1
|
Khalil JS, Law R, Raslan Z, Cheah LT, Hindle MS, Aburima AA, Kearney MT, Naseem KM. Protein Kinase A Regulates Platelet Phosphodiesterase 3A through an A-Kinase Anchoring Protein Dependent Manner. Cells 2024; 13:1104. [PMID: 38994957 PMCID: PMC11240354 DOI: 10.3390/cells13131104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Platelet activation is critical for haemostasis, but if unregulated can lead to pathological thrombosis. Endogenous platelet inhibitory mechanisms are mediated by prostacyclin (PGI2)-stimulated cAMP signalling, which is regulated by phosphodiesterase 3A (PDE3A). However, spatiotemporal regulation of PDE3A activity in platelets is unknown. Here, we report that platelets possess multiple PDE3A isoforms with seemingly identical molecular weights (100 kDa). One isoform contained a unique N-terminal sequence that corresponded to PDE3A1 in nucleated cells but with negligible contribution to overall PDE3A activity. The predominant cytosolic PDE3A isoform did not possess the unique N-terminal sequence and accounted for >99% of basal PDE3A activity. PGI2 treatment induced a dose and time-dependent increase in PDE3A phosphorylation which was PKA-dependent and associated with an increase in phosphodiesterase enzymatic activity. The effects of PGI2 on PDE3A were modulated by A-kinase anchoring protein (AKAP) disruptor peptides, suggesting an AKAP-mediated PDE3A signalosome. We identified AKAP7, AKAP9, AKAP12, AKAP13, and moesin expressed in platelets but focussed on AKAP7 as a potential PDE3A binding partner. Using a combination of immunoprecipitation, proximity ligation techniques, and activity assays, we identified a novel PDE3A/PKA RII/AKAP7 signalosome in platelets that integrates propagation and termination of cAMP signalling through coupling of PKA and PDE3A.
Collapse
Affiliation(s)
- Jawad S. Khalil
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (J.S.K.); (Z.R.); (L.T.C.); (M.S.H.); (M.T.K.)
| | - Robert Law
- Hull York Medical School, University of Hull, Hull HU6 7EL, UK; (R.L.); (A.A.A.)
| | - Zaher Raslan
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (J.S.K.); (Z.R.); (L.T.C.); (M.S.H.); (M.T.K.)
| | - Lih T. Cheah
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (J.S.K.); (Z.R.); (L.T.C.); (M.S.H.); (M.T.K.)
| | - Matthew S. Hindle
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (J.S.K.); (Z.R.); (L.T.C.); (M.S.H.); (M.T.K.)
| | - Ahmed A. Aburima
- Hull York Medical School, University of Hull, Hull HU6 7EL, UK; (R.L.); (A.A.A.)
| | - Mark T. Kearney
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (J.S.K.); (Z.R.); (L.T.C.); (M.S.H.); (M.T.K.)
| | - Khalid M. Naseem
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (J.S.K.); (Z.R.); (L.T.C.); (M.S.H.); (M.T.K.)
| |
Collapse
|
2
|
Collins KB, Scott JD. Phosphorylation, compartmentalization, and cardiac function. IUBMB Life 2023; 75:353-369. [PMID: 36177749 PMCID: PMC10049969 DOI: 10.1002/iub.2677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022]
Abstract
Protein phosphorylation is a fundamental element of cell signaling. First discovered as a biochemical switch in glycogen metabolism, we now know that this posttranslational modification permeates all aspects of cellular behavior. In humans, over 540 protein kinases attach phosphate to acceptor amino acids, whereas around 160 phosphoprotein phosphatases remove phosphate to terminate signaling. Aberrant phosphorylation underlies disease, and kinase inhibitor drugs are increasingly used clinically as targeted therapies. Specificity in protein phosphorylation is achieved in part because kinases and phosphatases are spatially organized inside cells. A prototypic example is compartmentalization of the cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase A through association with A-kinase anchoring proteins. This configuration creates autonomous signaling islands where the anchored kinase is constrained in proximity to activators, effectors, and selected substates. This article primarily focuses on A kinase anchoring protein (AKAP) signaling in the heart with an emphasis on anchoring proteins that spatiotemporally coordinate excitation-contraction coupling and hypertrophic responses.
Collapse
Affiliation(s)
- Kerrie B. Collins
- Department of Pharmacology, University of Washington, School of Medicine, 1959 NE Pacific Ave, Seattle WA, 98195
| | - John D. Scott
- Department of Pharmacology, University of Washington, School of Medicine, 1959 NE Pacific Ave, Seattle WA, 98195
| |
Collapse
|
3
|
Schmitt DL, Mehta S, Zhang J. Study of spatiotemporal regulation of kinase signaling using genetically encodable molecular tools. Curr Opin Chem Biol 2022; 71:102224. [PMID: 36347198 PMCID: PMC10031819 DOI: 10.1016/j.cbpa.2022.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/27/2023]
Abstract
Precise spatiotemporal organization and regulation of signal transduction networks are essential for cellular response to internal and external cues. To understand how this biochemical activity architecture impacts cellular function, many genetically encodable tools which regulate kinase activity at a subcellular level have been developed. In this review, we highlight various types of genetically encodable molecular tools, including tools to regulate endogenous kinase activity and biorthogonal techniques to perturb kinase activity. Finally, we emphasize the use of these tools alongside biosensors for kinase activity to measure and perturb kinase activity in real time for a better understanding of the cellular biochemical activity architecture.
Collapse
Affiliation(s)
- Danielle L Schmitt
- Department of Pharmacology, University of California San Diego, USA; Department of Chemistry and Biochemistry, University of California Los Angeles, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, USA; Department of Bioengineering, University of California San Diego, USA; Department of Chemistry and Biochemistry, University of California San Diego, USA.
| |
Collapse
|
4
|
Wan L, Chen R, Zhu Y, Zhang W, Mu W. Interaction between the Anchoring Domain of A-Kinase Anchoring Proteins and the Dimerization and Docking Domain of Protein Kinase A: A Potent Tool for Synthetic Biology. ACS Synth Biol 2022; 11:3154-3162. [PMID: 36197832 DOI: 10.1021/acssynbio.2c00443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nature is enriched with specific interactions between receptor proteins and their cognate ligands. These interacting pairs can be exploited and applied for the construction of well-ordered multicomponent assemblies with multivalency and multifunctionality. One of the research hotspots of this area is the formation of multienzyme complexes with stable and tunable architectures, which may bear the potential to facilitate cascade biocatalysis and/or strengthen metabolic fluxes. Here we focus on a special interacting pair, the anchoring domain (AD) derived from A-kinase anchoring protein and its interacting dimerization and docking domain (DDD) derived from cyclic AMP-dependent protein kinase, which has potential to be an effective and powerful synthetic biology tool for the construction of multienzyme assemblies. We review the origin and interaction mechanism of AD-DDD, followed by the application of this so-called dock-and-lock pair to form various bioconjugates with multivalency and multispecificity. Then several recent studies related to the construction of multienzyme complexes using AD-DDD, and more specifically, the RIAD-RIDD interacting pair, are presented. Finally, we also discuss the great biotechnology potential and perspectives of AD-DDD as a potent synthetic biology tool for post-translational modifications.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Roulin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Byrne DP, Omar MH, Kennedy EJ, Eyers PA, Scott JD. Biochemical Analysis of AKAP-Anchored PKA Signaling Complexes. Methods Mol Biol 2022; 2483:297-317. [PMID: 35286684 PMCID: PMC9518671 DOI: 10.1007/978-1-0716-2245-2_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Generation of the prototypic second messenger cAMP instigates numerous signaling events. A major intracellular target of cAMP is Protein kinase A (PKA), a Ser/Thr protein kinase. Where and when this enzyme is activated inside the cell has profound implications on the functional impact of PKA. It is now well established that PKA signaling is focused locally into subcellular signaling "islands" or "signalosomes." The A-Kinase Anchoring Proteins (AKAPs) play a critical role in this process by dictating spatial and temporal aspects of PKA action. Genetically encoded biosensors, small molecule and peptide-based disruptors of PKA signaling are valuable tools for rigorous investigation of local PKA action at the biochemical level. This chapter focuses on approaches to evaluate PKA signaling islands, including a simple assay for monitoring the interaction of an AKAP with a tunable PKA holoenzyme. The latter approach evaluates the composition of PKA holoenzymes, in which regulatory subunits and catalytic subunits can be visualized in the presence of test compounds and small-molecule inhibitors.
Collapse
Affiliation(s)
- Dominic P Byrne
- Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Liverpool, UK
| | - Mitchell H Omar
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Patrick A Eyers
- Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Liverpool, UK.
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Dahlin HR, Zheng N, Scott JD. Beyond PKA: Evolutionary and structural insights that define a docking and dimerization domain superfamily. J Biol Chem 2021; 297:100927. [PMID: 34256050 PMCID: PMC8339350 DOI: 10.1016/j.jbc.2021.100927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 01/26/2023] Open
Abstract
Protein-interaction domains can create unique macromolecular complexes that drive evolutionary innovation. By combining bioinformatic and phylogenetic analyses with structural approaches, we have discovered that the docking and dimerization (D/D) domain of the PKA regulatory subunit is an ancient and conserved protein fold. An archetypal function of this module is to interact with A-kinase-anchoring proteins (AKAPs) that facilitate compartmentalization of this key cell-signaling enzyme. Homology searching reveals that D/D domain proteins comprise a superfamily with 18 members that function in a variety of molecular and cellular contexts. Further in silico analyses indicate that D/D domains segregate into subgroups on the basis of their similarity to type I or type II PKA regulatory subunits. The sperm autoantigenic protein 17 (SPA17) is a prototype of the type II or R2D2 subgroup that is conserved across metazoan phyla. We determined the crystal structure of an extended D/D domain from SPA17 (amino acids 1-75) at 1.72 Å resolution. This revealed a four-helix bundle-like configuration featuring terminal β-strands that can mediate higher order oligomerization. In solution, SPA17 forms both homodimers and tetramers and displays a weak affinity for AKAP18. Quantitative approaches reveal that AKAP18 binding occurs at nanomolar affinity when SPA17 heterodimerizes with the ropporin-1-like D/D protein. These findings expand the role of the D/D fold as a versatile protein-interaction element that maintains the integrity of macromolecular architectures within organelles such as motile cilia.
Collapse
Affiliation(s)
- Heather R Dahlin
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, Washington, USA; Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA.
