1
|
Liu Y, Nie R, Shen K, Diao X, Liu G. Multi-omics profiling reveals the molecular mechanism of Bifidobacterium animalis BB04 in co-culture with Wickerhamomyces anomalus Y-5 to induce bifidocin A synthesis. World J Microbiol Biotechnol 2024; 40:366. [PMID: 39455466 DOI: 10.1007/s11274-024-04172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Bacteriocin is a kind of natural substance that can effectively inhibit bacteria, but its production usually limited by environment. Co-culture is a strategy to stimulate bacteriocin production. Bifidocin A produced by Bifidobacterium animalis BB04, is a novel bacteriocin with a broad-spectrum antimicrobial active of foodborne bacteria. In order to enhance bifidocin A production, bacteriocin-inducing strains were screened firstly in co-cultivation. Then, the molecular mechanism of co-cultural induction was investigated by transcriptomic and proteomic analysis. Finally, the key inducing metabolites were identified by using targeted metabolomic technology. The results showed that Wickerhamomyces anomalus Y-5 in co-cultivation could significantly enhance bifidocin A production, with a 3.00-fold increase compared to mono-culture. The induction may not depend on direct contact with cells and may instead be attributed to be continuous exposure to inducing substances at specific concentration. In co-cultivation, W. anomalus Y-5 up-regulated Hxk2 and Tap42 to activate Glucose-cAMP and Tor and HOG-MAPK pathway, stimulated the expression of the retrograde gene, produced glutamine and glycerol to maintain activity. During this process, glutamine, inosine, guanosine, adenine, uracil, fumaric acid and pyruvic acid produced by W. anomalus Y-5 could induce the synthesis of bifidocin A. In conclusion, W. anomalus Y-5 in co-cultivation induced the synthesis of bifidocin A by regulating various signaling pathways to produce inducing substances. These findings establish a foundation for high-efficient synthesis of bifidocin A and provide a new perspective into the industrial production of bacteriocin.
Collapse
Affiliation(s)
- Yangshuo Liu
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Rong Nie
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Kaisheng Shen
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Xinjie Diao
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Guorong Liu
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China.
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
2
|
The C2H2 Zinc Finger Protein MaNCP1 Contributes to Conidiation through Governing the Nitrate Assimilation Pathway in the Entomopathogenic Fungus Metarhizium acridum. J Fungi (Basel) 2022; 8:jof8090942. [PMID: 36135667 PMCID: PMC9505000 DOI: 10.3390/jof8090942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022] Open
Abstract
Zinc finger proteins are an important class of multifunctional regulators. Here, the roles of a C2H2 zinc finger protein MaNCP1 (Metarhizium acridum nitrate-related conidiation pattern shift regulatory factor 1) in nitrogen utilization and conidiation were explored in the entomopathogenic fungus M. acridum. The results showed that MaNCP1-disruption mutant (ΔMaNCP1) impaired the ability to utilize nitrate, ammonium and glutamine and reduced the expression of nitrate assimilation-related genes, suggesting that MaNCP1 was involved in governing nitrogen utilization. In addition, the conidial yield of the ΔMaNCP1 strain, cultured on the microcycle conidiation medium (SYA), was significantly decreased, which could be restored or even enhanced than that of the WT strain through increasing the nitrate content in SYA medium. Further study showed that MaAreA, a core regulator in the nitrogen catabolism repression (NCR) pathway, was a downstream target gene of MaNCP1. Screening the differential expression genes between WT and ΔMaNCP1 strains revealed that the conidial yield of M. acridum regulated by nitrate might be related to NCR pathway on SYA medium. It could be concluded that MaNCP1 contributes to the nitrate assimilation and conidiation, which will provide further insights into the relationship between the nitrogen utilization and conidiation in fungi.
Collapse
|
3
|
Huang Y, Cai Y, Yu T. Sodium glutamate as a booster: Inducing Rhodosporidium paludigenum to enhance the inhibition of Penicillium expansum on pears. J Appl Microbiol 2021; 132:1239-1249. [PMID: 34251734 DOI: 10.1111/jam.15212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023]
Abstract
AIMS This research sought to improve the ability of biocontrol yeast to suppress postharvest fungal disease and explore possible mechanisms of action. METHODS AND RESULTS The addition of 2% sodium glutamate (SG), which is edible and recognized as safe, enhances the inhibitory effect of Rhodosporidium paludigenum Fell & Tallman on Penicillium expansum in vivo and in vitro. Rhodosporidium paludigenum cells grown in medium with a final concentration of 2% SG, displayed viability under a variety of stress conditions, including sodium chloride (NaCl), calcofluor white (CFW), Congo red (CR) and sodium dodecyl sulphate (SDS). Activity and relative gene expression levels of antioxidant-related enzymes in R. paludigenum, including peroxisomal catalase (CAT), thioredoxin reductase (TrxR), glutathione peroxidase (GSH-PX), glutathione reductase (GR) and superoxide dismutase (SOD) were altered in the presence of SG. Levels of reactive oxygen species (ROS) increased in cells grown in the presence of SG as well as the content of several amino acids. CONCLUSIONS In the presence of 2% SG R. paludigenum inhibited P. expansum and exhibited tolerance to a number of stressful conditions which may involve the upregulation of antioxidant enzymes and amino acids. SIGNIFICANCE AND IMPACT OF THE STUDY The ability of culture conditions to enhance the fungal suppressive abilities of yeast has the potential to enhance the management of postharvest disease in fruit.
Collapse
Affiliation(s)
- Yining Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P.R. China
| | - Yiting Cai
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P.R. China
| | - Ting Yu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
4
|
Growth Inhibition by Amino Acids in Saccharomyces cerevisiae. Microorganisms 2020; 9:microorganisms9010007. [PMID: 33375077 PMCID: PMC7822121 DOI: 10.3390/microorganisms9010007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
Amino acids are essential metabolites but can also be toxic when present at high levels intracellularly. Substrate-induced downregulation of amino acid transporters in Saccharomyces cerevisiae is thought to be a mechanism to avoid this toxicity. It has been shown that unregulated uptake by the general amino acid permease Gap1 causes cells to become sensitive to amino acids. Here, we show that overexpression of eight other amino acid transporters (Agp1, Bap2, Can1, Dip5, Gnp1, Lyp1, Put4, or Tat2) also induces a growth defect when specific single amino acids are present at concentrations of 0.5-5 mM. We can now state that all proteinogenic amino acids, as well as the important metabolite ornithine, are growth inhibitory to S. cerevisiae when transported into the cell at high enough levels. Measurements of initial transport rates and cytosolic pH show that toxicity is due to amino acid accumulation and not to the influx of co-transported protons. The amino acid sensitivity phenotype is a useful tool that reports on the in vivo activity of transporters and has allowed us to identify new transporter-specific substrates.
Collapse
|
5
|
Wang Y, Zhang Z, Lu X, Zong H, Zhuge B. Genetic engineering of an industrial yeast Candida glycerinogenes for efficient production of 2-phenylethanol. Appl Microbiol Biotechnol 2020; 104:10481-10491. [PMID: 33180170 DOI: 10.1007/s00253-020-10991-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/23/2020] [Accepted: 10/31/2020] [Indexed: 10/23/2022]
Abstract
Microbial cell factories offer an economic approach for synthesizing "natural'" aromatic flavor compounds. During their fermentation process, the inefficient synthesis pathway and product cytotoxicity are the major barriers to the high-level production. This study combined metabolic engineering and tolerance engineering strategies to maximize the valuable rose-smell 2-phenylethanol (2-PE) production in Candida glycerinogenes, a GRAS diploid industrial yeast. Firstly, 2-PE metabolic networks involved in Ehrlich pathway were stepwise rewired using metabolic engineering, including the following: (1) overexpressing L-phenylalanine permease Aap9 enhanced precursor uptake; (2) overexpressing enzymes (aminotransferase Aro9 and decarboxylase Aro10) of Ehrlich pathway increased catalytic efficiency; and (3) disrupting the formation of by-product phenylacetate catalyzed by Ald2 and Ald3 maximized the metabolic flux toward 2-PE. Then, tolerance engineering was applied by overexpression of a stress-inducible gene SLC1 in the metabolically engineered strain to further enhance 2-PE production. Combining these two approaches finally resulted in 5.0 g/L 2-PE in shake flasks, with productivity reaching 0.21 g/L/h, which were increased by 38.9% and 177% compared with those of the non-engineered strain, respectively. The 2-PE yield of this engineered strain was 0.71 g/g L-phenylalanine, corresponding to 95.9% of theoretical yield. This study provides a reference to efficiently engineering of microbial cell factories for other valuable aromatic compounds. KEY POINTS: • Metabolic engineering improved 2-PE biosynthesis. • Tolerance engineering alleviated product inhibition, contributing to 2-PE production. • The best strain produced 5.0 g/L 2-PE with 0.959 mol/mol yield and high productivity.
Collapse
Affiliation(s)
- Yuqin Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhongyuan Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xinyao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China. .,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China. .,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China.
