1
|
Kriel NL, Newton-Foot M, Bennion OT, Aldridge BB, Mehaffy C, Belisle JT, Walzl G, Warren RM, Sampson SL, Gey van Pittius NC. Localization of EccA 3 at the growing pole in Mycobacterium smegmatis. BMC Microbiol 2022; 22:140. [PMID: 35590245 PMCID: PMC9118679 DOI: 10.1186/s12866-022-02554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background Bacteria require specialized secretion systems for the export of molecules into the extracellular space to modify their environment and scavenge for nutrients. The ESX-3 secretion system is required by mycobacteria for iron homeostasis. The ESX-3 operon encodes for one cytoplasmic component (EccA3) and five membrane components (EccB3 – EccE3 and MycP3). In this study we sought to identify the sub-cellular location of EccA3 of the ESX-3 secretion system in mycobacteria. Results Fluorescently tagged EccA3 localized to a single pole in the majority of Mycobacterium smegmatis cells and time-lapse fluorescent microscopy identified this pole as the growing pole. Deletion of ESX-3 did not prevent polar localization of fluorescently tagged EccA3, suggesting that EccA3 unipolar localization is independent of other ESX-3 components. Affinity purification - mass spectrometry was used to identify EccA3 associated proteins which may contribute to the localization of EccA3 at the growing pole. EccA3 co-purified with fatty acid metabolism proteins (FAS, FadA3, KasA and KasB), mycolic acid synthesis proteins (UmaA, CmaA1), cell division proteins (FtsE and FtsZ), and cell shape and cell cycle proteins (MurS, CwsA and Wag31). Secretion system related proteins Ffh, SecA1, EccA1, and EspI were also identified. Conclusions Time-lapse microscopy demonstrated that EccA3 is located at the growing pole in M. smegmatis. The co-purification of EccA3 with proteins known to be required for polar growth, mycolic acid synthesis, the Sec secretion system (SecA1), and the signal recognition particle pathway (Ffh) also suggests that EccA3 is located at the site of active cell growth. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02554-6.
Collapse
Affiliation(s)
- Nastassja L Kriel
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Mae Newton-Foot
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Owen T Bennion
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Carolina Mehaffy
- Mycobacteria Research Laboratories, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - John T Belisle
- Mycobacteria Research Laboratories, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Gerhard Walzl
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robin M Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Samantha L Sampson
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nico C Gey van Pittius
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
2
|
Analysis of HubP-dependent cell pole protein targeting in Vibrio cholerae uncovers novel motility regulators. PLoS Genet 2022; 18:e1009991. [PMID: 35020734 PMCID: PMC8789113 DOI: 10.1371/journal.pgen.1009991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/25/2022] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
In rod-shaped bacteria, the emergence and maintenance of long-axis cell polarity is involved in key cellular processes such as cell cycle, division, environmental sensing and flagellar motility among others. Many bacteria achieve cell pole differentiation through the use of polar landmark proteins acting as scaffolds for the recruitment of functional macromolecular assemblies. In Vibrio cholerae a large membrane-tethered protein, HubP, specifically interacts with proteins involved in chromosome segregation, chemotaxis and flagellar biosynthesis. Here we used comparative proteomics, genetic and imaging approaches to identify additional HubP partners and demonstrate that at least six more proteins are subject to HubP-dependent polar localization. These include a cell-wall remodeling enzyme (DacB), a likely chemotaxis sensory protein (HlyB), two presumably cytosolic proteins of unknown function (VC1210 and VC1380) and two membrane-bound proteins, named here MotV and MotW, that exhibit distinct effects on chemotactic motility. We show that while both ΔmotW and ΔmotV mutants retain monotrichous flagellation, they present significant to severe motility defects when grown in soft agar. Video-tracking experiments further reveal that ΔmotV cells can swim in liquid environments but are unable to tumble or penetrate a semisolid matrix, whereas a motW deletion affects both tumbling frequency and swimming speed. Motility suppressors and gene co-occurrence analyses reveal co-evolutionary linkages between MotV, a subset of non-canonical CheV proteins and flagellar C-ring components FliG and FliM, whereas MotW regulatory inputs appear to intersect with specific c-di-GMP signaling pathways. Together, these results reveal an ever more versatile role for the landmark cell pole organizer HubP and identify novel mechanisms of motility regulation. Cell polarity is the result of controlled asymmetric distribution of protein macrocomplexes, genetic material, membrane lipids and cellular metabolites, and can play crucial physiological roles not only in multicellular organisms but also in unicellular bacteria. In the opportunistic cholera pathogen Vibrio cholerae, the polar landmark protein HubP tethers key actors in chromosome segregation, chemotaxis and flagellar biosynthesis and thus converts the cell pole into an important functional microdomain for cell proliferation, environmental sensing and adaptation between free-living and pathogenic life-styles. Using a comparative proteomics approach, we here-in present a comprehensive analysis of HubP-dependent cell pole protein sorting and identify novel HubP partners including ones likely involved in cell wall remodeling (DacB), chemotaxis (HlyB) and motility regulation (MotV and MotW). Unlike previous studies which have identified early roles for HubP in flagellar assembly, functional, genetic and phylogenetic analyses of its MotV and MotW partners suggest a direct role in flagellar rotary mechanics and provide new insights into the coevolution and functional interdependence of chemotactic signaling, bacterial motility and biofilm formation.
Collapse
|
3
|
Quantification and surface localization of the hemolysin A type 1 secretion system at the endogenous level and under conditions of overexpression. Appl Environ Microbiol 2021; 88:e0189621. [PMID: 34851699 DOI: 10.1128/aem.01896-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secretion systems are essential for Gram-negative bacteria as these nanomachineries allow a communication with the outside world by exporting proteins into the extracellular space or directly into the cytosol of a host cell. For example, type one secretion systems (T1SS) secrete a broad range of substrates across both membranes into the extracellular space. One well-known example is the hemolysin A (HlyA) T1SS from Escherichia coli (E. coli), which consists of an ABC transporter (HlyB), a membrane fusion protein (HlyD), the outer membrane protein TolC and the substrate HlyA, a member of the family of RTX (repeats in toxins) toxins. Here, we determined the amount of TolC at the endogenous level (parental strain, UTI89) and under conditions of overexpression (T7 expression system, BL21(DE3)-BD). The overall amount of TolC was not influenced by the overexpression of the HlyBD complex. Moving one step further, we determined the localization of the HlyA T1SS by super-resolution microscopy. In contrast to other bacterial secretion systems, no polarization was observed with respect to endogenous or overexpression levels. Additionally, the cell growth and division cycle did not influence the polarization. Most importantly, the size of the observed T1SS clusters did not correlate with the recently proposed outer membrane islands. These data indicate that T1SS cluster at the outer membrane generating domains of so far not described identity. Importance Uropathogenic Escherichia coli (UPEC) strains cause about 110 million urinary tract infections each year worldwide representing a global burden to the healthcare system. UPEC secrete many virulence factors among these the TX toxin hemolysin A via a cognate T1SS into the extracellular space. In this study, we determined the endogenous copy number of the HlyA T1SS in UTI89 and analyzed the surface localization in BL21(DE3)-BD and UTI89, respectively. With approximately 800 copies of the T1SS in UTI89, this is one of the highest expressed bacterial secretion systems. Furthermore and in clear contrast to other secretion systems, no polarized surface localization was detected. Finally, quantitative analysis of the super-resolution data revealed that clusters of the HlyA T1SS are not related to the recently identified outer membrane protein islands. These data provide insights into the quantitative molecular architecture of the HlyA T1SS.
Collapse
|
4
|
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, is a facultative intracellular pathogen that survives inside phagocytic host cells by establishing a protected replication niche, termed the "Legionella-containing vacuole" (LCV). To form an LCV and subvert pivotal host pathways, L. pneumophila employs a type IV secretion system (T4SS), which translocates more than 300 different effector proteins into the host cell. The L. pneumophila T4SS complex has been shown to span the bacterial cell envelope at the bacterial poles. However, the interactions between the T4SS and the LCV membrane are not understood. Using cryo-focused ion beam milling, cryo-electron tomography, and confocal laser scanning fluorescence microscopy, we show that up to half of the intravacuolar L. pneumophila bacteria tether their cell pole to the LCV membrane. Tethering coincides with the presence and function of T4SSs and likely promotes the establishment of distinct contact sites between T4SSs and the LCV membrane. Contact sites are characterized by indentations in the limiting LCV membrane and localize juxtaposed to T4SS machineries. The data are in agreement with the notion that effector translocation occurs by close membrane contact rather than by an extended pilus. Our findings provide novel insights into the interactions of the L. pneumophila T4SS with the LCV membrane in situ. IMPORTANCE Legionnaires' disease is a life-threatening pneumonia, which is characterized by high fever, coughing, shortness of breath, muscle pain, and headache. The disease is caused by the amoeba-resistant bacterium L. pneumophila found in various soil and aquatic environments and is transmitted to humans via the inhalation of small bacteria-containing droplets. An essential virulence factor of L. pneumophila is a so-called "type IV secretion system" (T4SS), which, by injecting a plethora of "effector proteins" into the host cell, determines pathogen-host interactions and the formation of a distinct intracellular compartment, the "Legionella-containing vacuole" (LCV). It is unknown how the T4SS makes contact to the LCV membrane to deliver the effectors. In this study, we identify indentations in the host cell membrane in close proximity to functional T4SSs localizing at the bacterial poles. Our work reveals first insights into the architecture of Legionella-LCV contact sites.
