1
|
Conway JRW, Joshi O, Kaivola J, Follain G, Gounis M, Kühl D, Ivaska J. Dynamic regulation of integrin β1 phosphorylation supports invasion of breast cancer cells. Nat Cell Biol 2025:10.1038/s41556-025-01663-4. [PMID: 40419795 DOI: 10.1038/s41556-025-01663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/26/2025] [Indexed: 05/28/2025]
Abstract
Integrins provide an essential bridge between cancer cells and the extracellular matrix, playing a central role in every stage of disease progression. Despite the recognized importance of integrin phosphorylation in several biological processes, the regulatory mechanisms and their relevance remained elusive. Here we engineer a fluorescence resonance energy transfer biosensor for integrin β1 phosphorylation, screening 96 protein tyrosine phosphatases and identifying Shp2 and PTP-PEST as negative regulators to address this gap. Mutation of the integrin NPxY(783/795) sites revealed the importance of integrin phosphorylation for efficient cancer cell invasion, further supported by inhibition of the identified integrin phosphorylation regulators Shp2 and Src kinase. Using proteomics approaches, we uncovered Cofilin as a component of the phosphorylated integrin-Dok1 complex and linked this axis to effective invadopodia formation, a process supporting breast cancer invasion. These data further implicate dynamic modulation of integrin β1 phosphorylation at NPxY sites at different stages of metastatic dissemination.
Collapse
Affiliation(s)
- James R W Conway
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Omkar Joshi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Gautier Follain
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Collegium for Science, Medicine and Technology TCSMT, University of Turku, Turku, Finland
| | - Michalis Gounis
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - David Kühl
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Life Technologies, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Western Finnish Cancer Center, University of Turku, Turku, Finland.
- Foundation for the Finnish Cancer Institute, Helsinki, Finland.
| |
Collapse
|
2
|
Böttcher RT, Strohmeyer N, Aretz J, Fässler R. New insights into the phosphorylation of the threonine motif of the β1 integrin cytoplasmic domain. Life Sci Alliance 2022; 5:5/4/e202101301. [PMID: 34996844 PMCID: PMC8761493 DOI: 10.26508/lsa.202101301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023] Open
Abstract
Integrins require an activation step before ligand binding and signaling that is mediated by talin and kindlin binding to the β integrin cytosolic domain (β-tail). Conflicting reports exist about the contribution of phosphorylation of a conserved threonine motif in the β1-tail (β1-pT788/pT789) to integrin activation. We show that widely used and commercially available antibodies against β1-pT788/pT789 integrin do not detect specific β1-pT788/pT789 integrin signals in immunoblots of several human and mouse cell lysates but bind bi-phosphorylated threonine residues in numerous proteins, which were identified by mass spectrometry experiments. Furthermore, we found that fibroblasts and epithelial cells expressing the phospho-mimicking β1-TT788/789DD integrin failed to activate β1 integrins and displayed reduced integrin ligand binding, adhesion initiation and cell spreading. These cellular defects are specifically caused by the inability of kindlin to bind β1-tail polypeptides carrying a phosphorylated threonine motif or phospho-mimicking TT788/789DD substitutions. Our findings indicate that the double-threonine motif in β1-class integrins is not a major phosphorylation site but if phosphorylated would curb integrin function.
Collapse
Affiliation(s)
- Ralph T Böttcher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nico Strohmeyer
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Jonas Aretz
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
3
|
Luo J, Zou H, Guo Y, Tong T, Ye L, Zhu C, Deng L, Wang B, Pan Y, Li P. SRC kinase-mediated signaling pathways and targeted therapies in breast cancer. Breast Cancer Res 2022; 24:99. [PMID: 36581908 PMCID: PMC9798727 DOI: 10.1186/s13058-022-01596-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/17/2022] [Indexed: 12/30/2022] Open
Abstract
Breast cancer (BC) has been ranked the most common malignant tumor throughout the world and is also a leading cause of cancer-related deaths among women. SRC family kinases (SFKs) belong to the non-receptor tyrosine kinase (nRTK) family, which has eleven members sharing similar structure and function. Among them, SRC is the first identified proto-oncogene in mammalian cells. Oncogenic overexpression or activation of SRC has been revealed to play essential roles in multiple events of BC progression, including tumor initiation, growth, metastasis, drug resistance and stemness regulations. In this review, we will first give an overview of SRC kinase and SRC-relevant functions in various subtypes of BC and then systematically summarize SRC-mediated signaling transductions, with particular emphasis on SRC-mediated substrate phosphorylation in BC. Furthermore, we will discuss the progress of SRC-based targeted therapies in BC and the potential future direction.
Collapse
Affiliation(s)
- Juan Luo
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Hailin Zou
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Yibo Guo
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Tongyu Tong
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Liping Ye
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Chengming Zhu
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Liang Deng
- grid.511083.e0000 0004 7671 2506Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Bo Wang
- grid.511083.e0000 0004 7671 2506Department of Oncology, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Yihang Pan
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Peng Li
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| |
Collapse
|
4
|
Kleiser S, Nyström A. Interplay between Cell-Surface Receptors and Extracellular Matrix in Skin. Biomolecules 2020; 10:E1170. [PMID: 32796709 PMCID: PMC7465455 DOI: 10.3390/biom10081170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Skin consists of the epidermis and dermis, which are connected by a specialized basement membrane-the epidermal basement membrane. Both the epidermal basement membrane and the underlying interstitial extracellular matrix (ECM) created by dermal fibroblasts contain distinct network-forming macromolecules. These matrices play various roles in order to maintain skin homeostasis and integrity. Within this complex interplay of cells and matrices, cell surface receptors play essential roles not only for inside-out and outside-in signaling, but also for establishing mechanical and biochemical properties of skin. Already minor modulations of this multifactorial cross-talk can lead to severe and systemic diseases. In this review, major epidermal and dermal cell surface receptors will be addressed with respect to their interactions with matrix components as well as their roles in fibrotic, inflammatory or tumorigenic skin diseases.
Collapse
Affiliation(s)
- Svenja Kleiser
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Kowalski-Chauvel A, Teissier G, Toulas C, Cohen-Jonathan-Moyal E, Seva C. By modulating α2β1 integrin signalling, gastrin increases adhesion oF AGS-GR gastric cancer cells. Exp Cell Res 2018; 362:498-503. [PMID: 29253536 DOI: 10.1016/j.yexcr.2017.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 01/01/2023]
Abstract
Peritoneal metastasis is a major cause of recurrence of gastric cancer and integrins are key molecules involved in gastric cancer cells attachment to the peritoneum. The peptide hormone, gastrin, initially identified for its role in gastric acid secretion is also a growth factor for gastric mucosa. Gastrin has also been shown to contribute to gastric cancers progression. Here, we provide the first evidence that gastrin increases the adhesion of gastric cancer cells. Gastrin treatment induces the expression of α2 integrin subunit through a mechanism that involves the ERK pathway. We also observed in response to gastrin an increase in the amount of α2 integrin associated with β1subunit. In addition, gastrin-stimulated cell adhesion was blocked with an anti-α2β1 integrin neutralizing antibody. We also show that gastrin activates the integrin pathway via the phosphorylation of β1 integrin by a Src family kinase. This mechanism may contribute to the enhancement of cell adhesion observed in response to gastrin since we found an inhibition of gastrin-mediated cell adhesion when cells were treated with a Src inhibitor. By regulating one of the key step of the metastatic process gastrin might contribute to increase the aggressive behaviour of human gastric tumours.
