1
|
Singh H. Role of gene therapy in treatment of cancer with craniofacial regeneration-current molecular strategies, future perspectives, and challenges: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2024; 41:13-21. [PMID: 37218144 PMCID: PMC10834268 DOI: 10.12701/jyms.2023.00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/30/2023] [Indexed: 05/24/2023]
Abstract
Gene therapy involves the introduction of foreign genetic material into host tissue to alter the expression of genetic products. Gene therapy represents an opportunity to alter the course of various diseases. Hence, genetic products utilizing safe and reliable vectors with improved biotechnology will play a critical role in the treatment of various diseases in the future. This review summarizes various important vectors for gene therapy along with modern techniques for potential craniofacial regeneration using gene therapy. This review also explains current molecular approaches for the management and treatment of cancer using gene therapy. The existing literature was searched to find studies related to gene therapy and its role in craniofacial regeneration and cancer treatment. Various databases such as PubMed, Science Direct, Scopus, Web of Science, and Google Scholar were searched for English language articles using the keywords "gene therapy," "gene therapy in present scenario," "gene therapy in cancer," "gene therapy and vector," "gene therapy in diseases," and "gene therapy and molecular strategies."
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Index Institute of Dental Sciences, Indore, India
| |
Collapse
|
2
|
Ochi K, Morita M, Wilkinson AC, Iwama A, Yamazaki S. Non-conditioned bone marrow chimeric mouse generation using culture-based enrichment of hematopoietic stem and progenitor cells. Nat Commun 2021; 12:3568. [PMID: 34117255 PMCID: PMC8195984 DOI: 10.1038/s41467-021-23763-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Bone marrow (BM) chimeric mice are a valuable tool in the field of immunology, with the genetic manipulation of donor cells widely used to study gene function under physiological and pathological settings. To date, however, BM chimera protocols require myeloablative conditioning of recipient mice, which dramatically alters steady-state hematopoiesis. Additionally, most protocols use fluorescence-activated cell sorting (FACS) of hematopoietic stem/progenitor cells (HSPCs) for ex vivo genetic manipulation. Here, we describe our development of cell culture techniques for the enrichment of functional HSPCs from mouse BM without the use of FACS purification. Furthermore, the large number of HSPCs derived from these cultures generate BM chimeric mice without irradiation. These HSPC cultures can also be genetically manipulated by viral transduction, to allow for doxycycline-inducible transgene expression in donor-derived immune cells within non-conditioned immunocompetent recipients. This technique is therefore expected to overcome current limitations in mouse transplantation models.
Collapse
Affiliation(s)
- Kiyosumi Ochi
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Maiko Morita
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Adam C Wilkinson
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
3
|
Cepika AM, Sato Y, Liu JMH, Uyeda MJ, Bacchetta R, Roncarolo MG. Tregopathies: Monogenic diseases resulting in regulatory T-cell deficiency. J Allergy Clin Immunol 2019; 142:1679-1695. [PMID: 30527062 DOI: 10.1016/j.jaci.2018.10.026] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
Monogenic diseases of the immune system, also known as inborn errors of immunity, are caused by single-gene mutations resulting in immune deficiency and dysregulation. More than 350 diseases have been described to date, and the number is rapidly expanding, with increasing availability of next-generation sequencing facilitating the diagnosis. The spectrum of immune dysregulation is wide, encompassing deficiencies in humoral, cellular, innate, and adaptive immunity; phagocytosis; and the complement system, which lead to autoinflammation and autoimmunity. Multiorgan autoimmunity is a dominant symptom when genetic mutations lead to defects in molecules essential for the development, survival, and/or function of regulatory T (Treg) cells. Studies of "Tregopathies" are providing critical mechanistic information on Treg cell biology, the role of Treg cell-associated molecules, and regulation of peripheral tolerance in human subjects. The pathogenic immune networks underlying these diseases need to be dissected to apply and develop immunomodulatory treatments and design curative treatments using cell and gene therapy. Here we review the pathogenetic mechanisms, clinical presentation, diagnosis, and current and future treatments of major known Tregopathies caused by mutations in FOXP3, CD25, cytotoxic T lymphocyte-associated antigen 4 (CTLA4), LPS-responsive and beige-like anchor protein (LRBA), and BTB domain and CNC homolog 2 (BACH2) and gain-of-function mutations in signal transducer and activator of transcription 3 (STAT3). We also discuss deficiencies in genes encoding STAT5b and IL-10 or IL-10 receptor as potential Tregopathies.
Collapse
Affiliation(s)
- Alma-Martina Cepika
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif
| | - Yohei Sato
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif
| | - Jeffrey Mao-Hwa Liu
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif
| | - Molly Javier Uyeda
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif.
| | - Maria Grazia Roncarolo
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif.
| |
Collapse
|
4
|
Abstract
Recent exponential advances in genome sequencing and engineering technologies have enabled an unprecedented level of interrogation into the impact of DNA variation (genotype) on cellular function (phenotype). Furthermore, these advances have also prompted realistic discussion of writing and radically re-writing complex genomes. In this Perspective, we detail the motivation for large-scale engineering, discuss the progress made from such projects in bacteria and yeast and describe how various genome-engineering technologies will contribute to this effort. Finally, we describe the features of an ideal platform and provide a roadmap to facilitate the efficient writing of large genomes.