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
7
|
Bucko PJ, Scott JD. Drugs That Regulate Local Cell Signaling: AKAP Targeting as a Therapeutic Option. Annu Rev Pharmacol Toxicol 2020; 61:361-379. [PMID: 32628872 DOI: 10.1146/annurev-pharmtox-022420-112134] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells respond to environmental cues by mobilizing signal transduction cascades that engage protein kinases and phosphoprotein phosphatases. Correct organization of these enzymes in space and time enables the efficient and precise transmission of chemical signals. The cyclic AMP-dependent protein kinase A is compartmentalized through its association with A-kinase anchoring proteins (AKAPs). AKAPs are a family of multivalent scaffolds that constrain signaling enzymes and effectors at subcellular locations to drive essential physiological events. More recently, it has been recognized that defective signaling in certain endocrine disorders and cancers proceeds through pathological AKAP complexes. Consequently, pharmacologically targeting these macromolecular complexes unlocks new therapeutic opportunities for a growing number of clinical indications. This review highlights recent findings on AKAP signaling in disease, particularly in certain cancers, and offers an overview of peptides and small molecules that locally regulate AKAP-binding partners.
Collapse
Affiliation(s)
- Paula J Bucko
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA; ,
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA; ,
| |
Collapse
|
8
|
Rodríguez B, Nani JV, Almeida PGC, Brietzke E, Lee RS, Hayashi MAF. Neuropeptides and oligopeptidases in schizophrenia. Neurosci Biobehav Rev 2019; 108:679-693. [PMID: 31794779 DOI: 10.1016/j.neubiorev.2019.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 12/30/2022]
Abstract
Schizophrenia (SCZ) is a complex psychiatric disorder with severe impact on patient's livelihood. In the last years, the importance of neuropeptides in SCZ and other CNS disorders has been recognized, mainly due to their ability to modulate the signaling of classical monoaminergic neurotransmitters as dopamine. In addition, a class of enzymes coined as oligopeptidases are able to cleave several of these neuropeptides, and their potential implication in SCZ was also demonstrated. Interestingly, these enzymes are able to play roles as modulators of neuropeptidergic systems, and they were also implicated in neurogenesis, neurite outgrowth, neuron migration, and therefore, in neurodevelopment and brain formation. Altered activity of oligopeptidases in SCZ was described only more recently, suggesting their possible utility as biomarkers for mental disorders diagnosis or treatment response. We provide here an updated and comprehensive review on neuropeptides and oligopeptidases involved in mental disorders, aiming to attract the attention of physicians to the potential of targeting this system for improving the therapy and for understanding the neurobiology underlying mental disorders as SCZ.
Collapse
Affiliation(s)
- Benjamín Rodríguez
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - João Victor Nani
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Priscila G C Almeida
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Elisa Brietzke
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| | - Richard S Lee
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| |
Collapse
|
9
|
Zhu Y, Jiang X, Zheng Y, Xiong J, Wei D, Zhang D. Cardiac function modulation depends on the A-kinase anchoring protein complex. J Cell Mol Med 2019; 23:7170-7179. [PMID: 31512389 PMCID: PMC6815827 DOI: 10.1111/jcmm.14659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/27/2019] [Accepted: 08/06/2019] [Indexed: 12/26/2022] Open
Abstract
The A-kinase anchoring proteins (AKAPs) are a group of structurally diverse proteins identified in various species and tissues. These proteins are able to anchor protein kinase and other signalling proteins to regulate cardiac function. Acting as a scaffold protein, AKAPs ensure specificity in signal transduction by enzymes close to their appropriate effectors and substrates. Over the decades, more than 70 different AKAPs have been discovered. Accumulative evidence indicates that AKAPs play crucial roles in the functional regulation of cardiac diseases, including cardiac hypertrophy, myofibre contractility dysfunction and arrhythmias. By anchoring different partner proteins (PKA, PKC, PKD and LTCCs), AKAPs take part in different regulatory pathways to function as regulators in the heart, and a damaged structure can influence the activities of these complexes. In this review, we highlight recent advances in AKAP-associated protein complexes, focusing on local signalling events that are perturbed in cardiac diseases and their roles in interacting with ion channels and their regulatory molecules. These new findings suggest that AKAPs might have potential therapeutic value in patients with cardiac diseases, particularly malignant rhythm.
Collapse
Affiliation(s)
- Yan‐Rong Zhu
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Xiao‐Xin Jiang
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Yaguo Zheng
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Jing Xiong
- Department of PharmacologyNanjing Medical UniversityNanjingChina
| | - Dongping Wei
- Department of OncologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Dai‐Min Zhang
- Department of CardiologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
10
|
Hamilton S, Terentyeva R, Kim TY, Bronk P, Clements RT, O-Uchi J, Csordás G, Choi BR, Terentyev D. Pharmacological Modulation of Mitochondrial Ca 2+ Content Regulates Sarcoplasmic Reticulum Ca 2+ Release via Oxidation of the Ryanodine Receptor by Mitochondria-Derived Reactive Oxygen Species. Front Physiol 2018; 9:1831. [PMID: 30622478 PMCID: PMC6308295 DOI: 10.3389/fphys.2018.01831] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/06/2018] [Indexed: 01/09/2023] Open
Abstract
In a physiological setting, mitochondria increase oxidative phosphorylation during periods of stress to meet increased metabolic demand. This in part is mediated via enhanced mitochondrial Ca2+ uptake, an important regulator of cellular ATP homeostasis. In a pathophysiological setting pharmacological modulation of mitochondrial Ca2+ uptake or retention has been suggested as a therapeutic strategy to improve metabolic homeostasis or attenuate Ca2+-dependent arrhythmias in cardiac disease states. To explore the consequences of mitochondrial Ca2+ accumulation, we tested the effects of kaempferol, an activator of mitochondrial Ca2+ uniporter (MCU), CGP-37157, an inhibitor of mitochondrial Na+/Ca2+ exchanger, and MCU inhibitor Ru360 in rat ventricular myocytes (VMs) from control rats and rats with hypertrophy induced by thoracic aortic banding (TAB). In periodically paced VMs under β-adrenergic stimulation, treatment with kaempferol (10 μmol/L) or CGP-37157 (1 μmol/L) enhanced mitochondrial Ca2+ accumulation monitored by mitochondrial-targeted Ca2+ biosensor mtRCamp1h. Experiments with mitochondrial membrane potential-sensitive dye TMRM revealed this was accompanied by depolarization of the mitochondrial matrix. Using redox-sensitive OMM-HyPer and ERroGFP_iE biosensors, we found treatment with kaempferol or CGP-37157 increased the levels of reactive oxygen species (ROS) in mitochondria and the sarcoplasmic reticulum (SR), respectively. Confocal Ca2+ imaging showed that accelerated Ca2+ accumulation reduced Ca2+ transient amplitude and promoted generation of spontaneous Ca2+ waves in VMs paced under ISO, suggestive of abnormally high activity of the SR Ca2+ release channel ryanodine receptor (RyR). Western blot analyses showed increased RyR oxidation after treatment with kaempferol or CGP-37157 vs. controls. Furthermore, in freshly isolated TAB VMs, confocal Ca2+ imaging demonstrated that enhancement of mitochondrial Ca2+ accumulation further perturbed global Ca2+ handling, increasing the number of cells exhibiting spontaneous Ca2+ waves, shortening RyR refractoriness and decreasing SR Ca2+ content. In ex vivo optically mapped TAB hearts, kaempferol exacerbated proarrhythmic phenotype. On the contrary, incubation of cells with MCU inhibitor Ru360 (2 μmol/L, 30 min) normalized RyR oxidation state, improved intracellular Ca2+ homeostasis and reduced triggered activity in ex vivo TAB hearts. These findings suggest facilitation of mitochondrial Ca2+ uptake in cardiac disease can exacerbate proarrhythmic disturbances in Ca2+ homeostasis via ROS and enhanced activity of oxidized RyRs, while strategies to reduce mitochondrial Ca2+ accumulation can be protective.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Radmila Terentyeva
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Tae Yun Kim
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Peter Bronk
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Richard T. Clements
- Department of Surgery, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, United States
| | - Jin O-Uchi
- Lillehei Heart Institute University of Minnesota, Cancer and Cardiovascular Research Building, Minneapolis, MN, United States
| | - György Csordás
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Bum-Rak Choi
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| |
Collapse
|
11
|
Wehbi VL, Taskén K. Molecular Mechanisms for cAMP-Mediated Immunoregulation in T cells - Role of Anchored Protein Kinase A Signaling Units. Front Immunol 2016; 7:222. [PMID: 27375620 PMCID: PMC4896925 DOI: 10.3389/fimmu.2016.00222] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
The cyclic AMP/protein kinase A (cAMP/PKA) pathway is one of the most common and versatile signal pathways in eukaryotic cells. A-kinase anchoring proteins (AKAPs) target PKA to specific substrates and distinct subcellular compartments providing spatial and temporal specificity for mediation of biological effects channeled through the cAMP/PKA pathway. In the immune system, cAMP is a potent negative regulator of T cell receptor-mediated activation of effector T cells (Teff) acting through a proximal PKA/Csk/Lck pathway anchored via a scaffold consisting of the AKAP Ezrin holding PKA, the linker protein EBP50, and the anchoring protein phosphoprotein associated with glycosphingolipid-enriched microdomains holding Csk. As PKA activates Csk and Csk inhibits Lck, this pathway in response to cAMP shuts down proximal T cell activation. This immunomodulating pathway in Teff mediates clinically important responses to regulatory T cell (Treg) suppression and inflammatory mediators, such as prostaglandins (PGs), adrenergic stimuli, adenosine, and a number of other ligands. A major inducer of T cell cAMP levels is PG E2 (PGE2) acting through EP2 and EP4 prostanoid receptors. PGE2 plays a crucial role in the normal physiological control of immune homeostasis as well as in inflammation and cancer immune evasion. Peripherally induced Tregs express cyclooxygenase-2, secrete PGE2, and elicit the immunosuppressive cAMP pathway in Teff as one tumor immune evasion mechanism. Moreover, a cAMP increase can also be induced by indirect mechanisms, such as intercellular transfer between T cells. Indeed, Treg, known to have elevated levels of intracellular cAMP, may mediate their suppressive function by transferring cAMP to Teff through gap junctions, which we speculate could also be regulated by PKA/AKAP complexes. In this review, we present an updated overview on the influence of cAMP-mediated immunoregulatory mechanisms acting through localized cAMP signaling and the therapeutical increasing prospects of AKAPs disruptors in T-cell immune function.
