression of digestive system tumors. This study presents a comprehensive review of lactylation in digestive system tumors, underscoring its critical involvement in tumor development and progression. By focusing on metabolic reprogramming, modulation of the tumor microenvironment, and the molecular mechanisms regulating tumor progression, the potential of targeting lactylation as a therapeutic strategy is highlighted. The research reveals that lactylation participates in gene expression regulation and cell signaling by affecting the post-translational states of histones and non-histone proteins, thereby influencing metabolic pathways and immune evasion mechanisms in tumor cells. Furthermore, this study assesses the feasibility of lactylation as a therapeutic target, providing insights for clinical treatment of gastrointestinal cancers. Future research should concentrate on elucidating the mechanisms of lactylation, developing efficient lactylation inhibitors, and validating their therapeutic efficacy in clinical trials, which could transform current cancer treatment and immunotherapy approaches. In summary, this review emphasizes the crucial role of lactylation in tumorigenesis and progression through a detailed analysis of its molecular mechanisms and clinical significance.
Collapse
Affiliation(s)
- Gang Wang
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Xiaosu Zou
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Qicong Chen
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Wenqian Nong
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Weiwei Miao
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Honglin Luo
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China.
| | - Shenhong Qu
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China.
- Department of Otolaryngology & Head and Neck, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| |
Collapse
|
19
|
Makino M, Nakamura S. A novel probe to monitor lysosome-mitochondria contact sites opens up a new path to study neurodegenerative diseases. Cell Calcium 2024; 120:102887. [PMID: 38599095 DOI: 10.1016/j.ceca.2024.102887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Affiliation(s)
- Mai Makino
- Department of Biochemistry, Nara Medical University, Kashihara, Nara 634-8521, Japan; Center for Autophagy and Anti-Aging Research, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shuhei Nakamura
- Department of Biochemistry, Nara Medical University, Kashihara, Nara 634-8521, Japan; Center for Autophagy and Anti-Aging Research, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| |
Collapse
|
20
|
Liu Z, Zhang Y, Li D, Fu J. Cellular senescence in chronic lung diseases from newborns to the elderly: An update literature review. Biomed Pharmacother 2024; 173:116463. [PMID: 38503240 DOI: 10.1016/j.biopha.2024.116463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
The role of cellular senescence in age-related diseases has been fully recognized. In various age-related-chronic lung diseases, the function of alveolar epithelial cells (AECs) is impaired and alveolar regeneration disorders, especially in bronchopulmonary dysplasia,pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD), cancer, etc. Except for age-related-chronic lung diseases, an increasing number of studies are exploring the role of cellular senescence in developmental chronic lung diseases, which typically originate in childhood and even in the neonatal period. This review provides an overview of cellular senescence and lung diseases from newborns to the elderly, attempting to draw attention to the relationship between cellular senescence and developmental lung diseases.
Collapse
Affiliation(s)
- Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
21
|
Zhu X, Wu Y, Li Y, Zhou X, Watzlawik JO, Chen YM, Raybuck AL, Billadeau D, Shapiro V, Springer W, Sun J, Boothby MR, Zeng H. The nutrient-sensing Rag-GTPase complex in B cells controls humoral immunity via TFEB/TFE3-dependent mitochondrial fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582122. [PMID: 38463988 PMCID: PMC10925109 DOI: 10.1101/2024.02.26.582122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
During the humoral immune response, B cells undergo rapid metabolic reprogramming with a high demand for nutrients, which are vital to sustain the formation of the germinal centers (GCs). Rag-GTPases sense amino acid availability to modulate the mechanistic target of rapamycin complex 1 (mTORC1) pathway and suppress transcription factor EB (TFEB) and transcription factor enhancer 3 (TFE3), members of the microphthalmia (MiT/TFE) family of HLH-leucine zipper transcription factors. However, how Rag-GTPases coordinate amino acid sensing, mTORC1 activation, and TFEB/TFE3 activity in humoral immunity remains undefined. Here, we show that B cell-intrinsic Rag-GTPases are critical for the development and activation of B cells. RagA/RagB deficient B cells fail to form GCs, produce antibodies, and generate plasmablasts in both T-dependent (TD) and T-independent (TI) humoral immune responses. Deletion of RagA/RagB in GC B cells leads to abnormal dark zone (DZ) to light zone (LZ) ratio and reduced affinity maturation. Mechanistically, the Rag-GTPase complex constrains TFEB/TFE3 activity to prevent mitophagy dysregulation and maintain mitochondrial fitness in B cells, which are independent of canonical mTORC1 activation. TFEB/TFE3 deletion restores B cell development, GC formation in Peyer's patches and TI humoral immunity, but not TD humoral immunity in the absence of Rag-GTPases. Collectively, our data establish Rag-GTPase-TFEB/TFE3 pathway as an mTORC1 independent mechanism to coordinating nutrient sensing and mitochondrial metabolism in B cells.
Collapse
Affiliation(s)
- Xingxing Zhu
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Yue Wu
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yanfeng Li
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Xian Zhou
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Jens O Watzlawik
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yin Maggie Chen
- Department of Immunology, Mayo Clinic Rochester, MN 55905, USA
| | - Ariel L Raybuck
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN 37232, USA
| | | | | | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Mark R Boothby
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN 37232, USA
| | - Hu Zeng
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic Rochester, MN 55905, USA
| |
Collapse
|