Collapse
Affiliation(s)
- Aline Kowalski-Chauvel
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier Toulouse III, team 11, Oncopole 2 Avenue Hubert Curien, CS 53717, 31037 Toulouse, France
| | - Guy Teissier
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier Toulouse III, team 11, Oncopole 2 Avenue Hubert Curien, CS 53717, 31037 Toulouse, France
| | - Christine Toulas
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier Toulouse III, team 11, Oncopole 2 Avenue Hubert Curien, CS 53717, 31037 Toulouse, France; IUCT-oncopole Toulouse, France
| | - Elizabeth Cohen-Jonathan-Moyal
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier Toulouse III, team 11, Oncopole 2 Avenue Hubert Curien, CS 53717, 31037 Toulouse, France; IUCT-oncopole Toulouse, France
| | - Catherine Seva
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier Toulouse III, team 11, Oncopole 2 Avenue Hubert Curien, CS 53717, 31037 Toulouse, France.
| |
Collapse
|
6
|
PRG-1 Regulates Synaptic Plasticity via Intracellular PP2A/β1-Integrin Signaling. Dev Cell 2016; 38:275-90. [DOI: 10.1016/j.devcel.2016.06.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/04/2016] [Accepted: 06/14/2016] [Indexed: 01/19/2023]
|
7
|
Stallmann S, Hegemann JH. The Chlamydia trachomatis Ctad1 invasin exploits the human integrin β1 receptor for host cell entry. Cell Microbiol 2016; 18:761-75. [PMID: 26597572 DOI: 10.1111/cmi.12549] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/02/2015] [Accepted: 11/17/2015] [Indexed: 11/28/2022]
Abstract
Infection of human cells by the obligate intracellular bacterium Chlamydia trachomatis requires adhesion and internalization of the infectious elementary body (EB). This highly complex process is poorly understood. Here, we characterize Ctad1 (CT017) as a new adhesin and invasin from C. trachomatis serovar E. Recombinant Ctad1 (rCtad1) binds to human cells via two bacterial SH3 domains located in its N-terminal half. Pre-incubation of host cells with rCtad1 reduces subsequent adhesion and infectivity of bacteria. Interestingly, protein-coated latex beads revealed Ctad1 being an invasin. rCtad1 interacts with the integrin β1 subunit on human epithelial cells, and induces clustering of integrins at EB attachment sites. Receptor activation induces ERK1/2 phosphorylation. Accordingly, rCtad1 binding to integrin β1-negative cells is significantly impaired, as is the chlamydial infection. Thus interaction of C. trachomatis Ctad1 with integrin β1 mediates EB adhesion and induces signaling processes that promote host-cell invasion.
Collapse
Affiliation(s)
- Sonja Stallmann
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, Universitätsstrasse 1, Geb. 25.02.U1.23, 40225, Düsseldorf, Germany
| | - Johannes H Hegemann
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, Universitätsstrasse 1, Geb. 25.02.U1.23, 40225, Düsseldorf, Germany
| |
Collapse
|
8
|
Yoneda A. Fibronectin Matrix Assembly and Its Significant Role in Cancer Progression and Treatment. TRENDS GLYCOSCI GLYC 2015. [DOI: 10.4052/tigg.1421.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Atsuko Yoneda
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
9
|
Gahmberg CG, Grönholm M, Uotila LM. Regulation of integrin activity by phosphorylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 819:85-96. [PMID: 25023169 DOI: 10.1007/978-94-017-9153-3_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Integrins are heterodimeric complex type I membrane proteins involved in cellular adhesion and signaling. They exist as inactive molecules in resting cells, and need activation to become adhesive. Although much is known about their structure, and a large number of interacting molecules have been described, we still only partially understand how their activities are regulated. In this review we focus on the leukocyte-specific β2-integrins and, specifically, on the role of integrin phosphorylation in the regulation of activity. Phosphorylation reactions can be fast and reversible, thus enabling strictly directed regulatory activities both time-wise and locally in specific regions of the plasma membrane in different leukocytes.
Collapse
Affiliation(s)
- Carl G Gahmberg
- Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Viikinkaari 5, 00014, Helsinki, Finland,
| | | | | |
Collapse
|
10
|
Sun H, Liu J, Zheng Y, Pan Y, Zhang K, Chen J. Distinct chemokine signaling regulates integrin ligand specificity to dictate tissue-specific lymphocyte homing. Dev Cell 2014; 30:61-70. [PMID: 24954024 DOI: 10.1016/j.devcel.2014.05.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/18/2014] [Accepted: 04/30/2014] [Indexed: 01/04/2023]
Abstract
Immune surveillance and host defense depend on the precisely regulated trafficking of lymphocytes. Integrin α4β7 mediates lymphocyte homing to the gut through its interaction with mucosal vascular address in cell adhesion molecule-1 (MAdCAM-1). α4β7 also binds vascular cell adhesion molecule-1 (VCAM-1), which is expressed in other tissues. To maintain the tissue specificity of lymphocyte homing, α4β7 must distinguish one ligand from the other. Here, we demonstrate that α4β7 is activated by different chemokines in a ligand-specific manner. CCL25 stimulation promotes α4β7-mediated lymphocyte adhesion to MAdCAM-1 but suppresses adhesion to VCAM-1, whereas CXCL10 stimulation has the opposite effect. Using separate pathways, CCL25 and CXCL10 stimulate differential phosphorylation states of the β7 tail and distinct talin and kindlin-3 binding patterns, resulting in different binding affinities of MAdCAM-1 and VCAM-1 to α4β7. Thus, our findings provide a mechanism for lymphocyte traffic control through the unique ligand-specific regulation of integrin adhesion by different chemokines.
Collapse
Affiliation(s)
- Hao Sun
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - YaJuan Zheng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - YouDong Pan
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kun Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - JianFeng Chen
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
11
|
Schwartz MP, Rogers RE, Singh SP, Lee JY, Loveland SG, Koepsel JT, Witze ES, Montanez-Sauri SI, Sung KE, Tokuda EY, Sharma Y, Everhart LM, Nguyen EH, Zaman MH, Beebe DJ, Ahn NG, Murphy WL, Anseth KS. A quantitative comparison of human HT-1080 fibrosarcoma cells and primary human dermal fibroblasts identifies a 3D migration mechanism with properties unique to the transformed phenotype. PLoS One 2013; 8:e81689. [PMID: 24349113 PMCID: PMC3857815 DOI: 10.1371/journal.pone.0081689] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 10/25/2013] [Indexed: 01/09/2023] Open
Abstract
Here, we describe an engineering approach to quantitatively compare migration, morphologies, and adhesion for tumorigenic human fibrosarcoma cells (HT-1080s) and primary human dermal fibroblasts (hDFs) with the aim of identifying distinguishing properties of the transformed phenotype. Relative adhesiveness was quantified using self-assembled monolayer (SAM) arrays and proteolytic 3-dimensional (3D) migration was investigated using matrix metalloproteinase (MMP)-degradable poly(ethylene glycol) (PEG) hydrogels (“synthetic extracellular matrix” or “synthetic ECM”). In synthetic ECM, hDFs were characterized by vinculin-containing features on the tips of protrusions, multipolar morphologies, and organized actomyosin filaments. In contrast, HT-1080s were characterized by diffuse vinculin expression, pronounced β1-integrin on the tips of protrusions, a cortically-organized F-actin cytoskeleton, and quantitatively more rounded morphologies, decreased adhesiveness, and increased directional motility compared to hDFs. Further, HT-1080s were characterized by contractility-dependent motility, pronounced blebbing, and cortical contraction waves or constriction rings, while quantified 3D motility was similar in matrices with a wide range of biochemical and biophysical properties (including collagen) despite substantial morphological changes. While HT-1080s were distinct from hDFs for each of the 2D and 3D properties investigated, several features were similar to WM239a melanoma cells, including rounded, proteolytic migration modes, cortical F-actin organization, and prominent uropod-like structures enriched with β1-integrin, F-actin, and melanoma cell adhesion molecule (MCAM/CD146/MUC18). Importantly, many of the features observed for HT-1080s were analogous to cellular changes induced by transformation, including cell rounding, a disorganized F-actin cytoskeleton, altered organization of focal adhesion proteins, and a weakly adherent phenotype. Based on our results, we propose that HT-1080s migrate in synthetic ECM with functional properties that are a direct consequence of their transformed phenotype.