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China. .,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China. .,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
6
|
Milhomem Cruz-Leite VR, Salem-Izacc SM, Novaes E, Neves BJ, de Almeida Brito W, O'Hara Souza Silva L, Paccez JD, Parente-Rocha JA, Pereira M, Maria de Almeida Soares C, Borges CL. Nitrogen Catabolite Repression in members of Paracoccidioides complex. Microb Pathog 2020; 149:104281. [PMID: 32585293 DOI: 10.1016/j.micpath.2020.104281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 01/15/2023]
Abstract
Paracoccidioides complex is a genus that comprises pathogenic fungi which are responsible by systemic disease Paracoccidioidomycosis. In host tissues, pathogenic fungi need to acquire nutrients in order to survive, making the uptake of nitrogen essential for their establishment and dissemination. Nitrogen utilization is employed by the alleviation of Nitrogen Catabolite Repression (NCR) which ensures the use of non-preferential or alternative nitrogen sources when preferential sources are not available. NCR is controlled by GATA transcription factors which act through GATA binding sites on promoter regions in NCR-sensitive genes. This process is responsible for encoding proteins involved with the scavenge, uptake and catabolism of a wide variety of non-preferential nitrogen sources. In this work, we predict the existence of AreA GATA transcription factor and feature the zinc finger domain by three-dimensional structure in Paracoccidioides. Furthermore, we demonstrate the putative genes involved with NCR response by means of in silico analysis. The gene expression profile under NCR conditions was evaluated. Demonstrating that P. lutzii supported transcriptional regulation and alleviated NCR in non-preferential nitrogen-dependent medium. The elucidation of NCR in members of Paracoccidioides complex will provide new knowledge about survival, dissemination and virulence for these pathogens with regard to nitrogen-scavenging strategies in the interactions of host-pathogens.
Collapse
Affiliation(s)
| | - Silvia Maria Salem-Izacc
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Evandro Novaes
- Escola de Agronomia, Setor de Melhoramento de Plantas, Universidade Federal de Goiás, Campus II Samambaia, Rodovia Goiânia a Nova Veneza, Goiás, Brazil.
| | - Bruno Junior Neves
- Centro Universitário de Anápolis - UniEVANGÉLICA, Anápolis, Goiás, Brazil.
| | - Wesley de Almeida Brito
- Centro Universitário de Anápolis - UniEVANGÉLICA, Anápolis, Goiás, Brazil; Universidade Estadual de Goiás - UEG - CCET, Anápolis, Goiás, Brazil.
| | - Lana O'Hara Souza Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Juliano Domiraci Paccez
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Juliana Alves Parente-Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
7
|
Mat Nanyan NSB, Takagi H. Proline Homeostasis in Saccharomyces cerevisiae: How Does the Stress-Responsive Transcription Factor Msn2 Play a Role? Front Genet 2020; 11:438. [PMID: 32411186 PMCID: PMC7198862 DOI: 10.3389/fgene.2020.00438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Overexpression of MSN2, which is the transcription factor gene in response to stress, is well-known to increase the tolerance of the yeast Saccharomyces cerevisiae cells to a wide variety of environmental stresses. Recent studies have found that the Msn2 is a feasible potential mediator of proline homeostasis in yeast. This result is based on the finding that overexpression of the MSN2 gene exacerbates the cytotoxicity of yeast to various amino acid analogs whose uptake is increased by the active amino acid permeases localized on the plasma membrane as a result of a dysfunctional deubiquitination process. Increased understanding of the cellular responses induced by the Msn2-mediated proline incorporation will provide better comprehension of how cells respond to and counteract to different kinds of stimuli and will also contribute to the breeding of industrial yeast strains with increased productivity.
Collapse
Affiliation(s)
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
8
|
Babst M. Eisosomes at the intersection of TORC1 and TORC2 regulation. Traffic 2019; 20:543-551. [PMID: 31038844 DOI: 10.1111/tra.12651] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022]
Abstract
Eisosomes are furrows in the yeast plasma membrane that form a membrane domain with distinct lipid and protein composition. Recent studies highlighted the importance of this domain for the regulation of proton-nutrient symporters. The amino acids and other nutrients, which these transporters deliver to the cytoplasm not only feed into metabolic pathways but also activate the metabolic regulator TORC1. Eisosomes have also been shown to harbor the membrane stress sensors Slm1 and Slm2. Membrane tension caused by hypoosmotic shock results in the redistribution of Slm1/2 from eisosomes to TORC2 which in turn regulates lipid synthesis. Therefore, eisosomes function upstream of both TORC1 and TORC2 regulation.
Collapse
Affiliation(s)
- Markus Babst
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah
| |
Collapse
|
9
|
Amino acids stimulate the endosome-to-Golgi trafficking through Ragulator and small GTPase Arl5. Nat Commun 2018; 9:4987. [PMID: 30478271 PMCID: PMC6255761 DOI: 10.1038/s41467-018-07444-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/31/2018] [Indexed: 11/22/2022] Open
Abstract
The endosome-to-Golgi or endocytic retrograde trafficking pathway is an important post-Golgi recycling route. Here we show that amino acids (AAs) can stimulate the retrograde trafficking and regulate the cell surface localization of certain Golgi membrane proteins. By testing components of the AA-stimulated mTORC1 signaling pathway, we demonstrate that SLC38A9, v-ATPase and Ragulator, but not Rag GTPases and mTORC1, are essential for the AA-stimulated trafficking. Arl5, an ARF-like family small GTPase, interacts with Ragulator in an AA-regulated manner and both Arl5 and its effector, the Golgi-associated retrograde protein complex (GARP), are required for the AA-stimulated trafficking. We have therefore identified a mechanistic connection between the nutrient signaling and the retrograde trafficking pathway, whereby SLC38A9 and v-ATPase sense AA-sufficiency and Ragulator might function as a guanine nucleotide exchange factor to activate Arl5, which, together with GARP, a tethering factor, probably facilitates the endosome-to-Golgi trafficking. Amino acid levels are known to regulate anabolic and catabolic pathways. Here, the authors report that amino acids also affect membrane trafficking by stimulating endosome-to-Golgi retrograde trafficking and regulating cell surface localization of certain Golgi proteins through Ragulator and Arl5.
Collapse
|
10
|
Moharir A, Gay L, Appadurai D, Keener J, Babst M. Eisosomes are metabolically regulated storage compartments for APC-type nutrient transporters. Mol Biol Cell 2018; 29:2113-2127. [PMID: 29927345 PMCID: PMC6232963 DOI: 10.1091/mbc.e17-11-0691] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Eisosomes are lipid domains of the yeast plasma membrane that share similarities to caveolae of higher eukaryotes. Eisosomes harbor APC-type nutrient transporters for reasons that are poorly understood. Our analyses support the model that eisosomes function as storage compartments, keeping APC transporters in a stable, inactive state. By regulating eisosomes, yeast is able to balance the number of proton-driven APC transporters with the proton-pumping activity of Pma1, thereby maintaining the plasma membrane proton gradient. Environmental or metabolic changes that disrupt the proton gradient cause the rapid restructuring of eisosomes and results in the removal of the APC transporters from the cell surface. Furthermore, we show evidence that eisosomes require the presence of APC transporters, suggesting that regulating activity of nutrient transporters is a major function of eisosomes.
Collapse
Affiliation(s)
- Akshay Moharir
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112
| | - Lincoln Gay
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112
| | - Daniel Appadurai
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112
| | - James Keener
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112
| | - Markus Babst
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
11
|
Steyfkens F, Zhang Z, Van Zeebroeck G, Thevelein JM. Multiple Transceptors for Macro- and Micro-Nutrients Control Diverse Cellular Properties Through the PKA Pathway in Yeast: A Paradigm for the Rapidly Expanding World of Eukaryotic Nutrient Transceptors Up to Those in Human Cells. Front Pharmacol 2018; 9:191. [PMID: 29662449 PMCID: PMC5890159 DOI: 10.3389/fphar.2018.00191] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/20/2018] [Indexed: 12/17/2022] Open
Abstract
The nutrient composition of the medium has dramatic effects on many cellular properties in the yeast Saccharomyces cerevisiae. In addition to the well-known specific responses to starvation for an essential nutrient, like nitrogen or phosphate, the presence of fermentable sugar or a respirative carbon source leads to predominance of fermentation or respiration, respectively. Fermenting and respiring cells also show strong differences in other properties, like storage carbohydrate levels, general stress tolerance and cellular growth rate. However, the main glucose repression pathway, which controls the switch between respiration and fermentation, is not involved in control of these properties. They are controlled by the protein kinase A (PKA) pathway. Addition of glucose to respiring yeast cells triggers cAMP synthesis, activation of PKA and rapid modification of its targets, like storage carbohydrate levels, general stress tolerance and growth rate. However, starvation of fermenting cells in a glucose medium for any essential macro- or micro-nutrient counteracts this effect, leading to downregulation of PKA and its targets concomitant with growth arrest and entrance into G0. Re-addition of the lacking nutrient triggers rapid activation of the PKA pathway, without involvement of cAMP as second messenger. Investigation of the sensing mechanism has revealed that the specific high-affinity nutrient transporter(s) induced during starvation function as transporter-receptors or transceptors for rapid activation of PKA upon re-addition of the missing substrate. In this way, transceptors have been identified for amino acids, ammonium, phosphate, sulfate, iron, and zinc. We propose a hypothesis for regulation of PKA activity by nutrient transceptors to serve as a conceptual framework for future experimentation. Many properties of transceptors appear to be similar to those of classical receptors and nutrient transceptors may constitute intermediate forms in the development of receptors from nutrient transporters during evolution. The nutrient-sensing transceptor system in yeast for activation of the PKA pathway has served as a paradigm for similar studies on candidate nutrient transceptors in other eukaryotes and we succinctly discuss the many examples of transceptors that have already been documented in other yeast species, filamentous fungi, plants, and animals, including the examples in human cells.