Collapse
|
5
|
Subcellular Localization and Assembly Process of the Nisin Biosynthesis Machinery in Lactococcus lactis. mBio 2020; 11:mBio.02825-20. [PMID: 33173006 PMCID: PMC7667030 DOI: 10.1128/mbio.02825-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nisin is the model peptide for LanBC-modified lantibiotics that are commonly modified and exported by a putative synthetase complex. Although the mechanism of maturation, transport, immunity, and regulation is relatively well understood, and structural information is available for some of the proteins involved (B. Li, J. P. J. Yu, J. S. Brunzelle, G. N. Moll, et al., Science 311:1464–1467, 2006, https://doi.org/10.1126/science.1121422; M. A. Ortega, Y. Hao, Q. Zhang, M. C. Walker, et al., Nature 517:509–512, 2015, https://doi.org/10.1038/nature13888; C. Hacker, N. A. Christ, E. Duchardt-Ferner, S. Korn, et al., J Biol Chem 290:28869–28886, 2015, https://doi.org/10.1074/jbc.M115.679969; Y. Y. Xu, X. Li, R. Q. Li, S. S. Li, et al., Acta Crystallogr D Biol Crystallogr 70:1499–1505, 2014, https://doi.org/10.1107/S1399004714004234), the subcellular localization and assembly process of the biosynthesis complex remain to be elucidated. In this study, we determined the spatial distribution of nisin synthesis-related enzymes and the transporter, revealing that the modification and secretion of the precursor nisin mainly occur at the old cell poles of L. lactis and that the transporter NisT is probably recruited later to this spot after the completion of the modification reactions by NisB and NisC. Fluorescently labeled nisin biosynthesis machinery was visualized directly by fluorescence microscopy. To our knowledge, this is the first study to provide direct evidence of the existence of such a complex in vivo. Importantly, the elucidation of the “order of assembly” of the complex will facilitate future endeavors in the investigation of the nisin secretion mechanism and even the isolation and structural characterization of the complete complex. Nisin, a class I lantibiotic, is synthesized as a precursor peptide by a putative membrane-associated lanthionine synthetase complex consisting of the dehydratase NisB, the cyclase NisC, and the ABC transporter NisT. Here, we characterize the subcellular localization and the assembly process of the nisin biosynthesis machinery in Lactococcus lactis by mutational analyses and fluorescence microscopy. Precursor nisin, NisB, and NisC were found to be mainly localized at the cell poles, with a preference for the old poles. They were found to be colocalized at the same spots in these old pole regions, functioning as a nisin modification complex. In contrast, the transporter NisT was found to be distributed uniformly and circumferentially in the membrane. When nisin secretion was blocked by mutagenesis of NisT, the nisin biosynthesis machinery was also visualized directly at a polar position using fluorescence microscopy. The interactions between NisB and other components of the machinery were further studied in vivo, and therefore, the “order of assembly” of the complex was revealed, indicating that NisB directly or indirectly plays the role of a polar “recruiter” in the initial assembly process. Additionally, a potential domain that is located at the surface of the elimination domain of NisB was identified to be crucial for the polar localization of NisB. Based on these data, we propose a model wherein precursor nisin is first completely modified by the nisin biosynthesis machinery, preventing the premature secretion of partially modified peptides, and subsequently secreted by recruited NisT, preferentially at the old pole regions.
Collapse
|
6
|
Floyd KA, Lee CK, Xian W, Nametalla M, Valentine A, Crair B, Zhu S, Hughes HQ, Chlebek JL, Wu DC, Hwan Park J, Farhat AM, Lomba CJ, Ellison CK, Brun YV, Campos-Gomez J, Dalia AB, Liu J, Biais N, Wong GCL, Yildiz FH. c-di-GMP modulates type IV MSHA pilus retraction and surface attachment in Vibrio cholerae. Nat Commun 2020; 11:1549. [PMID: 32214098 PMCID: PMC7096442 DOI: 10.1038/s41467-020-15331-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/02/2020] [Indexed: 11/21/2022] Open
Abstract
Biofilm formation by Vibrio cholerae facilitates environmental persistence, and hyperinfectivity within the host. Biofilm formation is regulated by 3',5'-cyclic diguanylate (c-di-GMP) and requires production of the type IV mannose-sensitive hemagglutinin (MSHA) pilus. Here, we show that the MSHA pilus is a dynamic extendable and retractable system, and its activity is directly controlled by c-di-GMP. The interaction between c-di-GMP and the ATPase MshE promotes pilus extension, whereas low levels of c-di-GMP correlate with enhanced retraction. Loss of retraction facilitated by the ATPase PilT increases near-surface roaming motility, and impairs initial surface attachment. However, prolonged retraction upon surface attachment results in reduced MSHA-mediated surface anchoring and increased levels of detachment. Our results indicate that c-di-GMP directly controls MshE activity, thus regulating MSHA pilus extension and retraction dynamics, and modulating V. cholerae surface attachment and colonization.
Collapse
Affiliation(s)
- Kyle A Floyd
- Department of Microbiology and Environmental Toxicology, University of California - Santa Cruz, 1156 High St., BioMed 245, Santa Cruz, CA, 95064, USA
| | - Calvin K Lee
- Departments of Bioengineering, Chemistry and Biochemistry, California Nano Systems Institute, University of California - Los Angeles, 420 Westwood Plaza, Room 5121 Engineering V, Los Angeles, CA, 90095, USA
| | - Wujing Xian
- Departments of Bioengineering, Chemistry and Biochemistry, California Nano Systems Institute, University of California - Los Angeles, 420 Westwood Plaza, Room 5121 Engineering V, Los Angeles, CA, 90095, USA
| | - Mahmoud Nametalla
- Department of Biology, Brooklyn College, Room 307NE, 2900 Bedford Ave., Brooklyn, NY, 11210, USA
- CUNY Graduate Center, 365 5th Ave., New York, NY, 10016, USA
| | - Aneesa Valentine
- Department of Biology, Brooklyn College, Room 307NE, 2900 Bedford Ave., Brooklyn, NY, 11210, USA
- CUNY Graduate Center, 365 5th Ave., New York, NY, 10016, USA
| | - Benjamin Crair
- Department of Microbial Pathogenesis, Yale University, 840 West Campus Drive, Advanced Biosciences Center 211, West Haven, CT, 06516, USA
| | - Shiwei Zhu
- Department of Microbial Pathogenesis, Yale University, 840 West Campus Drive, Advanced Biosciences Center 211, West Haven, CT, 06516, USA
| | - Hannah Q Hughes
- Department of Biology, Indiana University - Bloomington, 1001 East Third St., Jordan Hall 469A, Bloomington, IN, 47405, USA
| | - Jennifer L Chlebek
- Department of Biology, Indiana University - Bloomington, 1001 East Third St., Jordan Hall 469A, Bloomington, IN, 47405, USA
| | - Daniel C Wu
- Department of Microbiology and Environmental Toxicology, University of California - Santa Cruz, 1156 High St., BioMed 245, Santa Cruz, CA, 95064, USA
| | - Jin Hwan Park
- Department of Microbiology and Environmental Toxicology, University of California - Santa Cruz, 1156 High St., BioMed 245, Santa Cruz, CA, 95064, USA
| | - Ali M Farhat
- Departments of Bioengineering, Chemistry and Biochemistry, California Nano Systems Institute, University of California - Los Angeles, 420 Westwood Plaza, Room 5121 Engineering V, Los Angeles, CA, 90095, USA
| | - Charles J Lomba
- Departments of Bioengineering, Chemistry and Biochemistry, California Nano Systems Institute, University of California - Los Angeles, 420 Westwood Plaza, Room 5121 Engineering V, Los Angeles, CA, 90095, USA
| | - Courtney K Ellison
- Department of Biology, Indiana University - Bloomington, 1001 East Third St., Jordan Hall 469A, Bloomington, IN, 47405, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, 355 Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Yves V Brun
- Department of Microbiology, Infectious Diseases, and Immunology, Faculty of Medicine, University of Montreal, Pavillon Roger-Gaudry, 2900, boulevard Édouard-Montpetit, C.P. 6128, Succursale Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - Javier Campos-Gomez
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1918 University Blvd., MCLM 702, Birmingham, AL, 35233, USA
| | - Ankur B Dalia
- Department of Biology, Indiana University - Bloomington, 1001 East Third St., Jordan Hall 469A, Bloomington, IN, 47405, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University, 840 West Campus Drive, Advanced Biosciences Center 211, West Haven, CT, 06516, USA
| | - Nicolas Biais
- Department of Biology, Brooklyn College, Room 307NE, 2900 Bedford Ave., Brooklyn, NY, 11210, USA
- CUNY Graduate Center, 365 5th Ave., New York, NY, 10016, USA
| | - Gerard C L Wong
- Departments of Bioengineering, Chemistry and Biochemistry, California Nano Systems Institute, University of California - Los Angeles, 420 Westwood Plaza, Room 5121 Engineering V, Los Angeles, CA, 90095, USA.
| | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California - Santa Cruz, 1156 High St., BioMed 245, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
7
|
Wang J, Brodmann M, Basler M. Assembly and Subcellular Localization of Bacterial Type VI Secretion Systems. Annu Rev Microbiol 2019; 73:621-638. [DOI: 10.1146/annurev-micro-020518-115420] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria need to deliver large molecules out of the cytosol to the extracellular space or even across membranes of neighboring cells to influence their environment, prevent predation, defeat competitors, or communicate. A variety of protein-secretion systems have evolved to make this process highly regulated and efficient. The type VI secretion system (T6SS) is one of the largest dynamic assemblies in gram-negative bacteria and allows for delivery of toxins into both bacterial and eukaryotic cells. The recent progress in structural biology and live-cell imaging shows the T6SS as a long contractile sheath assembled around a rigid tube with associated toxins anchored to a cell envelope by a baseplate and membrane complex. Rapid sheath contraction releases a large amount of energy used to push the tube and toxins through the membranes of neighboring target cells. Because reach of the T6SS is limited, some bacteria dynamically regulate its subcellular localization to precisely aim at their targets and thus increase efficiency of toxin translocation.
Collapse
Affiliation(s)
- Jing Wang
- Biozentrum, University of Basel, CH 4056 Basel, Switzerland
| | - Maj Brodmann
- Biozentrum, University of Basel, CH 4056 Basel, Switzerland
| | - Marek Basler
- Biozentrum, University of Basel, CH 4056 Basel, Switzerland
| |
Collapse
|
8
|
Krokowski S, Atwal S, Lobato-Márquez D, Chastanet A, Carballido-López R, Salje J, Mostowy S. Shigella MreB promotes polar IcsA positioning for actin tail formation. J Cell Sci 2019; 132:jcs.226217. [PMID: 30992346 PMCID: PMC6526709 DOI: 10.1242/jcs.226217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/01/2019] [Indexed: 01/17/2023] Open
Abstract
Pathogenic Shigella bacteria are a paradigm to address key issues of cell and infection biology. Polar localisation of the Shigella autotransporter protein IcsA is essential for actin tail formation, which is necessary for the bacterium to travel from cell-to-cell; yet how proteins are targeted to the bacterial cell pole is poorly understood. The bacterial actin homologue MreB has been extensively studied in broth culture using model organisms including Escherichia coli, Bacillus subtilis and Caulobacter crescentus, but has never been visualised in rod-shaped pathogenic bacteria during infection of host cells. Here, using single-cell analysis of intracellular Shigella, we discover that MreB accumulates at the cell pole of bacteria forming actin tails, where it colocalises with IcsA. Pharmacological inhibition of host cell actin polymerisation and genetic deletion of IcsA is used to show, respectively, that localisation of MreB to the cell poles precedes actin tail formation and polar localisation of IcsA. Finally, by exploiting the MreB inhibitors A22 and MP265, we demonstrate that MreB polymerisation can support actin tail formation. We conclude that Shigella MreB promotes polar IcsA positioning for actin tail formation, and suggest that understanding the bacterial cytoskeleton during host–pathogen interactions can inspire development of new therapeutic regimes for infection control. This article has an associated First Person interview with the first author of the paper. Summary: The pathogen Shigella forms actin tails to move through the cytosol of infected cells. We show that the bacterial actin homologue MreB can help to position the autotransporter protein IcsA for such actin tail formation.