Collapse
Affiliation(s)
- Michael P. Schwartz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (MPS); (KSA)
| | - Robert E. Rogers
- College of Medicine, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Samir P. Singh
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Justin Y. Lee
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Samuel G. Loveland
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Justin T. Koepsel
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eric S. Witze
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, , United States of America
| | - Sara I. Montanez-Sauri
- Materials Science Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kyung E. Sung
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emi Y. Tokuda
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Yasha Sharma
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Lydia M. Everhart
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, Ohio, United States of America
| | - Eric H. Nguyen
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Muhammad H. Zaman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Natalie G. Ahn
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Materials Science Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
- * E-mail: (MPS); (KSA)
| |
Collapse
|
12
|
Schachtner H, Calaminus SDJ, Thomas SG, Machesky LM. Podosomes in adhesion, migration, mechanosensing and matrix remodeling. Cytoskeleton (Hoboken) 2013; 70:572-89. [PMID: 23804547 DOI: 10.1002/cm.21119] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/07/2013] [Accepted: 06/13/2013] [Indexed: 12/30/2022]
Abstract
Cells use various actin-based motile structures to allow them to move across and through matrix of varying density and composition. Podosomes are actin cytoskeletal structures that form in motile cells and that mediate adhesion to substrate, migration, and other specialized functions such as transmigration through cell and matrix barriers. The podosome is a unique and interesting entity, which appears in the light microscope as an individual punctum, but is linked to other podosomes like a node on a network of the underlying cytoskeleton. Here, we discuss the signals that control podosome assembly and dynamics in different cell types and the actin organising proteins that regulate both the inner actin core and integrin-rich surrounding ring structures. We review the structure and composition of podosomes and also their functions in various cell types of both myeloid and endothelial lineage. We also discuss the emerging idea that podosomes can sense matrix stiffness and enable cells to respond to their environment.
Collapse
Affiliation(s)
- Hannah Schachtner
- CRUK Beatson Institute for Cancer Research and College of Medical, Veterinary and Life Sciences, Glasgow University, Garscube Campus, Switchback Rd., Bearsden, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
13
|
Duperret EK, Ridky TW. Focal adhesion complex proteins in epidermis and squamous cell carcinoma. Cell Cycle 2013; 12:3272-85. [PMID: 24036537 DOI: 10.4161/cc.26385] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Focal adhesions (FAs) are large, integrin-containing, multi-protein assemblies spanning the plasma membrane that link the cellular cytoskeleton to surrounding extracellular matrix. They play critical roles in adhesion and cell signaling and are major regulators of epithelial homeostasis, tissue response to injury, and tumorigenesis. Most integrin subunits and their associated FA proteins are expressed in skin, and murine genetic models have provided insight into the functional roles of FAs in normal and neoplastic epidermis. Here, we discuss the roles of these proteins in normal epidermal proliferation, adhesion, wound healing, and cancer. While many downstream signaling mechanisms remain unclear, the critically important roles of FAs are highlighted by the development of therapeutics targeting FAs for human cancer.
Collapse
|
14
|
Bouvard D, Pouwels J, De Franceschi N, Ivaska J. Integrin inactivators: balancing cellular functions in vitro and in vivo. Nat Rev Mol Cell Biol 2013; 14:430-42. [DOI: 10.1038/nrm3599] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Johansson MW, Annis DS, Mosher DF. α(M)β(2) integrin-mediated adhesion and motility of IL-5-stimulated eosinophils on periostin. Am J Respir Cell Mol Biol 2013; 48:503-10. [PMID: 23306834 DOI: 10.1165/rcmb.2012-0150oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Periostin is an extracellular matrix protein that is up-regulated by T helper cell type 2 cytokines in the asthmatic airway and implicated in mouse studies as promoting eosinophil recruitment. We asked whether periostin modulates eosinophil adhesion and motility in vitro. Periostin adsorbed to polystyrene supported adhesion of purified human blood eosinophils stimulated by IL-5, IL-3, or granulocyte/macrophage colony-stimulating factor, but did not support adhesion of eosinophils treated with IL-4 or IL-13. The degree of adhesion depended on the concentrations of periostin during coating and activating cytokine during the adhesion assay. Both full-length periostin and alternatively spliced periostin, lacking C-terminal exons 17, 18, 19, and 21, supported adhesion. Adhesion was inhibited by monoclonal antibody to α(M) or β(2) integrin subunits, but not by antibodies to other eosinophil integrin subunits. Adsorbed periostin also supported α(M)β(2)-dependent random motility of IL-5-stimulated eosinophils with optimal movement at an intermediate coating concentration. In the presence of IL-5, eosinophils adherent on periostin formed punctate structures positive for filamentous actin, gelsolin, and phosphotyrosine. These structures fit the criteria for podosomes, highly dynamic adhesive contacts that are distinct from classical focal adhesions. The results establish α(M)β(2) (CD11b/CD18, Mac-1) as an adhesive and promigratory periostin receptor on cytokine-stimulated eosinophils, and suggest that periostin may function as a haptotactic stimulus able to guide eosinophils to areas of high periostin density in the asthmatic airway.
Collapse
Affiliation(s)
- Mats W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
16
|
Tian W, Qu L, Meng L, Liu C, Wu J, Shou C. Phosphatase of regenerating liver-3 directly interacts with integrin β1 and regulates its phosphorylation at tyrosine 783. BMC BIOCHEMISTRY 2012; 13:22. [PMID: 23092334 PMCID: PMC3558359 DOI: 10.1186/1471-2091-13-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/26/2012] [Indexed: 12/31/2022]
Abstract
Background Phosphatase of regenerating liver-3 (PRL-3 or PTP4A3) has been implicated in controlling cancer cell proliferation, motility, metastasis, and angiogenesis. Deregulated expression of PRL-3 is highly correlated with cancer progression and predicts poor survival. Although PRL-3 was categorized as a tyrosine phosphatase, its cellular substrates remain largely unknown. Results We demonstrated that PRL-3 interacts with integrin β1 in cancer cells. Recombinant PRL-3 associates with the intracellular domain of integrin β1 in vitro. Silencing of integrin α1 enhances PRL-3-integrin β1 interaction. Furthermore, PRL-3 diminishes tyrosine phosphorylation of integrin β1 in vitro and in vivo. With site-specific anti-phosphotyrosine antibodies against residues in the intracellular domain of integrin β1, tyrosine-783, but not tyrosine-795, is shown to be dephosphorylated by PRL-3 in a catalytic activity-dependant manner. Phosphorylation of Y783 is potentiated by ablation of PRL-3 or by treatment with a chemical inhibitor of PRL-3. Conversely, depletion of integrin α1 decreases the phosphorylation of this site. Conclusions Our results revealed a direct interaction between PRL-3 and integrin β1 and characterized Y783 of integrin β1 as a bona fide substrate of PRL-3, which is negatively regulated by integrin α1.
Collapse
Affiliation(s)
- Wei Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | | | | | | | | | | |
Collapse
|
17
|
β1 integrin NPXY motifs regulate kidney collecting-duct development and maintenance by induced-fit interactions with cytosolic proteins. Mol Cell Biol 2012; 32:4080-91. [PMID: 22869523 DOI: 10.1128/mcb.00568-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Loss of β1 integrin expression inhibits renal collecting-system development. Two highly conserved NPXY motifs in the distal β1 tail regulate integrin function by associating with phosphtyrosine binding (PTB) proteins, such as talin and kindlin. Here, we define the roles of these two tyrosines in collecting-system development and delineate the structural determinants of the distal β1 tail using nuclear magnetic resonance (NMR). Mice carrying alanine mutations have moderate renal collecting-system developmental abnormalities relative to β1-null mice. Phenylalanine mutations did not affect renal collecting-system development but increased susceptibility to renal injury. NMR spectra in bicelles showed the distal β1 tail is disordered and does not interact with the model membrane surface. Alanine or phenylalanine mutations did not alter β1 structure or interactions between α and β1 subunit transmembrane/cytoplasmic domains; however, they did decrease talin and kindlin binding. Thus, these studies highlight the fact that the functional roles of the NPXY motifs are organ dependent. Moreover, the β1 cytoplasmic tail, in the context of the adjacent transmembrane domain in bicelles, is significantly different from the more ordered, membrane-associated β3 integrin tail. Finally, tyrosine mutations of β1 NPXY motifs induce phenotypes by disrupting their interactions with critical integrin binding proteins like talins and kindlins.