Collapse
Affiliation(s)
- Raj Chari
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts, 02115, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Boston, Massachusetts, 02115, USA
| |
Collapse
|
5
|
|
6
|
Hatada S, Subramanian A, Mandefro B, Ren S, Kim HW, Tang J, Funari V, Baloh RH, Sareen D, Arumugaswami V, Svendsen CN. Low-Dose Irradiation Enhances Gene Targeting in Human Pluripotent Stem Cells. Stem Cells Transl Med 2015; 4:998-1010. [PMID: 26185257 DOI: 10.5966/sctm.2015-0050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/27/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Human pluripotent stem cells (hPSCs) are now being used for both disease modeling and cell therapy; however, efficient homologous recombination (HR) is often crucial to develop isogenic control or reporter lines. We showed that limited low-dose irradiation (LDI) using either γ-ray or x-ray exposure (0.4 Gy) significantly enhanced HR frequency, possibly through induction of DNA repair/recombination machinery including ataxia-telangiectasia mutated, histone H2A.X and RAD51 proteins. LDI could also increase HR efficiency by more than 30-fold when combined with the targeting tools zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Whole-exome sequencing confirmed that the LDI administered to hPSCs did not induce gross genomic alterations or affect cellular viability. Irradiated and targeted lines were karyotypically normal and made all differentiated lineages that continued to express green fluorescent protein targeted at the AAVS1 locus. This simple method allows higher throughput of new, targeted hPSC lines that are crucial to expand the use of disease modeling and to develop novel avenues of cell therapy. SIGNIFICANCE The simple and relevant technique described in this report uses a low level of radiation to increase desired gene modifications in human pluripotent stem cells by an order of magnitude. This higher efficiency permits greater throughput with reduced time and cost. The low level of radiation also greatly increased the recombination frequency when combined with developed engineered nucleases. Critically, the radiation did not lead to increases in DNA mutations or to reductions in overall cellular viability. This novel technique enables not only the rapid production of disease models using human stem cells but also the possibility of treating genetically based diseases by correcting patient-derived cells.
Collapse
Affiliation(s)
- Seigo Hatada
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Aparna Subramanian
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Berhan Mandefro
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Songyang Ren
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ho Won Kim
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jie Tang
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Vincent Funari
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Robert H Baloh
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dhruv Sareen
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Vaithilingaraja Arumugaswami
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Clive N Svendsen
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
7
|
Gong J, Wang Z, Polejaeva I, Salgia R, Kao CM, Chen CT, Chen G, Chen L. Activating the expression of human K-rasG12D stimulates oncogenic transformation in transgenic goat fetal fibroblast cells. PLoS One 2014; 9:e90059. [PMID: 24594684 PMCID: PMC3942380 DOI: 10.1371/journal.pone.0090059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/27/2014] [Indexed: 01/15/2023] Open
Abstract
Humane use of preclinical large animal cancer models plays a critical role in understanding cancer biology and developing therapeutic treatments. Among the large animal candidates, goats have great potentials as sustainable sources for large animal cancer model development. Goats are easier to handle and cheaper to raise. The genome of the goats has been sequenced recently. It has been known that goats develop skin, adrenal cortex, breast and other types of cancers. Technically, goats are subject to somatic cell nuclear transfer more efficiently and exhibit better viability through the cloning process. Towards the development of a goat cancer model, we created a transgenic goat fetal fibroblast (GFF) cell as the donor cell for SCNT. Human mutated K-ras (hK-rasG12D) was chosen as the transgene, as it is present in 20% of cancers. Both hK-rasG12D and a herpes simplex viral thymidine kinase (HSV1-tk) reporter genes, flanked by a pair of LoxP sites, were knocked in the GFF endogenous K-ras locus through homologous recombination. Following Cre-mediated activation (with a 95% activation efficiency), hK-rasG12D and HSV1-tk were expressed in the transgenic GFF cells, evidently through the presence of corresponding mRNAs, and confirmed by HSV1-tk protein function assay. The hK-rasG12D expressing GFF cells exhibited enhanced proliferation rates and an anchorage-independent growth behavior. They were able to initiate tumor growth in athymic nude mice. In conclusion, after activating hK-rasG12D gene expression, hK-rasG12D transgenic GFF cells were transformed into tumorgenesis cells. Transgenic goats via SCNT using the above-motioned cells as the donor cells have been established.
Collapse
Affiliation(s)
- Jianhua Gong
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, United States of America
| | - Zhongde Wang
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Irina Polejaeva
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Ravi Salgia
- Department of Radiology, University of Chicago, Chicago, Illinois, United States of America
| | - Chien-Min Kao
- Department of Radiology, University of Chicago, Chicago, Illinois, United States of America
| | - Chin-Tu Chen
- Department of Radiology, University of Chicago, Chicago, Illinois, United States of America
| | - Guangchun Chen
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, United States of America
| | - Liaohai Chen
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, United States of America
| |
Collapse
|
8
|
Han D, Binas B. Monoallelic gene targeting in hypoblast stem cells reveals X chromosome inactivation. Biochem Biophys Res Commun 2012; 427:563-7. [PMID: 23022182 DOI: 10.1016/j.bbrc.2012.09.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 09/18/2012] [Indexed: 11/30/2022]
Abstract
We recently isolated hypoblast stem cells (HypoSC), which are related to embryonic stem (ES) cells. ES cells efficiently perform homologous recombination (HR) and lack X chromosome inactivation (Xi), but it is unknown whether the same applies to HypoSC. Using the X-linked hypoxanthine phosphoribosyl transferase (HPRT) gene, we find that HypoSC perform HR with similar frequency as ES cells. Monoallelic targeting in female HypoSC eliminated HPRT gene expression, implying epigenetic inactivation of the other allele. Although density-induced differentiation complicated selection, the targeted clones maintained their original properties. These results will facilitate targeted genetic manipulation of HypoSC and the study of Xi.