Collapse
Affiliation(s)
- Sina Krokowski
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK.,Department of Immunology & Infection, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Sharanjeet Atwal
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7JT, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400 PHRI 07103, Thailand.,Public Health Research Institute, Rutgers Biomedical and Health Science, Newark, New Jersey NJ 07103, USA
| | - Damián Lobato-Márquez
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK.,Department of Immunology & Infection, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Arnaud Chastanet
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Rut Carballido-López
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Jeanne Salje
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7JT, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400 PHRI 07103, Thailand.,Public Health Research Institute, Rutgers Biomedical and Health Science, Newark, New Jersey NJ 07103, USA
| | - Serge Mostowy
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK .,Department of Immunology & Infection, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
9
|
McDonald MP, Gemeinhardt A, König K, Piliarik M, Schaffer S, Völkl S, Aigner M, Mackensen A, Sandoghdar V. Visualizing Single-Cell Secretion Dynamics with Single-Protein Sensitivity. NANO LETTERS 2018; 18:513-519. [PMID: 29227108 DOI: 10.1021/acs.nanolett.7b04494] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cellular secretion of proteins into the extracellular environment is an essential mediator of critical biological mechanisms, including cell-to-cell communication, immunological response, targeted delivery, and differentiation. Here, we report a novel methodology that allows for the real-time detection and imaging of single unlabeled proteins that are secreted from individual living cells. This is accomplished via interferometric detection of scattered light (iSCAT) and is demonstrated with Laz388 cells, an Epstein-Barr virus (EBV)-transformed B cell line. We find that single Laz388 cells actively secrete IgG antibodies at a rate of the order of 100 molecules per second. Intriguingly, we also find that other proteins and particles spanning ca. 100 kDa-1 MDa are secreted from the Laz388 cells in tandem with IgG antibody release, likely arising from EBV-related viral proteins. The technique is general and, as we show, can also be applied to studying the lysate of a single cell. Our results establish label-free iSCAT imaging as a powerful tool for studying the real-time exchange between cells and their immediate environment with single-protein sensitivity.
Collapse
Affiliation(s)
- Matthew P McDonald
- Nano-Optics Division, Max Planck Institute for the Science of Light , Staudtstraße 2, 91058 Erlangen, Germany
| | - André Gemeinhardt
- Nano-Optics Division, Max Planck Institute for the Science of Light , Staudtstraße 2, 91058 Erlangen, Germany
| | - Katharina König
- Nano-Optics Division, Max Planck Institute for the Science of Light , Staudtstraße 2, 91058 Erlangen, Germany
- Department of Physics , Friedrich Alexander University Erlangen-Nuremberg , Schloßplatz 4, 91054 Erlangen, Germany
| | - Marek Piliarik
- Nano-Optics Division, Max Planck Institute for the Science of Light , Staudtstraße 2, 91058 Erlangen, Germany
| | - Stefanie Schaffer
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg , Ulmenweg 18, 91054 Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg , Ulmenweg 18, 91054 Erlangen, Germany
| | - Michael Aigner
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg , Ulmenweg 18, 91054 Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg , Ulmenweg 18, 91054 Erlangen, Germany
| | - Vahid Sandoghdar
- Nano-Optics Division, Max Planck Institute for the Science of Light , Staudtstraße 2, 91058 Erlangen, Germany
- Department of Physics , Friedrich Alexander University Erlangen-Nuremberg , Schloßplatz 4, 91054 Erlangen, Germany
| |
Collapse
|
10
|
Waack U, Johnson TL, Chedid K, Xi C, Simmons LA, Mobley HLT, Sandkvist M. Targeting the Type II Secretion System: Development, Optimization, and Validation of a High-Throughput Screen for the Identification of Small Molecule Inhibitors. Front Cell Infect Microbiol 2017; 7:380. [PMID: 28894700 PMCID: PMC5581314 DOI: 10.3389/fcimb.2017.00380] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/09/2017] [Indexed: 12/26/2022] Open
Abstract
Nosocomial pathogens that develop multidrug resistance present an increasing problem for healthcare facilities. Due to its rapid rise in antibiotic resistance, Acinetobacter baumannii is one of the most concerning gram-negative species. A. baumannii typically infects immune compromised individuals resulting in a variety of outcomes, including pneumonia and bacteremia. Using a murine model for bacteremia, we have previously shown that the type II secretion system (T2SS) contributes to in vivo fitness of A. baumannii. Here, we provide support for a role of the T2SS in protecting A. baumannii from human complement as deletion of the T2SS gene gspD resulted in a 100-fold reduction in surviving cells when incubated with human serum. This effect was abrogated in the absence of Factor B, a component of the alternative pathway of complement activation, indicating that the T2SS protects A. baumannii against the alternative complement pathway. Because inactivation of the T2SS results in loss of secretion of multiple enzymes, reduced in vivo fitness, and increased sensitivity to human complement, the T2SS may be a suitable target for therapeutic intervention. Accordingly, we developed and optimized a whole-cell high-throughput screening (HTS) assay based on secreted lipase activity to identify small molecule inhibitors of the T2SS. We tested the reproducibility of our assay using a 6,400-compound library. With small variation within controls and a dynamic range between positive and negative controls, the assay had a z-factor of 0.65, establishing its suitability for HTS. Our screen identified the lipase inhibitors Orlistat and Ebelactone B demonstrating the specificity of the assay. To eliminate inhibitors of lipase activity and lipase expression, two counter assays were developed and optimized. By implementing these assays, all seven tricyclic antidepressants present in the library were found to be inhibitors of the lipase, highlighting the potential of identifying alternative targets for approved pharmaceuticals. Although no T2SS inhibitor was identified among the compounds that reduced lipase activity by ≥30%, our small proof-of-concept pilot study indicates that the HTS regimen is simple, reproducible, and specific and that it can be used to screen larger libraries for the identification of T2SS inhibitors that may be developed into novel A. baumannii therapeutics.
Collapse
Affiliation(s)
- Ursula Waack
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, United States
| | - Tanya L Johnson
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, United States.,Department of Chemistry, Eastern Michigan UniversityYpsilanti, MI, United States
| | - Khalil Chedid
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, United States
| | - Chuanwu Xi
- Department of Environmental Health Sciences, University of Michigan School of Public HealthAnn Arbor, MI, United States
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, United States
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, United States
| | - Maria Sandkvist
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, United States
| |
Collapse
|
11
|
Polar delivery of Legionella type IV secretion system substrates is essential for virulence. Proc Natl Acad Sci U S A 2017; 114:8077-8082. [PMID: 28696299 DOI: 10.1073/pnas.1621438114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A recurrent emerging theme is the targeting of proteins to subcellular microdomains within bacterial cells, particularly to the poles. In most cases, it has been assumed that this localization is critical to the protein's function. Legionella pneumophila uses a type IVB secretion system (T4BSS) to export a large number of protein substrates into the cytoplasm of host cells. Here we show that the Legionella export apparatus is localized to the bacterial poles, as is consistent with many T4SS substrates being retained on the phagosomal membrane adjacent to the poles of the bacterium. More significantly, we were able to demonstrate that polar secretion of substrates is critically required for Legionella's alteration of the host endocytic pathway, an activity required for this pathogen's virulence.
Collapse
|
12
|
Cytotoxic and Inflammatory Responses Induced by Outer Membrane Vesicle-Associated Biologically Active Proteases from Vibrio cholerae. Infect Immun 2016; 84:1478-1490. [PMID: 26930702 DOI: 10.1128/iai.01365-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/20/2016] [Indexed: 11/20/2022] Open
Abstract
Proteases in Vibrio cholerae have been shown to play a role in its pathogenesis. V. cholerae secretes Zn-dependent hemagglutinin protease (HAP) and calcium-dependent trypsin-like serine protease (VesC) by using the type II secretion system (TIISS). Our present studies demonstrated that these proteases are also secreted in association with outer membrane vesicles (OMVs) and transported to human intestinal epithelial cells in an active form. OMV-associated HAP induces dose-dependent apoptosis in Int407 cells and an enterotoxic response in the mouse ileal loop (MIL) assay, whereas OMV-associated VesC showed a hemorrhagic fluid response in the MIL assay, necrosis in Int407 cells, and an increased interleukin-8 (IL-8) response in T84 cells, which were significantly reduced in OMVs from VesC mutant strain. Our results also showed that serine protease VesC plays a role in intestinal colonization of V. cholerae strains in adult mice. In conclusion, our study shows that V. cholerae OMVs secrete biologically active proteases which may play a role in cytotoxic and inflammatory responses.
Collapse
|
13
|
Benitez JA, Silva AJ. Vibrio cholerae hemagglutinin(HA)/protease: An extracellular metalloprotease with multiple pathogenic activities. Toxicon 2016; 115:55-62. [PMID: 26952544 DOI: 10.1016/j.toxicon.2016.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 01/22/2023]
Abstract
Vibrio cholerae of serogroup O1 and O139, the etiological agent of the diarrheal disease cholera, expresses the extracellular Zn-dependent metalloprotease hemagglutinin (HA)/protease also reported as vibriolysin. This enzyme is also produced by non-O1/O139 (non-cholera) strains that cause mild, sporadic illness (i.e. gastroenteritis, wound or ear infections). Orthologs of HA/protease are present in other members of the Vibrionaceae family pathogenic to humans and fish. HA/protease belongs to the M4 neutral peptidase family and displays significant amino acid sequence homology to Pseudomonas aeruginosa elastase (LasB) and Bacillus thermoproteolyticus thermolysin. It exhibits a broad range of potentially pathogenic activities in cell culture and animal models. These activities range from the covalent modification of other toxins, the degradation of the protective mucus barrier and disruption of intestinal tight junctions. Here we review (i) the structure and regulation of HA/protease expression, (ii) its interaction with other toxins and the intestinal mucosa and (iii) discuss the possible role(s) of HA/protease in the pathogenesis of cholera.