Collapse
|
18
|
Invadosome regulation by adhesion signaling. Curr Opin Cell Biol 2011; 23:597-606. [DOI: 10.1016/j.ceb.2011.04.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 12/16/2022]
|
19
|
Beta1 integrin cytoplasmic tyrosines promote skin tumorigenesis independent of their phosphorylation. Proc Natl Acad Sci U S A 2011; 108:15213-8. [PMID: 21876123 DOI: 10.1073/pnas.1105689108] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
β1 integrin tyrosine phosphorylation by oncogenic kinases, such as Src, has been predicted to induce tumorigenesis by disrupting adhesion and modifying integrin signaling. We directly tested this hypothesis by subjecting mice with "nonphosphorylatable" tyrosine-to-phenylalanine substitutions in the conserved β1 cytoplasmic tail NPxY motifs to a model of cutaneous carcinogenesis in the presence or absence of elevated Src activity. We found that hydrophobic phenylalanine substitutions of both tyrosines diminished the binding of tail-interacting proteins, including talins and kindlins, resulting in reduced β1-mediated adhesion, focal adhesion kinase (FAK) signaling, and epidermal progenitor cell-derived skin tumors. However, increased Src activity drove tumor formation independent of the phenylalanine substitutions by enhancing FAK activity, which in turn maintained the epidermal progenitor state and blocked keratinocyte differentiation. We conclude that a Src/FAK signaling unit inhibits differentiation to promote tumorigenesis downstream of β1 integrin and independent of β1 integrin tyrosine phosphorylation.
Collapse
|
20
|
Al-Awqati Q. Terminal differentiation in epithelia: the role of integrins in hensin polymerization. Annu Rev Physiol 2011; 73:401-12. [PMID: 20936943 DOI: 10.1146/annurev-physiol-012110-142253] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelia, the most abundant cell type, differentiate to protoepithelia from stem cells by developing apical and basolateral membrane domains and form sheets of cells connected by junctions. Following this differentiation step, the cells undergo a second step (terminal differentiation), during which they acquire a mature phenotype, which unlike the protoepithelial one is tissue and organ specific. An extracellular matrix (ECM) protein termed hensin (DMBT1) mediates this differentiation step in the kidney intercalated cells. Although hensin is secreted as a soluble monomer, it requires polymerization and deposition in the ECM to become active. The polymerization step is mediated by the activation of inside-out signaling by integrins and by the secretion of two proteins: cypA (a cis-trans prolyl isomerase) and galectin 3.
Collapse
Affiliation(s)
- Qais Al-Awqati
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
21
|
Abstract
Reovirus cell entry is initiated by viral attachment to cell surface glycans and junctional adhesion molecule A. Following receptor engagement, reovirus is internalized into cells by receptor-mediated endocytosis using a process dependent on β1 integrin. Endocytosed virions undergo stepwise disassembly catalyzed by cathepsin proteases, followed by endosomal membrane penetration and delivery of transcriptionally active core particles into the cytoplasm. Cellular factors that mediate reovirus endocytosis are poorly defined. We found that both genistein, a broad-spectrum tyrosine kinase inhibitor, and PP2, a specific Src-family kinase inhibitor, diminish reovirus infectivity by blocking a cell entry step. Although neither inhibitor impedes internalization of reovirus virions, both inhibitors target virions to lysosomes. Reovirus colocalizes with Src during cell entry, and reovirus infection induces phosphorylation of Src at the activation residue, tyrosine 416. Diminished Src expression by RNA interference reduces reovirus infectivity, suggesting that Src is required for efficient reovirus entry. Collectively, these data provide evidence that Src kinase is an important mediator of signaling events that regulate the appropriate sorting of reovirus particles in the endocytic pathway for disassembly and cell entry.
Collapse
|
22
|
Phosphorylation of Trask by Src kinases inhibits integrin clustering and functions in exclusion with focal adhesion signaling. Mol Cell Biol 2010; 31:766-82. [PMID: 21189288 DOI: 10.1128/mcb.00841-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trask is a recently described transmembrane substrate of Src kinases whose expression and phosphorylation has been correlated with the biology of some cancers. Little is known about the molecular functions of Trask, although its phosphorylation has been associated with cell adhesion. We have studied the effects of Trask phosphorylation on cell adhesion, integrin activation, clustering, and focal adhesion signaling. The small hairpin RNA (shRNA) knockdown of Trask results in increased cell adhesiveness and a failure to properly inactivate focal adhesion signaling, even in the unanchored state. On the contrary, the experimentally induced phosphorylation of Trask results in the inhibition of cell adhesion and inhibition of focal adhesion signaling. This is mediated through the inhibition of integrin clustering without affecting integrin affinity state or ligand binding activity. Furthermore, Trask signaling and focal adhesion signaling inactivate each other and signal in exclusion with each other, constituting a switch that underlies cell anchorage state. These data provide considerable insight into how Trask functions to regulate cell adhesion and reveal a novel pathway through which Src kinases can oppose integrin-mediated cell adhesion.
Collapse
|
23
|
Destaing O, Planus E, Bouvard D, Oddou C, Badowski C, Bossy V, Raducanu A, Fourcade B, Albiges-Rizo C, Block MR. β1A integrin is a master regulator of invadosome organization and function. Mol Biol Cell 2010; 21:4108-19. [PMID: 20926684 PMCID: PMC2993740 DOI: 10.1091/mbc.e10-07-0580] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Use of patterned surfaces, reverse genetics, and time-controlled photoinactivation showed that β1 but not β3 integrins are required for invadosome formation, self-assembly, and stabilization into a ring structure. The activation state of β1 as well as its phosphorylation by protein kinase C on Ser785 control these process and link to the degradative function. Invadosomes are adhesion structures involved in tissue invasion that are characterized by an intense actin polymerization–depolymerization associated with β1 and β3 integrins and coupled to extracellular matrix (ECM) degradation activity. We induced the formation of invadosomes by expressing the constitutive active form of Src, SrcYF, in different cell types. Use of ECM surfaces micropatterned at the subcellular scale clearly showed that in mesenchymal cells, integrin signaling controls invadosome activity. Using β1−/− or β3−/− cells, it seemed that β1A but not β3 integrins are essential for initiation of invadosome formation. Protein kinase C activity was shown to regulate autoassembly of invadosomes into a ring-like metastructure (rosette), probably by phosphorylation of Ser785 on the β1A tail. Moreover, our study clearly showed that β1A links actin dynamics and ECM degradation in invadosomes. Finally, a new strategy based on fusion of the photosensitizer KillerRed to the β1A cytoplasmic domain allowed specific and immediate loss of function of β1A, resulting in disorganization and disassembly of invadosomes and formation of focal adhesions.
Collapse
Affiliation(s)
- Olivier Destaing
- Institut Albert Bonniot, Université Joseph Fourier, Centre National de la Recherche Scientifique, and Institute National de la Santé et de la Recherche Médicale-Université Joseph Fourier U823 Site Santé BP 170, Grenoble 38042, Cedex 9, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
The glycoprotein B disintegrin-like domain binds beta 1 integrin to mediate cytomegalovirus entry. J Virol 2010; 84:10026-37. [PMID: 20660204 DOI: 10.1128/jvi.00710-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cellular integrins were identified as human cytomegalovirus (HCMV) entry receptors and signaling mediators in both fibroblasts and endothelial cells. The goal of these studies was to determine the mechanism by which HCMV binds to cellular integrins to mediate virus entry. HCMV envelope glycoprotein B (gB) has sequence similarity to the integrin-binding disintegrin-like domain found in the ADAM (a disintegrin and metalloprotease) family of proteins. To test the ability of this region to bind to cellular integrins, we generated a recombinant soluble version of the gB disintegrin-like domain (gB-DLD). The gB-DLD protein bound to human fibroblasts in a specific, dose-dependent and saturable manner that required the expression of an intact beta1 integrin ectodomain. Furthermore, a physical association between gB-DLD and beta1 integrin was demonstrated through in vitro pull-down assays. The function of this interaction was shown by the ability of cell-bound gB-DLD to efficiently block HCMV entry and the infectivity of multiple in vivo target cells. Additionally, rabbit polyclonal antibodies raised against gB-DLD neutralized HCMV infection. Mimicry of the ADAM family disintegrin-like domain by HCMV gB represents a novel mechanism for integrin engagement by a virus and reveals a unique therapeutic target for HCMV neutralization. The strong conservation of the DLD across beta- and gammaherpesviruses suggests that integrin recognition and utilization may be a more broadly conserved feature throughout the Herpesviridae.