Collapse
Affiliation(s)
- Vanessa L. Wehbi
- Nordic EMBL Partnership, Centre for Molecular Medicine Norway, Oslo University Hospital, University of Oslo, Oslo, Norway
- Jebsen Inflammation Research Centre, Oslo University Hospital, Oslo, Norway
- Biotechnology Centre, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Kjetil Taskén
- Nordic EMBL Partnership, Centre for Molecular Medicine Norway, Oslo University Hospital, University of Oslo, Oslo, Norway
- Jebsen Inflammation Research Centre, Oslo University Hospital, Oslo, Norway
- Biotechnology Centre, Oslo University Hospital, University of Oslo, Oslo, Norway
- Jebsen Centre for Cancer Immunotherapy, Oslo University Hospital, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Burgers PP, Bruystens J, Burnley RJ, Nikolaev VO, Keshwani M, Wu J, Janssen BJC, Taylor SS, Heck AJR, Scholten A. Structure of smAKAP and its regulation by PKA-mediated phosphorylation. FEBS J 2016; 283:2132-48. [PMID: 27028580 DOI: 10.1111/febs.13726] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/04/2016] [Accepted: 03/29/2016] [Indexed: 12/27/2022]
Abstract
UNLABELLED The A-kinase anchoring protein (AKAP) smAKAP has three extraordinary features; it is very small, it is anchored directly to membranes by acyl motifs, and it interacts almost exclusively with the type I regulatory subunits (RI) of cAMP-dependent kinase (PKA). Here, we determined the crystal structure of smAKAP's A-kinase binding domain (smAKAP-AKB) in complex with the dimerization/docking (D/D) domain of RIα which reveals an extended hydrophobic interface with unique interaction pockets that drive smAKAP's high specificity for RI subunits. We also identify a conserved PKA phosphorylation site at Ser66 in the AKB domain which we predict would cause steric clashes and disrupt binding. This correlates with in vivo colocalization and fluorescence polarization studies, where Ser66 AKB phosphorylation ablates RI binding. Hydrogen/deuterium exchange studies confirm that the AKB helix is accessible and dynamic. Furthermore, full-length smAKAP as well as the unbound AKB is predicted to contain a break at the phosphorylation site, and circular dichroism measurements confirm that the AKB domain loses its helicity following phosphorylation. As the active site of PKA's catalytic subunit does not accommodate α-helices, we predict that the inherent flexibility of the AKB domain enables its phosphorylation by PKA. This represents a novel mechanism, whereby activation of anchored PKA can terminate its binding to smAKAP affecting the regulation of localized cAMP signaling events. DATABASE Structural data are available in the PDB under accession number 5HVZ.
Collapse
Affiliation(s)
- Pepijn P Burgers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands.,Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Jessica Bruystens
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Rebecca J Burnley
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands.,Netherlands Proteomics Centre, Utrecht, The Netherlands
| | | | - Malik Keshwani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Jian Wu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Bert J C Janssen
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA.,Department of Pharmacology, University of California San Diego, La Jolla, California, USA.,The Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, USA
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands.,Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Arjen Scholten
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands.,Netherlands Proteomics Centre, Utrecht, The Netherlands
| |
Collapse
|
13
|
AKAP18:PKA-RIIα structure reveals crucial anchor points for recognition of regulatory subunits of PKA. Biochem J 2016; 473:1881-94. [PMID: 27102985 DOI: 10.1042/bcj20160242] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/20/2016] [Indexed: 12/25/2022]
Abstract
A-kinase anchoring proteins (AKAPs) interact with the dimerization/docking (D/D) domains of regulatory subunits of the ubiquitous protein kinase A (PKA). AKAPs tether PKA to defined cellular compartments establishing distinct pools to increase the specificity of PKA signalling. Here, we elucidated the structure of an extended PKA-binding domain of AKAP18β bound to the D/D domain of the regulatory RIIα subunits of PKA. We identified three hydrophilic anchor points in AKAP18β outside the core PKA-binding domain, which mediate contacts with the D/D domain. Such anchor points are conserved within AKAPs that bind regulatory RII subunits of PKA. We derived a different set of anchor points in AKAPs binding regulatory RI subunits of PKA. In vitro and cell-based experiments confirm the relevance of these sites for the interaction of RII subunits with AKAP18 and of RI subunits with the RI-specific smAKAP. Thus we report a novel mechanism governing interactions of AKAPs with PKA. The sequence specificity of each AKAP around the anchor points and the requirement of these points for the tight binding of PKA allow the development of selective inhibitors to unequivocally ascribe cellular functions to the AKAP18-PKA and other AKAP-PKA interactions.
Collapse
|
14
|
Autenrieth K, Bendzunas NG, Bertinetti D, Herberg FW, Kennedy EJ. Defining A-Kinase Anchoring Protein (AKAP) Specificity for the Protein Kinase A Subunit RI (PKA-RI). Chembiochem 2016; 17:693-697. [PMID: 26611881 PMCID: PMC4836982 DOI: 10.1002/cbic.201500632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Indexed: 01/18/2023]
Abstract
A-Kinase anchoring proteins (AKAPs) act as spatial and temporal regulators of protein kinase A (PKA) by localizing PKA along with multiple proteins into discrete signaling complexes. AKAPs interact with the PKA holoenzyme through an α-helix that docks into a groove formed on the dimerization/docking domain of PKA-R in an isoform-dependent fashion. In an effort to understand isoform selectivity at the molecular level, a library of protein-protein interaction (PPI) disruptors was designed to systematically probe the significance of an aromatic residue on the AKAP docking sequence for RI selectivity. The stapled peptide library was designed based on a high affinity, RI-selective disruptor of AKAP binding, RI-STAD-2. Phe, Trp and Leu were all found to maintain RI selectivity, whereas multiple intermediate-sized hydrophobic substitutions at this position either resulted in loss of isoform selectivity (Ile) or a reversal of selectivity (Val). As a limited number of RI-selective sequences are currently known, this study aids in our understanding of isoform selectivity and establishing parameters for discovering additional RI-selective AKAPs.
Collapse
Affiliation(s)
- Karolin Autenrieth
- Dept. of Biochemistry, Universitat Kassel, Heinrich Plett Strasse 40, Kassel 34132 (Germany)
| | - N. George Bendzunas
- Dept. of Pharmaceutical and Biomedical Sciences, University of Georgia, College of Pharmacy, 240 W. Green St, Athens, GA 30602 (USA)
| | - Daniela Bertinetti
- Dept. of Biochemistry, Universitat Kassel, Heinrich Plett Strasse 40, Kassel 34132 (Germany)
| | - Friedrich W. Herberg
- Dept. of Biochemistry, Universitat Kassel, Heinrich Plett Strasse 40, Kassel 34132 (Germany)
| | - Eileen J. Kennedy
- Dept. of Pharmaceutical and Biomedical Sciences, University of Georgia, College of Pharmacy, 240 W. Green St, Athens, GA 30602 (USA)
| |
Collapse
|
15
|
Chávez-Vargas L, Adame-García SR, Cervantes-Villagrana RD, Castillo-Kauil A, Bruystens JGH, Fukuhara S, Taylor SS, Mochizuki N, Reyes-Cruz G, Vázquez-Prado J. Protein Kinase A (PKA) Type I Interacts with P-Rex1, a Rac Guanine Nucleotide Exchange Factor: EFFECT ON PKA LOCALIZATION AND P-Rex1 SIGNALING. J Biol Chem 2016; 291:6182-99. [PMID: 26797121 DOI: 10.1074/jbc.m115.712216] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 12/15/2022] Open
Abstract
Morphology of migrating cells is regulated by Rho GTPases and fine-tuned by protein interactions and phosphorylation. PKA affects cell migration potentially through spatiotemporal interactions with regulators of Rho GTPases. Here we show that the endogenous regulatory (R) subunit of type I PKA interacts with P-Rex1, a Rac guanine nucleotide exchange factor that integrates chemotactic signals. Type I PKA holoenzyme interacts with P-Rex1 PDZ domains via the CNB B domain of RIα, which when expressed by itself facilitates endothelial cell migration. P-Rex1 activation localizes PKA to the cell periphery, whereas stimulation of PKA phosphorylates P-Rex1 and prevents its activation in cells responding to SDF-1 (stromal cell-derived factor 1). The P-Rex1 DEP1 domain is phosphorylated at Ser-436, which inhibits the DH-PH catalytic cassette by direct interaction. In addition, the P-Rex1 C terminus is indirectly targeted by PKA, promoting inhibitory interactions independently of the DEP1-PDZ2 region. A P-Rex1 S436A mutant construct shows increased RacGEF activity and prevents the inhibitory effect of forskolin on sphingosine 1-phosphate-dependent endothelial cell migration. Altogether, these results support the idea that P-Rex1 contributes to the spatiotemporal localization of type I PKA, which tightly regulates this guanine exchange factor by a multistep mechanism, initiated by interaction with the PDZ domains of P-Rex1 followed by direct phosphorylation at the first DEP domain and putatively indirect regulation of the C terminus, thus promoting inhibitory intramolecular interactions. This reciprocal regulation between PKA and P-Rex1 might represent a key node of integration by which chemotactic signaling is fine-tuned by PKA.
Collapse
Affiliation(s)
| | - Sendi Rafael Adame-García
- Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, 07360 Mexico
| | | | - Alejandro Castillo-Kauil
- Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, 07360 Mexico
| | | | - Shigetomo Fukuhara
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute (NCVC), Osaka, 565-8565 Japan, and
| | - Susan S Taylor
- Departments of Chemistry and Biochemistry and Pharmacology, University of California San Diego, La Jolla, California 92093
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute (NCVC), Osaka, 565-8565 Japan, and
| | - Guadalupe Reyes-Cruz
- Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, 07360 Mexico
| | | |
Collapse
|
16
|
Shen Q, Zhang C, Liu H, Liu Y, Cao J, Zhang X, Liang Y, Zhao M, Lai L. De novo design of helical peptides to inhibit tumor necrosis factor-α by disrupting its trimer formation. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00549c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Helical peptide TNFα inhibitors were designed by targeting their dimer structure.
Collapse
Affiliation(s)
- Qi Shen
- Center for Quantitative Biology
- Peking University
- Beijing 100871
- China
| | - Changsheng Zhang
- BNLMS
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Peking-Tsinghua Center for Life Sciences
- Peking University
- Beijing 100871
- China
| | - Hongbo Liu
- BNLMS
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Peking-Tsinghua Center for Life Sciences
- Peking University
- Beijing 100871
- China
| | - Yuting Liu
- BNLMS
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Junyue Cao
- School of Life Sciences
- Peking University
- Beijing 100871
- China
| | - Xiaolin Zhang
- Center for Quantitative Biology
- Peking University
- Beijing 100871
- China
| | - Yuan Liang
- BNLMS
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Meiping Zhao
- BNLMS
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Luhua Lai
- Center for Quantitative Biology
- Peking University
- Beijing 100871
- China
- BNLMS
| |
Collapse
|
17
|
Kennedy EJ, Scott JD. Selective disruption of the AKAP signaling complexes. Methods Mol Biol 2015; 1294:137-50. [PMID: 25783883 DOI: 10.1007/978-1-4939-2537-7_11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synthesis of the second messenger cAMP activates a variety of signaling pathways critical for all facets of intracellular regulation. Protein kinase A (PKA) is the major cAMP-responsive effector. Where and when this enzyme is activated has profound implications on the cellular role of PKA. A-Kinase Anchoring Proteins (AKAPs) play a critical role in this process by orchestrating spatial and temporal aspects of PKA action. A popular means of evaluating the impact of these anchored signaling events is to biochemically interfere with the PKA-AKAP interface. Hence, peptide disruptors of PKA anchoring are valuable tools in the investigation of local PKA action. This article outlines the development of PKA isoform-selective disruptor peptides, documents the optimization of cell-soluble peptide derivatives, and introduces alternative cell-based approaches that interrogate other aspects of the PKA-AKAP interface.