Collapse
Affiliation(s)
- Jorge A Benitez
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW Atlanta, GA, 30310, USA.
| | - Anisia J Silva
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW Atlanta, GA, 30310, USA.
| |
Collapse
|
14
|
Li G, Young KD. A new suite of tnaA mutants suggests that Escherichia coli tryptophanase is regulated by intracellular sequestration and by occlusion of its active site. BMC Microbiol 2015; 15:14. [PMID: 25650045 PMCID: PMC4323232 DOI: 10.1186/s12866-015-0346-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/13/2015] [Indexed: 11/17/2022] Open
Abstract
Background The Escherichia coli enzyme tryptophanase (TnaA) converts tryptophan to indole, which triggers physiological changes and regulates interactions between bacteria and their mammalian hosts. Tryptophanase production is induced by external tryptophan, but the activity of TnaA is also regulated by other, more poorly understood mechanisms. For example, the enzyme accumulates as a spherical inclusion (focus) at midcell or at one pole, but how or why this localization occurs is unknown. Results TnaA activity is low when the protein forms foci during mid-logarithmic growth but its activity increases as the protein becomes more diffuse, suggesting that foci may represent clusters of inactive (or less active) enzyme. To determine what protein characteristics might mediate these localization effects, we constructed 42 TnaA variants: 6 truncated forms and 36 missense mutants in which different combinations of 83 surface-exposed residues were converted to alanine. A truncated TnaA protein containing only domains D1 and D3 (D1D3) localized to the pole. Mutations affecting the D1D3-to-D1D3 interface did not affect polar localization of D1D3 but did delay assembly of wild type TnaA foci. In contrast, alterations to the D1D3-to-D2 domain interface produced diffuse localization of the D1D3 variant but did not affect the wild type protein. Altering several surface-exposed residues decreased TnaA activity, implying that tetramer assembly may depend on interactions involving these sites. Interestingly, changing any of three amino acids at the base of a loop near the catalytic pocket decreased TnaA activity and caused it to form elongated ovoid foci in vivo, indicating that the alterations affect focus formation and may regulate how frequently tryptophan reaches the active site. Conclusions The results suggest that TnaA activity is regulated by subcellular localization and by a loop-associated occlusion of its active site. Equally important, these new TnaA variants are immediately available to the research community and should be useful for investigating how tryptophanase is localized and assembled, how substrate accesses its active site, the functional role of acetylation, and other structural and functional questions. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0346-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gang Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205-7199, USA.
| | - Kevin D Young
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205-7199, USA.
| |
Collapse
|
15
|
The Type II secretion system delivers matrix proteins for biofilm formation by Vibrio cholerae. J Bacteriol 2014; 196:4245-52. [PMID: 25266381 DOI: 10.1128/jb.01944-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gram-negative bacteria have evolved several highly dedicated pathways for extracellular protein secretion, including the type II secretion (T2S) system. Since substrates secreted via the T2S system include both virulence factors and degradative enzymes, this secretion system is considered a major survival mechanism for pathogenic and environmental species. Previous analyses revealed that the T2S system mediates the export of ≥ 20 proteins in Vibrio cholerae, a human pathogen that is indigenous to the marine environment. Here we demonstrate a new role in biofilm formation for the V. cholerae T2S system, since wild-type V. cholerae was found to secrete the biofilm matrix proteins RbmC, RbmA, and Bap1 into the culture supernatant, while an isogenic T2S mutant could not. In agreement with this finding, the level of biofilm formation in a static microtiter assay was diminished in T2S mutants. Moreover, inactivation of the T2S system in a rugose V. cholerae strain prevented the development of colony corrugation and pellicle formation at the air-liquid interface. In contrast, extracellular secretion of the exopolysaccharide VPS, an essential component of the biofilm matrix, remained unaffected in the T2S mutants. Our results indicate that the T2S system provides a mechanism for the delivery of extracellular matrix proteins known to be important for biofilm formation by V. cholerae. Because the T2S system contributes to the pathogenicity of V. cholerae by secreting proteins such as cholera toxin and biofilm matrix proteins, elucidation of the molecular mechanism of T2S has the potential to lead to the development of novel preventions and therapies.
Collapse
|
16
|
Expression and localization of an ice nucleating protein from a soil bacterium, Pseudomonas borealis. Cryobiology 2014; 69:110-8. [PMID: 24930584 DOI: 10.1016/j.cryobiol.2014.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 11/20/2022]
Abstract
An ice nucleating protein (INP) coding region with 66% sequence identity to the INP of Pseudomonas syringae was previously cloned from P. borealis, a plant beneficial soil bacterium. Ice nucleating activity (INA) in the P. borealis DL7 strain was highest after transfer of cultures to temperatures just above freezing. The corresponding INP coding sequence (inaPb or ina) was used to construct recombinant plasmids, with recombinant expression visualized using a green fluorescent protein marker (gfp encoding GFP). Although the P. borealis strain was originally isolated by ice-affinity, bacterial cultures with membrane-associated INP-GFP did not adsorb to pre-formed ice. Employment of a shuttle vector allowed expression of ina-gfp in both Escherichia coli and Pseudomonas cells. At 27 °C, diffuse fluorescence appeared throughout the cells and was associated with low INA. However, after transfer of cultures to 4 °C, the protein localized to the poles coincident with high INA. Transformants with truncated INP sequences ligated to either gfp, or an antifreeze protein-gfp fusion showed that the repetitive ice-nucleation domain was not necessary for localization. Such localization is consistent with the flanking residues of the INP associating with a temperature-dependent secretion apparatus. A polar location would facilitate INP-INP interactions resulting in the formation of larger aggregates, serving to increase INA. Expression of INPs by P. borealis could function as an efficient atmospheric dispersal mechanism for these soil bacteria, which are less likely to use these proteins for nutrient procurement, as has been suggested for P. syringae.
Collapse
|
17
|
Abstract
Natural competence for transformation is a mode of horizontal gene transfer that is commonly used by bacteria to take up DNA from their environment. As part of this developmental program, so-called competence genes, which encode the components of a DNA-uptake machinery, are expressed. Several models have been proposed for the DNA-uptake complexes of competent bacteria, and most include a type IV (pseudo)pilus as a core component. However, cell-biology-based approaches to visualizing competence proteins have so far been restricted to Gram-positive bacteria. Here, we report the visualization of a competence-induced pilus in the Gram-negative bacterium Vibrio cholerae. We show that piliated cells mostly contain a single pilus that is not biased toward a polar localization and that this pilus colocalizes with the outer membrane secretin PilQ. PilQ, on the other hand, forms several foci around the cell and occasionally colocalizes with the dynamic cytoplasmic-traffic ATPase PilB, which is required for pilus extension. We also determined the minimum competence regulon of V. cholerae, which includes at least 19 genes. Bacteria with mutations in those genes were characterized with respect to the presence of surface-exposed pili, DNA uptake, and natural transformability. Based on these phenotypes, we propose that DNA uptake in naturally competent V. cholerae cells occurs in at least two steps: a pilus-dependent translocation of the incoming DNA across the outer membrane and a pilus-independent shuttling of the DNA through the periplasm and into the cytoplasm.
Collapse
|
18
|
Kalinin YV, Murali A, Gracias DH. Chemistry with spatial control using particles and streams(). RSC Adv 2012; 2:9707-9726. [PMID: 23145348 PMCID: PMC3491979 DOI: 10.1039/c2ra20337e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Spatial control of chemical reactions, with micro- and nanometer scale resolution, has important consequences for one pot synthesis, engineering complex reactions, developmental biology, cellular biochemistry and emergent behavior. We review synthetic methods to engineer this spatial control using chemical diffusion from spherical particles, shells and polyhedra. We discuss systems that enable both isotropic and anisotropic chemical release from isolated and arrayed particles to create inhomogeneous and spatially patterned chemical fields. In addition to such finite chemical sources, we also discuss spatial control enabled with laminar flow in 2D and 3D microfluidic networks. Throughout the paper, we highlight applications of spatially controlled chemistry in chemical kinetics, reaction-diffusion systems, chemotaxis and morphogenesis.
Collapse
Affiliation(s)
- Yevgeniy V. Kalinin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Adithya Murali
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
19
|
Govindarajan S, Nevo-Dinur K, Amster-Choder O. Compartmentalization and spatiotemporal organization of macromolecules in bacteria. FEMS Microbiol Rev 2012; 36:1005-22. [DOI: 10.1111/j.1574-6976.2012.00348.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 12/18/2022] Open
|
20
|
Vega LA, Caparon MG. Cationic antimicrobial peptides disrupt the Streptococcus pyogenes ExPortal. Mol Microbiol 2012; 85:1119-32. [PMID: 22780862 DOI: 10.1111/j.1365-2958.2012.08163.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although they possess a well-characterized ability to porate the bacterial membrane, emerging research suggests that cationic antimicrobial peptides (CAPs) can influence pathogen behaviour at levels that are sublethal. In this study, we investigated the interaction of polymyxin B and human neutrophil peptide (HNP-1) with the human pathogen Streptococcus pyogenes. At sublethal concentrations, these CAPs preferentially targeted the ExPortal, a unique microdomain of the S. pyogenes membrane, specialized for protein secretion and processing. A consequence of this interaction was the disruption of ExPortal organization and a redistribution of ExPortal components into the peripheral membrane. Redistribution was associated with inhibition of secretion of certain toxins, including the SpeB cysteine protease and the streptolysin O (SLO) cytolysin, but not SIC, a protein that protects S. pyogenes from CAPs. These data suggest a novel function for CAPs in targeting the ExPortal and interfering with secretion of factors required for infection and survival. This mechanism may prove valuable for the design of new types of antimicrobial agents to combat the emergence of antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Luis Alberto Vega
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110-1093, USA
| | | |
Collapse
|
21
|
Li G, Young KD. Isolation and identification of new inner membrane-associated proteins that localize to cell poles inEscherichia coli. Mol Microbiol 2012; 84:276-95. [DOI: 10.1111/j.1365-2958.2012.08021.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Ito M, Nagai T, Mizoguchi H, Sato K, Hayase M, Otsuka N, Fukakusa A, Kumagai N, Kim HC, Nabeshima T, Takuma K, Yamada K. Activation of post-synaptic dopamine D₁ receptors promotes the release of tissue plasminogen activator in the nucleus accumbens via PKA signaling. J Neurochem 2011; 103:2589-96. [PMID: 17944865 DOI: 10.1111/j.1471-4159.2007.04946.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have previously demonstrated that tissue plasminogen activator (tPA) plays an important role through the conversion of plasminogen to plasmin in the release of dopamine in the nucleus accumbens (NAc) evoked by depolarization or the systemic administration of drugs of abuse such as morphine and nicotine. In the present study, we examined the mechanisms by which drugs of abuse increase extracellular tPA activity in the NAc in vivo using in situ zymography. The dopamine D(1) receptor (D(1) R) agonist SKF38393, but not D(2) receptor agonist quinpirole, significantly increased extracellular tPA activity in the NAc. The effect of SKF38393 was blocked by pre-treatment with the dopamine D(1) R antagonist SCH23390. Microinjection of Rp-cAMPs, a protein kinase A inhibitor, into the NAc completely blocked the effect of SKF38393. Systemic administration of morphine and methamphetamine increased extracellular tPA activity in the NAc, and these effects were completely blocked by pre-treatment with SCH23390 and raclopride. The results suggest that activation of post-synaptic dopamine D(1) Rs in the NAc leads to an increase in extracellular tPA activity via protein kinase A signaling. Furthermore, dopamine D(2) receptors are also involved in the release of tPA induced by morphine and methamphetamine.