Collapse
|
25
|
Li Z, Zhang H, Lundin L, Thullberg M, Liu Y, Wang Y, Claesson-Welsh L, Strömblad S. p21-activated kinase 4 phosphorylation of integrin beta5 Ser-759 and Ser-762 regulates cell migration. J Biol Chem 2010; 285:23699-710. [PMID: 20507994 DOI: 10.1074/jbc.m110.123497] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Modulation of integrin alphavbeta5 regulates vascular permeability, angiogenesis, and tumor dissemination. In addition, we previously found a role for p21-activated kinase 4 (PAK4) in selective regulation of integrin alphavbeta5-mediated cell motility (Zhang, H., Li, Z., Viklund, E. K., and Strömblad, S. (2002) J. Cell Biol. 158, 1287-1297). This report focuses on the molecular mechanisms of this regulation. We here identified a unique PAK4-binding membrane-proximal integrin beta5-SERS-motif involved in controlling cell attachment and migration. We also mapped the integrin beta5-binding site within PAK4. We found that PAK4 binding to integrin beta5 was not sufficient to promote cell migration, but that PAK4 kinase activity was required for PAK4 promotion of cell motility. Importantly, PAK4 specifically phosphorylated the integrin beta5 subunit at Ser-759 and Ser-762 within the beta5-SERS-motif. Point mutation of these two serine residues abolished the PAK4-induced cell migration, indicating a functional role for these phosphorylations in migration. Our results may give important leads to the functional regulation of integrin alphavbeta5, with implications for vascular permeability, angiogenesis, and cancer dissemination.
Collapse
Affiliation(s)
- Zhilun Li
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Shattil SJ, Kim C, Ginsberg MH. The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 2010; 11:288-300. [PMID: 20308986 PMCID: PMC3929966 DOI: 10.1038/nrm2871] [Citation(s) in RCA: 792] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell-directed changes in the ligand-binding affinity ('activation') of integrins regulate cell adhesion and migration, extracellular matrix assembly and mechanotransduction, thereby contributing to embryonic development and diseases such as atherothrombosis and cancer. Integrin activation comprises triggering events, intermediate signalling events and, finally, the interaction of integrins with cytoplasmic regulators, which changes an integrin's affinity for its ligands. The first two events involve diverse interacting signalling pathways, whereas the final steps are immediately proximal to integrins, thus enabling integrin-focused therapeutic strategies. Recent progress provides insight into the structure of integrin transmembrane domains, and reveals how the final steps of integrin activation are mediated by integrin-binding proteins such as talins and kindlins.
Collapse
Affiliation(s)
- Sanford J Shattil
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | |
Collapse
|
27
|
Anti-human very late antigen-α4 (CD49d) monoclonal antibody (BU49) cross-reacts with the canine B-cell leukemia cell line GL-1, resulting in the induction of homotypic cell aggregation. Cell Immunol 2010; 263:55-64. [DOI: 10.1016/j.cellimm.2010.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 02/17/2010] [Accepted: 02/22/2010] [Indexed: 12/24/2022]
|
28
|
Anthis NJ, Haling JR, Oxley CL, Memo M, Wegener KL, Lim CJ, Ginsberg MH, Campbell ID. Beta integrin tyrosine phosphorylation is a conserved mechanism for regulating talin-induced integrin activation. J Biol Chem 2009; 284:36700-36710. [PMID: 19843520 PMCID: PMC2794784 DOI: 10.1074/jbc.m109.061275] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 10/09/2009] [Indexed: 01/04/2023] Open
Abstract
Integrins are large membrane-spanning receptors fundamental to cell adhesion and migration. Integrin adhesiveness for the extracellular matrix is activated by the cytoskeletal protein talin via direct binding of its phosphotyrosine-binding-like F3 domain to the cytoplasmic tail of the beta integrin subunit. The phosphotyrosine-binding domain of the signaling protein Dok1, on the other hand, has an inactivating effect on integrins, a phenomenon that is modulated by integrin tyrosine phosphorylation. Using full-length tyrosine-phosphorylated (15)N-labeled beta3, beta1A, and beta7 integrin tails and an NMR-based protein-protein interaction assay, we show that talin1 binds to the NPXY motif and the membrane-proximal portion of beta3, beta1A, and beta7 tails, and that the affinity of this interaction is decreased by integrin tyrosine phosphorylation. Dok1 only interacts weakly with unphosphorylated tails, but its affinity is greatly increased by integrin tyrosine phosphorylation. The Dok1 interaction remains restricted to the integrin NPXY region, thus phosphorylation inhibits integrin activation by increasing the affinity of beta integrin tails for a talin competitor that does not form activating membrane-proximal interactions with the integrin. Key residues governing these specificities were identified by detailed structural analysis, and talin1 was engineered to bind preferentially to phosphorylated integrins by introducing the mutation D372R. As predicted, this mutation affects talin1 localization in live cells in an integrin phosphorylation-specific manner. Together, these results indicate that tyrosine phosphorylation is a common mechanism for regulating integrin activation, despite subtle differences in how these integrins interact with their binding proteins.
Collapse
Affiliation(s)
- Nicholas J Anthis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3DR, United Kingdom, California 92093.
| | - Jacob R Haling
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Camilla L Oxley
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3DR, United Kingdom, California 92093
| | - Massimiliano Memo
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3DR, United Kingdom, California 92093
| | - Kate L Wegener
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3DR, United Kingdom, California 92093
| | - Chinten J Lim
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Iain D Campbell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3DR, United Kingdom, California 92093.
| |
Collapse
|
29
|
Abstract
Src family kinases (SFKs) have a critical role in cell adhesion, invasion, proliferation, survival, and angiogenesis during tumor development. SFKs comprise nine family members that share similar structure and function. Overexpression or high activation of SFKs occurs frequently in tumor tissues and they are central mediators in multiple signaling pathways that are important in oncogenesis. SFKs can interact with tyrosine kinase receptors, such as EGFR and the VEGF receptor. SFKs can affect cell proliferation via the Ras/ERK/MAPK pathway and can regulate gene expression via transcription factors such as STAT molecules. SFKs can also affect cell adhesion and migration via interaction with integrins, actins, GTPase-activating proteins, scaffold proteins, such as p130(CAS) and paxillin, and kinases such as focal adhesion kinases. Furthermore, SFKs can regulate angiogenesis via gene expression of angiogenic growth factors, such as fibroblast growth factor, VEGF, and interleukin 8. On the basis of these important findings, small-molecule SFK inhibitors have been developed and are undergoing early phase clinical testing. In preclinical studies these agents can suppress tumor growth and metastases. The agents seem to be safe in humans and could add to the therapeutic arsenal against subsets of cancers.
Collapse
|
30
|
Moser M, Legate KR, Zent R, Fässler R. The tail of integrins, talin, and kindlins. Science 2009; 324:895-9. [PMID: 19443776 DOI: 10.1126/science.1163865] [Citation(s) in RCA: 581] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Integrins are transmembrane cell-adhesion molecules that carry signals from the outside to the inside of the cell and vice versa. Like other cell surface receptors, integrins signal in response to ligand binding; however, events within the cell can also regulate the affinity of integrins for ligands. This feature is important in physiological situations such as those in blood, in which cells are always in close proximity to their ligands, yet cell-ligand interactions occur only after integrin activation in response to specific external cues. This review focuses on the mechanisms whereby two key proteins, talin and the kindlins, regulate integrin activation by binding the tails of integrin-beta subunits.