Collapse
Affiliation(s)
- Dongjun Han
- Division of Molecular & Life Science, College of Science & Technology, Hanyang University, Ansan 426-791, South Korea
| | | |
Collapse
|
9
|
Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 2012; 1:27. [PMID: 23210086 PMCID: PMC3507026 DOI: 10.4103/2277-9175.98152] [Citation(s) in RCA: 544] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/10/2012] [Indexed: 12/14/2022] Open
Abstract
Gene therapy is the process of introducing foreign genomic materials into host cells to elicit a therapeutic benefit. Although initially the main focus of gene therapy was on special genetic disorders, now diverse diseases with different patterns of inheritance and acquired diseases are targets of gene therapy. There are 2 major categories of gene therapy, including germline gene therapy and somatic gene therapy. Although germline gene therapy may have great potential, because it is currently ethically forbidden, it cannot be used; however, to date human gene therapy has been limited to somatic cells. Although numerous viral and nonviral gene delivery systems have been developed in the last 3 decades, no delivery system has been designed that can be applied in gene therapy of all kinds of cell types in vitro and in vivo with no limitation and side effects. In this review we explain about the history of gene therapy, all types of gene delivery systems for germline (nuclei, egg cells, embryonic stem cells, pronuclear, microinjection, sperm cells) and somatic cells by viral [retroviral, adenoviral, adeno association, helper-dependent adenoviral systems, hybrid adenoviral systems, herpes simplex, pox virus, lentivirus, Epstein-Barr virus)] and nonviral systems (physical: Naked DNA, DNA bombardant, electroporation, hydrodynamic, ultrasound, magnetofection) and (chemical: Cationic lipids, different cationic polymers, lipid polymers). In addition to the above-mentioned, advantages, disadvantages, and practical use of each system are discussed.
Collapse
Affiliation(s)
- Nouri Nayerossadat
- Molecular Genetic Laboratory, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Talebi Maedeh
- Molecular Genetic Laboratory, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Palizban Abas Ali
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| |
Collapse
|
10
|
Gene therapy, gene targeting and induced pluripotent stem cells: Applications in monogenic disease treatment. Biotechnol Adv 2010; 28:715-24. [DOI: 10.1016/j.biotechadv.2010.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/05/2010] [Accepted: 05/11/2010] [Indexed: 12/15/2022]
|
11
|
Gene therapy, gene targeting and induced pluripotent stem cells: applications in monogenic disease treatment. Biotechnol Adv 2010; 29:1-10. [PMID: 20656005 DOI: 10.1016/j.biotechadv.2010.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/05/2010] [Accepted: 05/11/2010] [Indexed: 01/15/2023]
Abstract
Monogenic diseases are often severe, life-threatening disorders for which lifelong palliative treatment is the only option. Over the last two decades, a number of strategies have been devised with the aim to treat these diseases with a genetic approach. Gene therapy has been under development for many years, yet suffers from the lack of an effective and safe vector for the delivery of genetic material into cells. More recently, gene targeting by homologous recombination has been proposed as a safer treatment, by specifically correcting disease-causing mutations. However, low efficiency is a major drawback. The emergence of two technologies could overcome some of these obstacles. Terminally differentiated somatic cells can be reprogrammed, using defined factors, to become induced pluripotent stem cells (iPSCs), which can undergo efficient gene mutation correction with the aid of fusion proteins known as zinc finger nucleases (ZFNs). The amalgamation of these two technologies has the potential to break through the current bottleneck in gene therapy and gene targeting.
Collapse
|
12
|
Ulrich-Vinther M. Gene therapy methods in bone and joint disorders. ACTA ORTHOPAEDICA. SUPPLEMENTUM 2010. [DOI: 10.1080/17453690610046512] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Paiboonsukwong K, Ohbayashi F, Shiiba H, Aizawa E, Yamashita T, Mitani K. Correction of mutant Fanconi anemia gene by homologous recombination in human hematopoietic cells using adeno-associated virus vector. J Gene Med 2010; 11:1012-9. [PMID: 19653252 DOI: 10.1002/jgm.1382] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Adeno-associated virus (AAV) vectors have been shown to correct a variety of mutations in human cells by homologous recombination (HR) at high rates, which can overcome insertional mutagenesis and transgene silencing, two of the major hurdles in conventional gene addition therapy of inherited diseases. We examined an ability of AAV vectors to repair a mutation in human hematopoietic cells by HR. METHODS We infected a human B-lymphoblastoid cell line (BCL) derived from a normal subject with an AAV, which disrupts the hypoxanthine phosphoribosyl transferase1 (HPRT1) locus, to measure the frequency of AAV-mediated HR in BCL cells. We subsequently constructed an AAV vector encoding the normal sequences from the Fanconi anemia group A (FANCA) locus to correct a mutation in the gene in BCL derived from a FANCA patient. RESULTS Under optimal conditions, approximately 50% of BCL cells were transduced with an AAV serotype 2 (AAV-2) vector. In FANCA BCL cells, up to 0.016% of infected cells were gene-corrected by HR. AAV-mediated restoration of normal genotypic and phenotypic characteristics in FANCA-mutant cells was confirmed at the DNA, protein and functional levels. CONCLUSIONS The results obtained in the present study indicate that AAV vectors may be applicable for gene correction therapy of inherited hematopoietic disorders.