Collapse
Affiliation(s)
- Mina Ito
- Laboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Derr J, Rutenberg AD. Monodisperse domains by proteolytic control of the coarsening instability. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:011928. [PMID: 21867234 DOI: 10.1103/physreve.84.011928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 06/09/2011] [Indexed: 05/31/2023]
Abstract
The coarsening instability typically disrupts steady-state cluster-size distributions. We show that degradation coupled to the cluster size, such as arising from biological proteolysis, leads to a fixed-point cluster size. Stochastic evaporative and condensative fluxes determine the width of the fixed-point size distribution. At the fixed point, we show how the peak size and width depend on number, interactions, and proteolytic rate. This proteolytic size-control mechanism is consistent with the phenomenology of pseudopilus length control in the general secretion pathway of bacteria.
Collapse
Affiliation(s)
- Julien Derr
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5.
| | | |
Collapse
|
24
|
Scheurwater EM, Burrows LL. Maintaining network security: how macromolecular structures cross the peptidoglycan layer. FEMS Microbiol Lett 2011; 318:1-9. [DOI: 10.1111/j.1574-6968.2011.02228.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
25
|
Kirkpatrick CL, Viollier PH. Poles apart: prokaryotic polar organelles and their spatial regulation. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a006809. [PMID: 21084387 DOI: 10.1101/cshperspect.a006809] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
While polar organelles hold the key to understanding the fundamentals of cell polarity and cell biological principles in general, they have served in the past merely for taxonomical purposes. Here, we highlight recent efforts in unraveling the molecular basis of polar organelle positioning in bacterial cells. Specifically, we detail the role of members of the Ras-like GTPase superfamily and coiled-coil-rich scaffolding proteins in modulating bacterial cell polarity and in recruiting effector proteins to polar sites. Such roles are well established for eukaryotic cells, but not for bacterial cells that are generally considered diffusion-limited. Studies on spatial regulation of protein positioning in bacterial cells, though still in their infancy, will undoubtedly experience a surge of interest, as comprehensive localization screens have yielded an extensive list of (polarly) localized proteins, potentially reflecting subcellular sites of functional specialization predicted for organelles.
Collapse
Affiliation(s)
- Clare L Kirkpatrick
- Department of Microbiology and Molecular Medicine, Centre Médicale Universitaire, Faculty of Medicine, University of Geneva, Switzerland
| | | |
Collapse
|
26
|
Rajamani S, Sayre RT. A sensitive fluorescence reporter for monitoring quorum sensing regulated protease production in Vibrio harveyi. J Microbiol Methods 2010; 84:189-93. [PMID: 21129419 DOI: 10.1016/j.mimet.2010.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/10/2010] [Accepted: 11/19/2010] [Indexed: 11/25/2022]
Abstract
Many bacteria produce and secrete proteases during host invasion and pathogenesis. Vibrio harveyi, an opportunistic pathogen of shrimp, is known to use a two-component quorum sensing (QS) mechanism for coordination of gene expression including protease secretion at high population densities. We examined the role of V. harveyi's QS signaling molecules, N-(3-hydroxybutanoyl)-L-homoserine lactone (AI-1) and the boron derivative of autoinducer-2 (BAI-2) in extracellular protease production. A fusion protein, M3CLPY (Rajamani et al., 2007), consisting of a large protease sensitive BAI-2 mutant receptor LuxP (~38kDa) flanked by two protease insensitive cyan and yellow variants of GFP (~28kDa each) was utilized as a substrate to detect secreted protease activity. The M3CLPY fusion, with the addition of wild-type V. harveyi (BB120) cell-free culture filtrate showed a time-dependent loss in fluorescence resonance energy transfer (FRET) associated with the cleavage of the LuxP linker protein and hence separation of the two fluorophores. This cleavage of LuxP linker protein leading to decreased FRET efficiency was further confirmed by immunoblotting using anti-GFP antibody. The addition of cell-free filtrates from strains defective in one or both of the two-component QS pathways: luxN(-) (defective in AI-1), luxS(-) (defective in BAI-2), and luxN(-)/luxS(-) (defective in both AI-1/BAI-2) showed differential levels of protease production. The observed protease activities were most pronounced in wild-type, followed by the AI-1 defective mutant (BB170) and the least for luxS(-) mutant (MM30) and luxN(-)/luxS(-) double mutant (MM32) strains. Incidentally, the lowest protease producing strains MM30 and MM32 were both defective in BAI-2 production. This observation was validated by addition of synthetic BAI-2 to MM30 and MM32 strains to restore protease production. Our results indicate that BAI-2 signaling in the two-component QS pathway plays the key role in regulating extracellular protease production in V. harveyi.
Collapse
Affiliation(s)
- Sathish Rajamani
- Biophysics Program, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
27
|
Cowles KN, Gitai Z. Surface association and the MreB cytoskeleton regulate pilus production, localization and function in Pseudomonas aeruginosa. Mol Microbiol 2010; 76:1411-26. [PMID: 20398206 DOI: 10.1111/j.1365-2958.2010.07132.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Spatial organization of bacterial proteins influences many cellular processes, including division, chromosome segregation and motility. Virulence-associated proteins also localize to specific destinations within bacterial cells. However, the functions and mechanisms of virulence factor localization remain largely unknown. In this work, we demonstrate that polar assembly of the Pseudomonas aeruginosa PAO1 type IV pilus is regulated by surface association in a manner that affects gene transcription, protein levels and protein localization. We also uncover one mechanism for this regulation that acts through the actin homologue MreB. Inactivation of MreB leads to mislocalization of the pilus retraction ATPase PilT, mislocalization of the pili themselves and a reduction in motility. Furthermore, the role of MreB in polar localization of PilT is modulated by surface association, corroborating our results that environmental factors influence the regulation of pilus production. Specifically, MreB mediates both the initiation and maintenance of PilT localization when cells are grown in suspension but only affects the initiation of localization when cells are grown on a surface. Together, these results suggest that the bacterial cytoskeleton provides a mechanism for the polar localization of P. aeruginosa pili and demonstrate that protein localization may represent an important aspect of virulence factor regulation in bacterial pathogens.
Collapse
Affiliation(s)
- Kimberly N Cowles
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
28
|
Reactogenicity of live-attenuated Vibrio cholerae vaccines is dependent on flagellins. Proc Natl Acad Sci U S A 2010; 107:4359-64. [PMID: 20160087 DOI: 10.1073/pnas.0915164107] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cholera is a severe diarrheal disease caused by the motile Gram-negative rod Vibrio cholerae. Live-attenuated V. cholerae vaccines harboring deletions of the genes encoding cholera toxin have great promise for reducing the global burden of cholera. However, development of live vaccines has been hampered by the tendency of such strains to induce noncholeric reactogenic diarrhea in human subjects. The molecular bases of reactogenicity are unknown, but it has been speculated that reactogenic diarrhea is a response to V. cholerae's flagellum and/or the motility that it enables. Here, we used an infant rabbit model of reactogenicity to determine what V. cholerae factors trigger this response. We found that V. cholerae ctx mutants that produced flagellins induced diarrhea, regardless of whether the proteins were assembled into a flagellum or whether the flagellum was functional. In contrast, approximately 90% of rabbits infected with V. cholerae lacking all five flagellin-encoding genes did not develop diarrhea. Thus, flagellin production, independent of flagellum assembly or motility, is sufficient for reactogenicity. The intestinal colonization and intraintestinal localization of the nonreactogenic flagellin-deficient strain were indistinguishable from those of a flagellated motile strain; however, the flagellin-deficient strain stimulated fewer mRNA transcripts coding for proinflammatory cytokines in the intestine. Thus, reactogenic diarrhea may be a consequence of an innate host inflammatory response to V. cholerae flagellins. Our results suggest a simple genetic blueprint for engineering defined nonreactogenic live-attenuated V. cholerae vaccine strains.
Collapse
|
29
|
Specificity of the type II secretion systems of enterotoxigenic Escherichia coli and Vibrio cholerae for heat-labile enterotoxin and cholera toxin. J Bacteriol 2010; 192:1902-11. [PMID: 20097854 DOI: 10.1128/jb.01542-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Gram-negative type II secretion (T2S) system is a multiprotein complex mediating the release of virulence factors from a number of pathogens. While an understanding of the function of T2S components is emerging, little is known about what identifies substrates for export. To investigate T2S substrate recognition, we compared mutations affecting the secretion of two highly homologous substrates: heat-labile enterotoxin (LT) from enterotoxigenic Escherichia coli (ETEC) and cholera toxin (CT) from Vibrio cholerae. Each toxin consists of one enzymatic A subunit and a ring of five B subunits mediating the toxin's secretion. Here, we report two mutations in LT's B subunit (LTB) that reduce its secretion from ETEC without global effects on the toxin. The Q3K mutation reduced levels of secreted LT by half, and as with CT (T. D. Connell, D. J. Metzger, M. Wang, M. G. Jobling, and R. K. Holmes, Infect. Immun. 63:4091-4098, 1995), the E11K mutation impaired LT secretion. Results in vitro and in vivo show that these mutants are not degraded more readily than wild-type LT. The Q3K mutation did not significantly affect CT B subunit (CTB) secretion from V. cholerae, and the E11A mutation altered LT and CTB secretion to various extents, indicating that these toxins are identified as secretion substrates in different ways. The levels of mutant LTB expressed in V. cholerae were low or undetectable, but each CTB mutant expressed and secreted at wild-type levels in ETEC. Therefore, ETEC's T2S system seems to accommodate mutations in CTB that impair the secretion of LTB. Our results highlight the exquisitely fine-tuned relationship between T2S substrates and their coordinate secretion machineries in different bacterial species.
Collapse
|
30
|
Levels of the secreted Vibrio cholerae attachment factor GbpA are modulated by quorum-sensing-induced proteolysis. J Bacteriol 2009; 191:6911-7. [PMID: 19734310 DOI: 10.1128/jb.00747-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vibrio cholerae is the etiologic agent of cholera in humans. Intestinal colonization occurs in a stepwise fashion, initiating with attachment to the small intestinal epithelium. This attachment is followed by expression of the toxin-coregulated pilus, microcolony formation, and cholera toxin (CT) production. We have recently characterized a secreted attachment factor, GlcNAc binding protein A (GbpA), which functions in attachment to environmental chitin sources as well as to intestinal substrates. Studies have been initiated to define the regulatory network involved in GbpA induction. At low cell density, GbpA was detected in the culture supernatant of all wild-type (WT) strains examined. In contrast, at high cell density, GbpA was undetectable in strains that produce HapR, the central regulator of the cell density-dependent quorum-sensing system of V. cholerae. HapR represses the expression of genes encoding regulators involved in V. cholerae virulence and activates the expression of genes encoding the secreted proteases HapA and PrtV. We show here that GbpA is degraded by HapA and PrtV in a time-dependent fashion. Consistent with this, Delta hapA Delta prtV strains attach to chitin beads more efficiently than either the WT or a Delta hapA Delta prtV Delta gbpA strain. These results suggest a model in which GbpA levels fluctuate in concert with the bacterial production of proteases in response to quorum-sensing signals. This could provide a mechanism for GbpA-mediated attachment to, and detachment from, surfaces in response to environmental cues.