Collapse
Affiliation(s)
- Markus Moser
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
31
|
Legate KR, Fässler R. Mechanisms that regulate adaptor binding to beta-integrin cytoplasmic tails. J Cell Sci 2009; 122:187-98. [PMID: 19118211 DOI: 10.1242/jcs.041624] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cells recognize and respond to their extracellular environment through transmembrane receptors such as integrins, which physically connect the extracellular matrix to the cytoskeleton. Integrins provide the basis for the assembly of intracellular signaling platforms that link to the cytoskeleton and influence nearly every aspect of cell physiology; however, integrins possess no enzymatic or actin-binding activity of their own and thus rely on adaptor molecules, which bind to the short cytoplasmic tails of integrins, to mediate and regulate these functions. Many adaptors compete for relatively few binding sites on integrin tails, so regulatory mechanisms have evolved to reversibly control the spatial and temporal binding of specific adaptors. This Commentary discusses the adaptor proteins that bind directly to the tails of beta integrins and, using talin, tensin, filamin, 14-3-3 and integrin-linked kinase (ILK) as examples, describes the ways in which their binding is regulated.
Collapse
Affiliation(s)
- Kyle R Legate
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | | |
Collapse
|
32
|
Huveneers S, Arslan S, van de Water B, Sonnenberg A, Danen EH. Integrins Uncouple Src-induced Morphological and Oncogenic Transformation. J Biol Chem 2008; 283:13243-51. [DOI: 10.1074/jbc.m800927200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
33
|
NPXY motifs in the beta1 integrin cytoplasmic tail are required for functional reovirus entry. J Virol 2008; 82:3181-91. [PMID: 18216114 DOI: 10.1128/jvi.01612-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Reovirus cell entry is mediated by attachment to cell surface carbohydrate and junctional adhesion molecule A (JAM-A) and internalization by beta1 integrin. The beta1 integrin cytoplasmic tail contains two NPXY motifs, which function in recruitment of adaptor proteins and clathrin for endocytosis and serve as sorting signals for internalized cargo. As reovirus infection requires disassembly in the endocytic compartment, we investigated the role of the beta1 integrin NPXY motifs in reovirus internalization. In comparison to wild-type cells (beta1+/+ cells), reovirus infectivity was significantly reduced in cells expressing mutant beta1 integrin in which the NPXY motifs were altered to NPXF (beta1+/+Y783F/Y795F cells). However, reovirus displayed equivalent binding and internalization levels following adsorption to beta1+/+ cells and beta1+/+Y783F/Y795F cells, suggesting that the NPXY motifs are essential for transport of reovirus within the endocytic pathway. Reovirus entry into beta1+/+ cells was blocked by chlorpromazine, an inhibitor of clathrin-mediated endocytosis, while entry into beta1+/+Y783F/Y795F cells was unaffected. Furthermore, virus was distributed to morphologically distinct endocytic organelles in beta1+/+ and beta1+/+Y783F/Y795F cells, providing further evidence that the beta1 integrin NPXY motifs mediate sorting of reovirus in the endocytic pathway. Thus, NPXY motifs in the beta1 integrin cytoplasmic tail are required for functional reovirus entry, which indicates a key role for these sequences in endocytosis of a pathogenic virus.
Collapse
|
34
|
Huveneers S, van den Bout I, Sonneveld P, Sancho A, Sonnenberg A, Danen EHJ. Integrin αvβ3 Controls Activity and Oncogenic Potential of Primed c-Src. Cancer Res 2007; 67:2693-700. [PMID: 17363590 DOI: 10.1158/0008-5472.can-06-3654] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increased activity of the proto-oncogene c-Src and elevated levels of integrin alpha(v)beta(3) are found in melanomas and multiple carcinomas. Regulation of c-Src involves "priming" through disruption of intramolecular interactions followed by "activation" through phosphorylation in the kinase domain. Interactions with overexpressed receptor tyrosine kinases or mutations in the SRC gene can induce priming of c-Src in cancer. Here, we show that alpha(v)beta(3) promotes activation of primed c-Src, causing enhanced phosphorylation of established Src substrates, survival, proliferation, and tumor growth. The beta(3) cytoplasmic tail is required and sufficient for integrin-mediated stimulation of all these events through a mechanism that is independent of beta(3) tyrosine phosphorylation. Instead, experiments using Src variants containing the v-Src Src homology 3 (SH3) domain and using mutant beta(3) subunits indicate that a functional interaction of the beta(3) cytoplasmic tail with the c-Src SH3 domain is required. These findings delineate a novel integrin-controlled oncogenic signaling cascade and suggest that the interaction of alpha(v)beta(3) with c-Src may represent a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Stephan Huveneers
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
35
|
Digtyar AV, Pozdnyakova NV, Feldman NB, Lutsenko SV, Severin SE. Endostatin: Current concepts about its biological role and mechanisms of action. BIOCHEMISTRY (MOSCOW) 2007; 72:235-46. [PMID: 17447877 DOI: 10.1134/s0006297907030017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endogenous inhibitors of angiogenesis are proved to be a major factor preventing the emergence of clinically manifested stages of human cancer. The protein endostatin, a 20-kD proteolytic fragment of type XVIII collagen, is one of the most active natural inhibitors of angiogenesis. Endostatin specifically inhibits the in vitro and in vivo proliferation of endothelial cells, inducing their apoptosis through inhibition of cyclin D1. On the surface of endothelial cells, endostatin binds with the integrin alpha(5)beta(1) that activates the Src-kinase pathway. The binding of endostatin with integrins also down-regulates the activity of RhoA GTPase and inhibits signaling pathways mediated by small kinases of the Ras and Raf families. All these events promote disassembly of the actin cytoskeleton, disorders in cell-matrix interactions, and decrease in endotheliocyte mobility, i.e., promote the suppression of angiogenesis. Endostatin displays a high antitumor activity in vivo: it inhibits the progression of more than 60 types of tumors. This review summarizes results of numerous studies concerning the biological activity and action mechanism of endostatin.
Collapse
Affiliation(s)
- A V Digtyar
- Department of Biological Chemistry, Medical Faculty, Sechenov Moscow Medical Academy, Moscow, Russia.
| | | | | | | | | |
Collapse
|
36
|
Hehlgans S, Haase M, Cordes N. Signalling via integrins: implications for cell survival and anticancer strategies. Biochim Biophys Acta Rev Cancer 2006; 1775:163-80. [PMID: 17084981 DOI: 10.1016/j.bbcan.2006.09.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 09/26/2006] [Accepted: 09/28/2006] [Indexed: 01/13/2023]
Abstract
Integrin-associated signalling renders cells more resistant to genotoxic anti-cancer agents like ionizing radiation and chemotherapeutic substances, a phenomenon termed cell adhesion-mediated radioresistance/drug resistance (CAM-RR, CAM-DR). Integrins are heterodimeric cell-surface molecules that on one side link the actin cytoskeleton to the cell membrane and on the other side mediate cell-matrix interactions. In addition to their structural functions, integrins mediate signalling from the extracellular space into the cell through integrin-associated signalling and adaptor molecules such as FAK (focal adhesion kinase), ILK (integrin-linked kinase), PINCH (particularly interesting new cysteine-histidine rich protein) and Nck2 (non-catalytic (region of) tyrosine kinase adaptor protein 2). Via these molecules, integrin signalling tightly and cooperatively interacts with receptor tyrosine kinase signalling to regulate survival, proliferation and cell shape as well as polarity, adhesion, migration and differentiation. In tumour cells of diverse origin like breast, colon or skin, the function and regulation of these molecules is partly disturbed and thus might contribute to the malignant phenotype and pre-existent and acquired multidrug resistance. These issues as well as a variety of therapeutic options envisioned to influence tumour cell growth, metastasis and resistance, including kinase inhibitors, anti-integrin antibodies or RNA interference, will be summarized and discussed in this review.