Collapse
Affiliation(s)
- Kittiphong Paiboonsukwong
- Gene Therapy Division, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Samuel MS, Munro J, Bryson S, Forrow S, Stevenson D, Olson MF. Tissue selective expression of conditionally-regulated ROCK by gene targeting to a defined locus. Genesis 2009; 47:440-6. [PMID: 19391117 DOI: 10.1002/dvg.20519] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
ROCK kinases regulate actin-myosin structures downstream of Rho GTPases. We generated mice expressing 4-hydroxytamoxifen (4HT)-regulated human ROCK II (ROCKII:mER) under the transcriptional control of the cytokeratin14 (K14) promoter. The K14-ROCKII:mER minigene was recombineered into a novel cloning vector containing the promoter and first exon of the human HPRT gene, and second and third exons of the mouse Hprt gene. Homologous recombination into the Hprt locus, which is deleted for the promoter and first two exons in HM1 embryonic stem cells, reconstitutes a functional Hprt gene, allowing for growth in HAT (hypoxanthine-aminopterin-thymidine) medium. K14-promoter-driven ROCKII:mER expression was restricted to a superficial cell layer in embryoid bodies, with increased ROCK substrate phosphorylation induced by 4HT. ROCKII:mER-expressing primary murine keratinocytes responded to 4HT with increased substrate phosphorylation and cytoskeleton rearrangements, indicating that ROCKII:mER activity is regulated by 4HT in the target tissue. K14-ROCKII:mER mice will be valuable for examining the role of ROCK in skin development and cancer.
Collapse
Affiliation(s)
- Michael S Samuel
- The Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | | | | | | | | | | |
Collapse
|
15
|
Okada Y, Ueshin Y, Hasuwa H, Takumi K, Okabe M, Ikawa M. Targeted gene modification in mouse ES cells using integrase-defective lentiviral vectors. Genesis 2009; 47:217-23. [PMID: 19208434 DOI: 10.1002/dvg.20469] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lentiviral vectors efficiently integrate into the host genome of both dividing and nondividing cells, and so they have been used for stable transgene expression in biological and biomedical studies. However, recent studies have highlighted the risk of insertional mutagenesis and subsequent oncogenesis. Here, we used an integrase-defective lentiviral (IDLV) vector to decrease the chance of random integration and examined the feasibility of lentiviral vector-mediated gene targeting into murine embryonic stem (ES) cells. After transduction with wild-type lentiviral vectors, none of the 512 G418 resistant clones were found to be homologous recombinant clones. Although the transduction efficiency was lower with the IDLV vectors (5.9% of wild-type), successful homologous recombination was observed in nine out of the 941 G418 resistant clones (0.83 +/- 1.32%). Pluripotency of the homologous recombinant ES cells was confirmed by the production of chimeric mice and subsequent germ line transmission. Because lentiviral vectors can efficiently transduce a variety of stem cell types, our strategy has potential relevance for secure gene-manipulation in therapeutic applications.
Collapse
Affiliation(s)
- Yuka Okada
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
16
|
A comparison of synthetic oligodeoxynucleotides, DNA fragments and AAV-1 for targeted episomal and chromosomal gene repair. BMC Biotechnol 2009; 9:35. [PMID: 19379497 PMCID: PMC2676283 DOI: 10.1186/1472-6750-9-35] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 04/20/2009] [Indexed: 12/14/2022] Open
Abstract
Background Current strategies for gene therapy of inherited diseases consist in adding functional copies of the gene that is defective. An attractive alternative to these approaches would be to correct the endogenous mutated gene in the affected individual. This study presents a quantitative comparison of the repair efficiency using different forms of donor nucleic acids, including synthetic DNA oligonucleotides, double stranded DNA fragments with sizes ranging from 200 to 2200 bp and sequences carried by a recombinant adeno-associated virus (rAAV-1). Evaluation of each gene repair strategy was carried out using two different reporter systems, a mutated eGFP gene or a dual construct with a functional eGFP and an inactive luciferase gene, in several different cell systems. Gene targeting events were scored either following transient co-transfection of reporter plasmids and donor DNAs, or in a system where a reporter construct was stably integrated into the chromosome. Results In both episomal and chromosomal assays, DNA fragments were more efficient at gene repair than oligonucleotides or rAAV-1. Furthermore, the gene targeting frequency could be significantly increased by using DNA repair stimulating drugs such as doxorubicin and phleomycin. Conclusion Our results show that it is possible to obtain repair frequencies of 1% of the transfected cell population under optimized transfection protocols when cells were pretreated with phleomycin using rAAV-1 and dsDNA fragments.
Collapse
|
17
|
Zaunbrecher GM, Dunne PW, Mir B, Breen M, Piedrahita JA. Enhancement of extra chromosomal recombination in somatic cells by affecting the ratio of homologous recombination (HR) to non-homologous end joining (NHEJ). Anim Biotechnol 2008; 19:6-21. [PMID: 18228172 DOI: 10.1080/10495390701670099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Advancements in somatic cell gene targeting have been slow due to the finite lifespan of somatic cells and the overall inefficiency of homologous recombination. The rate of homologous recombination is determined by mechanisms of DNA repair, and by the balance between homologous recombination (HR) and non-homologous end joining (NHEJ). A plasmid-to-plasmid, extra chromosomal recombination system was used to study the effects of the manipulation of molecules involved in NHEJ (Mre11, Ku70/80, and p53) on HR/NHEJ ratios. In addition, the effect of telomerase expression, cell synchrony, and DNA nuclear delivery was examined. While a mutant Mre11 and an anti-Ku aptamer did not significantly affect the rate of NHEJ or HR, transient expression of a p53 mutant increased overall HR/NHEJ by 2.5 fold. However, expression of the mutant p53 resulted in increased aneuploidy of the cultured cells. Additionally, we found no relationship between telomerase expression and changes in HR/NHEJ. In contrast, cell synchrony by thymidine incorporation did not induce chromosomal abnormalities, and increased the ratio of HR/NHEJ 5-fold by reducing the overall rate of NHEJ. Overall our results show that attempts at reducing NHEJ by use of Mre11 or anti-Ku aptamers were unsuccessful. Cell synchrony via thymidine incorporation, however, does increase the ratio of HR/NHEJ and this indicates that this approach may be of use to facilitate targeting in somatic cells by reducing the numbers of colonies that need to be analyzed before a HR is identified.