Collapse
Affiliation(s)
- Fenella Steyfkens
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB, Flanders, Belgium
| | - Zhiqiang Zhang
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB, Flanders, Belgium
| |
Collapse
|
12
|
Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2018; 82:82/1/e00040-17. [PMID: 29436478 DOI: 10.1128/mmbr.00040-17] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nitrogen is one of the most important essential nutrient sources for biogenic activities. Regulation of nitrogen metabolism in microorganisms is complicated and elaborate. For this review, the yeast Saccharomyces cerevisiae was chosen to demonstrate the regulatory mechanism of nitrogen metabolism because of its relative clear genetic background. Current opinions on the regulation processes of nitrogen metabolism in S. cerevisiae, including nitrogen sensing, transport, and catabolism, are systematically reviewed. Two major upstream signaling pathways, the Ssy1-Ptr3-Ssy5 sensor system and the target of rapamycin pathway, which are responsible for sensing extracellular and intracellular nitrogen, respectively, are discussed. The ubiquitination of nitrogen transporters, which is the most general and efficient means for controlling nitrogen transport, is also summarized. The following metabolic step, nitrogen catabolism, is demonstrated at two levels: the transcriptional regulation process related to GATA transcriptional factors and the translational regulation process related to the general amino acid control pathway. The interplay between nitrogen regulation and carbon regulation is also discussed. As a model system, understanding the meticulous process by which nitrogen metabolism is regulated in S. cerevisiae not only could facilitate research on global regulation mechanisms and yeast metabolic engineering but also could provide important insights and inspiration for future studies of other common microorganisms and higher eukaryotic cells.
Collapse
|
13
|
Ponomarova O, Gabrielli N, Sévin DC, Mülleder M, Zirngibl K, Bulyha K, Andrejev S, Kafkia E, Typas A, Sauer U, Ralser M, Patil KR. Yeast Creates a Niche for Symbiotic Lactic Acid Bacteria through Nitrogen Overflow. Cell Syst 2017; 5:345-357.e6. [PMID: 28964698 PMCID: PMC5660601 DOI: 10.1016/j.cels.2017.09.002] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/13/2017] [Accepted: 08/30/2017] [Indexed: 01/05/2023]
Abstract
Many microorganisms live in communities and depend on metabolites secreted by fellow community members for survival. Yet our knowledge of interspecies metabolic dependencies is limited to few communities with small number of exchanged metabolites, and even less is known about cellular regulation facilitating metabolic exchange. Here we show how yeast enables growth of lactic acid bacteria through endogenous, multi-component, cross-feeding in a readily established community. In nitrogen-rich environments, Saccharomyces cerevisiae adjusts its metabolism by secreting a pool of metabolites, especially amino acids, and thereby enables survival of Lactobacillus plantarum and Lactococcus lactis. Quantity of the available nitrogen sources and the status of nitrogen catabolite repression pathways jointly modulate this niche creation. We demonstrate how nitrogen overflow by yeast benefits L. plantarum in grape juice, and contributes to emergence of mutualism with L. lactis in a medium with lactose. Our results illustrate how metabolic decisions of an individual species can benefit others.
Collapse
Affiliation(s)
- Olga Ponomarova
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | | | - Daniel C Sévin
- Institute of Molecular Systems Biology, ETH-Zürich, Zürich 8093, Switzerland
| | - Michael Mülleder
- Department of Biochemistry, University of Cambridge, The Francis Crick Institute, London, NW1 1AT, UK
| | | | | | - Sergej Andrejev
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Eleni Kafkia
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH-Zürich, Zürich 8093, Switzerland
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, The Francis Crick Institute, London, NW1 1AT, UK
| | | |
Collapse
|
14
|
Chen X, Wang Z, Guo X, Liu S, He X. Regulation of general amino acid permeases Gap1p, GATA transcription factors Gln3p and Gat1p on 2-phenylethanol biosynthesis via Ehrlich pathway. J Biotechnol 2017; 242:83-91. [DOI: 10.1016/j.jbiotec.2016.11.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/25/2016] [Accepted: 11/28/2016] [Indexed: 11/16/2022]
|
15
|
Melnykov AV. New mechanisms that regulate Saccharomyces cerevisiae short peptide transporter achieve balanced intracellular amino acid concentrations. Yeast 2015; 33:21-31. [PMID: 26537311 DOI: 10.1002/yea.3137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/20/2015] [Accepted: 09/30/2015] [Indexed: 12/25/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae is able to take up large quantities of amino acids in the form of di- and tripeptides via a short peptide transporter, Ptr2p. It is known that PTR2 can be induced by certain peptides and amino acids, and the mechanisms governing this upregulation are understood at the molecular level. We describe two new opposing mechanisms of regulation that emphasize potential toxicity of amino acids: the first is upregulation of PTR2 in a population of cells, caused by amino acid secretion that accompanies peptide uptake; the second is loss of Ptr2p activity, due to transporter internalization following peptide uptake. Our findings emphasize the importance of proper amino acid balance in the cell and extend understanding of peptide import regulation in yeast.
Collapse
Affiliation(s)
- Artem V Melnykov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
16
|
Santiago M, Gardner RC. TheIRC7gene encodes cysteine desulphydrase activity and confers on yeast the ability to grow on cysteine as a nitrogen source. Yeast 2015; 32:519-32. [DOI: 10.1002/yea.3076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 01/29/2023] Open
Affiliation(s)
- Margarita Santiago
- Wine Science Group, School of Biological Sciences; University of Auckland; New Zealand
| | - Richard C. Gardner
- Wine Science Group, School of Biological Sciences; University of Auckland; New Zealand
| |
Collapse
|
17
|
Hashim Z, Mukai Y, Bamba T, Fukusaki E. Metabolic profiling of retrograde pathway transcription factors rtg1 and rtg3 knockout yeast. Metabolites 2014; 4:580-98. [PMID: 25007314 PMCID: PMC4192681 DOI: 10.3390/metabo4030580] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/12/2014] [Accepted: 06/24/2014] [Indexed: 12/21/2022] Open
Abstract
Rtg1 and Rtg3 are two basic helix-loop-helix (bHLH) transcription factors found in yeast Saccharomyces cerevisiae that are involved in the regulation of the mitochondrial retrograde (RTG) pathway. Under RTG response, anaplerotic synthesis of citrate is activated, consequently maintaining the supply of important precursors necessary for amino acid and nucleotide synthesis. Although the roles of Rtg1 and Rtg3 in TCA and glyoxylate cycles have been extensively reported, the investigation of other metabolic pathways has been lacking. Characteristic dimer formation in bHLH proteins, which allows for combinatorial gene expression, and the link between RTG and other regulatory pathways suggest more complex metabolic signaling involved in Rtg1/Rtg3 regulation. In this study, using a metabolomics approach, we examined metabolic alteration following RTG1 and RTG3 deletion. We found that apart from TCA and glyoxylate cycles, which have been previously reported, polyamine biosynthesis and other amino acid metabolism were significantly altered in RTG-deficient strains. We revealed that metabolic alterations occurred at various metabolic sites and that these changes relate to different growth phases, but the difference can be detected even at the mid-exponential phase, when mitochondrial function is repressed. Moreover, the effect of metabolic rearrangements can be seen through the chronological lifespan (CLS) measurement, where we confirmed the role of the RTG pathway in extending the yeast lifespan. Through a comprehensive metabolic profiling, we were able to explore metabolic phenotypes previously unidentified by other means and illustrate the possible correlations of Rtg1 and Rtg3 in different pathways.
Collapse
Affiliation(s)
- Zanariah Hashim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yukio Mukai
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan.
| | - Takeshi Bamba
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
18
|
Van Zeebroeck G, Rubio-Texeira M, Schothorst J, Thevelein JM. Specific analogues uncouple transport, signalling, oligo-ubiquitination and endocytosis in the yeast Gap1 amino acid transceptor. Mol Microbiol 2014; 93:213-33. [PMID: 24852066 PMCID: PMC4285233 DOI: 10.1111/mmi.12654] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2014] [Indexed: 12/14/2022]
Abstract
The Saccharomyces cerevisiae amino acid transceptor Gap1 functions as receptor for signalling to the PKA pathway and concomitantly undergoes substrate-induced oligo-ubiquitination and endocytosis. We have identified specific amino acids and analogues that uncouple to certain extent signalling, transport, oligo-ubiquitination and endocytosis. l-lysine, l-histidine and l-tryptophan are transported by Gap1 but do not trigger signalling. Unlike l-histidine, l-lysine triggers Gap1 oligo-ubiquitination without substantial induction of endocytosis. Two transported, non-metabolizable signalling agonists, β-alanine and d-histidine, are strong and weak inducers of Gap1 endocytosis, respectively, but both causing Gap1 oligo-ubiquitination. The non-signalling agonist, non-transported competitive inhibitor of Gap1 transport, l-Asp-γ-l-Phe, induces oligo-ubiquitination but no discernible endocytosis. The Km of l-citrulline transport is much lower than the threshold concentration for signalling and endocytosis. These results show that molecules can be transported without triggering signalling or substantial endocytosis, and that oligo-ubiquitination and endocytosis do not require signalling nor metabolism. Oligo-ubiquitination is required, but apparently not sufficient to trigger endocytosis. In addition, we demonstrate intracellular cross-induction of endocytosis of transport-defective Gap1Y395C by ubiquitination- and endocytosis-deficient Gap1K9R,K16R. Our results support the concept that different substrates bind to partially overlapping binding sites in the same general substrate-binding pocket of Gap1, triggering divergent conformations, resulting in different conformation-induced downstream processes.
