1
|
Chen J, Liu T, Wang M, Lu B, Bai D, Shang J, Chen Y, Zhang J. Supramolecular oral delivery technologies for polypeptide-based drugs. J Control Release 2025; 381:113549. [PMID: 40058501 DOI: 10.1016/j.jconrel.2025.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/11/2025] [Accepted: 02/18/2025] [Indexed: 03/24/2025]
Abstract
Oral supramolecular drug delivery systems (SDDSs) have shown promising potential, along with a rapid increase in the development of polypeptide-based drugs. Biofriendly, biocompatible, and multistimulation-responsive SDDSs achieve their unique deliverability via noncovalent bonds, which can encapsulate drugs and release them at the target site along the oral tract. In this review, we analyze the oral tract from an anatomical perspective and explain the potential physical, microenvironmental, and systematic barriers, as well as the properties of drug delivery. After understanding the specific environment at different oral sites, the application of SDDSs to the mouth, stomach, small intestine, and cell targeting is summarized. Finally, this review summarizes the application of SDDSs for the successful delivery of drugs and describes how to overcome the barriers of SDDSs in drug delivery using a more biofriendly approach.
Collapse
Affiliation(s)
- Jiawen Chen
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Tianqi Liu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Mi Wang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Beibei Lu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - De Bai
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Jiaqi Shang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Yingjun Chen
- Shenzhen JC innovation (Lazylab) Co., LTD., Shenzhen 518055, China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China.
| |
Collapse
|
2
|
Boshchenko AA, Maslov LN, Mukhomedzyanov AV, Zhuravleva OA, Slidnevskaya AS, Naryzhnaya NV, Zinovieva AS, Ilinykh PA. Peptides Are Cardioprotective Drugs of the Future: The Receptor and Signaling Mechanisms of the Cardioprotective Effect of Glucagon-like Peptide-1 Receptor Agonists. Int J Mol Sci 2024; 25:4900. [PMID: 38732142 PMCID: PMC11084666 DOI: 10.3390/ijms25094900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
The high mortality rate among patients with acute myocardial infarction (AMI) is one of the main problems of modern cardiology. It is quite obvious that there is an urgent need to create more effective drugs for the treatment of AMI than those currently used in the clinic. Such drugs could be enzyme-resistant peptide analogs of glucagon-like peptide-1 (GLP-1). GLP-1 receptor (GLP1R) agonists can prevent ischemia/reperfusion (I/R) cardiac injury. In addition, chronic administration of GLP1R agonists can alleviate the development of adverse cardiac remodeling in myocardial infarction, hypertension, and diabetes mellitus. GLP1R agonists can protect the heart against oxidative stress and reduce proinflammatory cytokine (IL-1β, TNF-α, IL-6, and MCP-1) expression in the myocardium. GLP1R stimulation inhibits apoptosis, necroptosis, pyroptosis, and ferroptosis of cardiomyocytes. The activation of the GLP1R augments autophagy and mitophagy in the myocardium. GLP1R agonists downregulate reactive species generation through the activation of Epac and the GLP1R/PI3K/Akt/survivin pathway. The GLP1R, kinases (PKCε, PKA, Akt, AMPK, PI3K, ERK1/2, mTOR, GSK-3β, PKG, MEK1/2, and MKK3), enzymes (HO-1 and eNOS), transcription factors (STAT3, CREB, Nrf2, and FoxO3), KATP channel opening, and MPT pore closing are involved in the cardioprotective effect of GLP1R agonists.
Collapse
Affiliation(s)
- Alla A. Boshchenko
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Leonid N. Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alexander V. Mukhomedzyanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Olga A. Zhuravleva
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alisa S. Slidnevskaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Natalia V. Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Arina S. Zinovieva
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Philipp A. Ilinykh
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
3
|
McLean BA, Wong CK, Campbell JE, Hodson DJ, Trapp S, Drucker DJ. Revisiting the Complexity of GLP-1 Action from Sites of Synthesis to Receptor Activation. Endocr Rev 2021; 42:101-132. [PMID: 33320179 PMCID: PMC7958144 DOI: 10.1210/endrev/bnaa032] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 02/06/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is produced in gut endocrine cells and in the brain, and acts through hormonal and neural pathways to regulate islet function, satiety, and gut motility, supporting development of GLP-1 receptor (GLP-1R) agonists for the treatment of diabetes and obesity. Classic notions of GLP-1 acting as a meal-stimulated hormone from the distal gut are challenged by data supporting production of GLP-1 in the endocrine pancreas, and by the importance of brain-derived GLP-1 in the control of neural activity. Moreover, attribution of direct vs indirect actions of GLP-1 is difficult, as many tissue and cellular targets of GLP-1 action do not exhibit robust or detectable GLP-1R expression. Furthermore, reliable detection of the GLP-1R is technically challenging, highly method dependent, and subject to misinterpretation. Here we revisit the actions of GLP-1, scrutinizing key concepts supporting gut vs extra-intestinal GLP-1 synthesis and secretion. We discuss new insights refining cellular localization of GLP-1R expression and integrate recent data to refine our understanding of how and where GLP-1 acts to control inflammation, cardiovascular function, islet hormone secretion, gastric emptying, appetite, and body weight. These findings update our knowledge of cell types and mechanisms linking endogenous vs pharmacological GLP-1 action to activation of the canonical GLP-1R, and the control of metabolic activity in multiple organs.