Collapse
Affiliation(s)
- Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA, USA
| | | |
Collapse
|
18
|
Dema A, Perets E, Schulz MS, Deák VA, Klussmann E. Pharmacological targeting of AKAP-directed compartmentalized cAMP signalling. Cell Signal 2015; 27:2474-87. [PMID: 26386412 DOI: 10.1016/j.cellsig.2015.09.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 01/26/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) can bind and activate protein kinase A (PKA). The cAMP/PKA system is ubiquitous and involved in a wide array of biological processes and therefore requires tight spatial and temporal regulation. Important components of the safeguard system are the A-kinase anchoring proteins (AKAPs), a heterogeneous family of scaffolding proteins defined by its ability to directly bind PKA. AKAPs tether PKA to specific subcellular compartments, and they bind further interaction partners to create local signalling hubs. The recent discovery of new AKAPs and advances in the field that shed light on the relevance of these hubs for human disease highlight unique opportunities for pharmacological modulation. This review exemplifies how interference with signalling, particularly cAMP signalling, at such hubs can reshape signalling responses and discusses how this could lead to novel pharmacological concepts for the treatment of disease with an unmet medical need such as cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Alessandro Dema
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Ekaterina Perets
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Maike Svenja Schulz
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Veronika Anita Deák
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany; DZHK, German Centre for Cardiovascular Research, Oudenarder Straße 16, 13347 Berlin, Germany.
| |
Collapse
|
19
|
Calejo AI, Taskén K. Targeting protein-protein interactions in complexes organized by A kinase anchoring proteins. Front Pharmacol 2015; 6:192. [PMID: 26441649 PMCID: PMC4562273 DOI: 10.3389/fphar.2015.00192] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/24/2015] [Indexed: 01/06/2023] Open
Abstract
Cyclic AMP is a ubiquitous intracellular second messenger involved in the regulation of a wide variety of cellular processes, a majority of which act through the cAMP – protein kinase A (PKA) signaling pathway and involve PKA phosphorylation of specific substrates. PKA phosphorylation events are typically spatially restricted and temporally well controlled. A-kinase anchoring proteins (AKAPs) directly bind PKA and recruit it to specific subcellular loci targeting the kinase activity toward particular substrates, and thereby provide discrete spatiotemporal control of downstream phosphorylation events. AKAPs also scaffold other signaling molecules into multi-protein complexes that function as crossroads between different signaling pathways. Targeting AKAP coordinated protein complexes with high-affinity peptidomimetics or small molecules to tease apart distinct protein–protein interactions (PPIs) therefore offers important means to disrupt binding of specific components of the complex to better understand the molecular mechanisms involved in the function of individual signalosomes and their pathophysiological role. Furthermore, development of novel classes of small molecules involved in displacement of AKAP-bound signal molecules is now emerging. Here, we will focus on mechanisms for targeting PPI, disruptors that modulate downstream cAMP signaling and their role, especially in the heart.
Collapse
Affiliation(s)
- Ana I Calejo
- Biotechnology Centre, University of Oslo Oslo, Norway ; Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo and Oslo University Hospital Oslo, Norway
| | - Kjetil Taskén
- Biotechnology Centre, University of Oslo Oslo, Norway ; Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo and Oslo University Hospital Oslo, Norway
| |
Collapse
|
20
|
Raslan Z, Magwenzi S, Aburima A, Taskén K, Naseem KM. Targeting of type I protein kinase A to lipid rafts is required for platelet inhibition by the 3',5'-cyclic adenosine monophosphate-signaling pathway. J Thromb Haemost 2015; 13:1721-34. [PMID: 26176741 DOI: 10.1111/jth.13042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 06/18/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND Platelet adhesion to von Willebrand factor (VWF) is modulated by 3',5'-cyclic adenosine monophosphate (cAMP) signaling through protein kinase A (PKA)-mediated phosphorylation of glycoprotein (GP)Ibβ. A-kinase anchoring proteins (AKAPs) are proposed to control the localization and substrate specificity of individual PKA isoforms. However, the role of PKA isoforms in regulating the phosphorylation of GPIbβ and platelet response to VWF is unknown. OBJECTIVES We wished to determine the role of PKA isoforms in the phosphorylation of GPIbβ and platelet activation by VWF as a model for exploring the selective partitioning of cAMP signaling in platelets. RESULTS The two isoforms of PKA in platelets, type I (PKA-I) and type II (PKA-II), were differentially localized, with a small pool of PKA-I found in lipid rafts. Using a combination of Far Western blotting, immunoprecipitation, proximity ligation assay and cAMP pull-down we identified moesin as an AKAP that potentially localizes PKA-I to rafts. Introduction of cell-permeable anchoring disruptor peptide, RI anchoring disruptor (RIAD-Arg11 ), to block PKA-I/AKAP interactions, uncoupled PKA-RI from moesin, displaced PKA-RI from rafts and reduced kinase activity in rafts. Examination of GPIbβ demonstrated that it was phosphorylated in response to low concentrations of PGI2 in a PKA-dependent manner and occurred primarily in lipid raft fractions. RIAD-Arg11 caused a significant reduction in raft-localized phosphoGPIbβ and diminished the ability of PGI2 to regulate VWF-mediated aggregation and thrombus formation in vitro. CONCLUSION We propose that PKA-I-specific AKAPs in platelets, including moesin, organize a selective localization of PKA-I required for phosphorylation of GPIbβ and contribute to inhibition of platelet VWF interactions.
Collapse
Affiliation(s)
- Z Raslan
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | - S Magwenzi
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | - A Aburima
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | - K Taskén
- Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
- K.G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - K M Naseem
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| |
Collapse
|
21
|
Patel N, Gold MG. The genetically encoded tool set for investigating cAMP: more than the sum of its parts. Front Pharmacol 2015; 6:164. [PMID: 26300778 PMCID: PMC4526808 DOI: 10.3389/fphar.2015.00164] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/24/2015] [Indexed: 11/13/2022] Open
Abstract
Intracellular fluctuations of the second messenger cyclic AMP (cAMP) are regulated with spatial and temporal precision. This regulation is supported by the sophisticated arrangement of cyclases, phosphodiesterases, anchoring proteins, and receptors for cAMP. Discovery of these nuances to cAMP signaling has been facilitated by the development of genetically encodable tools for monitoring and manipulating cAMP and the proteins that support cAMP signaling. In this review, we discuss the state-of-the-art in development of different genetically encoded tools for sensing cAMP and the activity of its primary intracellular receptor protein kinase A (PKA). We introduce sequences for encoding adenylyl cyclases that enable cAMP levels to be artificially elevated within cells. We chart the evolution of sequences for selectively modifying protein-protein interactions that support cAMP signaling, and for driving cAMP sensors and manipulators to different subcellular locations. Importantly, these different genetically encoded tools can be applied synergistically, and we highlight notable instances that take advantage of this property. Finally, we consider prospects for extending the utility of the tool set to support further insights into the role of cAMP in health and disease.
Collapse
Affiliation(s)
- Neha Patel
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| | - Matthew G Gold
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| |
Collapse
|
22
|
Wang Y, Ho TG, Franz E, Hermann JS, Smith FD, Hehnly H, Esseltine JL, Hanold LE, Murph MM, Bertinetti D, Scott JD, Herberg FW, Kennedy EJ. PKA-type I selective constrained peptide disruptors of AKAP complexes. ACS Chem Biol 2015; 10:1502-10. [PMID: 25765284 DOI: 10.1021/acschembio.5b00009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A-Kinase Anchoring Proteins (AKAPs) coordinate complex signaling events by serving as spatiotemporal modulators of cAMP-dependent protein kinase activity in cells. Although AKAPs organize a plethora of diverse pathways, their cellular roles are often elusive due to the dynamic nature of these signaling complexes. AKAPs can interact with the type I or type II PKA holoenzymes by virtue of high-affinity interactions with the R-subunits. As a means to delineate AKAP-mediated PKA signaling in cells, we sought to develop isoform-selective disruptors of AKAP signaling. Here, we report the development of conformationally constrained peptides named RI-STapled Anchoring Disruptors (RI-STADs) that target the docking/dimerization domain of the type 1 regulatory subunit of PKA. These high-affinity peptides are isoform-selective for the RI isoforms, can outcompete binding by the classical AKAP disruptor Ht31, and can selectively displace RIα, but not RIIα, from binding the dual-specific AKAP149 complex. Importantly, these peptides are cell-permeable and disrupt Type I PKA-mediated phosphorylation events in the context of live cells. Hence, RI-STAD peptides are versatile cellular tools to selectively probe anchored type I PKA signaling events.
Collapse
Affiliation(s)
- Yuxiao Wang
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Tienhuei G. Ho
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Eugen Franz
- Department
of Biochemistry, University of Kassel, 34132 Kassel, Germany
| | | | - F. Donelson Smith
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Heidi Hehnly
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Jessica L. Esseltine
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Laura E. Hanold
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Mandi M. Murph
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | | | - John D. Scott
- Howard
Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | | | - Eileen J. Kennedy
- Department
of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
23
|
Whiting JL, Nygren PJ, Tunquist BJ, Langeberg LK, Seternes OM, Scott JD. Protein Kinase A Opposes the Phosphorylation-dependent Recruitment of Glycogen Synthase Kinase 3β to A-kinase Anchoring Protein 220. J Biol Chem 2015; 290:19445-57. [PMID: 26088133 DOI: 10.1074/jbc.m115.654822] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Indexed: 02/04/2023] Open
Abstract
The proximity of an enzyme to its substrate can influence rate and magnitude of catalysis. A-kinase anchoring protein 220 (AKAP220) is a multivalent anchoring protein that can sequester a variety of signal transduction enzymes. These include protein kinase A (PKA) and glycogen synthase kinase 3β (GSK3β). Using a combination of molecular and cellular approaches we show that GSK3β phosphorylation of Thr-1132 on AKAP220 initiates recruitment of this kinase into the enzyme scaffold. We also find that AKAP220 anchors GSK3β and its substrate β-catenin in membrane ruffles. Interestingly, GSK3β can be released from the multienzyme complex in response to PKA phosphorylation on serine 9, which suppresses GSK3β activity. The signaling scaffold may enhance this regulatory mechanism, as AKAP220 has the capacity to anchor two PKA holoenzymes. Site 1 on AKAP220 (residues 610-623) preferentially interacts with RII, whereas site 2 (residues 1633-1646) exhibits a dual specificity for RI and RII. In vitro affinity measurements revealed that site 2 on AKAP220 binds RII with ∼10-fold higher affinity than site 1. Occupancy of both R subunit binding sites on AKAP220 could provide a mechanism to amplify local cAMP responses and enable cross-talk between PKA and GSK3β.