Collapse
Affiliation(s)
- Gretchen M Zaunbrecher
- Department of Veterinary Anatomy and Public Health, College of Veterinary Medicine, Texas A&M University, College Station, Texas, USA
| | | | | | | | | |
Collapse
|
18
|
Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 2007; 25:1298-306. [PMID: 17965707 DOI: 10.1038/nbt1353] [Citation(s) in RCA: 642] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 10/09/2007] [Indexed: 11/08/2022]
Abstract
Achieving the full potential of zinc-finger nucleases (ZFNs) for genome engineering in human cells requires their efficient delivery to the relevant cell types. Here we exploited the infectivity of integrase-defective lentiviral vectors (IDLV) to express ZFNs and provide the template DNA for gene correction in different cell types. IDLV-mediated delivery supported high rates (13-39%) of editing at the IL-2 receptor common gamma-chain gene (IL2RG) across different cell types. IDLVs also mediated site-specific gene addition by a process that required ZFN cleavage and homologous template DNA, thus establishing a platform that can target the insertion of transgenes into a predetermined genomic site. Using IDLV delivery and ZFNs targeting distinct loci, we observed high levels of gene addition (up to 50%) in a panel of human cell lines, as well as human embryonic stem cells (5%), allowing rapid, selection-free isolation of clonogenic cells with the desired genetic modification.
Collapse
|
19
|
Maurisse R, Fichou Y, De Semir D, Cheung J, Ferec C, Gruenert DC. Gel purification of genomic DNA removes contaminating small DNA fragments interfering with polymerase chain reaction analysis of small fragment homologous replacement. Oligonucleotides 2007; 16:375-86. [PMID: 17155912 DOI: 10.1089/oli.2006.16.375] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Oligonucleotides can mediate sequence-specific gene modification that results in the correction and/or alteration of genomic DNA. There is evidence to suggest that the polymerase chain reaction (PCR)-based analytical methods usually used to analyze oligonucleotide-mediated modification can generate artifacts. To investigate the conditions under which a PCR artifact can be generated and eliminated when analyzing small fragment homologous replacement (SHFR)-mediated modification, cells homozygous for the DeltaF508 mutation (CFBE41o-) were mixed with small DNA fragments (SDFs) containing the wild-type CFTR (wt-CFTR) sequence. An artifact could be generated after wild-type allele-specific PCR (wtAS-PCR) if the genomic DNA was not gel purified. Without gel purification, the amount of SDF/cell required to generate the artifact was dependent to the AS primer pairs used. When the genomic DNA was gel purified, no artifact could be detected with any of the wtAS-PCR primers whether the SDF was mixed with the cells or transfected into the cells. Furthermore, treatment of cellular mRNA with DNase was sufficient to eliminate potential artifacts in the reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Thus, it is critical to gel purify genomic DNA and DNase treat mRNA when analyzing SFHR-mediated modification by PCR.
Collapse
Affiliation(s)
- Rosalie Maurisse
- Research Institute, California Pacific Medical Center, San Francisco, CA 94107, USA
| | | | | | | | | | | |
Collapse
|
20
|
Kanatsu-Shinohara M, Ikawa M, Takehashi M, Ogonuki N, Miki H, Inoue K, Kazuki Y, Lee J, Toyokuni S, Oshimura M, Ogura A, Shinohara T. Production of knockout mice by random or targeted mutagenesis in spermatogonial stem cells. Proc Natl Acad Sci U S A 2006; 103:8018-23. [PMID: 16679411 PMCID: PMC1472422 DOI: 10.1073/pnas.0601139103] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Stem cells represent a unique population of cells with self-renewal capacity. Although they are important therapeutic targets, the genetic manipulation of tissue-specific stem cells has been limited, which complicates the study and practical application of these cells. Here, we demonstrate successful gene trapping and homologous recombination in spermatogonial stem cells. Cultured spermatogonial stem cells were transfected with gene trap or gene targeting vectors. Mutagenized stem cells were expanded clonally by drug selection. These cells underwent spermatogenesis and produced heterozygous offspring after transplantation into the seminiferous tubules of infertile mouse testes. Heterozygous mutant mice were intercrossed to produce homozygous gene knockouts. Using this strategy, the efficiency of homologous recombination for the occludin gene locus was 1.7% using a nonisogenic DNA construct. These results demonstrate the feasibility of altering genes in tissue-specific stem cells in a manner similar to embryonic stem cells and have important implications for gene therapy and animal transgenesis.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Horizontal Medical Research Organization, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan. tshinoha2virus.kyoto-u.ac.jp
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Radecke S, Radecke F, Peter I, Schwarz K. Physical incorporation of a single-stranded oligodeoxynucleotide during targeted repair of a human chromosomal locus. J Gene Med 2006; 8:217-28. [PMID: 16142817 DOI: 10.1002/jgm.828] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Targeted gene repair is an attractive method to correct point-mutated genes at their natural chromosomal sites, but it is still rather inefficient. As revealed by earlier studies, successful gene correction requires a productive interaction of the repair molecule with the target locus. The work here set out to investigate whether DNA repair, e.g., mismatch repair, or a direct incorporation of the correction molecule follows as the step upon the initial interaction. METHODS Single-stranded 21mer oligodeoxynucleotides (ODNs) of sense orientation were directed towards point-mutated enhanced green fluorescence protein transgene loci in HEK-293-derived cell clones. First gene repair assays compared ODNs carrying the canonical termini 5'-phosphate and 3'-OH with their respective variants harbouring non-canonical termini (5'-OH, 3'-H). Second, a protocol was established to allow efficient recovery of integrated short biotin-labelled ODNs from the genomes of gene-corrected cells using streptavidin-coated beads in order to test directly whether transfected ODNs become bona fide parts of the target locus DNA. RESULTS Oligodeoxynucleotides with canonical termini were about 34-fold more efficient than their counterparts carrying non-canonical termini in a phosphorothioate-modified backbone. Furthermore, biotinylated fragments were successfully recovered from genomic DNAs of gene-corrected cells. CONCLUSIONS The experiment showed that ODNs are incorporated into a mammalian genome. This unravels one early repair step and also sets an unexpected example of genome dynamics possibly relevant to other ODN-based cell techniques.