Collapse
Affiliation(s)
- Brent A McLean
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, Canada
| | - Chi Kin Wong
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, Canada
| | - Jonathan E Campbell
- The Department of Medicine, Division of Endocrinology, Department of Pharmacology and Cancer Biology, Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, UCL, London, UK
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, Canada
| |
Collapse
|
4
|
Abstract
Pancreatic alpha cells are generally considered the only source of glucagon secretion in humans. In the 1970s several groups investigating totally pancreatectomised animals reported that glucagon-like immunoreactive material could be detected in the gastrointestinal tract and reopened the question of an extrapancreatic source of glucagon proposed in 1948 when a hyperglycaemic substance was found in the gastrointestinal tract of dogs and rabbits. Nevertheless, over the years, controversy about the existence of extrapancreatic glucagon has flourished as it proved difficult to accurately measure fully processed 29-amino acid glucagon. Recent advances in analytical methods have increased sensitivity and specificity of glucagon assays and, furthermore, technical advances in mass spectrometry-based proteomics have made the detection of low-abundant peptides, such as glucagon, in human plasma more accurate. Here we review new data on extrapancreatic glucagon secretion in the context of historical data and recent analytical breakthroughs. Furthermore, the source, regulation and potential physiological role of extrapancreatic glucagon are discussed and ongoing challenges and knowledge-gaps are outlined.
Collapse
Affiliation(s)
- Asger Lund
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark; Department of Medicine, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Filip K Knop
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Wellhauser L, Gojska NM, Belsham DD. Delineating the regulation of energy homeostasis using hypothalamic cell models. Front Neuroendocrinol 2015; 36:130-49. [PMID: 25223866 DOI: 10.1016/j.yfrne.2014.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/28/2014] [Accepted: 09/02/2014] [Indexed: 12/27/2022]
Abstract
Attesting to its intimate peripheral connections, hypothalamic neurons integrate nutritional and hormonal cues to effectively manage energy homeostasis according to the overall status of the system. Extensive progress in the identification of essential transcriptional and post-translational mechanisms regulating the controlled expression and actions of hypothalamic neuropeptides has been identified through the use of animal and cell models. This review will introduce the basic techniques of hypothalamic investigation both in vivo and in vitro and will briefly highlight the key advantages and challenges of their use. Further emphasis will be place on the use of immortalized models of hypothalamic neurons for in vitro study of feeding regulation, with a particular focus on cell lines proving themselves most fruitful in deciphering fundamental basics of NPY/AgRP, Proglucagon, and POMC neuropeptide function.
Collapse
Affiliation(s)
- Leigh Wellhauser
- Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Nicole M Gojska
- Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Denise D Belsham
- Departments of Physiology, Medicine and OB/GYN, University of Toronto, Toronto, Ontario M5G 1A8, Canada; Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
6
|
Gaisano HY, Macdonald PE, Vranic M. Glucagon secretion and signaling in the development of diabetes. Front Physiol 2012; 3:349. [PMID: 22969729 PMCID: PMC3432929 DOI: 10.3389/fphys.2012.00349] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/10/2012] [Indexed: 12/19/2022] Open
Abstract
Normal release of glucagon from pancreatic islet α-cells promotes glucose mobilization, which counteracts the hypoglycemic actions of insulin, thereby ensuring glucose homeostasis. In treatment of diabetes aimed at rigorously reducing hyperglycemia to avoid chronic complications, the resulting hypoglycemia triggering glucagon release from α-cells is frequently impaired, with ensuing hypoglycemic complications. This review integrates the physiology of glucagon secretion regulating glucose homeostasis in vivo to single α-cell signaling, and how both become perturbed in diabetes. α-cells within the social milieu of the islet micro-organ are regulated not only by intrinsic signaling events but also by paracrine regulation, particularly by adjacent insulin-secreting β-cells and somatostatin-secreting δ-cells. We discuss the intrinsic α-cell signaling events, including glucose sensing and ion channel regulation leading to glucagon secretion. We then discuss the complex crosstalk between the islet cells and the breakdown of this crosstalk in diabetes contributing to the dysregulated glucagon secretion. Whereas, there are many secretory products released by β- and δ-cells that become deficient or excess in diabetes, we discuss the major ones, including the better known insulin and lesser known somatostatin, which act as putative paracrine on/off switches that very finely regulate α-cell secretory responses in health and diabetes. Of note in several type 1 diabetes (T1D) rodent models, blockade of excess somatostatin actions on α-cell could normalize glucagon secretion sufficient to attain normoglycemia in response to hypoglycemic assaults. There has been slow progress in fully elucidating the pathophysiology of the α-cell in diabetes because of the small number of α-cells within an islet and the islet mass becomes severely reduced and inflamed in diabetes. These limitations are just now being surmounted by new approaches.