Collapse
|
31
|
Abstract
Secretion of cholera toxin and other virulence factors from Vibrio cholerae is mediated by the type II secretion (T2S) apparatus, a multiprotein complex composed of both inner and outer membrane proteins. To better understand the mechanism by which the T2S complex coordinates translocation of its substrates, we are examining the protein-protein interactions of its components, encoded by the extracellular protein secretion (eps) genes. In this study, we took a cell biological approach, observing the dynamics of fluorescently tagged EpsC and EpsM proteins in vivo. We report that the level and context of fluorescent protein fusion expression can have a bold effect on subcellular location and that chromosomal, intraoperon expression conditions are optimal for determining the intracellular locations of fusion proteins. Fluorescently tagged, chromosomally expressed EpsC and EpsM form discrete foci along the lengths of the cells, different from the polar localization for green fluorescent protein (GFP)-EpsM previously described, as the fusions are balanced with all their interacting partner proteins within the T2S complex. Additionally, we observed that fluorescent foci in both chromosomal GFP-EpsC- and GFP-EpsM-expressing strains disperse upon deletion of epsD, suggesting that EpsD is critical to the localization of EpsC and EpsM and perhaps their assembly into the T2S complex.
Collapse
|
32
|
Carlsson F, Joshi SA, Rangell L, Brown EJ. Polar localization of virulence-related Esx-1 secretion in mycobacteria. PLoS Pathog 2009; 5:e1000285. [PMID: 19180234 PMCID: PMC2628743 DOI: 10.1371/journal.ppat.1000285] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 01/05/2009] [Indexed: 11/18/2022] Open
Abstract
The Esx-1 (type VII) secretion system is critical for virulence of both Mycobacterium tuberculosis and Mycobacterium marinum, and is highly conserved between the two species. Despite its importance, there has been no direct visualization of Esx-1 secretion until now. In M. marinum, we show that secretion of Mh3864, a novel Esx-1 substrate that remains partially cell wall–associated after translocation, occurred in polar regions, indicating that Esx-1 secretion takes place in these regions. Analysis of Esx-1 secretion in infected host cells suggested that Esx-1 activity is similarly localized in vivo. A core component of the Esx-1 apparatus, Mh3870, also localized to bacterial poles, showing a preference for new poles with active cell wall peptidoglycan (PGN) synthesis. This work demonstrates that the Esx-1 secretion machine localizes to, and is active at, the bacterial poles. Thus, virulence-related protein secretion is localized in mycobacteria, suggesting new potential therapeutic targets, which are urgently needed. Mycobacteria represent a major human health problem globally, and there is a pressing need to identify novel processes and mechanisms including therapeutic targets. The Esx-1 secretion system is required for both Mycobacterium tuberculosis and Mycobacterium marinum to cause disease, and is absent from vaccine strains such as Mycobacterium bovis BCG. Esx-1 is functionally conserved between M. tuberculosis and the experimentally amenable M. marinum, which is increasingly used to study this secretory system. Bacterial cells are spatially highly organized; in particular, pathogenic bacteria may localize virulence-related protein secretion to specific regions within the cell envelope, a feature that is generally believed to be important for virulence. However, it has not been known whether Esx-1 is compartmentalized. Our work represents the first visualization of protein secretion in mycobacteria in general. Specifically, we show that the Esx-1 apparatus localizes to, and is active at, the bacterial poles in M. marinum. These findings suggest previously unappreciated mechanisms governing localization of protein secretion in mycobacteria, potentially including new therapeutic targets.
Collapse
Affiliation(s)
- Fredric Carlsson
- Department of Microbial Pathogenesis, Genentech Inc., South San Francisco, California, United States of America
- * E-mail: (FC); (EJB)
| | - Shilpa A. Joshi
- Department of Microbial Pathogenesis, Genentech Inc., South San Francisco, California, United States of America
| | - Linda Rangell
- Department of Pathology, Genentech Inc., South San Francisco, California, United States of America
| | - Eric J. Brown
- Department of Microbial Pathogenesis, Genentech Inc., South San Francisco, California, United States of America
- * E-mail: (FC); (EJB)
| |
Collapse
|
33
|
Senf F, Tommassen J, Koster M. Polar secretion of proteins via the Xcp type II secretion system in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2008; 154:3025-3032. [PMID: 18832308 DOI: 10.1099/mic.0.2008/018069-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The subcellular localization of the major type II secretion system of Pseudomonas aeruginosa, the Xcp system, was studied microscopically using a biarsenical ligand that becomes fluorescent upon binding to a tetracysteine motif (Lumio tag), which was fused to several Xcp components. Fusion of the Lumio tag to the C termini of the XcpR and XcpS proteins did not affect the functionality of these proteins. Fluorescence microscopy showed that they were predominantly localized to the poles of P. aeruginosa cells, when produced at levels comparable to chromosomally encoded XcpR and XcpS. In most labelled cells, the proteins were found at one of the poles, although bipolar localization was also observed. When produced in the absence of other Xcp components, labelled XcpS was still found to locate at the poles, whereas XcpR was evenly distributed in the cell. These data suggest that XcpS, but not XcpR, contains information required for polar localization. The polar location of the Xcp machinery was further confirmed by the visualization of protease secretion with an intramolecularly quenched casein conjugate.
Collapse
Affiliation(s)
- Freya Senf
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jan Tommassen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Margot Koster
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
34
|
Type II secretion system secretin PulD localizes in clusters in the Escherichia coli outer membrane. J Bacteriol 2008; 191:161-8. [PMID: 18978053 DOI: 10.1128/jb.01138-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cellular localization of a chimera formed by fusing a monomeric red fluorescent protein to the C terminus of the Klebsiella oxytoca type II secretion system outer membrane secretin PulD (PulD-mCherry) in Escherichia coli was determined in vivo by fluorescence microscopy. Like PulD, PulD-mCherry formed sodium dodecyl sulfate- and heat-resistant multimers and was functional in pullulanase secretion. Chromosome-encoded PulD-mCherry formed fluorescent foci on the periphery of the cell in the presence of high (plasmid-encoded) levels of its cognate chaperone, the pilotin PulS. Subcellular fractionation demonstrated that the chimera was located exclusively in the outer membrane under these circumstances. A similar localization pattern was observed by fluorescence microscopy of fixed cells treated with green fluorescent protein-tagged affitin, which binds with high affinity to an epitope in the N-terminal region of PulD. At lower levels of (chromosome-encoded) PulS, PulD-mCherry was less stable, was located mainly in the inner membrane, from which it could not be solubilized with urea, and did not induce the phage shock response, unlike PulD in the absence of PulS. The fluorescence pattern of PulD-mCherry under these conditions was similar to that observed when PulS levels were high. The complete absence of PulS caused the appearance of bright and almost exclusively polar fluorescent foci.
Collapse
|
35
|
Cytoplasmic targeting of IpaC to the bacterial pole directs polar type III secretion in Shigella. EMBO J 2008; 27:447-57. [PMID: 18188151 DOI: 10.1038/sj.emboj.7601976] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 12/04/2007] [Indexed: 11/09/2022] Open
Abstract
Type III secretion (T3S) systems are largely used by pathogenic gram-negative bacteria to inject multiple effectors into eukaryotic cells. Upon cell contact, these bacterial microinjection devices insert two T3S substrates into host cell membranes, forming a so-called 'translocon' that is required for targeting of type III effectors in the cell cytosol. Here, we show that secretion of the translocon component IpaC of invasive Shigella occurs at the level of one bacterial pole during cell invasion. Using IpaC fusions with green fluorescent protein variants (IpaCi), we show that the IpaC cytoplasmic pool localizes at an old or new bacterial pole, where secretion occurs upon T3S activation. Deletions in ipaC identified domains implicated in polar localization. Only polar IpaCi derivatives inhibited T3S, while IpaCi fusions with diffuse cytoplasmic localization had no detectable effect on T3S. Moreover, the deletions that abolished polar localization led to secretion defects when introduced in ipaC. These results indicate that cytoplasmic polar localization directs secretion of IpaC at the pole of Shigella, and may represent a mandatory step for T3S.
Collapse
|
36
|
Mapping critical interactive sites within the periplasmic domain of the Vibrio cholerae type II secretion protein EpsM. J Bacteriol 2007; 189:9082-9. [PMID: 17921296 DOI: 10.1128/jb.01256-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The type II secretion (T2S) system is present in many gram-negative species, both pathogenic and nonpathogenic, where it supports the delivery of a variety of toxins, proteases, and lipases into the extracellular environment. In Vibrio cholerae, the T2S apparatus is composed of 12 Eps proteins that assemble into a multiprotein complex that spans the entire cell envelope. Two of these proteins, EpsM and EpsL, are key components of the secretion machinery present in the inner membrane. In addition to likely forming homodimers, EpsL and EpsM have been shown to form a stable complex in the inner membrane and to protect each other from proteolytic degradation. To identify and map the specific regions of EpsM involved in protein-protein interactions with both another molecule of EpsM and EpsL, we tested the interactions of deletion constructs of EpsM with full-length EpsM and EpsL by functional characterization and copurification as well as coimmunoprecipitation. Analysis of the truncated EpsM mutants revealed that the region of EpsM from amino acids 100 to 135 is necessary for EpsM to form homo-oligomers, while residues 84 to 99 appear to be critical for a stable interaction with EpsL.
Collapse
|
37
|
Sikora AE, Lybarger SR, Sandkvist M. Compromised outer membrane integrity in Vibrio cholerae Type II secretion mutants. J Bacteriol 2007; 189:8484-95. [PMID: 17890307 PMCID: PMC2168955 DOI: 10.1128/jb.00583-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The type II secretion (T2S) system of Vibrio cholerae is a multiprotein complex that spans the cell envelope and secretes proteins important for pathogenesis as well as survival in different environments. Here we report that, in addition to the loss of extracellular secretion, removal or inhibition of expression of the T2S genes, epsC-N, results in growth defects and a broad range of alterations in the outer membrane that interfere with its barrier function. Specifically, the sensitivity to membrane-perturbing agents such as bile salts and the antimicrobial peptide polymyxin B is increased, and periplasmic constituents leak out into the culture medium. As a consequence, the sigma(E) stress response is induced. Furthermore, due to the defects caused by inactivation of the T2S system, the Deltaeps deletion mutant of V. cholerae strain N16961 is incapable of surviving the passage through the infant mouse gastrointestinal tract. The growth defect and leaky outer membrane phenotypes are suppressed when the culture medium is supplemented with 5% glucose or sucrose, although the eps mutants remain sensitive to membrane-damaging agents. This suggests that the sugars do not restore the integrity of the outer membrane in the eps mutant strains per se but may provide osmoprotective functions.