Collapse
Affiliation(s)
- Sarah Radecke
- Institut für Klinische Transfusionsmedizin und Immungenetik Ulm. Abteilung Transfusionsmedizin, Universitätsklinikum Ulm, D-89081 Ulm, Germany
| | | | | | | |
Collapse
|
22
|
Hatada S, Arnold LW, Hatada T, Cowhig JE, Ciavatta D, Smithies O. Isolating gene-corrected stem cells without drug selection. Proc Natl Acad Sci U S A 2005; 102:16357-61. [PMID: 16258059 PMCID: PMC1274242 DOI: 10.1073/pnas.0508263102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Progress in isolating stem cells from tissues, or generating them from adult cells by nuclear transfer, encourages attempts to use stem cells from affected individuals for gene correction and autologous therapy. Current viral vectors are efficient at introducing transgenic sequences but result in random integrations. Gene targeting, in contrast, can directly correct an affected gene, or incorporate corrective sequences into a site free from undesirable side effects, but efficiency is low. Most current targeting procedures, consequently, use positive-negative selection with drugs, often requiring >/=10 days. This drug selection causes problems with stem cells that differentiate in this time or require feeder cells, because the feeders must be drug resistant and so are not eliminated by the selection. To overcome these problems, we have developed a procedure for isolating gene-corrected stem cells free from feeder cells after 3-5 days culture without drugs. The method is still positive-negative, but the positive and negative drug-resistance genes are replaced with differently colored fluorescence genes. Gene-corrected cells are isolated by FACS. We tested the method with mouse ES cells having a mutant hypoxanthine phosphoribosyltransferase (Hprt) gene and grown on feeder cells. After 5 days in culture, gene-corrected cells were obtained free from feeder cells at a "purity" of >30%, enriched >2,000-fold and with a recovery of approximately 20%. Corrected cells were also isolated singly for clonal expansion. Our FACS-based procedure should be applicable at small or large scale to stem cells that can be cultured (with feeder cells, if necessary) for >/=3 days.
Collapse
Affiliation(s)
- Seigo Hatada
- Departments of Pathology and Laboratory Medicine, and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA
| | | | | | | | | | | |
Collapse
|
23
|
Sangiuolo F, Novelli G. Sequence-specific modification of mouse genomic DNA mediated by gene targeting techniques. Cytogenet Genome Res 2005; 105:435-41. [PMID: 15237231 DOI: 10.1159/000078216] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2003] [Accepted: 10/21/2003] [Indexed: 11/19/2022] Open
Abstract
The major impact of the human genome sequence is the understanding of disease etiology with deduced therapy. The completion of this project has shifted the interest from the sequencing and identification of genes to the exploration of gene function, signalling the beginning of the post-genomic era. Contrasting with the spectacular progress in the identification of many morbid genes, today therapeutic progress is still lagging behind. The goal of all gene therapy protocols is to repair the precise genetic defect without additional modification of the genome. The main strategy has traditionally been focused on the introduction of an expression system designed to express a specific protein, defective in the transfected cell. But the numerous deficiencies associated with gene augmentation have resulted in the development of alternative approaches to treat inherited and acquired genetic disorders. Among these one is represented by gene repair based on homologous recombination (HR). Simply stated, the process involves targeting the mutation in situ for gene correction and for restoration of a normal gene function. Homologous recombination is an efficient means for genomic manipulation of prokaryotes, yeast and some lower eukaryotes. By contrast, in higher eukaryotes it is less efficient than in the prokaryotic system, with non-homologous recombination being 10-50 fold higher. However, recent advances in gene targeting and novel strategies have led to the suggestion that gene correction based on HR might be used as clinical therapy for genetic disease. This site-specific gene repair approach could represent an alternative gene therapy strategy in respect to those involving the use of retroviral or lentiviral vectors to introduce therapeutic genes and linked regulatory sequences into random sites within the target cell genome. In fact, gene therapy approaches involving addition of a gene by viral or nonviral vectors often give a short duration of gene expression and are difficult to target to specific populations of cells. The purpose of this paper is to review oligonucleotide-based gene targeting technologies and their applications on modifying the mouse genome.