Collapse
Affiliation(s)
- Herbert Y Gaisano
- Departments of Medicine and Physiology, University of Toronto Toronto, ON, Canada
| | | | | |
Collapse
|
7
|
|
8
|
Vranic M. Odyssey between Scylla and Charybdis through storms of carbohydrate metabolism and diabetes: a career retrospective. Am J Physiol Endocrinol Metab 2010; 299:E849-67. [PMID: 20823450 DOI: 10.1152/ajpendo.00344.2010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This research perspective allows me to summarize some of my work completed over 50 years, and it is organized in seven sections. 1) The treatment of diabetes concentrates on the liver and/or the periphery. We quantified hormonal and metabolic interactions involved in physiology and the pathogenesis of diabetes by developing tracer methods to separate the effects of diabetes on both. We collaborated in the first tracer clinical studies on insulin resistance, hypertriglyceridemia, and the Cori cycle. 2) Diabetes reflects insulin deficiency and glucagon abundance. Extrapancreatic glucagon changed the prevailing dogma and permitted precise exploration of the roles of insulin and glucagon in physiology and diabetes. 3) We established the critical role of glucagon-insulin interaction and the control of glucose metabolism during moderate exercise and of catecholamines during strenuous exercise. Deficiencies of the release and effects of these hormones were quantified in diabetes. We also revealed how acute and chronic hyperglycemia affects the expression of GLUT2 gene and protein in diabetes. 4) We outlined molecular and physiological mechanisms whereby exercise training and repetitive neurogenic stress can prevent diabetes in ZDF rats. 5) We and others established that the indirect effect of insulin plays an important role in the regulation of glucose production in dogs. We confirmed this effect in humans and demonstrated that in type 2 diabetes it is mainly the indirect effect. 6) We indicated that the muscle and the liver protected against glucose changes. 7) We described molecular mechanisms responsible for increased HPA axis in diabetes and for the diminished responses of HPA axis, catecholamines, and glucagon to hypoglycemia. We proposed a new approach to decrease the threat of hypoglycemia.
Collapse
Affiliation(s)
- Mladen Vranic
- Dept. of Physiology, Univ. of Toronto, Toronto, ON. Canada M5S 1A8.
| |
Collapse
|
9
|
Abstract
Glucagon-like peptide 1 (GLP-1) is a 30-amino acid peptide hormone produced in the intestinal epithelial endocrine L-cells by differential processing of proglucagon, the gene which is expressed in these cells. The current knowledge regarding regulation of proglucagon gene expression in the gut and in the brain and mechanisms responsible for the posttranslational processing are reviewed. GLP-1 is released in response to meal intake, and the stimuli and molecular mechanisms involved are discussed. GLP-1 is extremely rapidly metabolized and inactivated by the enzyme dipeptidyl peptidase IV even before the hormone has left the gut, raising the possibility that the actions of GLP-1 are transmitted via sensory neurons in the intestine and the liver expressing the GLP-1 receptor. Because of this, it is important to distinguish between measurements of the intact hormone (responsible for endocrine actions) or the sum of the intact hormone and its metabolites, reflecting the total L-cell secretion and therefore also the possible neural actions. The main actions of GLP-1 are to stimulate insulin secretion (i.e., to act as an incretin hormone) and to inhibit glucagon secretion, thereby contributing to limit postprandial glucose excursions. It also inhibits gastrointestinal motility and secretion and thus acts as an enterogastrone and part of the "ileal brake" mechanism. GLP-1 also appears to be a physiological regulator of appetite and food intake. Because of these actions, GLP-1 or GLP-1 receptor agonists are currently being evaluated for the therapy of type 2 diabetes. Decreased secretion of GLP-1 may contribute to the development of obesity, and exaggerated secretion may be responsible for postprandial reactive hypoglycemia.
Collapse
Affiliation(s)
- Jens Juul Holst
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Meier JJ, Gallwitz B, Nauck MA. Glucagon-like peptide 1 and gastric inhibitory polypeptide: potential applications in type 2 diabetes mellitus. BioDrugs 2004; 17:93-102. [PMID: 12641488 DOI: 10.2165/00063030-200317020-00002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although the insulinotropic actions of gastric inhibitory polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) have been known for almost 2 decades, the incretin hormones have not yet become available for clinical application. This can be explained by their unfavourable pharmacological properties. Both hormones are rapidly inactivated by the enzyme dipeptidyl peptidase IV (DPP IV), yielding biologically inactive fragments. There have been several attempts to make use of the antidiabetogenic potential of the incretin hormones. Various analogues of GLP-1 and GIP have been generated in order to achieve resistance to DPP IV degradation. The natural GLP-1 receptor agonist exendin-4, found in the saliva of the Gila monster, has a longer biological half-life after subcutaneous injection than GLP-1, and inhibition of DPP IV using, for example, pyrrolidine derivatives provides elevated concentrations of intact, biologically active GIP and GLP-1 endogenously released from the gut. A continuous intravenous infusion of native GLP-1 for a limited time may be suitable in certain clinical situations. Numerous clinical studies are currently underway to evaluate these approaches. Therefore, an antidiabetic treatment based on incretin hormones may become available within the next 5 years.