Collapse
Affiliation(s)
- Aleksandra E Sikora
- University of Michigan Medical School, Department of Microbiology and Immunology, 1150 West Medical Center Drive, 6741 Medical Science Building II, Ann Arbor, MI 48109-0620, USA
| | | | | |
Collapse
|
38
|
Ito M, Nagai T, Mizoguchi H, Fukakusa A, Nakanishi Y, Kamei H, Nabeshima T, Takuma K, Yamada K. Possible involvement of protease-activated receptor-1 in the regulation of morphine-induced dopamine release and hyperlocomotion by the tissue plasminogen activator-plasmin system. J Neurochem 2007; 101:1392-9. [PMID: 17286591 DOI: 10.1111/j.1471-4159.2006.04423.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have previously demonstrated that tissue plasminogen activator (tPA)-plasmin system participates in the rewarding effect of morphine, by regulating dopamine release in the nucleus accumbens (NAc). However, it is unclear how plasmin increases the morphine-induced release of dopamine and hyperlocomotion. In the present study we investigated whether protease activated receptor-1 (PAR-1) is involved in the regulation of acute morphine-induced dopamine release by the tPA-plasmin system. Morphine significantly but transiently increased extracellular tPA activity in the NAc, which was completely blocked by naloxone. Microinjection of a PAR-1 antagonist, (tyr(-1))-thrombin receptor activating peptide 7, into the NAc significantly reduced morphine-induced dopamine release in the NAc and hyperlocomotion although the treatment had no effect on basal dopamine release and spontaneous locomotor activity. Furthermore, the PAR-1 antagonist blocked the ameliorating effect of plasmin on the defect of morphine-induced dopamine release in the NAc of tPA-deficient mice. In contrast, intracerebroventricular injection of the PAR-1 antagonist had no effect on the antinociceptive effects of morphine in mice. These results suggest that PAR-1 is a target for the tPA-plasmin system in the regulation of acute morphine-induced dopamine release in the NAc.
Collapse
Affiliation(s)
- Mina Ito
- Laboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Recent advances have shown conclusively that bacterial cells possess distant but true homologues of actin (MreB, ParM, and the recently uncovered MamK protein). Despite weak amino acid sequence similarity, MreB and ParM exhibit high structural homology to actin. Just like F-actin in eukaryotes, MreB and ParM assemble into highly dynamic filamentous structures in vivo and in vitro. MreB-like proteins are essential for cell viability and have been implicated in major cellular processes, including cell morphogenesis, chromosome segregation, and cell polarity. ParM (a plasmid-encoded actin homologue) is responsible for driving plasmid-DNA partitioning. The dynamic prokaryotic actin-like cytoskeleton is thought to serve as a central organizer for the targeting and accurate positioning of proteins and nucleoprotein complexes, thereby (and by analogy to the eukaryotic cytoskeleton) spatially and temporally controlling macromolecular trafficking in bacterial cells. In this paper, the general properties and known functions of the actin orthologues in bacteria are reviewed.
Collapse
Affiliation(s)
- Rut Carballido-López
- Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cedex, France.
| |
Collapse
|
40
|
Nagai T, Ito M, Nakamichi N, Mizoguchi H, Kamei H, Fukakusa A, Nabeshima T, Takuma K, Yamada K. The rewards of nicotine: regulation by tissue plasminogen activator-plasmin system through protease activated receptor-1. J Neurosci 2006; 26:12374-83. [PMID: 17122062 PMCID: PMC6675418 DOI: 10.1523/jneurosci.3139-06.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nicotine, a primary component of tobacco, is one of the most abused drugs worldwide. Approximately four million people die each year because of diseases associated with tobacco smoking. Mesolimbic dopaminergic neurons mediate the rewarding effects of abused drugs, including nicotine. Here we show that the tissue plasminogen activator (tPA)-plasmin system regulates nicotine-induced reward and dopamine release by activating protease activated receptor-1 (PAR1). In vivo microdialysis revealed that microinjection of either tPA or plasmin into the nucleus accumbens (NAc) significantly potentiated whereas plasminogen activator inhibitor-1 reduced the nicotine-induced dopamine release in the NAc in a dose-dependent manner. Nicotine-induced dopamine release was markedly diminished in tPA-deficient (tPA-/-) mice, and the defect of dopamine release in tPA-/- mice was restored by microinjection of either exogenous tPA or plasmin into the NAc. Nicotine increased tPA protein levels and promoted the release of tPA into the extracellular space in the NAc. Immunohistochemistry revealed that PAR1 immunoreactivity was localized to the nerve terminals positive for tyrosine hydroxylase in the NAc. Furthermore, we demonstrated that plasmin activated PAR1 and that nicotine-induced place preference and dopamine release were diminished in PAR1-deficient (PAR1-/-) mice. Targeting the tPA-plasmin-PAR1 system would provide new therapeutic approaches to the treatment of nicotine dependence.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Analysis of Variance
- Animals
- Brain/cytology
- Brain/drug effects
- Brain/metabolism
- Cells, Cultured
- Dopamine/metabolism
- Dopamine Antagonists/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Electrophoresis, Polyacrylamide Gel/methods
- Embryo, Mammalian
- Guanosine 5'-O-(3-Thiotriphosphate)/pharmacokinetics
- Immunohistochemistry/methods
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Knockout
- Neurons/drug effects
- Neurons/metabolism
- Nicotine/administration & dosage
- Nicotinic Agonists/administration & dosage
- Radioligand Assay/methods
- Receptor, PAR-1/deficiency
- Receptor, PAR-1/physiology
- Reward
- Statistics, Nonparametric
- Tissue Plasminogen Activator/genetics
- Tissue Plasminogen Activator/pharmacology
- Tissue Plasminogen Activator/physiology
Collapse
Affiliation(s)
- Taku Nagai
- Laboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Mina Ito
- Laboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Noritaka Nakamichi
- Laboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroyuki Mizoguchi
- Laboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroyuki Kamei
- Laboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Ayumi Fukakusa
- Laboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Toshitaka Nabeshima
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Kazuhiro Takuma
- Laboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Kiyofumi Yamada
- Laboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
41
|
Francetic O, Buddelmeijer N, Lewenza S, Kumamoto CA, Pugsley AP. Signal recognition particle-dependent inner membrane targeting of the PulG Pseudopilin component of a type II secretion system. J Bacteriol 2006; 189:1783-93. [PMID: 17158657 PMCID: PMC1855701 DOI: 10.1128/jb.01230-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pseudopilin PulG is an essential component of the pullulanase-specific type II secretion system from Klebsiella oxytoca. PulG is the major subunit of a short, thin-filament pseudopilus, which presumably elongates and retracts in the periplasm, acting as a dynamic piston to promote pullulanase secretion. It has a signal sequence-like N-terminal segment that, according to studies with green and red fluorescent protein chimeras, anchors unassembled PulG in the inner membrane. We analyzed the early steps of PulG inner membrane targeting and insertion in Escherichia coli derivatives defective in different protein targeting and export factors. The beta-galactosidase activity in strains producing a PulG-LacZ hybrid protein increased substantially when the dsbA, dsbB, or all sec genes tested except secB were compromised by mutations. To facilitate analysis of native PulG membrane insertion, a leader peptidase cleavage site was engineered downstream from the N-terminal transmembrane segment (PrePulG*). Unprocessed PrePulG* was detected in strains carrying mutations in secA, secY, secE, and secD genes, including some novel alleles of secY and secD. Furthermore, depletion of the Ffh component of the signal recognition particle (SRP) completely abolished PrePulG* processing, without affecting the Sec-dependent export of periplasmic MalE and RbsB proteins. Thus, PulG is cotranslationally targeted to the inner membrane Sec translocase by SRP.
Collapse
Affiliation(s)
- Olivera Francetic
- Molecular Genetics Unit, Institut Pasteur, 25 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
42
|
Rosch JW, Hsu FF, Caparon MG. Anionic lipids enriched at the ExPortal of Streptococcus pyogenes. J Bacteriol 2006; 189:801-6. [PMID: 17142392 PMCID: PMC1797331 DOI: 10.1128/jb.01549-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The ExPortal of Streptococcus pyogenes is a membrane microdomain dedicated to the secretion and folding of proteins. We investigated the lipid composition of the ExPortal by examining the distribution of anionic membrane phospholipids. Staining with 10-N-nonyl-acridine orange revealed a single microdomain enriched with an anionic phospholipid whose staining characteristics and behavior in a cardiolipin-deficient mutant were characteristic of phosphatidylglycerol. Furthermore, the location of the microdomain corresponded to the site of active protein secretion at the ExPortal. These results indicate that the ExPortal is an asymmetric lipid microdomain, whose enriched content of anionic phospholipids may play an important role in ExPortal organization and protein trafficking.
Collapse
Affiliation(s)
- Jason W Rosch
- Department of Molecular Microbiology, Washington University School of Medicine, Box 8230, 660 S. Euclid Ave. no. 8230, St. Louis, MO 63110-1093, USA
| | | | | |
Collapse
|
43
|
Duffy EB, Barquera B. Membrane topology mapping of the Na+-pumping NADH: quinone oxidoreductase from Vibrio cholerae by PhoA-green fluorescent protein fusion analysis. J Bacteriol 2006; 188:8343-51. [PMID: 17041063 PMCID: PMC1698230 DOI: 10.1128/jb.01383-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 09/25/2006] [Indexed: 11/20/2022] Open
Abstract
The membrane topologies of the six subunits of Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from Vibrio cholerae were determined by a combination of topology prediction algorithms and the construction of C-terminal fusions. Fusion expression vectors contained either bacterial alkaline phosphatase (phoA) or green fluorescent protein (gfp) genes as reporters of periplasmic and cytoplasmic localization, respectively. A majority of the topology prediction algorithms did not predict any transmembrane helices for NqrA. A lack of PhoA activity when fused to the C terminus of NqrA and the observed fluorescence of the green fluorescent protein C-terminal fusion confirm that this subunit is localized to the cytoplasmic side of the membrane. Analysis of four PhoA fusions for NqrB indicates that this subunit has nine transmembrane helices and that residue T236, the binding site for flavin mononucleotide (FMN), resides in the cytoplasm. Three fusions confirm that the topology of NqrC consists of two transmembrane helices with the FMN binding site at residue T225 on the cytoplasmic side. Fusion analysis of NqrD and NqrE showed almost mirror image topologies, each consisting of six transmembrane helices; the results for NqrD and NqrE are consistent with the topologies of Escherichia coli homologs YdgQ and YdgL, respectively. The NADH, flavin adenine dinucleotide, and Fe-S center binding sites of NqrF were localized to the cytoplasm. The determination of the topologies of the subunits of Na+-NQR provides valuable insights into the location of cofactors and identifies targets for mutagenesis to characterize this enzyme in more detail. The finding that all the redox cofactors are localized to the cytoplasmic side of the membrane is discussed.