Collapse
Affiliation(s)
- Stephanie Hehlgans
- OncoRay, Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Fetscherstrasse 74/PF 86, 01307 Dresden, Germany
| | | | | |
Collapse
|
37
|
Czuchra A, Meyer H, Legate KR, Brakebusch C, Fässler R. Genetic analysis of beta1 integrin "activation motifs" in mice. ACTA ACUST UNITED AC 2006; 174:889-99. [PMID: 16954348 PMCID: PMC2064342 DOI: 10.1083/jcb.200604060] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Akey feature of integrins is their ability to regulate the affinity for ligands, a process termed integrin activation. The final step in integrin activation is talin binding to the NPXY motif of the integrin beta cytoplasmic domains. Talin binding disrupts the salt bridge between the alpha/beta tails, leading to tail separation and integrin activation. We analyzed mice in which we mutated the tyrosines of the beta1 tail and the membrane-proximal aspartic acid required for the salt bridge. Tyrosine-to-alanine substitutions abolished beta1 integrin functions and led to a beta1 integrin-null phenotype in vivo. Surprisingly, neither the substitution of the tyrosines with phenylalanine nor the aspartic acid with alanine resulted in an obvious defect. These data suggest that the NPXY motifs of the beta1 integrin tail are essential for beta1 integrin function, whereas tyrosine phosphorylation and the membrane-proximal salt bridge between alpha and beta1 tails have no apparent function under physiological conditions in vivo.
Collapse
Affiliation(s)
- Aleksandra Czuchra
- Max Planck Institute of Biochemistry, Department of Molecular Medicine, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
38
|
Chen H, Zou Z, Sarratt KL, Zhou D, Zhang M, Sebzda E, Hammer DA, Kahn ML. In vivo beta1 integrin function requires phosphorylation-independent regulation by cytoplasmic tyrosines. Genes Dev 2006; 20:927-32. [PMID: 16618804 PMCID: PMC1472300 DOI: 10.1101/gad.1408306] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Integrins are heterodimeric adhesion receptors associated with bidirectional signaling. In vitro studies support a role for the binding of evolutionarily conserved tyrosine motifs (NPxY) in the beta integrin cytoplasmic tail to phosphotyrosine-binding (PTB) domain-containing proteins, an interaction proposed to be dynamically regulated by tyrosine phosphorylation. Here we show that replacement of both beta1 integrin cytoplasmic tyrosines with alanines, resulting in the loss of all PTB domain interaction, causes complete loss of beta1 integrin function in vivo. In contrast, replacement of beta1 integrin cytoplasmic tyrosines with phenylalanines, a mutation that prevents tyrosine phosphorylation, conserves in vivo integrin function. These results have important implications for the molecular mechanism and regulation of integrin function.
Collapse
Affiliation(s)
- Hong Chen
- Department of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Pylayeva Y, Giancotti FG. Development requires activation but not phosphorylation of beta1 integrins. Genes Dev 2006; 20:1057-60. [PMID: 16651652 DOI: 10.1101/gad.1432006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Yuliya Pylayeva
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
| | | |
Collapse
|
40
|
Nilsson S, Kaniowska D, Brakebusch C, Fässler R, Johansson S. Threonine 788 in integrin subunit beta1 regulates integrin activation. Exp Cell Res 2006; 312:844-53. [PMID: 16405888 DOI: 10.1016/j.yexcr.2005.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 11/16/2005] [Accepted: 12/01/2005] [Indexed: 11/24/2022]
Abstract
In the present study, the functional role of suggested phosphorylation of the conserved threonines in the cytoplasmic domain of integrin subunit beta1 was investigated. Mutants mimicking phosphorylated and unphosphorylated forms of beta1 were expressed in beta1 deficient GD25 cells. T788 in beta1 was identified as a site with major influence on integrin function. The mutation to A788 strongly reduced beta1-dependent cell attachment and exposure of the extracellular 9EG7 epitope, whereas replacement of T789 with alanine did not interfere with the ligand-binding ability. Talin has been shown to mediate integrin activation, but the talin head domain bound equally well to the wild-type beta1 and the mutants indicating that the T788A mutation caused defect integrin activation by another mechanism. The phosphorylation-mimicking mutation T788D was fully active in promoting cell adhesion. GD25 cells expressing beta1T788D accumulated increased number of focal contacts and migrated slowly compared to GD25 beta1 wild-type. An analogous phenotype is seen when focal adhesion kinase activation is abrogated. However, neither the beta1T788D nor the beta1T788A mutation failed to induce tyrosine phosphorylation of focal adhesion kinase. The results suggest that phosphorylation of T788 in integrin beta1 promotes inside-out receptor activation, as well as focal contact accumulation.
Collapse
Affiliation(s)
- Stina Nilsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
41
|
Abstract
The development and integrity of the cardiovascular system depends on integrins, a family of adhesion receptors, vitally important for homeostasis of animal species from fruit fly to man. Integrins are critical players in cell migration, cell adhesion, cell cycle progression, differentiation, and apoptosis. Consequently, integrins have a major impact on the patterning and functions of the blood and cardiovascular system. Integrins undergo conformational changes, which alter their affinity for ligands through a process operationally defined as integrin activation. Integrin activation is important for platelet aggregation, leukocyte extravasation, and cell adhesion and migration, thus influencing such processes as hemostasis, inflammation and angiogenesis. Recently, a series of studies have begun to define the mechanism of integrin activation by demonstrating that binding of a cytoskeletal protein, talin, to integrin beta subunit cytoplasmic tail is a last common step in integrin activation. These findings indicate that talin is likely to be at the center of converging signaling pathways regulating integrin activation.
Collapse
Affiliation(s)
- B I Ratnikov
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0726, USA
| | | | | |
Collapse
|
42
|
Wozniak MA, Modzelewska K, Kwong L, Keely PJ. Focal adhesion regulation of cell behavior. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1692:103-19. [PMID: 15246682 DOI: 10.1016/j.bbamcr.2004.04.007] [Citation(s) in RCA: 715] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 04/22/2004] [Indexed: 12/18/2022]
Abstract
Focal adhesions lie at the convergence of integrin adhesion, signaling and the actin cytoskeleton. Cells modify focal adhesions in response to changes in the molecular composition, two-dimensional (2D) vs. three-dimensional (3D) structure, and physical forces present in their extracellular matrix environment. We consider here how cells use focal adhesions to regulate signaling complexes and integrin function. Furthermore, we examine how this regulation controls complex cellular behaviors in response to matrices of diverse physical and biochemical properties. One event regulated by the physical structure of the ECM is phosphorylation of focal adhesion kinase (FAK) at Y397, which couples FAK to several signaling pathways that regulate cell proliferation, survival, migration, and invasion.
Collapse
Affiliation(s)
- Michele A Wozniak
- Department of Pharmacology, University of Wisconsin, 3630 MSC, 1300 University Ave, Madison 53706, USA
| | | | | | | |
Collapse
|
43
|
Brunton VG, MacPherson IRJ, Frame MC. Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1692:121-44. [PMID: 15246683 DOI: 10.1016/j.bbamcr.2004.04.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Accepted: 04/19/2004] [Indexed: 12/31/2022]
Abstract
The interaction of cells with surrounding matrix and neighbouring cells governs many aspects of cell behaviour. Aside from transmitting signals from the external environment, adhesion receptors also receive signals from the cell interior. Here we review the interrelationship between adhesion receptors, tyrosine kinases (both growth factor receptor and non-receptor) and modulators of the actin cytoskeletal network. Deregulation of many aspects of these signalling pathways in cancer highlights the need for a better understanding of the complexities involved.
Collapse
Affiliation(s)
- V G Brunton
- The Beatson Institute for Cancer Research, Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD.
| | | | | |
Collapse
|
44
|
Abstract
The ability of cells to regulate dynamically their adhesion to one another and to the extracellular matrix (ECM) that surrounds them is essential in multicellular organisms. The integrin family of transmembrane adhesion receptors mediates both cell-cell and cell-ECM adhesion. One important, rapid and reversible mechanism for regulating adhesion is by increasing the affinity of integrin receptors for their extracellular ligands (integrin activation). This is controlled by intracellular signals that, through their action on integrin cytoplasmic domains, induce conformational changes in integrin extracellular domains that result in increased affinity for ligand. Recent studies have shed light on the final intracellular steps in this process and have revealed a vital role for the cytoskeletal protein talin.