Collapse
Affiliation(s)
- Juris J Meier
- Medizinische Klinik I, St. Josef-Hospital, Klinikum der Ruhr-Universität Bochum, Bochum, Germany
| | | | | |
Collapse
|
11
|
Abstract
Glucagon-like peptide 2 (GLP-2) is a member of family of peptides derived from the proglucagon gene expressed in the intestines, pancreas and brain. Tissue-specific posttranslational processing of proglucagon leads to GLP-2 and GLP-1 secretion from the intestine and glucagon secretion from the pancreas. GLP-2 and GLP-1 are co-secreted from the enteroendocrine L-cells located in distal intestine in response to enteral nutrient ingestion, especially carbohydrate and fat. GLP-2 secretion is mediated by direct nutrient stimulation of the L-cells and indirect action from enteroendocrine and neural inputs, including GIP, gastrin-releasing peptide (GRP) and the vagus nerve. GLP-2 is secreted as a 33-amino acid peptide and is rapidly cleaved by dipeptidylpeptidase IV (DPP-IV) to a truncated peptide which acts as a weak agonist with competitive antagonistic properties. GLP-2 acts to enhance nutrient absorption by inhibiting gastric motility and secretion and stimulating nutrient transport. GLP-2 also suppresses food intake when infused centrally. The trophic actions of GLP-2 are specific for the intestine and occur via stimulation of crypt cell proliferation and suppression of apoptosis in mucosal epithelial cells. GLP-2 reduces gut permeability, bacterial translocation and proinflammatory cytokine expression under conditions of intestinal inflammation and injury. The effects of GLP-2 are mediated by a G-protein-linked receptor that is localized to the intestinal mucosa and hypothalamus. The intestinal localization of the GLP-2R to neural and endocrine cells, but not enterocytes, suggests that its actions are mediated indirectly via a secondary signaling mechanism. The implications of GLP-2 in domestic animal production are largely unexplored. However, GLP-2 may have therapeutic application in treatment of gastrointestinal injury and diarrheal diseases that occur in developing neonatal and weanling animals.
Collapse
Affiliation(s)
- D G Burrin
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA.
| | | | | |
Collapse
|
12
|
Meier JJ, Gallwitz B, Schmidt WE, Nauck MA. Glucagon-like peptide 1 as a regulator of food intake and body weight: therapeutic perspectives. Eur J Pharmacol 2002; 440:269-79. [PMID: 12007541 DOI: 10.1016/s0014-2999(02)01434-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
After ingestion of carbohydrate- and fat-rich meals, the incretin hormone glucagon-like peptide 1 (GLP-1) is secreted from the L-cells in the distal put into the circulation. Its major physiological effect lies in a strongly glucose-dependent stimulation of insulin secretion from pancreatic B-cells. Furthermore, GLP-1 suppresses glucagon secretion, stimulates B-cell neogenesis as well as proinsulin biosynthesis and inhibits gastric emptying and acid secretion. Recently, GLP-1 could be shown to reduce caloric intake and to enhance satiety, most likely via specific receptors within the central nervous system, resulting in reduced weight gain in experimental animals. In nondiabetic and Type 2 diabetic human subjects, exogenous GLP-1 reduces hunger, caloric intake and body weight. Therefore, in addition to its well-characterized antidiabetogenic effect, the anorectic effect may offer GLP-1 a potential in the pharmacotherapy of obesity. It is still unknown whether the GLP-1 effect on caloric intake is sustained after long-term treatment. Furthermore, the exact mechanisms by which the peptide exerts its biological effects have not yet been clarified. Due to the rapid degradation of native GLP-1, its therapeutic application is limited by the short half-life. Therefore, suitable modes of administration are needed in order to reach stable plasma concentrations. The present review aims to describe the role of GLP-1 in the central regulation of feeding and to discuss its possible application in the pharmacotherapy of obesity.
Collapse
Affiliation(s)
- Juris J Meier
- Medizinische Klinik I, St. Josef-Hospital, Klinikum der Ruhr-Universität Bochum, Gudrunstr. 56, Germany
| | | | | | | |
Collapse
|
13
|
Sarkar S, Subhedar N. Glucagon-like immunoreactivity in the forebrain and pituitary of the teleost, Clarias batrachus (Linn.). Gen Comp Endocrinol 2001; 121:23-31. [PMID: 11161767 DOI: 10.1006/gcen.2000.7569] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The organization of glucagon-like immunoreactivity (GLI) in the olfactory system, forebrain, and pituitary was investigated in the teleost Clarias batrachus. Weak to moderate GLI was seen in some olfactory receptor neurons and basal cells of the olfactory epithelium. Intense GLI was seen in the olfactory nerve fascicles that ran caudally to the bulb, spread over in the olfactory nerve layer, and profusely branched in the glomerular layer to form tufts organized as spherical neuropils; some of the immunoreactive fibers seem to closely enfold the mitral cells. In the inner cell layer of the bulb, some granule cells were intensely immunoreactive. Although there were thick fascicles of immunoreactive fibers in the medial olfactory tracts (MOT), the lateral olfactory tracts were generally devoid of immunoreactivity. Immunoreactive fibers in the medial olfactory tract penetrated into the telencephalon from its rostral pole and entered into the area ventralis telencephali/pars ventralis where the compact fiber bundles loosen somewhat and course dorsocaudally into the area ventralis telencephali/pars supracommissuralis just above the anterior commissure. While some immunoreactive fibers decussated in the anterior commissure, fine fibers were seen in the commissure of Goldstein. Isolated immunoreactive fibers of the medial olfactory tract were traced laterally into the area dorsalis telencephali/pars lateralis ventralis and mediodorsally into the area dorsalis telencephali/pars medialis. However, a major component of the MOT continued dorsocaudally into the thalamus and terminated in the habenula. Two immunoreactive neuronal groups and some isolated cells were seen in the periventricular region of the thalamus. Although nucleus preopticus showed no immunoreactivity, some neurons of the nucleus lateralis tuberis displayed moderate GLI. Several immunoreactive cells were seen in the pars intermedia of the pituitary gland; few were encountered in the rostral pars distalis and proximal pars distalis. Immunoreactive fibers were seen throughout the pituitary gland.