Collapse
Affiliation(s)
- Ellen B Duffy
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, NY 12180, USA
| | | |
Collapse
|
44
|
Abstract
Why do bacteria have shape? Is morphology valuable or just a trivial secondary characteristic? Why should bacteria have one shape instead of another? Three broad considerations suggest that bacterial shapes are not accidental but are biologically important: cells adopt uniform morphologies from among a wide variety of possibilities, some cells modify their shape as conditions demand, and morphology can be tracked through evolutionary lineages. All of these imply that shape is a selectable feature that aids survival. The aim of this review is to spell out the physical, environmental, and biological forces that favor different bacterial morphologies and which, therefore, contribute to natural selection. Specifically, cell shape is driven by eight general considerations: nutrient access, cell division and segregation, attachment to surfaces, passive dispersal, active motility, polar differentiation, the need to escape predators, and the advantages of cellular differentiation. Bacteria respond to these forces by performing a type of calculus, integrating over a number of environmental and behavioral factors to produce a size and shape that are optimal for the circumstances in which they live. Just as we are beginning to answer how bacteria create their shapes, it seems reasonable and essential that we expand our efforts to understand why they do so.
Collapse
Affiliation(s)
- Kevin D Young
- Department of Microbiology and Immunology, University of North Dakota School of Medicine, Grand Forks, ND 58202-9037, USA.
| |
Collapse
|
45
|
Dorsey FC, Fischer JF, Fleckenstein JM. Directed delivery of heat-labile enterotoxin by enterotoxigenic Escherichia coli. Cell Microbiol 2006; 8:1516-27. [PMID: 16922869 DOI: 10.1111/j.1462-5822.2006.00736.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC), leading causes of diarrhoeal morbidity and mortality in developing countries, are heterogenous pathogens that elaborate heat-labile (LT) and/or heat-stable (ST) enterotoxins which elicit watery, cholera-like diarrhoea. The molecular events permitting efficient delivery of LT remain undefined. Here, we characterize the role of host-pathogen interaction as it relates to the delivery of LT by ETEC. Separation of bacteria from target intestinal epithelial monolayers by semipermeable filters prevented activation of adenylate cyclase suggesting that pathogen-host cell contact is required for efficient toxin delivery. Likewise, a non-motile strain bearing a mutation in the flagellar fliD gene was deficient in delivery of LT relative to the ETEC (H10407) prototype. Although LT secretion via the type II secretion system (T2SS) was responsive to a variety of environmental factors, neither toxin release nor delivery depended on transcriptional activation of genes encoding LT or the T2SS. Fusions of green fluorescent protein to GspM (a component of the T2SS system for LT) and to LT demonstrated that both T2SS and toxin are distributed at one pole of the ETEC bacterium. Optimal LT delivery may occur in a polarized fashion with transfer of preformed toxin upon close interaction with host cells, preventing neutralization of LT.
Collapse
Affiliation(s)
- F Chuck Dorsey
- Research Service, Veterans Affairs Medical Center, Memphis, TN, USA
| | | | | |
Collapse
|
46
|
Jain S, van Ulsen P, Benz I, Schmidt MA, Fernandez R, Tommassen J, Goldberg MB. Polar localization of the autotransporter family of large bacterial virulence proteins. J Bacteriol 2006; 188:4841-50. [PMID: 16788193 PMCID: PMC1483012 DOI: 10.1128/jb.00326-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autotransporters are an extensive family of large secreted virulence-associated proteins of gram-negative bacteria. Secretion of such large proteins poses unique challenges to bacteria. We demonstrate that autotransporters from a wide variety of rod-shaped pathogens, including IcsA and SepA of Shigella flexneri, AIDA-I of diffusely adherent Escherichia coli, and BrkA of Bordetella pertussis, are localized to the bacterial pole. The restriction of autotransporters to the pole is dependent on the presence of a complete lipopolysaccharide (LPS), consistent with known effects of LPS composition on membrane fluidity. Newly synthesized and secreted BrkA is polar even in the presence of truncated LPS, and all autotransporters examined are polar in the cytoplasm prior to secretion. Together, these findings are consistent with autotransporter secretion occurring at the poles of rod-shaped gram-negative organisms. Moreover, NalP, an autotransporter of spherically shaped Neisseria meningitidis contains the molecular information to localize to the pole of Escherichia coli. In N. meningitidis, NalP is secreted at distinct sites around the cell. These data are consistent with a model in which the secretion of large autotransporters occurs via specific conserved pathways located at the poles of rod-shaped bacteria, with profound implications for the underlying physiology of the bacterial cell and the nature of bacterial pathogen-host interactions.
Collapse
Affiliation(s)
- Sumita Jain
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Johnson TL, Abendroth J, Hol WGJ, Sandkvist M. Type II secretion: from structure to function. FEMS Microbiol Lett 2006; 255:175-86. [PMID: 16448494 DOI: 10.1111/j.1574-6968.2006.00102.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Gram-negative bacteria use the type II secretion system to transport a large number of secreted proteins from the periplasmic space into the extracellular environment. Many of the secreted proteins are major virulence factors in plants and animals. The components of the type II secretion system are located in both the inner and outer membranes where they assemble into a multi-protein, cell-envelope spanning, complex. This review discusses recent progress, particularly newly published structures obtained by X-ray crystallography and electron microscopy that have increased our understanding of how the type II secretion apparatus functions and the role that individual proteins play in this complex system.
Collapse
Affiliation(s)
- Tanya L Johnson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | | | | | | |
Collapse
|
48
|
Silva AJ, Leitch GJ, Camilli A, Benitez JA. Contribution of hemagglutinin/protease and motility to the pathogenesis of El Tor biotype cholera. Infect Immun 2006; 74:2072-9. [PMID: 16552036 PMCID: PMC1418906 DOI: 10.1128/iai.74.4.2072-2079.2006] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Vibrio cholerae is a highly motile organism that secretes a Zn-dependent metalloprotease, hemagglutinin/protease (HapA). HapA has been shown to have mucinase activity and contribute to the reactogenicity of live vaccine candidates, but its role in cholera pathogenesis is not yet clear. The contribution of motility to pathogenesis is not fully understood, since conflicting results have been obtained with different strains, mutants, and animal models. The objective of this work was to determine the contribution of HapA and motility to the pathogenesis of El Tor biotype cholera. To this end we constructed isogenic motility (motY) and mucinase (hapA) single and double mutants of an El Tor biotype V. cholerae strain. Mutants were characterized for the expression of major virulence factors in vitro and in vivo. The motility mutant showed a remarkable increase in cholera toxin (CT), toxin coregulated pilus major subunit (TcpA), and HapA production in vitro. Increased TcpA and CT production could be explained by increased transcription of tcpA, ctxA, and toxT. No effect was detected on the transcription of hapA in the motility mutant. The sodium ionophore monensin diminished production of HapA in the parent but not in the motility mutant. Phenamil, a specific inhibitor of the flagellar motor, diminished CT production in the wild-type and motY strains. The hapA mutant showed increased binding to mucin. In contrast, the motY mutation diminished adherence to biotic and abiotic surfaces including mucin. Lack of HapA did not affect colonization in the suckling mouse model. The motility and mucinase defects did not prevent induction of ctxA and tcpA in the mouse intestine as measured by recombinase-based in vivo expression technology. Analysis of mutants in the rabbit ileal loop model showed that both V. cholerae motility and HapA were necessary for full expression of enterotoxicity.
Collapse
Affiliation(s)
- Anisia J Silva
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA.
| | | | | | | |
Collapse
|
49
|
Buddelmeijer N, Francetic O, Pugsley AP. Green fluorescent chimeras indicate nonpolar localization of pullulanase secreton components PulL and PulM. J Bacteriol 2006; 188:2928-35. [PMID: 16585754 PMCID: PMC1447010 DOI: 10.1128/jb.188.8.2928-2935.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Klebsiella oxytoca pullulanase secreton (type II secretion system) components PulM and PulL were tagged at their N termini with green fluorescent protein (GFP), and their subcellular location was examined by fluorescence microscopy and fractionation. When produced at moderate levels without other secreton components in Escherichia coli, both chimeras were envelope associated, as are the native proteins. Fluorescent GFP-PulM was evenly distributed over the cell envelope, with occasional brighter foci. Under the same conditions, GFP-PulL was barely detectable in the envelope by fluorescence microscopy. When produced together with all other secreton components, GFP-PulL exhibited circumferential fluorescence, with numerous brighter patches. The envelope-associated fluorescence of GFP-PulL was almost completely abolished when native PulL was also produced, suggesting that the chimera cannot compete with PulL for association with other secreton components. The patches of GFP-PulL might represent functional secretons, since GFP-PulM also appeared in similar patches. GFP-PulM and GFP-PulL both appeared in spherical polar foci when made at high levels. In K. oxytoca, GFP-PulM was evenly distributed over the cell envelope, with few patches, whereas GFP-PulL showed only weak envelope-associated fluorescence. These data suggest that, in contrast to their Vibrio cholerae Eps secreton counterparts (M. Scott, Z. Dossani, and M. Sandkvist, Proc. Natl. Acad. Sci. USA 98:13978-13983, 2001), PulM and PulL do not localize specifically to the cell poles and that the Pul secreton is distributed over the cell surface.
Collapse
Affiliation(s)
- Nienke Buddelmeijer
- Molecular Genetics Unit, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
50
|
Huitema E, Pritchard S, Matteson D, Radhakrishnan SK, Viollier PH. Bacterial Birth Scar Proteins Mark Future Flagellum Assembly Site. Cell 2006; 124:1025-37. [PMID: 16530048 DOI: 10.1016/j.cell.2006.01.019] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 12/15/2005] [Accepted: 01/12/2006] [Indexed: 10/24/2022]
Abstract
Many prokaryotic protein complexes underlie polar asymmetry. In Caulobacter crescentus, a flagellum is built exclusively at the pole that arose from the previous cell division. The basis for this pole specificity is unclear but could involve a cytokinetic birth scar that marks the newborn pole as the flagellum assembly site. We identified two developmental proteins, TipN and TipF, which localize to the division septum and the newborn pole after division. We show that septal localization of TipN/F depends on cytokinesis. Moreover, TipF, a c-di-GMP phosphodiesterase homolog, is a flagellum assembly factor that relies on TipN for proper positioning. In the absence of TipN, flagella are assembled at ectopic locations, and TipF is mislocalized to such sites. Thus TipN and TipF establish a link between bacterial cytokinesis and polar asymmetry, demonstrating that division does indeed leave a positional mark in its wake to direct the biogenesis of a polar organelle.
Collapse
Affiliation(s)
- Edgar Huitema
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|