Collapse
Affiliation(s)
- David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, Sterling Hall of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
45
|
Frame MC. Newest findings on the oldest oncogene; how activated src does it. J Cell Sci 2004; 117:989-98. [PMID: 14996930 DOI: 10.1242/jcs.01111] [Citation(s) in RCA: 298] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oncogenic forms of the non-receptor tyrosine kinase Src alter cell structure, in particular the actin cytoskeleton and the adhesion networks that control cell migration, and also transmit signals that regulate proliferation and cell survival. Recent work indicates that they do so by influencing the RhoA-ROCK pathway that controls contractile actin filament assembly, the STAT family of transcription factors needed for transformation, and the Cbl ubiquitin ligase that controls Src protein levels. These studies also shed light on the role of focal adhesion kinase (FAK) downstream of v-Src and other signalling pathways in controlling migration, invasion and survival of transformed cells. Src directly phosphorylates integrins and can also modulate R-Ras activity. Moreover, it stimulates the E-cadherin regulator Hakai, interacts with and phosphorylates the novel podosome-linked adaptor protein Fish, and progressively phosphorylates the gap junction component connexion 43. A recurring theme is the identification of novel and important Src substrates that mediate key biological events associated with transformation.
Collapse
Affiliation(s)
- Margaret C Frame
- Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|
46
|
Abstract
Src family nonreceptor protein tyrosine kinases transduce signals that control normal cellular processes such as cell proliferation, adhesion and motility. Normally, cellular Src is held in an inactive state, but in several cancer types, abnormal events lead to elevated kinase activity of the protein and cause pleiotropic cellular responses inducing transformation and metastasis. A prerequisite of the ability of a cancer cell to undergo metastasis into distant tissues is to penetrate surrounding extracellular matrices. These processes are facilitated by the integrin family of cell adhesion molecules. As is the case with Src, altered integrin activity or substrate affinity can contribute to the neoplastic phenotype. Therefore, understanding the interplay between Src and integrin function has been of intense interest over the past few years. This review focuses on the role of Src and integrin signaling in normal cells and how this is deregulated in human cancer. We will identify the key players in the integrin-mediated signaling pathways involved in cell motility and apoptosis, such as FAK, paxillin and p130(CAS), and discuss how Src signaling affects the formation of focal adhesions and the extracellular matrix.
Collapse
Affiliation(s)
- Martin P Playford
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
47
|
Campbell ID, Ginsberg MH. The talin-tail interaction places integrin activation on FERM ground. Trends Biochem Sci 2004; 29:429-35. [PMID: 15362227 DOI: 10.1016/j.tibs.2004.06.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integrins are essential receptors for the development and functioning of multicellular animals because they mediate cell migration and cell adhesion, and regulate cell proliferation and apoptosis. Cellular regulation of the affinity of integrins for ligands - so-called 'integrin activation' - is a central property of these receptors. Integrin activation controls cell adhesion, migration and extracellular matrix assembly, thereby contributing to processes such as angiogenesis, tumor cell metastasis, inflammation, the immune response and hemostasis. Recent studies indicate that a crucial, final step in integrin activation is the binding of talin, a cytoskeletal protein, to the cytoplasmic domain of the integrin beta subunit. These results provide a focus for unraveling the many biochemical pathways implicated in integrin activation and suggest a general structural model for the connections between integrins and diverse cellular signal transduction pathways.
Collapse
Affiliation(s)
- Iain D Campbell
- Department of Biochemistry, University of Oxford, Oxford, UK OX1 3QU.
| | | |
Collapse
|
48
|
Imhof BA, Aurrand-Lions M. Adhesion mechanisms regulating the migration of monocytes. Nat Rev Immunol 2004; 4:432-44. [PMID: 15173832 DOI: 10.1038/nri1375] [Citation(s) in RCA: 388] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Beat A Imhof
- Centre Medical Universitaire, Department of Pathology and Immunology, 1 Rue Michel-Servet, 1204, Geneva, Switzerland.
| | | |
Collapse
|
49
|
Kim SM, Kwon MS, Park CS, Choi KR, Chun JS, Ahn J, Song WK. Modulation of Thr Phosphorylation of Integrin β1 during Muscle Differentiation. J Biol Chem 2004; 279:7082-90. [PMID: 14660602 DOI: 10.1074/jbc.m311581200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
By using transient elevations of cytosolic free calcium levels triggered by integrin antibody or laminin (Kwon, M. S., Park, C. S., Choi, K., Park, C.-S., Ahnn, J., Kim, J. I., Eom, S. H., Kaufman, S. J., and Song, W. K. (2000) Mol. Biol. Cell 11, 1433-1443), we have demonstrated that protein phosphatase 2A (PP2A) is implicated in the regulation of reversible phosphorylation of integrin. In E63 skeletal myoblasts, the treatment of PP2A inhibitors such as okadaic acid and endothall induces an increase of phosphorylation of integrin beta1A and thereby inhibits integrin-induced elevation of cytosolic calcium level and formation of focal adhesions. None of these effects were in differentiated myotubes expressing the alternate beta1D isoform. In the presence of okadaic acid, PP2A in association with integrin beta1A was reduced on myoblasts, whereas beta1D on myotubes remained bound with PP2A. Both co-immunoprecipitation and in vitro phosphatase assays revealed that dephosphorylation of residues Thr788-Thr789 in the integrin beta1A cytoplasmic domain is dependent upon PP2A activity. Mutational analysis of the cytoplasmic domain and confocal microscopy experiments indicated that substitution of Thr788-Thr789 with Asn788-Asn789 is of critical importance for regulating the function of integrin beta1. These results suggest that PP2A may be a primary regulator of threonine phosphorylation of integrin beta1A and subsequent activation of downstream signaling molecules. Taken together, we propose that dephosphorylation of residues Thr788-Thr789 in the cytoplasmic domain of integrin beta1A may contribute to the linkage of integrins to focal adhesion sites and induce the association with cytoskeleton proteins. The switch of integrin beta1A to beta1D isoform in myotubes therefore may be a mechanism to escape from phospho-regulation by PP2A and promotes a more stable association of the cytoskeleton with the extracellular matrix.
Collapse
Affiliation(s)
- Seon-Myung Kim
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju 500-712, Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Ling K, Doughman RL, Iyer VV, Firestone AJ, Bairstow SF, Mosher DF, Schaller MD, Anderson RA. Tyrosine phosphorylation of type Igamma phosphatidylinositol phosphate kinase by Src regulates an integrin-talin switch. J Cell Biol 2003; 163:1339-49. [PMID: 14691141 PMCID: PMC2173703 DOI: 10.1083/jcb.200310067] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Accepted: 11/17/2003] [Indexed: 01/12/2023] Open
Abstract
Engagement of integrin receptors with the extracellular matrix induces the formation of focal adhesions (FAs). Dynamic regulation of FAs is necessary for cells to polarize and migrate. Key interactions between FA scaffolding and signaling proteins are dependent on tyrosine phosphorylation. However, the precise role of tyrosine phosphorylation in FA development and maturation is poorly defined. Here, we show that phosphorylation of type Igamma phosphatidylinositol phosphate kinase (PIPKIgamma661) on tyrosine 644 (Y644) is critical for its interaction with talin, and consequently, localization to FAs. PIPKIgamma661 is specifically phosphorylated on Y644 by Src. Phosphorylation is regulated by focal adhesion kinase, which enhances the association between PIPKIgamma661 and Src. The phosphorylation of Y644 results in an approximately 15-fold increase in binding affinity to the talin head domain and blocks beta-integrin binding to talin. This defines a novel phosphotyrosine-binding site on the talin F3 domain and a "molecular switch" for talin binding between PIPKIgamma661 and beta-integrin that may regulate dynamic FA turnover.
Collapse
Affiliation(s)
- Kun Ling
- Department of Pharmacology, Program in Molecular and Cellular Pharmacology, University of Wisconsin Medical School, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|