Collapse
Affiliation(s)
- S Sarkar
- Department of Pharmaceutical Sciences, Nagpur University Campus, Nagpur, 440 010, India
| | | |
Collapse
|
14
|
Putti R, Maglio M, Odierna G. An immunocytochemical study of intrapancreatic ganglia, nerve fibres and neuroglandular junctions in Brockmann bodies of the tompot blenny (Blennius gattoruggine), a marine teleost. THE HISTOCHEMICAL JOURNAL 2000; 32:607-16. [PMID: 11202157 DOI: 10.1023/a:1026740606290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The innervation of the Brockmann bodies in the teleost fish, Blennius gattoruggine, was studied using immunocytochemical techniques at both the light and electron microscopy levels. Islet innervation consisted of intrapancreatic ganglia, generally localized inside the rim of the exocrine tissue of the Brockmann bodies, in proximity to the islet, nerve fibres and nerve terminals with synaptic complexes. The intrapancreatic ganglia were of variable size, with different numbers of ganglionic cells, that appeared unipolar in section. The cell bodies showed immunoreactivity to galanin, oxytocin, peptide tyrosine tyrosine and glucagon. The extrinsic and intrinsic nerve fibres passed through the exocrine parenchyma and crossed the connectival septa and islet connectival sheath, penetrating into the islets, where they became increasingly thinner. They terminated on the endocrine cells with dilated nerve terminals. At least three types of terminals were detected, depending on the different vesicle content: peptidergic, cholinergic or adrenergic. They presented specialized synaptic structures, the neuroglandular junctions, some of which contained neurosecretory granules immunogold labelled by galanin antiserum. This new finding confirms the role of galanin as a neurotransmitter. This rich supply of innervation may be important in the regulation and integration of islet secretion.
Collapse
Affiliation(s)
- R Putti
- Dipartimento di Biologia evolutiva e comparata, Università Federico II di Napoli, Italy
| | | | | |
Collapse
|
15
|
Nussdorfer GG, Bahçelioglu M, Neri G, Malendowicz LK. Secretin, glucagon, gastric inhibitory polypeptide, parathyroid hormone, and related peptides in the regulation of the hypothalamus- pituitary-adrenal axis. Peptides 2000; 21:309-24. [PMID: 10764961 DOI: 10.1016/s0196-9781(99)00193-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Secretin, glucagon, gastric inhibitory polypeptide (GIP), and parathyroid hormone (PTH) belong, together with vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase (AC)-activating polypeptide, to a family of peptides (the VIP-secretin-glucagon family), which also includes growth hormone-releasing hormone and exendins. All the members of this peptide family possess a remarkable amino-acid sequence homology, and bind to G-protein-coupled receptors, whose signaling mechanism primarily involves AC/protein kinase A and phospholipase C/protein kinase C cascades. VIP and pituitary AC-activating polypeptide play a role in the regulation of the hypothalamus-pituitary-adrenal (HPA) axis, and in this review we survey findings that also other members of the VIP-secretin-glucagon family may have the same function. Secretin and secretin receptors are expressed in the hypothalamus and pituitary gland, and secretin inhibits adrenocorticotropic hormone (ACTH) release. No evidence is available for the presence of secretin receptors in adrenal glands, but secretin selectively depresses the glucocorticoid response to ACTH of dispersed zona fasciculata-reticularis (ZF/R) cells. Glucagon and glucagon-like peptide-1 are contained in the hypothalamus, and all the components of the HPA axis are provided with glucagon and glucagons-like-1 receptors. These peptides exert a short-term inhibitory effect on stress-induced pituitary ACTH release and depress the ZF/R cell response to ACTH by inhibiting the AC/protein kinase A cascade; they also stimulate hypothalamic arginine-vasopressin release. GIP receptors are present in the ZF/R of the normal adrenals, and are particularly abundant in some types of adrenocortical adenomas and hyperplasias. GIP, through the activation of the AC/protein kinase A cascade, evokes a sizeable glucocorticoid secretagogue effect, leading to the identification of a food/GIP-dependent Cushing's syndrome. PTH and PTH-related protein are expressed in the hypothalamus and pituitary gland, and PTH and PTH-related protein receptors in all the components of the HPA axis. Both peptides enhance ACTH and arginine-vasopressin release, as well as stimulate aldosterone and glucocorticoid secretion of dispersed zona glomerulosa and ZF/R cells, respectively. The involvement of growth hormone-releasing hormone and exendins in the functional regulation of the HPA axis has not yet been extensively investigated.