Collapse
Affiliation(s)
- F Sangiuolo
- Department of Biopathology and Diagnostic Imaging, Tor Vergata University, Rome, Italy
| | | |
Collapse
|
24
|
Heaney JD, Rettew AN, Bronson SK. Tissue-specific expression of a BAC transgene targeted to the Hprt locus in mouse embryonic stem cells. Genomics 2005; 83:1072-82. [PMID: 15177560 DOI: 10.1016/j.ygeno.2003.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 12/31/2003] [Indexed: 10/26/2022]
Abstract
The hypoxanthine phosphoribosyltransferase (Hprt) locus has been shown to have minimal influence on transgene expression when used as a surrogate site in the mouse genome. We have developed a method to transfer bacterial artificial chromosomes (BACs) as a single copy into the partially deleted Hprt locus of embryonic stem cells. BACs were modified by Cre/loxP recombination to contain the sequences necessary for homologous recombination into and complementation of the partially deleted Hprt locus. Modified BACs were shown to undergo homologous recombination into the genome intact, to be stably transmitted through the germ line of transgenic mice, and to be expressed in the proper tissue-specific manner. This technology will facilitate many studies in which correct interpretation of data depends on developmentally appropriate transgene expression in the absence of rearrangements or deletions of endogenous DNA.
Collapse
Affiliation(s)
- Jason D Heaney
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine H166, 500 University Drive, Hershey, PA 17033-0850, USA
| | | | | |
Collapse
|
25
|
Affiliation(s)
- John McNeish
- Genetic Technologies, Pfizer Global Research and Development, Groton 06340, Connecticut, USA.
| |
Collapse
|
26
|
Lu ZH, Books JT, Kaufman RM, Ley TJ. Long targeting arms do not increase the efficiency of homologous recombination in the beta-globin locus of murine embryonic stem cells. Blood 2003; 102:1531-3. [PMID: 12730107 DOI: 10.1182/blood-2003-03-0708] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The correction of mutant beta-globin genes has long been a therapeutic goal for patients with beta-thalassemia or hemoglobinopathies. The use of homologous recombination (HR) to achieve this goal is an attractive approach because it eliminates the need to include regulatory sequences in the therapeutic construct, and it eliminates mutagenesis induced by random integration. However, HR is a very inefficient process for gene correction, and its efficiency is probably locus dependent. The length of targeting arms is thought to be a determinant of targeting efficiency, so we compared the ability of standard (8-kb) versus very long (16-, 24-, and 110-kb) regions of homology to correct a mutant murine beta-globin gene in embryonic stem cells. Increasing the length of the targeting sequences did not increase the efficiency of HR in this locus, suggesting that alternative approaches will be required to improve the efficiency of this approach for globin gene correction.
Collapse
Affiliation(s)
- Zhi Hong Lu
- Section of Stem Cell Biology, Division of Oncology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Gene therapy holds great promise. Somatic gene therapy has the potential to treat a wide range of disorders, including inherited conditions, cancers, and infectious diseases. Early progress has already been made in the treatment of a range of disorders. Ethical issues surrounding somatic gene therapy are primarily those concerned with safety. Germline gene therapy is theoretically possible but raises serious ethical concerns concerning future generations.
Collapse
Affiliation(s)
- Kevin R Smith
- School of Contemporary Sciences, University of Abertay Dundee, Dundee, Scotland, UK.
| |
Collapse
|
28
|
Smith KR. Gene transfer in higher animals: theoretical considerations and key concepts. J Biotechnol 2002; 99:1-22. [PMID: 12204554 PMCID: PMC7252021 DOI: 10.1016/s0168-1656(02)00105-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2001] [Revised: 04/12/2002] [Accepted: 04/17/2002] [Indexed: 11/16/2022]
Abstract
Gene transfer technology provides the ability to genetically manipulate the cells of higher animals. Gene transfer permits both germline and somatic alterations. Such genetic manipulation is the basis for animal transgenesis goals and gene therapy attempts. Improvements in gene transfer are required in terms of transgene design to permit gene targeting, and in terms of transfection approaches to allow improved transgene uptake efficiencies.
Collapse
Affiliation(s)
- Kevin R Smith
- Division of Life Sciences, University of Abertay, Dundee DD1 1HG, UK.
| |
Collapse
|
29
|
Thorpe PH, Stevenson BJ, Porteous DJ. Functional correction of episomal mutations with short DNA fragments and RNA-DNA oligonucleotides. J Gene Med 2002; 4:195-204. [PMID: 11933220 DOI: 10.1002/jgm.249] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Gene correction is an alternative approach to replacement gene therapy. By correcting mutations within the genome, some of the barriers to effective gene therapy are avoided. Homologous nucleic acid sequences can correct mutations by inducing recombination or mismatch repair. Recently, encouraging data have been presented using both short DNA fragments (SDFs) and RNA-DNA oligonucleotides (RDOs) in experimental strategies to realize clinical gene correction. METHODS The delivery of labelled SDFs and RDOs to a variety of cell lines was tested using both FACS analysis and confocal microscopy. A GFP-based reporter system was constructed, containing a nonsense mutation, to allow quantitation of gene correction in living cells. This reporter was used to compare efficiencies of functional gene correction using SDFs and RDOs in arange of mammalian cell lines. RESULTS The delivery experiments highlight the inefficient delivery of SDFs and RDOs to the nucleus using polyethylenimine (PEI) transfection. This study compared the episomal correction efficiency of the reporter plasmid mediated by SDFs and RDOs within different cell types; low levels of functional correction were detected in cell culture. CONCLUSIONS Whilst delivery of PEI-complexed SDFs or RDOs to the cell is highly effective, nuclear entry appears to be a limiting factor. SDFs elicited episomal GFP correction across a range of cell lines, whereas RDOs only corrected the reporter in a cell line that overexpresses RAD51.