Collapse
Affiliation(s)
- Jennifer L Whiting
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Patrick J Nygren
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Brian J Tunquist
- Translational Oncology, Array BioPharma, Inc., Boulder, Colorado 80301, and
| | - Lorene K Langeberg
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Ole-Morten Seternes
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, Department of Pharmacy, University of Tromsø, The Arctic University of Norway, 9037 Tromsø, Norway
| | - John D Scott
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195,
| |
Collapse
|
24
|
Krishnamurthy S, Moorthy BS, Xin Xiang L, Xin Shan L, Bharatham K, Tulsian NK, Mihalek I, Anand GS. Active site coupling in PDE:PKA complexes promotes resetting of mammalian cAMP signaling. Biophys J 2015; 107:1426-40. [PMID: 25229150 DOI: 10.1016/j.bpj.2014.07.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/03/2014] [Accepted: 07/15/2014] [Indexed: 11/25/2022] Open
Abstract
Cyclic 3'5' adenosine monophosphate (cAMP)-dependent-protein kinase (PKA) signaling is a fundamental regulatory pathway for mediating cellular responses to hormonal stimuli. The pathway is activated by high-affinity association of cAMP with the regulatory subunit of PKA and signal termination is achieved upon cAMP dissociation from PKA. Although steps in the activation phase are well understood, little is known on how signal termination/resetting occurs. Due to the high affinity of cAMP to PKA (KD ∼ low nM), bound cAMP does not readily dissociate from PKA, thus begging the question of how tightly bound cAMP is released from PKA to reset its signaling state to respond to subsequent stimuli. It has been recently shown that phosphodiesterases (PDEs) can catalyze dissociation of bound cAMP and thereby play an active role in cAMP signal desensitization/termination. This is achieved through direct interactions with the regulatory subunit of PKA, thereby facilitating cAMP dissociation and hydrolysis. In this study, we have mapped direct interactions between a specific cyclic nucleotide phosphodiesterase (PDE8A) and a PKA regulatory subunit (RIα isoform) in mammalian cAMP signaling, by a combination of amide hydrogen/deuterium exchange mass spectrometry, peptide array, and computational docking. The interaction interface of the PDE8A:RIα complex, probed by peptide array and hydrogen/deuterium exchange mass spectrometry, brings together regions spanning the phosphodiesterase active site and cAMP-binding sites of RIα. Computational docking combined with amide hydrogen/deuterium exchange mass spectrometry provided a model for parallel dissociation of bound cAMP from the two tandem cAMP-binding domains of RIα. Active site coupling suggests a role for substrate channeling in the PDE-dependent dissociation and hydrolysis of cAMP bound to PKA. This is the first instance, to our knowledge, of PDEs directly interacting with a cAMP-receptor protein in a mammalian system, and highlights an entirely new class of binding partners for RIα. This study also highlights applications of structural mass spectrometry combined with computational docking for mapping dynamics in transient signaling protein complexes. Together, these results present a novel and critical role for phosphodiesterases in moderating local concentrations of cAMP in microdomains and signal resetting.
Collapse
Affiliation(s)
- Srinath Krishnamurthy
- Department of Biological Sciences, National University of Singapore, Singapore; Mechanobiology Institute, National University of Singapore, Singapore
| | | | - Lim Xin Xiang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Lim Xin Shan
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore; Mechanobiology Institute, National University of Singapore, Singapore.
| |
Collapse
|
25
|
Cantor JM, Rose DM, Slepak M, Ginsberg MH. Fine-tuning Tumor Immunity with Integrin Trans-regulation. Cancer Immunol Res 2015; 3:661-7. [PMID: 25600437 DOI: 10.1158/2326-6066.cir-13-0226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/10/2015] [Indexed: 12/30/2022]
Abstract
Inefficient T-cell homing to tissues limits adoptive T-cell immunotherapy of solid tumors. αLβ2 and α4β1 integrins mediate trafficking of T cells into tissues via engagement of ICAM-1 and VCAM-1, respectively. Inhibiting protein kinase A (PKA)-mediated phosphorylation of α4 integrin in cells results in an increase in αLβ2-mediated migration on mixed ICAM-1-VCAM-1 substrates in vitro, a phenomenon termed "integrin trans-regulation." Here, we created an α4(S988A)-bearing mouse, which precludes PKA-mediated α4 phosphorylation, to examine the effect of integrin trans-regulation in vivo. The α4(S988A) mouse exhibited a dramatic and selective increase in migration of lymphocytes, but not myeloid cells, to sites of inflammation. Importantly, we found that the α4(S988A) mice exhibited a marked increase in T-cell entry into and reduced growth of B16 melanomas, consistent with antitumor roles of infiltrating T cells and progrowth functions of tumor-associated macrophages. Thus, increased α4 trans-regulation of αLβ2 integrin function biases leukocyte emigration toward lymphocytes relative to myeloid cells and enhances tumor immunity.
Collapse
Affiliation(s)
- Joseph M Cantor
- Department of Medicine, University of California, San Diego, La Jolla, California.
| | - David M Rose
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Marina Slepak
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, California.
| |
Collapse
|
26
|
Sarma GN, Moody IS, Ilouz R, Phan RH, Sankaran B, Hall RA, Taylor SS. D-AKAP2:PKA RII:PDZK1 ternary complex structure: insights from the nucleation of a polyvalent scaffold. Protein Sci 2014; 24:105-16. [PMID: 25348485 DOI: 10.1002/pro.2593] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 02/02/2023]
Abstract
A-kinase anchoring proteins (AKAPs) regulate cAMP-dependent protein kinase (PKA) signaling in space and time. Dual-specific AKAP2 (D-AKAP2/AKAP10) binds with high affinity to both RI and RII regulatory subunits of PKA and is anchored to transporters through PDZ domain proteins. Here, we describe a structure of D-AKAP2 in complex with two interacting partners and the exact mechanism by which a segment that on its own is disordered presents an α-helix to PKA and a β-strand to PDZK1. These two motifs nucleate a polyvalent scaffold and show how PKA signaling is linked to the regulation of transporters. Formation of the D-AKAP2: PKA binary complex is an important first step for high affinity interaction with PDZK1, and the structure reveals important clues toward understanding this phenomenon. In contrast to many other AKAPs, D-AKAP2 does not interact directly with the membrane protein. Instead, the interaction is facilitated by the C-terminus of D-AKAP2, which contains two binding motifs-the D-AKAP2AKB and the PDZ motif-that are joined by a short linker and only become ordered upon binding to their respective partner signaling proteins. The D-AKAP2AKB binds to the D/D domain of the R-subunit and the C-terminal PDZ motif binds to a PDZ domain (from PDZK1) that serves as a bridging protein to the transporter. This structure also provides insights into the fundamental question of why D-AKAP2 would exhibit a differential mode of binding to the two PKA isoforms.
Collapse
Affiliation(s)
- Ganapathy N Sarma
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093-0654; Department of Pharmacology, University of California, San Diego, La Jolla, California, 92093-0654
| | | | | | | | | | | | | |
Collapse
|
27
|
Poppinga WJ, Muñoz-Llancao P, González-Billault C, Schmidt M. A-kinase anchoring proteins: cAMP compartmentalization in neurodegenerative and obstructive pulmonary diseases. Br J Pharmacol 2014; 171:5603-23. [PMID: 25132049 PMCID: PMC4290705 DOI: 10.1111/bph.12882] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/14/2014] [Accepted: 08/10/2014] [Indexed: 12/25/2022] Open
Abstract
The universal second messenger cAMP is generated upon stimulation of Gs protein-coupled receptors, such as the β2 -adreneoceptor, and leads to the activation of PKA, the major cAMP effector protein. PKA oscillates between an on and off state and thereby regulates a plethora of distinct biological responses. The broad activation pattern of PKA and its contribution to several distinct cellular functions lead to the introduction of the concept of compartmentalization of cAMP. A-kinase anchoring proteins (AKAPs) are of central importance due to their unique ability to directly and/or indirectly interact with proteins that either determine the cellular content of cAMP, such as β2 -adrenoceptors, ACs and PDEs, or are regulated by cAMP such as the exchange protein directly activated by cAMP. We report on lessons learned from neurons indicating that maintenance of cAMP compartmentalization by AKAP5 is linked to neurotransmission, learning and memory. Disturbance of cAMP compartments seem to be linked to neurodegenerative disease including Alzheimer's disease. We translate this knowledge to compartmentalized cAMP signalling in the lung. Next to AKAP5, we focus here on AKAP12 and Ezrin (AKAP78). These topics will be highlighted in the context of the development of novel pharmacological interventions to tackle AKAP-dependent compartmentalization.
Collapse
Affiliation(s)
- W J Poppinga
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of GroningenGroningen, The Netherlands
| | - P Muñoz-Llancao
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
- Laboratory of Cell and Neuronal Dynamics (Cenedyn), Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, The Netherlands
| | - C González-Billault
- Laboratory of Cell and Neuronal Dynamics (Cenedyn), Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile
| | - M Schmidt
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of GroningenGroningen, The Netherlands
| |
Collapse
|
28
|
Tremblay V, Zhang P, Chaturvedi CP, Thornton J, Brunzelle JS, Skiniotis G, Shilatifard A, Brand M, Couture JF. Molecular basis for DPY-30 association to COMPASS-like and NURF complexes. Structure 2014; 22:1821-1830. [PMID: 25456412 DOI: 10.1016/j.str.2014.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/15/2014] [Accepted: 10/06/2014] [Indexed: 01/31/2023]
Abstract
DPY-30 is a subunit of mammalian COMPASS-like complexes (complex of proteins associated with Set1) and regulates global histone H3 Lys-4 trimethylation. Here we report structural evidence showing that the incorporation of DPY-30 into COMPASS-like complexes is mediated by several hydrophobic interactions between an amphipathic α helix located on the C terminus of COMPASS subunit ASH2L and the inner surface of the DPY-30 dimerization/docking (D/D) module. Mutations impairing the interaction between ASH2L and DPY-30 result in a loss of histone H3K4me3 at the β locus control region and cause a delay in erythroid cell terminal differentiation. Using overlay assays, we defined a consensus sequence for DPY-30 binding proteins and found that DPY-30 interacts with BAP18, a subunit of the nucleosome remodeling factor complex. Overall, our results indicate that the ASH2L/DPY-30 complex is important for cell differentiation and provide insights into the ability of DPY-30 to associate with functionally divergent multisubunit complexes.