Collapse
Affiliation(s)
- G G Nussdorfer
- Department of Human Anatomy and Physiology (Section of Anatomy), University of Padua, Via Gabelli 65, I-35121, Padua, Italy.
| | | | | | | |
Collapse
|
16
|
Affiliation(s)
- T J Kieffer
- Department of Medicine, University of Alberta, Edmonton, Canada.
| | | |
Collapse
|
17
|
Plisetskaya EM, Mommsen TP. Glucagon and glucagon-like peptides in fishes. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 168:187-257. [PMID: 8843650 DOI: 10.1016/s0074-7696(08)60885-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Glucagon and glucagon-like peptides (GLPs) are coencoded in the vertebrate proglucagon gene. Large differences exist between fishes and other vertebrates in gene structure, peptide expression, peptide chemistry, and function of the hormones produced. Here we review selected aspects of glucagon and glucagon-like peptides in vertebrates with special focus on the contributions made by analysis of piscine systems. Our topics range from the history of discovery to gene structure and expression, through primary structures and regulation of plasma concentrations to physiological effects and message transduction. In fishes, the pancreas synthesizes glucagon and GLP-1, while the intestine may contribute oxyntomodulin, glucagon, GLP-1, and GLP-2. The pancreatic gene is short and lacks the sequence for GLP-2. GLP-1, which is produced exclusively in its biologically active form, is a potent metabolic hormone involved in regulation of liver glycogenolysis and gluconeogenesis. The responsiveness of isolated hepatocytes to glucagon is limited to high concentrations, while physiological concentrations of GLP-1 effectively regulate hepatic metabolism. Plasma concentrations of GLP-1 are higher than those of glucagon, and liver is identified as the major site of removal of both hormones from fish plasma. Ultimately, GLP-1 and glucagon exert effects on glucose metabolism that directly and indirectly oppose several key actions of insulin. Both glucagon and GLP-1 show very weak insulinotropic activity, if any, when tested on fish pancreas. Intracellular message transduction for glucagon, especially at slightly supraphysiological concentrations, involves cAMP and protein kinase A, while pathways for GLP are largely unknown and may involve a multitude of messengers, including cAMP. In spite of fundamental differences in GLP-1 function between fishes and mammals, fish GLP-1 is as powerful an insulinotropin for mammalian B-cells as mammalian GLP-1 is a metabolic hormone if tested on piscine liver.
Collapse
Affiliation(s)
- E M Plisetskaya
- School of Fisheries, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
18
|
Abstract
Glucagon increased the activities of alanine amino transferase (AAT), fructose-1:6-bisphosphatase (fru-P2ase) and glucose-6-phosphatase (G-6-Pase) in goat brain tissue by about 100%, 150% and 50% respectively. These increase in activities were reversed by beta-antagonists propranolol. Well known alpha-agonist and antagonist like phenylephrine and phenoxybenzamine also increased AAT and G-6-Pase activities and these increased activities were reversed by propranolol. Phenylephrine and phenoxybenzamine however did not increase brain Fru-P2ase activity. However the most interesting finding is that cerebral cortical slices could produce glucose from alanine and this glucose production was enhanced by glucagon, phenylephrine and phenoxybenzamine. Propranolol reversed the effects of these agonists and antagonist to a great extent. From all these experiments we suggest brain to be a gluconeogenic organ although much less efficient than liver.
Collapse
|
19
|
Brubaker PL, Stobie KM, Roberge JN, Lui EY, Drucker DJ. Proglucagon-derived peptides in the neuroendocrine system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1991; 291:143-59. [PMID: 1927680 DOI: 10.1007/978-1-4684-5931-9_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using several novel in vitro culture systems, we have examined the tissue-specific regulation of the proglucagon-derived peptides, at the levels of proglucagon gene expression and pGdp synthesis and secretion. Our studies indicate that proglucagon gene expression in intenstine, hypothalamus and pancreas is under the regulatory control of protein kinase A- but not a protein kinase C-dependent pathway. PKA and PKC stimulate secretion of the intestinal pGdp's, whereas only PKA stimulates secretion of the hypothalamic peptides. Pancreatic glucagon secretion in response to PKA is subject to further modulation by prevailing glucose concentrations. This diversity in intracellular regulation of the pGdp's may account for some of the tissue-specific differences in synthesis and secretion of the pGdp's that we have observed in diabetes and during development.
Collapse
Affiliation(s)
- P L Brubaker
- Department of Physiology, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
20
|
Teitelman G. Cellular and molecular analysis of pancreatic islet cell lineage and differentiation. RECENT PROGRESS IN HORMONE RESEARCH 1991; 47:259-94; discussion 294-7. [PMID: 1745822 DOI: 10.1016/b978-0-12-571147-0.50012-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- G Teitelman
- Department of Neurology, Cornell University Medical College, New York, New York 10021
| |
Collapse
|
21
|
Salazar I, Vaillant C. Glucagon-like immunoreactivity in hypothalamic neurons of the rat. Cell Tissue Res 1990; 261:355-8. [PMID: 2401007 DOI: 10.1007/bf00318677] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antisera specific for three different regions of pancreatic proglucagon were used to examine the distribution of such immunoreactivity in rat hypothalamus. Neurons in the supraoptic and paraventricular nuclei were immunoreactive with an antiserum against glucagon, but not with antisera directed towards the aminoterminal region of proglucagon (glicentin) or the glucagon-like peptide I sequence in the carboxyl-terminal region of proglucagon. These findings confirm a previous report of glucagon-like immunoreactivity in the supraoptic and paraventricular nuclei, but indicate that, while this material is immunochemically related to glucagon, it is not derived from a proglucagon-like precursor.