Collapse
Affiliation(s)
- Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium; Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Leuven-Heverlee, Flanders, B-3001, Belgium
| | | | | | | |
Collapse
|
19
|
Friis RMN, Glaves JP, Huan T, Li L, Sykes BD, Schultz MC. Rewiring AMPK and mitochondrial retrograde signaling for metabolic control of aging and histone acetylation in respiratory-defective cells. Cell Rep 2014; 7:565-574. [PMID: 24726357 DOI: 10.1016/j.celrep.2014.03.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 12/13/2013] [Accepted: 03/10/2014] [Indexed: 01/04/2023] Open
Abstract
Abnormal respiratory metabolism plays a role in numerous human disorders. We find that regulation of overall histone acetylation is perturbed in respiratory-incompetent (ρ(0)) yeast. Because histone acetylation is highly sensitive to acetyl-coenzyme A (acetyl-CoA) availability, we sought interventions that suppress this ρ(0) phenotype through reprogramming metabolism. Nutritional intervention studies led to the discovery that genetic coactivation of the mitochondrion-to-nucleus retrograde (RTG) response and the AMPK (Snf1) pathway prevents abnormal histone deacetylation in ρ(0) cells. Metabolic profiling of signaling mutants uncovered links between chromatin-dependent phenotypes of ρ(0) cells and metabolism of ATP, acetyl-CoA, glutathione, branched-chain amino acids, and the storage carbohydrate trehalose. Importantly, RTG/AMPK activation reprograms energy metabolism to increase the supply of acetyl-CoA to lysine acetyltransferases and extend the chronological lifespan of ρ(0) cells. Our results strengthen the framework for rational design of nutrient supplementation schemes and drug-discovery initiatives aimed at mimicking the therapeutic benefits of dietary interventions.
Collapse
Affiliation(s)
- R Magnus N Friis
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - John Paul Glaves
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Tao Huan
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Brian D Sykes
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michael C Schultz
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
20
|
VanderSluis B, Hess DC, Pesyna C, Krumholz EW, Syed T, Szappanos B, Nislow C, Papp B, Troyanskaya OG, Myers CL, Caudy AA. Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection. Genome Biol 2014; 15:R64. [PMID: 24721214 PMCID: PMC4053978 DOI: 10.1186/gb-2014-15-4-r64] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 04/10/2014] [Indexed: 01/15/2023] Open
Abstract
Background Genome-wide sensitivity screens in yeast have been immensely popular following the construction of a collection of deletion mutants of non-essential genes. However, the auxotrophic markers in this collection preclude experiments on minimal growth medium, one of the most informative metabolic environments. Here we present quantitative growth analysis for mutants in all 4,772 non-essential genes from our prototrophic deletion collection across a large set of metabolic conditions. Results The complete collection was grown in environments consisting of one of four possible carbon sources paired with one of seven nitrogen sources, for a total of 28 different well-defined metabolic environments. The relative contributions to mutants' fitness of each carbon and nitrogen source were determined using multivariate statistical methods. The mutant profiling recovered known and novel genes specific to the processing of nutrients and accurately predicted functional relationships, especially for metabolic functions. A benchmark of genome-scale metabolic network modeling is also given to demonstrate the level of agreement between current in silico predictions and hitherto unavailable experimental data. Conclusions These data address a fundamental deficiency in our understanding of the model eukaryote Saccharomyces cerevisiae and its response to the most basic of environments. While choice of carbon source has the greatest impact on cell growth, specific effects due to nitrogen source and interactions between the nutrients are frequent. We demonstrate utility in characterizing genes of unknown function and illustrate how these data can be integrated with other whole-genome screens to interpret similarities between seemingly diverse perturbation types.
Collapse
|
21
|
Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2014; 38:254-99. [PMID: 24483210 PMCID: PMC4238866 DOI: 10.1111/1574-6976.12065] [Citation(s) in RCA: 448] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/23/2013] [Accepted: 01/22/2014] [Indexed: 02/04/2023] Open
Abstract
The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth.
Collapse
Affiliation(s)
- Michaela Conrad
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Joep Schothorst
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Harish Nag Kankipati
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Marta Rubio-Texeira
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| |
Collapse
|
22
|
Glutamine modulates acute dextran sulphate sodium-induced changes in small-intestinal intraepithelial γδ-T-lymphocyte expression in mice. Br J Nutr 2013; 111:1032-9. [PMID: 24229607 DOI: 10.1017/s0007114513003425] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The present study investigated the effect of glutamine (Gln) on dextran sulphate sodium (DSS)-induced changes in the expression of small-intestinal intraepithelial lymphocyte (IEL) γδ-T cells in mice. Mice were randomly assigned to a normal control (NC) group and two DSS-treated groups. The NC group and one of the DSS-treated groups (DSS-C) were fed a common semi-purified diet, while the other DSS-treated group (DSS-G) was fed an identical diet, except that part of casein was replaced by Gln, which provided 25 % of total amino acid nitrogen. After being fed the diets for 10 d, mice in the NC group were given distilled water, while the DSS-treated groups were given distilled water containing 2·5 % DSS for 5 d. At the end of the experiment, the mice were killed. The small-intestinal IEL γδ-T-cell subset was isolated for further analysis. The results indicated that DSS treatment resulted in a lower percentage of small-intestinal IEL γδ-T cells and higher mRNA expressions of interferon-γ, TNF-α, IL-17, complement 5a receptor and keratinocyte growth factor in IEL γδ-T cells. Gln administration increased the proportion of small-intestinal IEL γδ-T cells, and the expression levels of immunomodulatory mediator genes in IEL γδ-T cells were lower in the DSS-treated mice. The histological findings indicated that the immunoreactive intensity of the tight junction protein ZO-1 in the small-intestinal mucosa was higher in the DSS-G group than in the DSS-C group. These results indicate that pretreatment with Gln increases the proportion of small-intestinal IEL γδ-T cells and down-regulates γδ-T-cell-expressed inflammatory mediators, which may consequently ameliorate the severity of DSS-induced small-intestinal epithelial injury.
Collapse
|
23
|
Metabolic engineering of the regulators in nitrogen catabolite repression to reduce the production of ethyl carbamate in a model rice wine system. Appl Environ Microbiol 2013; 80:392-8. [PMID: 24185848 DOI: 10.1128/aem.03055-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rice wine has been one of the most popular traditional alcoholic drinks in China. However, the presence of potentially carcinogenic ethyl carbamate (EC) in rice wine has raised a series of food safety issues. During rice wine production, the key reason for EC formation is urea accumulation, which occurs because of nitrogen catabolite repression (NCR) in Saccharomyces cerevisiae. NCR represses urea utilization by retaining Gln3p in the cytoplasm when preferred nitrogen sources are present. In order to increase the nuclear localization of Gln3p, some possible phosphorylation sites on the nuclear localization signal were mutated and the nuclear localization regulation signal was truncated, and the disruption of URE2 provided an additional method of reducing urea accumulation. By combining these strategies, the genes involved in urea utilization (DUR1,2 and DUR3) could be significantly activated in the presence of glutamine. During shake flask fermentations of the genetically modified strains, very little urea accumulated in the medium. Furthermore, the concentrations of urea and EC were reduced by 63% and 72%, respectively, in a model rice wine system. Examination of the normal nutrients in rice wine indicated that there were few differences in fermentation characteristics between the wild-type strain and the genetically modified strain. These results show that metabolic engineering of the NCR regulators has great potential as a method for eliminating EC during rice wine production.
Collapse
|
24
|
Yeast nutrient transceptors provide novel insight in the functionality of membrane transporters. Curr Genet 2013; 59:197-206. [PMID: 24114446 PMCID: PMC3824880 DOI: 10.1007/s00294-013-0413-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 09/17/2013] [Accepted: 09/30/2013] [Indexed: 11/21/2022]
Abstract
In the yeast Saccharomyces cerevisiae several nutrient transporters have been identified that possess an additional function as nutrient receptor. These transporters are induced when yeast cells are starved for their substrate, which triggers entry into stationary phase and acquirement of a low protein kinase A (PKA) phenotype. Re-addition of the lacking nutrient triggers exit from stationary phase and sudden activation of the PKA pathway, the latter being mediated by the nutrient transceptors. At the same time, the transceptors are ubiquitinated, endocytosed and sorted to the vacuole for breakdown. Investigation of the signaling function of the transceptors has provided a new read-out and new tools for gaining insight into the functionality of transporters. Identification of amino acid residues that bind co-transported ions in symporters has been challenging because the inactivation of transport by site-directed mutagenesis is not conclusive with respect to the cause of the inactivation. The discovery of nontransported agonists of the signaling function in transceptors has shown that transport is not required for signaling. Inactivation of transport with maintenance of signaling in transceptors supports that a true proton-binding residue was mutagenised. Determining the relationship between transport and induction of endocytosis has also been challenging, since inactivation of transport by mutagenesis easily causes loss of all affinity for the substrate. The use of analogues with different combinations of transport and signaling capacities has revealed that transport, ubiquitination and endocytosis can be uncoupled in several unexpected ways. The results obtained are consistent with transporters undergoing multiple substrate-induced conformational changes, which allow interaction with different accessory proteins to trigger specific downstream events.