Collapse
Affiliation(s)
- Véronique Tremblay
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Pamela Zhang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Chandra-Prakash Chaturvedi
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Janet Thornton
- Department of Biochemistry and Molecular Genetics, Northwestern University, Searle Building, 320 East Superior Street, Chicago, IL 60611, USA
| | - Joseph S Brunzelle
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Georgios Skiniotis
- Life Sciences Institute and Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University, Searle Building, 320 East Superior Street, Chicago, IL 60611, USA
| | - Marjorie Brand
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Jean-François Couture
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
29
|
Burgers PP, van der Heyden MAG, Kok B, Heck AJR, Scholten A. A Systematic Evaluation of Protein Kinase A–A-Kinase Anchoring Protein Interaction Motifs. Biochemistry 2014; 54:11-21. [DOI: 10.1021/bi500721a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Pepijn P. Burgers
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Marcel A. G. van der Heyden
- Department
of Medical Physiology, Division of Heart and Lungs, University Medical Centre Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Bart Kok
- Department
of Medical Physiology, Division of Heart and Lungs, University Medical Centre Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Arjen Scholten
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
30
|
Kapiloff MS, Rigatti M, Dodge-Kafka KL. Architectural and functional roles of A kinase-anchoring proteins in cAMP microdomains. ACTA ACUST UNITED AC 2014; 143:9-15. [PMID: 24378903 PMCID: PMC3874566 DOI: 10.1085/jgp.201311020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Michael S Kapiloff
- Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, 2 Department of Pediatrics, and 3 Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33101
| | | | | |
Collapse
|
31
|
de Araujo CB, Russo LC, Castro LM, Forti FL, do Monte ER, Rioli V, Gozzo FC, Colquhoun A, Ferro ES. A novel intracellular peptide derived from g1/s cyclin d2 induces cell death. J Biol Chem 2014; 289:16711-26. [PMID: 24764300 DOI: 10.1074/jbc.m113.537118] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intracellular peptides are constantly produced by the ubiquitin-proteasome system, and many are probably functional. Here, the peptide WELVVLGKL (pep5) from G1/S-specific cyclin D2 showed a 2-fold increase during the S phase of HeLa cell cycle. pep5 (25-100 μm) induced cell death in several tumor cells only when it was fused to a cell-penetrating peptide (pep5-cpp), suggesting its intracellular function. In vivo, pep5-cpp reduced the volume of the rat C6 glioblastoma by almost 50%. The tryptophan at the N terminus of pep5 is essential for its cell death activity, and N terminus acetylation reduced the potency of pep5-cpp. WELVVL is the minimal active sequence of pep5, whereas Leu-Ala substitutions totally abolished pep5 cell death activity. Findings from the initial characterization of the cell death/signaling mechanism of pep5 include caspase 3/7 and 9 activation, inhibition of Akt2 phosphorylation, activation of p38α and -γ, and inhibition of proteasome activity. Further pharmacological analyses suggest that pep5 can trigger cell death by distinctive pathways, which can be blocked by IM-54 or a combination of necrostatin-1 and q-VD-OPh. These data further support the biological and pharmacological potential of intracellular peptides.
Collapse
Affiliation(s)
| | - Lilian C Russo
- the Department of Biochemistry, Support Center for Research in Proteolysis and Cell Signaling (NAPPS), Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | | | - Fábio L Forti
- the Department of Biochemistry, Support Center for Research in Proteolysis and Cell Signaling (NAPPS), Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | | | - Vanessa Rioli
- the Special Laboratory of Applied Toxinology (LETA), Center of Toxins, Immune Response, and Cell Signaling (CETICS), Butantan Institute, 05503-000, São Paulo, SP, Brazil, and
| | - Fabio C Gozzo
- the Institute of Chemistry, State University of Campinas, 13083-862, Campinas, SP, Brazil
| | - Alison Colquhoun
- Cell Biology and Development, Support Center for Research in Proteolysis and Cell Signaling (NAPPS), Biomedical Science Institute, University of São Paulo, São Paulo, 05508-000, SP, Brazil
| | | |
Collapse
|
32
|
Lecuona E, Sun H, Chen J, Trejo HE, Baker MA, Sznajder JI. Protein kinase A-Iα regulates Na,K-ATPase endocytosis in alveolar epithelial cells exposed to high CO(2) concentrations. Am J Respir Cell Mol Biol 2013; 48:626-34. [PMID: 23349050 DOI: 10.1165/rcmb.2012-0373oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Elevated concentrations of CO2 (hypercapnia) lead to alveolar epithelial dysfunction by promoting Na,K-ATPase endocytosis. In the present report, we investigated whether the CO2/HCO3(-) activated soluble adenylyl cyclase (sAC) regulates this process. We found that hypercapnia increased the production of cyclic adenosine monophosphate (cAMP) and stimulated protein kinase A (PKA) activity via sAC, which was necessary for Na,K-ATPase endocytosis. During hypercapnia, cAMP was mainly produced in specific microdomains in the proximity of the plasma membrane, leading to PKA Type Iα activation. In alveolar epithelial cells exposed to high CO2 concentrations, PKA Type Iα regulated the time-dependent phosphorylation of the actin cytoskeleton component α-adducin at serine 726. Cells expressing small hairpin RNA for PKAc, dominant-negative PKA Type Iα, small interfering RNA for α-adducin, and α-adducin with serine 726 mutated to alanine prevented Na,K-ATPase endocytosis. In conclusion, we provide evidence for a new mechanism by which hypercapnia via sAC, cAMP, PKA Type Iα, and α-adducin regulates Na,K-ATPase endocytosis in alveolar epithelial cells.
Collapse
Affiliation(s)
- Emilia Lecuona
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | |
Collapse
|
33
|
The Development of Bispecific Hexavalent Antibodies as a Novel Class of DOCK-AND-LOCKTM (DNLTM) Complexes. Antibodies (Basel) 2013. [DOI: 10.3390/antib2020353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
34
|
Gold MG, Fowler DM, Means CK, Pawson CT, Stephany JJ, Langeberg LK, Fields S, Scott JD. Engineering A-kinase anchoring protein (AKAP)-selective regulatory subunits of protein kinase A (PKA) through structure-based phage selection. J Biol Chem 2013; 288:17111-21. [PMID: 23625929 PMCID: PMC3682517 DOI: 10.1074/jbc.m112.447326] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PKA is retained within distinct subcellular environments by the association of its regulatory type II (RII) subunits with A-kinase anchoring proteins (AKAPs). Conventional reagents that universally disrupt PKA anchoring are patterned after a conserved AKAP motif. We introduce a phage selection procedure that exploits high-resolution structural information to engineer RII mutants that are selective for a particular AKAP. Selective RII (RSelect) sequences were obtained for eight AKAPs following competitive selection screening. Biochemical and cell-based experiments validated the efficacy of RSelect proteins for AKAP2 and AKAP18. These engineered proteins represent a new class of reagents that can be used to dissect the contributions of different AKAP-targeted pools of PKA. Molecular modeling and high-throughput sequencing analyses revealed the molecular basis of AKAP-selective interactions and shed new light on native RII-AKAP interactions. We propose that this structure-directed evolution strategy might be generally applicable for the investigation of other protein interaction surfaces.
Collapse
Affiliation(s)
- Matthew G Gold
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Sivadas P, Dienes JM, St Maurice M, Meek WD, Yang P. A flagellar A-kinase anchoring protein with two amphipathic helices forms a structural scaffold in the radial spoke complex. ACTA ACUST UNITED AC 2013; 199:639-51. [PMID: 23148234 PMCID: PMC3494852 DOI: 10.1083/jcb.201111042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amphipathic helices in the A-kinase anchoring protein RSP3 bind to spoke proteins involved in the assembly and modulation of the flagellar radial spoke complex, expanding the repertoire of these versatile helical protein motifs. A-kinase anchoring proteins (AKAPs) contain an amphipathic helix (AH) that binds the dimerization and docking (D/D) domain, RIIa, in cAMP-dependent protein kinase A (PKA). Many AKAPs were discovered solely based on the AH–RIIa interaction in vitro. An RIIa or a similar Dpy-30 domain is also present in numerous diverged molecules that are implicated in critical processes as diverse as flagellar beating, membrane trafficking, histone methylation, and stem cell differentiation, yet these molecules remain poorly characterized. Here we demonstrate that an AKAP, RSP3, forms a dimeric structural scaffold in the flagellar radial spoke complex, anchoring through two distinct AHs, the RIIa and Dpy-30 domains, in four non-PKA spoke proteins involved in the assembly and modulation of the complex. Interestingly, one AH can bind both RIIa and Dpy-30 domains in vitro. Thus, AHs and D/D domains constitute a versatile yet potentially promiscuous system for localizing various effector mechanisms. These results greatly expand the current concept about anchoring mechanisms and AKAPs.
Collapse
Affiliation(s)
- Priyanka Sivadas
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | | | | | | | | |
Collapse
|
36
|
Burgers PP, Ma Y, Margarucci L, Mackey M, van der Heyden MAG, Ellisman M, Scholten A, Taylor SS, Heck AJR. A small novel A-kinase anchoring protein (AKAP) that localizes specifically protein kinase A-regulatory subunit I (PKA-RI) to the plasma membrane. J Biol Chem 2012; 287:43789-97. [PMID: 23115245 DOI: 10.1074/jbc.m112.395970] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Protein kinase A-anchoring proteins (AKAPs) provide spatio-temporal specificity for the omnipotent cAMP-dependent protein kinase (PKA) via high affinity interactions with PKA regulatory subunits (PKA-RI, RII). Many PKA-RII-AKAP complexes are heavily tethered to cellular substructures, whereas PKA-RI-AKAP complexes have remained largely undiscovered. Here, using a cAMP affinity-based chemical proteomics strategy in human heart and platelets, we uncovered a novel, ubiquitously expressed AKAP, termed small membrane (sm)AKAP due to its specific localization at the plasma membrane via potential myristoylation/palmitoylation anchors. In vitro binding studies revealed specificity of smAKAP for PKA-RI (K(d) = 7 nM) over PKA-RII (K(d) = 53 nM) subunits, co-expression of smAKAP with the four PKA R subunits revealed an even more exclusive specificity of smAKAP for PKA-RIα/β in the cellular context. Applying the singlet oxygen-generating electron microscopy probe miniSOG indicated that smAKAP is tethered to the plasma membrane and is particularly dense at cell-cell junctions and within filopodia. Our preliminary functional characterization of smAKAP provides evidence that, like PKA-RII, PKA-RI can be tightly tethered by a novel repertoire of AKAPs, providing a new perspective on spatio-temporal control of cAMP signaling.