Collapse
Affiliation(s)
- I Salazar
- Departamento de Anatomia y Embriologia, Facultad de Veterinaria, Lugo, Spain
| | | |
Collapse
|
22
|
Abstract
In this study, we characterize the glucagon receptors on rat retinal particulate preparations. The specific binding of 125I-glucagon was saturable and reversible. Apparent equilibrium conditions were established within 30-45 min. Analysis of binding data is compatible with the existence of two classes of binding sites: a high-affinity class with a KD of 7 +/- 0.8 nM and a Bmax of 2.3 +/- 0.2 pmol/mg of protein and a low-affinity class with a KD of 84.4 +/- 2.5 nM and a Bmax of 16.5 +/- 2.3 pmol/mg of protein. The 125I-glucagon binding to retinal particulate preparation was not inhibited by 1 microM concentrations of insulin, atrial natriuretic factor, angiotensin II, somatostatin, and vasoactive intestinal peptide. However, synthetic human pancreatic growth hormone-releasing factor, hGRF-44, inhibited binding, although the concentration required for half-maximal displacement was 10-fold higher than that for native glucagon. Glucagon binding was GTP sensitive. Inclusion of 0.1 mM GTP in the binding assay produced an increase in the concentration of unlabeled glucagon required for half-maximal displacement of 125I-glucagon, from 23 to 220 nM. Glucagon stimulated adenylate cyclase formation in retinal particulate preparations. The concentration of glucagon required for half-maximal activation of retinal adenylate cyclase was 16.2 nM. These results suggest that glucagon may play a role as a neurosignal transmitter in rat retina.
Collapse
Affiliation(s)
- R Fernandez-Durango
- Department of Internal Medicine, Hospital Universitario San Carlos, Madrid, Spain
| | | | | |
Collapse
|
23
|
Haun RS, Minth CD, Andrews PC, Dixon JE. Molecular Biology of Gut Peptides. Compr Physiol 1989. [DOI: 10.1002/cphy.cp060201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
|
25
|
|
26
|
Bataille D, Blache P, Mercier F, Jarrousse C, Kervran A, Dufour M, Mangeat P, Dubrasquet M, Mallat A, Lotersztajn S. Glucagon and related peptides. Molecular structure and biological specificity. Ann N Y Acad Sci 1988; 527:168-85. [PMID: 3291691 DOI: 10.1111/j.1749-6632.1988.tb26980.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- D Bataille
- Centre CNRS-INSERM de Pharmacologie-Endocrinologie, CCIPE, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jin SL, Han VK, Simmons JG, Towle AC, Lauder JM, Lund PK. Distribution of glucagonlike peptide I (GLP-I), glucagon, and glicentin in the rat brain: an immunocytochemical study. J Comp Neurol 1988; 271:519-32. [PMID: 3385016 DOI: 10.1002/cne.902710405] [Citation(s) in RCA: 258] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although glucagonlike immunoreactants (GLIs) are present in the central nervous system of several mammalian species, their structural relationship with pancreatic proglucagon is not defined, and their precise anatomical distribution has not been studied extensively. To obtain further information about the structure and biological significance of brain GLIs, the anatomical distribution of three different antigenic determinants of pancreatic proglucagon--glucagonlike peptide I (GLP-I), glucagon, and glicentin--was mapped in the brain of colchicine-treated rats by immunocytochemistry using the avidin-biotin-peroxidase method. Neuronal cell bodies immunoreactive with antisera specific for GLP-I, glucagon, and glicentin were found only in the caudal medulla oblongata. Within the caudal medulla immunostained cell bodies were found at levels from approximately 0.55 mm rostral to the obex to 0.45 mm caudal to the obex, and were located within the nucleus of the solitary tract (NTS) and the dorsal (MdD) and ventral (MdV) parts of the medullary reticular nucleus. The NTS contained three times more immunoreactive cell bodies than the MdD and MdV, and these cell bodies were located in the midline, medial, and lateral subnuclei of the caudal third of the NTS. Immunostaining of the same cell bodies in paired adjacent sections incubated with GLP-I and glucagon antisera or glucagon and glicentin antisera provided evidence for coexistence of the three antigens within the same neurons of the NTS. Nerve fibers and terminals immunoreactive with GLP-I, glucagon, and glicentin antisera were widely distributed throughout the rat brain and there was no discernible difference in the distribution of fibers and terminals immunoreactive with each of the three antisera. The highest densities of immunostained fibers and terminals were observed in the hypothalamus, thalamus, and septal regions, and the lowest in the cortex and hindbrain. The localization of neuronal cell bodies containing GLP-I, glucagon, and glicentin within the NTS and the MdD and MdV, and the extensive distribution of immunoreactive fibers and terminals throughout the rat brain suggest a role for these peptides in the integration of autonomic as well as central nervous system functions.