Collapse
|
25
|
Lee JCY, Tsoi A, Kornfeld GD, Dawes IW. Cellular responses toL-serine inSaccharomyces cerevisiae: roles of general amino acid control, compartmentalization, and aspartate synthesis. FEMS Yeast Res 2013; 13:618-34. [DOI: 10.1111/1567-1364.12063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Johnny C.-Y. Lee
- Ramaciotti Center for Gene Function Analysis and School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; NSW; Australia
| | - Abraham Tsoi
- Ramaciotti Center for Gene Function Analysis and School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; NSW; Australia
| | - Geoffrey D. Kornfeld
- Ramaciotti Center for Gene Function Analysis and School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; NSW; Australia
| | - Ian W. Dawes
- Ramaciotti Center for Gene Function Analysis and School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; NSW; Australia
| |
Collapse
|
26
|
Zhang F, Pracheil T, Thornton J, Liu Z. Adenosine Triphosphate (ATP) Is a Candidate Signaling Molecule in the Mitochondria-to-Nucleus Retrograde Response Pathway. Genes (Basel) 2013; 4:86-100. [PMID: 24605246 PMCID: PMC3899953 DOI: 10.3390/genes4010086] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/09/2013] [Accepted: 03/15/2013] [Indexed: 01/08/2023] Open
Abstract
Intracellular communication from the mitochondria to the nucleus is achieved via the retrograde response. In budding yeast, the retrograde response, also known as the RTG pathway, is regulated positively by Rtg1, Rtg2, Rtg3 and Grr1 and negatively by Mks1, Lst8 and two 14-3-3 proteins, Bmh1/2. Activation of retrograde signaling leads to activation of Rtg1/3, two basic helix-loop-helix leucine zipper transcription factors. Rtg1/3 activation requires Rtg2, a cytoplasmic protein with an N-terminal adenosine triphosphate (ATP) binding domain belonging to the actin/Hsp70/sugar kinase superfamily. The critical regulatory step of the retrograde response is the interaction between Rtg2 and Mks1. Rtg2 binds to and inactivates Mks1, allowing for activation of Rtg1/3 and the RTG pathway. When the pathway is inactive, Mks1 has dissociated from Rtg2 and bound to Bmh1/2, preventing activation of Rtg1/3. What signals association or disassociation of Mks1 and Rtg2 is unknown. Here, we show that ATP at physiological concentrations dissociates Mks1 from Rtg2 in a highly cooperative fashion. We report that ATP-mediated dissociation of Mks1 from Rtg2 is conserved in two other fungal species, K. lactis and K. waltii. Activation of Rtg1/3 upregulates expression of genes encoding enzymes catalyzing the first three reactions of the Krebs cycle, which is coupled to ATP synthesis through oxidative phosphorylation. Therefore, we propose that the retrograde response is an ATP homeostasis pathway coupling ATP production with ATP-mediated repression of the retrograde response by releasing Mks1 from Rtg2.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA; E-Mails: (F.Z.); (J.T.)
| | - Tammy Pracheil
- Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA; E-Mail:
| | - Janet Thornton
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA; E-Mails: (F.Z.); (J.T.)
| | - Zhengchang Liu
- Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-504-280-6314; Fax: +1-504-280-6121
| |
Collapse
|
27
|
Glutamine modulates sepsis-induced changes to intestinal intraepithelial γδT lymphocyte expression in mice. Shock 2012; 38:288-93. [PMID: 22777117 DOI: 10.1097/shk.0b013e3182655932] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study investigated the effect of glutamine (GLN) on intestinal intraepithelial lymphocyte (IEL) γδT-cell cytokines and immune regulatory factor gene expressions in a mouse model of polymicrobial sepsis. Mice were randomly assigned to a normal group, a sepsis with saline (SS) group, or a sepsis with GLN (SG) group. All mice were fed a chow diet. Sepsis was induced by cecal ligation and puncture (CLP). The SS group was injected with saline, and the SG group was given 0.75 g GLN/kg body weight once via a tail vein 1 h after CLP. Septic mice were killed 12 h after CLP, and IEL γδT cells of the animals were isolated for further analysis. Results showed that compared with normal mice, sepsis resulted in lower IEL γδT-cell percentage and higher messenger RNA expressions of interferon γ, tumor necrosis factor α, interleukin 4 (IL-4), IL-13, IL-17, retinoid acid receptor-related orphan receptor γt, and complement 5a receptor by IEL γδT cells. These immunomodulatory mediator genes exhibited decreases, whereas IL-7 receptor expression increased in IEL γδT cells in septic mice with GLN administration. Annexin V/7-amino-actinomycin D stain revealed significantly lower rates of apoptosis, and IEL γδT-cell percentage was higher in the SG group. The histological findings also showed that damage to intestinal epithelial cells was less severe in the SG group. These results indicated that a single dose of GLN administered as treatment after the initiation of sepsis prevented apoptosis of IEL γδT cells and downregulated γδT cell-expressed inflammatory mediators that may consequently ameliorate the severity of sepsis-induced intestinal epithelial injury.
Collapse
|
28
|
Mahfouz H, Ragnini-Wilson A, Venditti R, De Matteis MA, Wilson C. Mutational analysis of the yeast TRAPP subunit Trs20p identifies roles in endocytic recycling and sporulation. PLoS One 2012; 7:e41408. [PMID: 23049729 PMCID: PMC3458868 DOI: 10.1371/journal.pone.0041408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 06/22/2012] [Indexed: 11/20/2022] Open
Abstract
Trs20p is a subunit of the evolutionarily conserved TRAPP (TRAnsport Protein Particle) complex that mediates various aspects of membrane trafficking. Three TRAPP complexes have been identified in yeast with roles in ER-to-Golgi trafficking, post-Golgi and endosomal-to-Golgi transport and in autophagy. The role of Trs20p, which is essential for viability and a component of all three complexes, and how it might function within each TRAPP complex, has not been clarified to date. To begin to address the role of Trs20p we generated different mutants by random mutagenesis but, surprisingly, no defects were observed in diverse anterograde transport pathways or general secretion in Trs20 temperature-sensitive mutants. Instead, mutation of Trs20 led to defects in endocytic recycling and a block in sporulation/meiosis. The phenotypes of different mutants appear to be separable suggesting that the mutations affect the function of Trs20 in different TRAPP complexes.
Collapse
Affiliation(s)
- Hichem Mahfouz
- Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Antonella Ragnini-Wilson
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | | | | | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, Naples, Italy
| |
Collapse
|
29
|
Harsch MJ, Gardner RC. Yeast genes involved in sulfur and nitrogen metabolism affect the production of volatile thiols from Sauvignon Blanc musts. Appl Microbiol Biotechnol 2012; 97:223-35. [PMID: 22684328 DOI: 10.1007/s00253-012-4198-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/19/2012] [Accepted: 05/21/2012] [Indexed: 11/27/2022]
Abstract
Two volatile thiols, 3-mercaptohexan-1-ol (3MH), and 3-mercaptohexyl-acetate (3MHA), reminiscent of grapefruit and passion fruit respectively, are critical varietal aroma compounds in Sauvignon Blanc (SB) wines. These aromatic thiols are not present in the grape juice but are synthesized and released by the yeast during alcoholic fermentation. Single deletion mutants of 67 candidate genes in a laboratory strain of Saccharomyces cerevisiae were screened using gas chromatography mass spectrometry for their thiol production after fermentation of SB grape juice. None of the deletions abolished production of the two volatile thiols. However, deletion of 17 genes caused increases or decreases in production by as much as twofold. These 17 genes, mostly related to sulfur and nitrogen metabolism in yeast, may act by altering the regulation of the pathway(s) of thiol production or altering substrate supply. Deleting subsets of these genes in a wine yeast strain gave similar results to the laboratory strain for sulfur pathway genes but showed strain differences for genes involved in nitrogen metabolism. The addition of two nitrogen sources, urea and di-ammonium phosphate, as well as two sulfur compounds, cysteine and S-ethyl-L-cysteine, increased 3MH and 3MHA concentrations in the final wines. Collectively these results suggest that sulfur and nitrogen metabolism are important in regulating the synthesis of 3MH and 3MHA during yeast fermentation of grape juice.