Collapse
Affiliation(s)
- Pepijn P Burgers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Scott JD, Dessauer CW, Taskén K. Creating order from chaos: cellular regulation by kinase anchoring. Annu Rev Pharmacol Toxicol 2012; 53:187-210. [PMID: 23043438 DOI: 10.1146/annurev-pharmtox-011112-140204] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Second messenger responses rely on where and when the enzymes that propagate these signals become active. Spatial and temporal organization of certain signaling enzymes is controlled in part by A-kinase anchoring proteins (AKAPs). This family of regulatory proteins was originally classified on the basis of their ability to compartmentalize the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (also known as protein kinase A, or PKA). However, it is now recognized that AKAPs position G protein-coupled receptors, adenylyl cyclases, G proteins, and their effector proteins in relation to protein kinases and signal termination enzymes such as phosphodiesterases and protein phosphatases. This arrangement offers a simple and efficient means to limit the scope, duration, and directional flow of information to sites deep within the cell. This review focuses on the pros and cons of reagents that define the biological role of kinase anchoring inside cells and discusses recent advances in our understanding of anchored second messenger signaling in the cardiovascular and immune systems.
Collapse
Affiliation(s)
- John D Scott
- Howard Hughes Medical Institute and Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
38
|
Tröger J, Moutty MC, Skroblin P, Klussmann E. A-kinase anchoring proteins as potential drug targets. Br J Pharmacol 2012; 166:420-33. [PMID: 22122509 DOI: 10.1111/j.1476-5381.2011.01796.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) crucially contribute to the spatial and temporal control of cellular signalling. They directly interact with a variety of protein binding partners and cellular constituents, thereby directing pools of signalling components to defined locales. In particular, AKAPs mediate compartmentalization of cAMP signalling. Alterations in AKAP expression and their interactions are associated with or cause diseases including chronic heart failure, various cancers and disorders of the immune system such as HIV. A number of cellular dysfunctions result from mutations of specific AKAPs. The link between malfunctions of single AKAP complexes and a disease makes AKAPs and their interactions interesting targets for the development of novel drugs. LINKED ARTICLES This article is part of a themed section on Novel cAMP Signalling Paradigms. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-2.
Collapse
Affiliation(s)
- Jessica Tröger
- Max Delbrück Center for Molecular Medicine Berlin-Buch (MDC), Berlin, Germany Leibniz Institute for Molecular Pharmacology (FMP), Berlin, Germany
| | | | | | | |
Collapse
|
39
|
Berti DA, Russo LC, Castro LM, Cruz L, Gozzo FC, Heimann JC, Lima FB, Oliveira AC, Andreotti S, Prada PO, Heimann AS, Ferro ES. Identification of intracellular peptides in rat adipose tissue: Insights into insulin resistance. Proteomics 2012; 12:2668-81. [DOI: 10.1002/pmic.201200051] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 01/07/2023]
Affiliation(s)
- Denise A. Berti
- Department of Cell Biology and Development; University of São Paulo; São Paulo Brazil
| | - Lilian C. Russo
- Department of Cell Biology and Development; University of São Paulo; São Paulo Brazil
| | - Leandro M. Castro
- Department of Cell Biology and Development; University of São Paulo; São Paulo Brazil
| | - Lilian Cruz
- Department of Cell Biology and Development; University of São Paulo; São Paulo Brazil
| | - Fábio C. Gozzo
- Chemistry Institute; Campinas State University; Campinas São Paulo Brazil
| | - Joel C. Heimann
- Department of Internal Medicine; School of Medicine; University of São Paulo; São Paulo Brazil
| | - Fabio B. Lima
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - Ariclécio C. Oliveira
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - Sandra Andreotti
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - Patrícia O. Prada
- Chemistry Institute; Campinas State University; Campinas São Paulo Brazil
| | | | - Emer S. Ferro
- Department of Cell Biology and Development; University of São Paulo; São Paulo Brazil
| |
Collapse
|
40
|
Rossi EA, Goldenberg DM, Chang CH. The dock-and-lock method combines recombinant engineering with site-specific covalent conjugation to generate multifunctional structures. Bioconjug Chem 2012; 23:309-23. [PMID: 22168393 DOI: 10.1021/bc2004999] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Advances in recombinant protein technology have facilitated the production of increasingly complex fusion proteins with multivalent, multifunctional designs for use in various in vitro and in vivo applications. In addition, traditional chemical conjugation remains a primary choice for linking proteins with polyethylene glycol (PEG), biotin, fluorescent markers, drugs, and others. More recently, site-specific conjugation of two or more interactive modules has emerged as a valid approach to expand the existing repertoires produced by either recombinant engineering or chemical conjugation alone, thus advancing the range of potential applications. Five such methods, each involving a specific binding event, are highlighted in this review, with a particular focus on the Dock-and-Lock (DNL) method, which exploits the natural interaction between the dimerization and docking domain (DDD) of cAMP-dependent protein kinase (PKA) and the anchoring domain (AD) of A-kinase anchoring proteins (AKAP). The various enablements of DNL to date include trivalent, tetravalent, pentavalent, and hexavalent antibodies of monospecificity or bispecificity; immnocytokines comprising multiple copies of interferon-alpha (IFNα); and site-specific PEGylation. These achievements attest to the power of the DNL platform technology to develop novel therapeutic and diagnostic agents from both proteins and nonproteins for unmet medical needs.
Collapse
Affiliation(s)
- Edmund A Rossi
- IBC Pharmaceuticals, Inc., Morris Plains, New Jersey, USA.
| | | | | |
Collapse
|
41
|
Diviani D, Dodge-Kafka KL, Li J, Kapiloff MS. A-kinase anchoring proteins: scaffolding proteins in the heart. Am J Physiol Heart Circ Physiol 2011; 301:H1742-53. [PMID: 21856912 DOI: 10.1152/ajpheart.00569.2011] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The pleiotropic cyclic nucleotide cAMP is the primary second messenger responsible for autonomic regulation of cardiac inotropy, chronotropy, and lusitropy. Under conditions of prolonged catecholaminergic stimulation, cAMP also contributes to the induction of both cardiac myocyte hypertrophy and apoptosis. The formation of localized, multiprotein complexes that contain different combinations of cAMP effectors and regulatory enzymes provides the architectural infrastructure for the specialization of the cAMP signaling network. Scaffolds that bind protein kinase A are called "A-kinase anchoring proteins" (AKAPs). In this review, we discuss recent advances in our understanding of how PKA is compartmentalized within the cardiac myocyte by AKAPs and how AKAP complexes modulate cardiac function in both health and disease.
Collapse
Affiliation(s)
- Dario Diviani
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et Médecine, Université de Lausanne, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
42
|
Tkachenko E, Sabouri-Ghomi M, Pertz O, Kim C, Gutierrez E, Machacek M, Groisman A, Danuser G, Ginsberg MH. Protein kinase A governs a RhoA-RhoGDI protrusion-retraction pacemaker in migrating cells. Nat Cell Biol 2011; 13:660-7. [PMID: 21572420 PMCID: PMC3746034 DOI: 10.1038/ncb2231] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 03/04/2011] [Indexed: 01/15/2023]
Abstract
The cyclical protrusion and retraction of the leading edge is a hallmark of many migrating cells involved in processes such as development, inflammation and tumorigenesis. The molecular identity of the signalling mechanisms that control these cycles has remained unknown. Here, we used live-cell imaging of biosensors to monitor spontaneous morphodynamic and signalling activities, and employed correlative image analysis to examine the role of cyclic-AMP-activated protein kinase A (PKA) in protrusion regulation. PKA activity at the leading edge is closely synchronized with rapid protrusion and with the activity of RhoA. Ensuing PKA phosphorylation of RhoA and the resulting increased interaction between RhoA and RhoGDI (Rho GDP-dissociation inhibitor) establish a negative feedback mechanism that controls the cycling of RhoA activity at the leading edge. Thus, cooperation between PKA, RhoA and RhoGDI forms a pacemaker that governs the morphodynamic behaviour of migrating cells.
Collapse
Affiliation(s)
- Eugene Tkachenko
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, Mail Code 0726, La Jolla, CA 92093
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Mail Code 0374, La Jolla, CA, 92093
| | - Mohsen Sabouri-Ghomi
- Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037
| | - Olivier Pertz
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Chungho Kim
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, Mail Code 0726, La Jolla, CA 92093
| | - Edgar Gutierrez
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Mail Code 0374, La Jolla, CA, 92093
| | - Matthias Machacek
- Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037
| | - Alex Groisman
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Mail Code 0374, La Jolla, CA, 92093
| | - Gaudenz Danuser
- Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037
| | - Mark H. Ginsberg
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, Mail Code 0726, La Jolla, CA 92093
| |
Collapse
|
43
|
Hou T, Li Y, Wang W. Prediction of peptides binding to the PKA RIIalpha subunit using a hierarchical strategy. ACTA ACUST UNITED AC 2011; 27:1814-21. [PMID: 21586518 DOI: 10.1093/bioinformatics/btr294] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Favorable interaction between the regulatory subunit of the cAMP-dependent protein kinase (PKA) and a peptide in A-kinase anchoring proteins (AKAPs) is critical for translocating PKA to the subcellular sites where the enzyme phosphorylates its substrates. It is very hard to identify AKAPs peptides binding to PKA due to the high sequence diversity of AKAPs. RESULTS We propose a hierarchical and efficient approach, which combines molecular dynamics (MD) simulations, free energy calculations, virtual mutagenesis (VM) and bioinformatics analyses, to predict peptides binding to the PKA RIIα regulatory subunit in the human proteome systematically. Our approach successfully retrieved 15 out of 18 documented RIIα-binding peptides. Literature curation supported that many newly predicted peptides might be true AKAPs. Here, we present the first systematic search for AKAP peptides in the human proteome, which is useful to further experimental identification of AKAPs and functional analysis of their biological roles.
Collapse
Affiliation(s)
- Tingjun Hou
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China.
| | | | | |
Collapse
|
44
|
King CC, Sastri M, Chang P, Pennypacker J, Taylor SS. The rate of NF-κB nuclear translocation is regulated by PKA and A kinase interacting protein 1. PLoS One 2011; 6:e18713. [PMID: 21556136 PMCID: PMC3083391 DOI: 10.1371/journal.pone.0018713] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 03/16/2011] [Indexed: 12/22/2022] Open
Abstract
The mechanism of PKAc-dependent NF-κB activation and subsequent translocation into the nucleus is not well defined. Previously, we showed that A kinase interacting protein 1 (AKIP1) was important for binding and retaining PKAc in the nucleus. Since then, other groups have demonstrated that AKIP1 binds the p65 subunit of NF-κB and regulates its transcriptional activity through the phosphorylation at Ser 276 by PKAc. However, little is known about the formation and activation of the PKAc/AKIP1/p65 complex and the rate at which it enters the nucleus. Initially, we found that the AKIP1 isoform (AKIP 1A) simultaneously binds PKAc and p65 in resting and serum starved cells. Using peptide arrays, we refined the region of AKIP 1A binding on PKAc and mapped the non-overlapping regions on AKIP 1A where PKAc and p65 bind. A peptide to the amino-terminus of PKAc (CAT 1-29) was generated to specifically disrupt the interaction between AKIP 1A and PKAc to study nuclear import of the complex. The rate of p65 nuclear translocation was monitored in the presence or absence of overexpressed AKIP 1A and/or (CAT 1-29). Enhanced nuclear translocation of p65 was observed in the presence of overexpressed AKIP1 and/or CAT 1-29 in cells stimulated with TNFα, and this correlated with decreased phosphorylation of serine 276. To determine whether PKAc phosphorylation of p65 in the cytosol regulated nuclear translocation, serine 276 was mutated to alanine or aspartic acid. Accelerated nuclear accumulation of p65 was observed in the alanine mutant, while the aspartic acid mutation displayed slowed nuclear translocation kinetics. In addition, enhanced nuclear translocation of p65 was observed when PKAc was knocked-down by siRNA. Taken together, these results suggest that AKIP 1A acts to scaffold PKAc to NF-κB in the cytosol by protecting the phosphorylation site and thereby regulating the rate of nuclear translocation of p65.