Collapse
Affiliation(s)
- P H Thorpe
- Medical Genetics Section, University of Edinburgh, Molecular Medicine Centre, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| | | | | |
Collapse
|
30
|
Demura M, Takeda Y, Yoneda T, Furukawa K, Usukura M, Itoh Y, Mabuchi H. Two novel types of contiguous gene deletion of the AVPR2 and ARHGAP4 genes in unrelated Japanese kindreds with nephrogenic diabetes insipidus. Hum Mutat 2002; 19:23-9. [PMID: 11754100 DOI: 10.1002/humu.10011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Study of two families containing individuals with nephrogenic diabetes insipidus (NDI) indicated different types of 21.3 kb and 26.3 kb deletions involving the AVPR2 and ARHGAP4 (RhoGAP C1) genes. In the case of the 21.3 kb deletion, the deletion consensus motif (5'-TGAAGG-3') and polypurine runs, known as the arrest site of polymerase alpha, were detected in the vicinity of the deletion junction. Inverted repeats (7/8 matches), believed to potentiate DNA loop formation, flank the deletion breakpoint. We propose this deletion to be the result of slipped mispairing during DNA replication. In the case of the 26.3 kb deletion, the 12,945 bp inverted region with the 10,003 bp internal deletion was accompanied with the 2,509 bp deletion in the 5'-side and the 13,785 bp deletion in the 3'-side. We defined three deletion junctions in this rearrangement (DJ1, DJ2, and DJ3) from the 5'-side. The surrounding sequence of DJ1 (5'-CCC-3') closely resembled that of DJ3 (5'-AGGG-3') (DJ1; 5'-cCCCgaggg-3', DJ3; 5'-ccccAGGG-3'), and DJ1 was located in the 5'-side of DJ3 without any overlapping in sequence. The immunoglobulin class switch (ICS) motif (5'-TGGGG-3') was found around the complementary sequence of DJ3. There was a 10-base palindrome (5'-aGACAtgtct-3') in the alignment of the DJ2 (5'-GACA-3') region. From these findings, we propose a novel mutation process with the rearrangement probably resulting from stem-loop induced non-homologous recombination in an ICS-like fashion. Both patients, despite lacking ARHGAP4, had no morphological, clinical, or laboratory abnormalities except for those usually found in patients with NDI.
Collapse
Affiliation(s)
- Masashi Demura
- Second Department of Internal Medicine, School of Medicine, Kanazawa University, Kanazawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Kaufman RM, Lu ZH, Behl R, Holt JM, Ackers GK, Ley TJ. Lack of neighborhood effects from a transcriptionally active phosphoglycerate kinase-neo cassette located between the murine beta-major and beta-minor globin genes. Blood 2001; 98:65-73. [PMID: 11418464 DOI: 10.1182/blood.v98.1.65] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For the treatment of beta-globin gene defects, a homologous recombination-mediated gene correction approach would provide advantages over random integration-based gene therapy strategies. However, "neighborhood effects" from retained selectable marker genes in the targeted locus are among the key issues that must be taken into consideration for any attempt to use this strategy for gene correction. An Ala-to-Ile mutation was created in the beta6 position of the mouse beta-major globin gene (beta(6I)) as a step toward the development of a murine model system that could serve as a platform for therapeutic gene correction studies. The marked beta-major gene can be tracked at the level of DNA, RNA, and protein, allowing investigation of the impact of a retained phosphoglycerate kinase (PGK)-neo cassette located between the mutant beta-major and beta-minor globin genes on expression of these 2 neighboring genes. Although the PGK-neo cassette was expressed at high levels in adult erythroid cells, the abundance of the beta(6I) mRNA was indistinguishable from that of the wild-type counterpart in bone marrow cells. Similarly, the output from the beta-minor globin gene was also normal. Therefore, in this specific location, the retained, transcriptionally active PGK-neo cassette does not disrupt the regulated expression of the adult beta-globin genes. (Blood. 2001;98:65-73)
Collapse
Affiliation(s)
- R M Kaufman
- Department of Pathology/Laboratory Medicine, the Division of Oncology, Section of Stem Cell Biology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
RNA enzymes--ribozymes--are being developed as treatments for a variety of diseases ranging from inborn metabolic disorders to viral infections and acquired diseases such as cancer. Ribozymes can be used both to downregulate and to repair pathogenic genes. In some instances, short-term exogenous delivery of stabilized RNA is desirable, but many treatments will require viral-mediated delivery to provide long-term expression of the therapeutic catalyst. Current gene therapy applications employ variations on naturally occurring ribozymes, but in vitro selection has provided new RNA and DNA catalysts, and research on trans-splicing and RNase P has suggested ways to harness the endogenous ribozymes of the cell for therapeutic purposes.
Collapse
Affiliation(s)
- A S Lewin
- Dept of Molecular Genetics and Microbiology and the Powell Gene Therapy Center, University of Florida, Gainesville 32610-0266, USA.
| | | |
Collapse
|
33
|
Porter AC. Correcting a deficiency. Mol Ther 2001; 3:423-4. [PMID: 11319901 DOI: 10.1006/mthe.2001.0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- A C Porter
- Gene Targeting Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, United Kingdom.
| |
Collapse
|
34
|
Patterson M. Gene therapy. Precision and control. Nat Rev Genet 2001; 2:9. [PMID: 11253078 DOI: 10.1038/35047541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|