Collapse
Affiliation(s)
- Michael J Harsch
- School of Biological Sciences, University of Auckland, Private Bag, 92019, Auckland, New Zealand.
| | | |
Collapse
|
30
|
Peptides induce persistent signaling from endosomes by a nutrient transceptor. Nat Chem Biol 2012; 8:400-8. [PMID: 22388927 DOI: 10.1038/nchembio.910] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/23/2011] [Indexed: 11/09/2022]
Abstract
The yeast Gap1 transceptor mediates amino acid activation of the protein kinase A pathway and undergoes endocytic internalization following amino acid transport. We identified three specific γ-glutamyl dipeptides that cause persistent cyclic AMP-independent activation of protein kinase A, prevent Gap1 vacuolar sorting and cause Gap1 accumulation in endosomes. To our knowledge, these are the first examples of persistent agonists of a transceptor. In yeast mutants blocked in multivesicular body sorting, L-citrulline mimicked persistent signaling, further supporting that the internalized Gap1 transceptor keeps signaling. Unexpectedly, these dipeptides were transported by Gap1 and not by the regular dipeptide transporters. Their uptake was unusually sensitive to external pH and caused transient intracellular acidification. High external pH, NHA1 deletion or V-ATPase inhibition overcame the vacuolar sorting defect. Hence, this work has identified specific dipeptides that cause enhanced proton influx through the Gap1 symporter, resulting in its defective vacuolar sorting, and independently transform it into a persistently signaling transceptor.
Collapse
|
31
|
Jennings ML, Cui J. Inactivation of Saccharomyces cerevisiae sulfate transporter Sul2p: use it and lose it. Biophys J 2012; 102:768-76. [PMID: 22385847 DOI: 10.1016/j.bpj.2012.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 12/09/2011] [Accepted: 01/03/2012] [Indexed: 12/12/2022] Open
Abstract
Saccharomyces cerevisiae SO(4)(=) transport is regulated over a wide dynamic range. Sulfur starvation causes ∼10,000-fold increase in the (35)SO(4)(=) influx mediated by transporters Sul1p and Sul2p; >80% of the influx is via Sul2p. Adding methionine to S-starved cells causes a 50-fold decline (t(1/2) ∼5 min) in SUL1 and SUL2 mRNA but a slower decline (t(1/2) ∼1 h) in transport. In contrast, SO(4)(=) addition does not affect mRNA but causes a rapid (t(1/2) = 2-4 min) decrease in transport. In met3Δ cells (unable to metabolize SO(4)(=)), addition of SO(4)(=) to S-starved cells causes inactivation of (35)SO(4)(=) influx over times in which cellular SO(4)(=) contents are nearly constant. The relationship between cellular SO(4)(=) and transport inactivation shows that cellular SO(4)(=) is not the signal for Sul2p inactivation. Instead, the transport inactivation rate has the same dependence on extracellular SO(4)(=) as (35)SO(4)(=) influx, indicating that Sul2p exhibits use-dependent inactivation; the transport process itself increases the probability of Sul2p inactivation and degradation. In addition, there is a transient efflux of SO(4)(=) shortly after adding >0.02 mM SO(4)(=) to S-starved met3Δ cells. This transient efflux provides further protection against excessive SO(4)(=) influx and may represent an alternate transport mode of Sul2p.
Collapse
Affiliation(s)
- Michael L Jennings
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | | |
Collapse
|
32
|
Lamberts L, Joye IJ, Beliën T, Delcour JA. Dynamics of γ-aminobutyric acid in wheat flour bread making. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Abstract
The target of rapamycin (TOR) is a central cell growth regulator conserved from yeast to mammals. Uncontrolled TOR activation is commonly observed in human cancers. TOR forms two distinct structural and functional complexes, TORC1 and TORC2. TORC1 promotes cell growth and cell size by stimulating protein synthesis. A wide range of signals, including nutrients, energy levels, and growth factors, are known to control TORC1 activity. Among them, amino acids (AA) not only potently activate TORC1 but are also required for TORC1 activation by other stimuli, such as growth factors. The mechanisms of growth factors and cellular energy status in activating TORC1 have been well elucidated, whereas the molecular basis of AA signaling is just emerging. Recent advances in the role of AA signaling on TORC1 activation have revealed key components, including the Rag GTPases, protein kinases, nutrient transporters, and the intracellular trafficking machinery, in relaying AA signals to TORC1 activation.
Collapse
Affiliation(s)
- Joungmok Kim
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
34
|
Kriel J, Haesendonckx S, Rubio-Texeira M, Van Zeebroeck G, Thevelein JM. From transporter to transceptor: signaling from transporters provokes re-evaluation of complex trafficking and regulatory controls: endocytic internalization and intracellular trafficking of nutrient transceptors may, at least in part, be governed by their signaling function. Bioessays 2011; 33:870-9. [PMID: 21913212 PMCID: PMC3258547 DOI: 10.1002/bies.201100100] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
When cells are starved of their substrate, many nutrient transporters are induced. These undergo rapid endocytosis and redirection of their intracellular trafficking when their substrate becomes available again. The discovery that some of these transporters also act as receptors, or transceptors, suggests that at least part of the sophisticated controls governing the trafficking of these proteins has to do with their signaling function rather than with control of transport. In yeast, the general amino acid permease Gap1 mediates signaling to the protein kinase A pathway. Its endocytic internalization and intracellular trafficking are subject to amino acid control. Other nutrient transceptors controlling this signal transduction pathway appear to be subject to similar trafficking regulation. Transporters with complex regulatory control have also been suggested to function as transceptors in other organisms. Hence, precise regulation of intracellular trafficking in nutrient transporters may be related to the need for tight control of nutrient-induced signaling.
Collapse
Affiliation(s)
- Johan Kriel
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, K. U. Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
35
|
The Candida albicans GAP gene family encodes permeases involved in general and specific amino acid uptake and sensing. EUKARYOTIC CELL 2011; 10:1219-29. [PMID: 21764911 DOI: 10.1128/ec.05026-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Saccharomyces cerevisiae general amino acid permease Gap1 (ScGap1) not only mediates the uptake of most amino acids but also functions as a receptor for the activation of protein kinase A (PKA). Fungal pathogens can colonize different niches in the host, each containing various levels of different amino acids and sugars. The Candida albicans genome contains six genes homologous to the S. cerevisiae GAP1. The expression of these six genes in S. cerevisiae showed that the products of all six C. albicans genes differ in their transport capacities. C. albicans Gap2 (CaGap2) is the true orthologue of ScGap1 as it transports all tested amino acids. The other CaGap proteins have narrower substrate specificities though CaGap1 and CaGap6 transport several structurally unrelated amino acids. CaGap1, CaGap2, and CaGap6 also function as sensors. Upon detecting some amino acids, e.g., methionine, they are involved in a rapid activation of trehalase, a downstream target of PKA. Our data show that CaGAP genes can be functionally expressed in S. cerevisiae and that CaGap permeases communicate to the intracellular signal transduction pathway similarly to ScGap1.
Collapse
|
36
|
Cain NE, Kaiser CA. Transport activity-dependent intracellular sorting of the yeast general amino acid permease. Mol Biol Cell 2011; 22:1919-29. [PMID: 21471002 PMCID: PMC3103407 DOI: 10.1091/mbc.e10-10-0800] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Intracellular trafficking of the general amino acid permease, Gap1p, is regulated by amino acid abundance. Through the use of mutants that alter the set of amino acids that can be transported by Gap1p, we show that only those amino acids that can be transported by Gap1p can act as a signal to affect Gap1p sorting. Intracellular trafficking of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae is regulated by amino acid abundance. When amino acids are scarce Gap1p is sorted to the plasma membrane, whereas when amino acids are abundant Gap1p is sorted from the trans-Golgi through the multivesicular endosome (MVE) and to the vacuole. Here we test the hypothesis that Gap1p itself is the sensor of amino acid abundance by examining the trafficking of Gap1p mutants with altered substrate specificity and transport activity. We show that trafficking of mutant Gap1pA297V, which does not transport basic amino acids, is also not regulated by these amino acids. Furthermore, we have identified a catalytically inactive mutant that does not respond to complex amino acid mixtures and constitutively sorts Gap1p to the plasma membrane. Previously we showed that amino acids govern the propensity of Gap1p to recycle from the MVE to the plasma membrane. Here we propose that in the presence of substrate the steady-state conformation of Gap1p shifts to a state that is unable to be recycled from the MVE. These results indicate a parsimonious regulatory mechanism by which Gap1p senses its transport substrates to set an appropriate level of transporter activity at the cell surface.
Collapse
Affiliation(s)
- Natalie E Cain
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
37
|
The retrograde response retrograde response and other pathways of interorganelle communication interorganelle communication in yeast replicative aging. Subcell Biochem 2011; 57:79-100. [PMID: 22094418 DOI: 10.1007/978-94-007-2561-4_4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A form of mitochondria-to-nucleus signaling mitochondria-to-nucleus signaling is known to play a role in determining replicative life span in yeast. This retrograde response is triggered by experimentally-induced mitochondrial dysfunction mitochondrial dysfunction, but it also is activated during the course of normal replicative aging, allowing yeast to have as long a replicative life span as they do. The components of the retrograde signaling pathway participate in diverse cellular processes such as mitophagy, which appear to be involved in mitochondrial quality control mitochondrial quality control. This plethora of mitochondrial surveillance mitochondrial surveillance mechanisms points to the central importance of this organelle organelle in yeast replicative aging. Additional pathways pathways that monitor mitochondrial status mitochondrial status that do not apparently involve the retrograde response machinery also play a role. A unifying theme is the involvement of the target of rapamycin target of rapamycin (TOR) in both these additional pathways and in the retrograde response. The involvement of TOR brings another large family of signaling events into juxtaposition. Ceramide synthesis is regulated by TOR opening up the potential for coordination of mitochondrial status with a wide array of additional cellular processes. The retrograde response lies at the nexus of metabolic regulation metabolic regulation, stress resistance stress resistance, chromatin-dependent gene regulation chromatin-dependent gene regulation, and genome stability genome stability. In its metabolic outputs, it is related to calorie restriction,calorie restriction, which may be the result of the involvement of TOR. Retrograde response-like processes have been identified in systems other than yeast, including mammalian cells mammalian cells. The retrograde response is a prototypical pathway of interorganelle communication. Other such phenomena are emerging, such as the cross-talk cross-talk between mitochondria mitochondria and the vacuole vacuole, which involves components of the retrograde signaling pathway. The impact of these varied physiological responses on yeast replicative aging remains to be assessed.