Collapse
Affiliation(s)
- Charles C. King
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Mira Sastri
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Philip Chang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Juniper Pennypacker
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Susan S. Taylor
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- The Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
45
|
Day ME, Gaietta GM, Sastri M, Koller A, Mackey MR, Scott JD, Perkins GA, Ellisman MH, Taylor SS. Isoform-specific targeting of PKA to multivesicular bodies. J Cell Biol 2011; 193:347-63. [PMID: 21502359 PMCID: PMC3080257 DOI: 10.1083/jcb.201010034] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 03/15/2011] [Indexed: 11/22/2022] Open
Abstract
Although RII protein kinase A (PKA) regulatory subunits are constitutively localized to discrete cellular compartments through binding to A-kinase-anchoring proteins (AKAPs), RI subunits are primarily diffuse in the cytoplasm. In this paper, we report a novel AKAP-dependent localization of RIα to distinct organelles, specifically, multivesicular bodies (MVBs). This localization depends on binding to AKAP11, which binds tightly to free RIα or RIα in complex with catalytic subunit (holoenzyme). However, recruitment to MVBs occurs only with the release of PKA catalytic subunit (PKAc). This recruitment is reversed by reassociation with PKAc, and it is disrupted by the presence of AKAP peptides, mutations in the RIα AKAP-binding site, or knockdown of AKAP11. Cyclic adenosine monophosphate binding not only unleashes active PKAc but also leads to the targeting of AKAP11:RIα to MVBs. Therefore, we show that the RIα holoenzyme is part of a signaling complex with AKAP11, in which AKAP11 may direct RIα functionality after disassociation from PKAc. This model defines a new paradigm for PKA signaling.
Collapse
Affiliation(s)
- Michele E. Day
- Bioinformatics Program, Department of Pharmacology, Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, and National Center for Microscopy and Imaging Research, University of California at San Diego, La Jolla, CA 92093
| | - Guido M. Gaietta
- Bioinformatics Program, Department of Pharmacology, Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, and National Center for Microscopy and Imaging Research, University of California at San Diego, La Jolla, CA 92093
| | - Mira Sastri
- Bioinformatics Program, Department of Pharmacology, Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, and National Center for Microscopy and Imaging Research, University of California at San Diego, La Jolla, CA 92093
| | - Antonius Koller
- Bioinformatics Program, Department of Pharmacology, Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, and National Center for Microscopy and Imaging Research, University of California at San Diego, La Jolla, CA 92093
| | - Mason R. Mackey
- Bioinformatics Program, Department of Pharmacology, Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, and National Center for Microscopy and Imaging Research, University of California at San Diego, La Jolla, CA 92093
| | - John D. Scott
- Howard Hughes Medical Institute and Department of Pharmocology, University of Washington School of Medicine, Seattle, WA 98195
| | - Guy A. Perkins
- Bioinformatics Program, Department of Pharmacology, Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, and National Center for Microscopy and Imaging Research, University of California at San Diego, La Jolla, CA 92093
| | - Mark H. Ellisman
- Bioinformatics Program, Department of Pharmacology, Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, and National Center for Microscopy and Imaging Research, University of California at San Diego, La Jolla, CA 92093
| | - Susan S. Taylor
- Bioinformatics Program, Department of Pharmacology, Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, and National Center for Microscopy and Imaging Research, University of California at San Diego, La Jolla, CA 92093
| |
Collapse
|
46
|
Depry C, Allen MD, Zhang J. Visualization of PKA activity in plasma membrane microdomains. ACTA ACUST UNITED AC 2011; 7:52-8. [DOI: 10.1039/c0mb00079e] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Xu H, Ginsburg KS, Hall DD, Zimmermann M, Stein IS, Zhang M, Tandan S, Hill JA, Horne MC, Bers D, Hell JW. Targeting of protein phosphatases PP2A and PP2B to the C-terminus of the L-type calcium channel Ca v1.2. Biochemistry 2010; 49:10298-307. [PMID: 21053940 PMCID: PMC3075818 DOI: 10.1021/bi101018c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The L-type Ca(2+) channel Ca(v)1.2 forms macromolecular signaling complexes that comprise the β(2) adrenergic receptor, trimeric G(s) protein, adenylyl cyclase, and cAMP-dependent protein kinase (PKA) for efficient signaling in heart and brain. The protein phosphatases PP2A and PP2B are part of this complex. PP2A counteracts increase in Ca(v)1.2 channel activity by PKA and other protein kinases, whereas PP2B can either augment or decrease Ca(v)1.2 currents in cardiomyocytes depending on the precise experimental conditions. We found that PP2A binds to two regions in the C-terminus of the central, pore-forming α(1) subunit of Ca(v)1.2: one region spans residues 1795-1818 and the other residues 1965-1971. PP2B binds immediately downstream of residue 1971. Injection of a peptide that contained residues 1965-1971 and displaced PP2A but not PP2B from endogenous Ca(v)1.2 increased basal and isoproterenol-stimulated L-type Ca(2+) currents in acutely isolated cardiomyocytes. Together with our biochemical data, these physiological results indicate that anchoring of PP2A at this site of Ca(v)1.2 in the heart negatively regulates cardiac L-type currents, likely by counterbalancing basal and stimulated phosphorylation that is mediated by PKA and possibly other kinases.
Collapse
Affiliation(s)
- Hui Xu
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Pharmacology, University of California, Davis, CA 95616-8636, USA
- Department of Pharmacology, Norman Bethune College of Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Kenneth S. Ginsburg
- Department of Pharmacology, University of California, Davis, CA 95616-8636, USA
| | - Duane D. Hall
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Maike Zimmermann
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Pharmacology, University of California, Davis, CA 95616-8636, USA
| | - Ivar S. Stein
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Pharmacology, University of California, Davis, CA 95616-8636, USA
| | - Mingxu Zhang
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Pharmacology, University of California, Davis, CA 95616-8636, USA
| | - Samvit Tandan
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390-8573
| | - Joseph A. Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390-8573
| | - Mary C. Horne
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Pharmacology, University of California, Davis, CA 95616-8636, USA
| | - Donald Bers
- Department of Pharmacology, University of California, Davis, CA 95616-8636, USA
| | - Johannes W. Hell
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Pharmacology, University of California, Davis, CA 95616-8636, USA
| |
Collapse
|
48
|
McLaughlin WA, Hou T, Taylor SS, Wang W. The identification of novel cyclic AMP-dependent protein kinase anchoring proteins using bioinformatic filters and peptide arrays. Protein Eng Des Sel 2010; 24:333-9. [PMID: 21115539 DOI: 10.1093/protein/gzq106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) localize cyclic AMP-dependent protein kinase (PKA) to specific regions in the cell and place PKA in proximity to its phosphorylation targets. A computational model was created to identify AKAPs that bind to the docking/dimerization domain of the RII alpha isoform of the regulatory subunit of PKA. The model was used to search the entire human proteome, and the top candidates were tested for an interaction using peptide array experiments. Verified interactions include sphingosine kinase interacting protein and retinoic acid-induced protein 16. These interactions highlight new signaling pathways mediated by PKA.
Collapse
Affiliation(s)
- William A McLaughlin
- Department of Basic Science, The Commonwealth Medical College, 501 Madison Avenue, Scranton, PA 18510, USA.
| | | | | | | |
Collapse
|
49
|
Kovanich D, van der Heyden MAG, Aye TT, van Veen TAB, Heck AJR, Scholten A. Sphingosine kinase interacting protein is an A-kinase anchoring protein specific for type I cAMP-dependent protein kinase. Chembiochem 2010; 11:963-71. [PMID: 20394097 DOI: 10.1002/cbic.201000058] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The compartmentalization of kinases and phosphatases plays an important role in the specificity of second-messenger-mediated signaling events. Localization of the cAMP-dependent protein kinase is mediated by interaction of its regulatory subunit (PKA-R) with the versatile family of A-kinase-anchoring proteins (AKAPs). Most AKAPs bind avidly to PKA-RII, while some have dual specificity for both PKA-RI and PKA-RII; however, no mammalian PKA-RI-specific AKAPs have thus far been assigned. This has mainly been attributed to the observation that PKA-RI is more cytosolic than the more heavily compartmentalized PKA-RII. Chemical proteomics screens of the cAMP interactome in mammalian heart tissue recently identified sphingosine kinase type 1-interacting protein (SKIP, SPHKAP) as a putative novel AKAP. Biochemical characterization now shows that SPHKAP can be considered as the first mammalian AKAP that preferentially binds to PKA-RIalpha. Recombinant human SPHKAP functions as an RI-specific AKAP that utilizes the characteristic AKAP amphipathic helix for interaction. Further chemical proteomic screening utilizing differential binding characteristics of specific cAMP resins confirms SPHKAPs endogenous specificity for PKA-RI directly in mammalian heart and spleen tissue. Immunolocalization studies revealed that recombinant SPHKAP is expressed in the cytoplasm, where PKA-RIalpha also mainly resides. Alignment of SPHKAPs' amphipathic helix with peptide models of PKA-RI- or PKA-RII-specific anchoring domains shows that it has largely only PKA-RIalpha characteristics. Being the first mammalian PKA-RI-specific AKAP with cytosolic localization, SPHKAP is a very promising model for studying the function of the less explored cytosolic PKA-RI signaling nodes.
Collapse
Affiliation(s)
- Duangnapa Kovanich
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center forBiomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
Welch EJ, Jones BW, Scott JD. Networking with AKAPs: context-dependent regulation of anchored enzymes. Mol Interv 2010; 10:86-97. [PMID: 20368369 DOI: 10.1124/mi.10.2.6] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A-Kinase Anchoring Proteins (AKAPs) orchestrate and synchronize cellular events by tethering the cAMP-dependent protein kinase (PKA) and other signaling enzymes to organelles and membranes. The control of kinases and phosphatases that are held in proximity to activators, effectors, and substrates favors the rapid dissemination of information from one cellular location to the next. This article charts the inception of the PKA-anchoring hypothesis, the characterization of AKAPs and their nomenclature, and the physiological roles of context-specific AKAP signaling complexes.
Collapse
Affiliation(s)
- Emily J Welch
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | |
Collapse
|