Collapse
|
38
|
O'Donnell AF, Apffel A, Gardner RG, Cyert MS. Alpha-arrestins Aly1 and Aly2 regulate intracellular trafficking in response to nutrient signaling. Mol Biol Cell 2010; 21:3552-66. [PMID: 20739461 PMCID: PMC2954120 DOI: 10.1091/mbc.e10-07-0636] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Arrestins, known regulators of endocytosis, take on novel functions in nutrient-regulated endosomal recycling. Yeast α-arrestins, Aly1 and Aly2, redistribute the Gap1 permease from endosomes to the cell surface and interact with clathrin/AP-1. Aly2 is regulated by the Npr1 kinase and acts through mechanisms distinct from Aly1. Extracellular signals regulate trafficking events to reorganize proteins at the plasma membrane (PM); however, few effectors of this regulation have been identified. β-Arrestins relay signaling cues to the trafficking machinery by controlling agonist-stimulated endocytosis of G-protein–coupled receptors. In contrast, we show that yeast α-arrestins, Aly1 and Aly2, control intracellular sorting of Gap1, the general amino acid permease, in response to nutrients. These studies are the first to demonstrate association of α-arrestins with clathrin and clathrin adaptor proteins (AP) and show that Aly1 and Aly2 interact directly with the γ-subunit of AP-1, Apl4. Aly2-dependent trafficking of Gap1 requires AP-1, which mediates endosome-to-Golgi transport, and the nutrient-regulated kinase, Npr1, which phosphorylates Aly2. During nitrogen starvation, Npr1 phosphorylation of Aly2 may stimulate Gap1 incorporation into AP-1/clathrin-coated vesicles to promote Gap1 trafficking from endosomes to the trans-Golgi network. Ultimately, increased Aly1-/Aly2-mediated recycling of Gap1 from endosomes results in higher Gap1 levels within cells and at the PM by diverting Gap away from trafficking pathways that lead to vacuolar degradation. This work defines a new role for arrestins in membrane trafficking and offers insight into how α-arrestins coordinate signaling events with protein trafficking.
Collapse
|
39
|
Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 2010; 56:1-32. [PMID: 20054690 DOI: 10.1007/s00294-009-0287-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/18/2009] [Accepted: 12/19/2009] [Indexed: 12/27/2022]
Abstract
Cells of all living organisms contain complex signal transduction networks to ensure that a wide range of physiological properties are properly adapted to the environmental conditions. The fundamental concepts and individual building blocks of these signalling networks are generally well-conserved from yeast to man; yet, the central role that growth factors and hormones play in the regulation of signalling cascades in higher eukaryotes is executed by nutrients in yeast. Several nutrient-controlled pathways, which regulate cell growth and proliferation, metabolism and stress resistance, have been defined in yeast. These pathways are integrated into a signalling network, which ensures that yeast cells enter a quiescent, resting phase (G0) to survive periods of nutrient scarceness and that they rapidly resume growth and cell proliferation when nutrient conditions become favourable again. A series of well-conserved nutrient-sensory protein kinases perform key roles in this signalling network: i.e. Snf1, PKA, Tor1 and Tor2, Sch9 and Pho85-Pho80. In this review, we provide a comprehensive overview on the current understanding of the signalling processes mediated via these kinases with a particular focus on how these individual pathways converge to signalling networks that ultimately ensure the dynamic translation of extracellular nutrient signals into appropriate physiological responses.
Collapse
|
40
|
Jung CH, Ro SH, Cao J, Otto NM, Kim DH. mTOR regulation of autophagy. FEBS Lett 2010; 584:1287-95. [PMID: 20083114 DOI: 10.1016/j.febslet.2010.01.017] [Citation(s) in RCA: 1666] [Impact Index Per Article: 111.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 02/07/2023]
Abstract
Nutrient starvation induces autophagy in eukaryotic cells through inhibition of TOR (target of rapamycin), an evolutionarily-conserved protein kinase. TOR, as a central regulator of cell growth, plays a key role at the interface of the pathways that coordinately regulate the balance between cell growth and autophagy in response to nutritional status, growth factor and stress signals. Although TOR has been known as a key regulator of autophagy for more than a decade, the underlying regulatory mechanisms have not been clearly understood. This review discusses the recent advances in understanding of the mechanism by which TOR regulates autophagy with focus on mammalian TOR (mTOR) and its regulation of the autophagy machinery.
Collapse
Affiliation(s)
- Chang Hwa Jung
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
TOR complex 1 (TORC1), an oligomer of the mTOR (mammalian target of rapamycin) protein kinase, its substrate binding subunit raptor, and the polypeptide Lst8/GbetaL, controls cell growth in all eukaryotes in response to nutrient availability and in metazoans to insulin and growth factors, energy status, and stress conditions. This review focuses on the biochemical mechanisms that regulate mTORC1 kinase activity, with special emphasis on mTORC1 regulation by amino acids. The dominant positive regulator of mTORC1 is the GTP-charged form of the ras-like GTPase Rheb. Insulin, growth factors, and a variety of cellular stressors regulate mTORC1 by controlling Rheb GTP charging through modulating the activity of the tuberous sclerosis complex, the Rheb GTPase activating protein. In contrast, amino acids, especially leucine, regulate mTORC1 by controlling the ability of Rheb-GTP to activate mTORC1. Rheb binds directly to mTOR, an interaction that appears to be essential for mTORC1 activation. In addition, Rheb-GTP stimulates phospholipase D1 to generate phosphatidic acid, a positive effector of mTORC1 activation, and binds to the mTOR inhibitor FKBP38, to displace it from mTOR. The contribution of Rheb's regulation of PL-D1 and FKBP38 to mTORC1 activation, relative to Rheb's direct binding to mTOR, remains to be fully defined. The rag GTPases, functioning as obligatory heterodimers, are also required for amino acid regulation of mTORC1. As with amino acid deficiency, however, the inhibitory effect of rag depletion on mTORC1 can be overcome by Rheb overexpression, whereas Rheb depletion obviates rag's ability to activate mTORC1. The rag heterodimer interacts directly with mTORC1 and may direct mTORC1 to the Rheb-containing vesicular compartment in response to amino acid sufficiency, enabling Rheb-GTP activation of mTORC1. The type III phosphatidylinositol kinase also participates in amino acid-dependent mTORC1 activation, although the site of action of its product, 3'OH-phosphatidylinositol, in this process is unclear.
Collapse
Affiliation(s)
- Joseph Avruch
- Department of Molecular Biology and Diabetes Research Unit, Medical Service, Massachusetts General Hospital, and Department of Medicine, Harvard Medical School, Simches Research Center, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Yurina NP, Odintsova MS. Mitochondrial signaling: Retrograde regulation in yeast Saccharomyces cerevisiae. RUSS J GENET+ 2009. [DOI: 10.1134/s102279540811001x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Navarro FJ, Martín Y, Siverio JM. Phosphorylation of the yeast nitrate transporter Ynt1 is essential for delivery to the plasma membrane during nitrogen limitation. J Biol Chem 2008; 283:31208-17. [PMID: 18713738 DOI: 10.1074/jbc.m802170200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ynt1 is the sole high affinity nitrate transporter of the yeast Hansenula polymorpha. It is highly regulated by the nitrogen source, by being down-regulated in response to glutamine by repression of the YNT1 gene and Ynt1 ubiquitinylation, endocytosis, and vacuolar degradation. On the contrary, we show that nitrogen limitation stabilizes Ynt1 levels at the plasma membrane, requiring phosphorylation of the transporter. We determined that Ser-246 in the central intracellular loop plays a key role in the phosphorylation of Ynt1 and that the nitrogen permease reactivator 1 kinase (Npr1) is necessary for Ynt1 phosphorylation. Abolition of phosphorylation led Ynt1 to the vacuole by a pep12-dependent end4-independent pathway, which is also dependent on ubiquitinylation, whereas Ynt1 protein lacking ubiquitinylation sites does not follow this pathway. We found that, under nitrogen limitation, Ynt1 phosphorylation is essential for rapid induction of nitrate assimilation genes. Our results suggest that, under nitrogen limitation, phosphorylation prevents Ynt1 delivery from the secretion route to the vacuole, which, aided by reduced ubiquitinylation, accumulates Ynt1 at the plasma membrane. This mechanism could be part of the response that allows nitrate-assimilatory organisms to cope with nitrogen depletion.
Collapse
Affiliation(s)
- Francisco J Navarro
- Departamento de Bioquímica y Biología Molecular, Instituto de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Canarias 38206, Spain
| | | | | |
Collapse
|
44
|
Risinger AL, Kaiser CA. Different ubiquitin signals act at the Golgi and plasma membrane to direct GAP1 trafficking. Mol Biol Cell 2008; 19:2962-72. [PMID: 18434603 DOI: 10.1091/mbc.e07-06-0627] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The high capacity general amino acid permease, Gap1p, in Saccharomyces cerevisiae is distributed between the plasma membrane and internal compartments according to availability of amino acids. When internal amino acid levels are low, Gap1p is localized to the plasma membrane where it imports available amino acids from the medium. When sufficient amino acids are imported, Gap1p at the plasma membrane is endocytosed and newly synthesized Gap1p is delivered to the vacuole; both sorting steps require Gap1p ubiquitination. Although it has been suggested that identical trans-acting factors and Gap1p ubiquitin acceptor sites are involved in both processes, we define unique requirements for each of the ubiquitin-mediated sorting steps involved in delivery of Gap1p to the vacuole upon amino acid addition. Our finding that distinct ubiquitin-mediated sorting steps employ unique trans-acting factors, ubiquitination sites on Gap1p, and types of ubiquitination demonstrates a previously unrecognized level of specificity in ubiquitin-mediated protein sorting.
Collapse
Affiliation(s)
- April L Risinger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
45
|
Jin R, Dobry CJ, McCown PJ, Kumar A. Large-scale analysis of yeast filamentous growth by systematic gene disruption and overexpression. Mol Biol Cell 2007; 19:284-96. [PMID: 17989363 DOI: 10.1091/mbc.e07-05-0519] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Under certain conditions of nutrient stress, the budding yeast Saccharomyces cerevisiae initiates a striking developmental transition to a filamentous form of growth, resembling developmental transitions required for virulence in closely related pathogenic fungi. In yeast, filamentous growth involves known mitogen-activated protein kinase and protein kinase A signaling modules, but the full scope of this extensive filamentous response has not been delineated. Accordingly, we have undertaken the first systematic gene disruption and overexpression analysis of yeast filamentous growth. Standard laboratory strains of yeast are nonfilamentous; thus, we constructed a unique set of reagents in the filamentous Sigma1278b strain, encompassing 3627 integrated transposon insertion alleles and 2043 overexpression constructs. Collectively, we analyzed 4528 yeast genes with these reagents and identified 487 genes conferring mutant filamentous phenotypes upon transposon insertion and/or gene overexpression. Using a fluorescent protein reporter integrated at the MUC1 locus, we further assayed each filamentous growth mutant for aberrant protein levels of the key flocculence factor Muc1p. Our results indicate a variety of genes and pathways affecting filamentous growth. In total, this filamentous growth gene set represents a wealth of yeast biology, highlighting 84 genes of uncharacterized function and an underappreciated role for the mitochondrial retrograde signaling pathway as an inhibitor of filamentous growth.
Collapse
Affiliation(s)
- Rui Jin
- Department of Molecular, Cellular, and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | | | | | |
Collapse
|
46
|
Garrett JM. Amino acid transport through the Saccharomyces cerevisiae Gap1 permease is controlled by the Ras/cAMP pathway. Int J Biochem Cell Biol 2007; 40:496-502. [PMID: 17919965 PMCID: PMC2292834 DOI: 10.1016/j.biocel.2007.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 08/21/2007] [Indexed: 11/20/2022]
Abstract
The general amino acid permease (Gap1p) of Saccharomyces cerevisiae is a broad range, low affinity permease that imports amino acids in cells growing on poor nitrogen sources. This permease also signals the presence of amino acids through the fermentable growth medium pathway allowing the cell to respond to new sources of nitrogen in the surrounding medium. Yeast with an activated Ras2/cAMP pathway show many phenotypes indicative of altered nitrogen uptake and metabolism; sensitivity to nitrogen starvation, low amino acid pools. We have shown that Gap1p activity is lowered in cells with an activated RAS2(val19) allele or elevated cAMP levels whereas cells with inactive ras2 allele lose ammonia repression of Gap1p-mediated transport. This regulation is through a post-transcriptional mechanism; transcription of GAP1 is not affected by cAMP level. A mechanism by which the Ras2/cAMP/PKA pathway controls the ubiquitin-dependent degradation of Gap1p is most consistent with the data.
Collapse
Affiliation(s)
- Jinnie M Garrett
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA.
| |
Collapse
|
47
|
Edinger AL. Controlling cell growth and survival through regulated nutrient transporter expression. Biochem J 2007; 406:1-12. [PMID: 17645414 DOI: 10.1042/bj20070490] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although all cells depend upon nutrients they acquire from the extracellular space, surprisingly little is known about how nutrient uptake is regulated in mammalian cells. Most nutrients are brought into cells by means of specific transporter proteins. In yeast, the expression and trafficking of a wide variety of nutrient transporters is controlled by the TOR (target of rapamycin) kinase. Consistent with this, recent studies in mammalian cells have shown that mTOR (mammalian TOR) and the related protein, PI3K (phosphoinositide 3-kinase), play central roles in coupling nutrient transporter expression to the availability of extrinsic trophic and survival signals. In the case of lymphocytes, it has been particularly well established that these extrinsic signals stimulate cell growth and proliferation in part by regulating nutrient transporter expression. The ability of growth factors to control nutrient access may also play an important role in tumour suppression: the non-homoeostatic growth of tumour cells requires that nutrient transporter expression is uncoupled from trophic factor availability. Also supporting a link between nutrient transporter expression levels and oncogenesis, several recent studies demonstrate that nutrient transporter expression drives, rather than simply parallels, cellular metabolism. This review summarizes the evidence that regulated nutrient transporter expression plays a central role in cellular growth control and highlights the implications of these findings for human disease.
Collapse
Affiliation(s)
- Aimee L Edinger
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| |
Collapse
|
48
|
Zurita-Martinez SA, Puria R, Pan X, Boeke JD, Cardenas ME. Efficient Tor signaling requires a functional class C Vps protein complex in Saccharomyces cerevisiae. Genetics 2007; 176:2139-50. [PMID: 17565946 PMCID: PMC1950620 DOI: 10.1534/genetics.107.072835] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 05/25/2007] [Indexed: 12/26/2022] Open
Abstract
The Tor kinases regulate responses to nutrients and control cell growth. Unlike most organisms that only contain one Tor protein, Saccharomyces cerevisiae expresses two, Tor1 and Tor2, which are thought to share all of the rapamycin-sensitive functions attributable to Tor signaling. Here we conducted a genetic screen that defined the global TOR1 synthetic fitness or lethal interaction gene network. This screen identified mutations in distinctive functional categories that impaired vacuolar function, including components of the EGO/Gse and PAS complexes that reduce fitness. In addition, tor1 is lethal in combination with mutations in class C Vps complex components. We find that Tor1 does not regulate the known function of the class C Vps complex in protein sorting. Instead class C vps mutants fail to recover from rapamycin-induced growth arrest or to survive nitrogen starvation and have low levels of amino acids. Remarkably, addition of glutamate or glutamine restores viability to a tor1 pep3 mutant strain. We conclude that Tor1 is more effective than Tor2 at providing rapamycin-sensitive Tor signaling under conditions of amino acid limitation, and that an intact class C Vps complex is required to mediate intracellular amino acid homeostasis for efficient Tor signaling.
Collapse
Affiliation(s)
- Sara A Zurita-Martinez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
49
|
Strochlic TI, Setty TG, Sitaram A, Burd CG. Grd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling. ACTA ACUST UNITED AC 2007; 177:115-25. [PMID: 17420293 PMCID: PMC2064116 DOI: 10.1083/jcb.200609161] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amajor function of the endocytic system is the sorting of cargo to various organelles. Endocytic sorting of the yeast reductive iron transporter, which is composed of the Fet3 and Ftr1 proteins, is regulated by available iron. When iron is provided to iron-starved cells, Fet3p–Ftr1p is targeted to the lysosome-like vacuole and degraded. In contrast, when iron is not available, Fet3p–Ftr1p is maintained on the plasma membrane via an endocytic recycling pathway requiring the sorting nexin Grd19/Snx3p, the pentameric retromer complex, and the Ypt6p Golgi Rab GTPase module. A recycling signal in Ftr1p was identified and found to bind directly to Grd19/Snx3p. Retromer and Grd19/Snx3p partially colocalize to tubular endosomes, where they are physically associated. After export from the endosome, Fet3p–Ftr1p transits through the Golgi apparatus for resecretion. Thus, Grd19/Snx3p, functions as a cargo-specific adapter for the retromer complex, establishing a precedent for a mechanism by which sorting nexins expand the repertoire of retromer-dependent cargos.
Collapse
Affiliation(s)
- Todd I Strochlic
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Mitochondrial retrograde signaling is a pathway of communication from mitochondria to the nucleus under normal and pathophysiological conditions. The best understood of such pathways is retrograde signaling in the budding yeast Saccharomyces cerevisiae. It involves multiple factors that sense and transmit mitochondrial signals to effect changes in nuclear gene expression; these changes lead to a reconfiguration of metabolism to accommodate cells to defects in mitochondria. Analysis of regulatory factors has provided us with a mechanistic view of regulation of retrograde signaling. Here we review advances in the yeast retrograde signaling pathway and highlight its regulatory factors and regulatory mechanisms, its physiological functions, and its connection to nutrient sensing, TOR signaling, and aging.
Collapse
Affiliation(s)
- Zhengchang Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA.
| | | |
Collapse
|