Collapse
Affiliation(s)
- S L Jin
- Department of Physiology, University of North Carolina School of Medicine, Chapel Hill 27514
| | | | | | | | | | | |
Collapse
|
28
|
Faraldi G, Bonini E, Farina L, Tagliafierro G. Distribution and ontogeny of glucagon-like cells in the gastrointestinal tract of the cartilaginous fish Scyliorhinus stellaris (L.). Acta Histochem 1988; 83:57-64. [PMID: 3132018 DOI: 10.1016/s0065-1281(88)80072-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ontogeny and distribution of glucagon-like cells were studied in the gastrointestinal tract of embryos, neonates, and adults of the cartilaginous fish Scyliorhinus stellaris (L.) by immunocytochemistry. The results indicate that they appear early during embryonic development, and, in some portion of the gastrointestinal tract, even before the mucosa morphological differentiation. Immunoreactive glucagon-like cells were observed both in gastric and intestinal epithelium, being present in the pyloric portion only at a particular period of its differentiation. Some differences were observed between the embryonic and adult distributive pattern. They were more numerous in proliferative zone and sometimes were situated near other endocrine epithelial cells. These findings together with available information on trophic effects of some gastrointestinal hormonal peptides suggest a possible regulatory role of this peptide on the growth and differentiation of the gastrointestinal tract.
Collapse
Affiliation(s)
- G Faraldi
- Istituto di Anatomia Comparata dell'Università, Genova, Italy
| | | | | | | |
Collapse
|
29
|
Inokuchi A, Tomida Y, Yanaihara C, Yui R, Oomura Y, Kimura H, Hase T, Matsumoto T, Yanaihara N. Glucagon-related peptides in the rat hypothalamus. Cell Tissue Res 1986; 246:71-5. [PMID: 3779802 DOI: 10.1007/bf00219001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Immunohistochemically, nerve fibers and terminals reacting with anti-N-terminal-specific but not with anti-C-terminal-specific glucagon antiserum were observed in the following rat hypothalamic regions: paraventricular nucleus, supraoptic nucleus, anterior hypothalamus, arcuate nucleus, ventromedial hypothalamic nucleus and median eminence. Few fibers and terminals were demonstrated in the lateral hypothalamic area and dorsomedial hypothalamic nucleus. Radioimmunoassay data indicated that the concentration of gut glucagon-like immunoreactivity was higher in the ventromedial nucleus than in the lateral hypothalamic area. In food-deprived conditions, this concentration increased in both these parts. This was also verified in immunostained preparations in which a marked enhancement of gut glucagon-like immunoreactivity-containing fibers and terminals was observed in many hypothalamic regions. Several immunoreactive cell bodies were found in the ventromedial and arcuate nuclei of starved rats. Both biochemical and morphological data suggest that glucagon-related peptides may act as neurotransmitters or neuromodulators in the hypothalamus and may be involved in the central regulatory mechanism related to feeding behavior and energy metabolism.
Collapse
|
30
|
Han VK, Hynes MA, Jin C, Towle AC, Lauder JM, Lund PK. Cellular localization of proglucagon/glucagon-like peptide I messenger RNAs in rat brain. J Neurosci Res 1986; 16:97-107. [PMID: 2427741 DOI: 10.1002/jnr.490160110] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Techniques of in situ hybridization histochemistry, Northern blot hybridization, and immunocytochemistry were used to investigate the biosynthesis of glucagon-like immunoreactants (GLIs) in rat brain. Cells in the nucleus tractus solitarius of the medulla oblongata of adult rat brain hybridized to a synthetic oligonucleotide probe (GLP-I oligomer) corresponding to nucleotide sequences in pancreatic proglucagon mRNA encoding glucagon-like peptide I (GLP-I), and stained with antisera specific for two antigenic determinants of pancreatic proglucagon, glucagon, and GLP-I. These data suggest that there is de novo synthesis of proglucagon in cells of the nucleus tractus solitarius via expression of a proglucagon mRNA similar to that produced in pancreas. Previous studies have shown that cells in hypothalamus stain with GLP-I antisera, but not with glucagon antisera. However, cells in the hypothalamus did not hybridize with the GLP-I oligomer and may therefore produce a GLP-I immunoreactant that is encoded by a mRNA different from the pancreatic proglucagon-mRNA-encoding glucagon and GLP-I. Northern blot hybridizations with a cDNA probe encoding the entire pancreatic proglucagon sequence did not detect proglucagon/GLP-I mRNAs in polyadenylated RNAs (Poly A RNA) from adult rat brainstem and hypothalamus, probably because of their low abundance. Poly A RNAs from fetal rat brain, however, contained two mRNAs that hybridized to the proglucagon cDNA probe. One mRNA of 1,300 bases is the same size as pancreatic proglucagon mRNA. The second mRNA of 1,500 bases may encode the GLP-I immunoreactant detected in the hypothalamus of adult rat brain. The presence of neurons with glucagon and glucagon-like peptides in the nucleus tractus solitarius suggests a role of these peptides in gustatory and/or cardiopulmonary control.
Collapse
|
31
|
Brownstein MJ, Mezey E. Multiple chemical messengers in hypothalamic magnocellular neurons. PROGRESS IN BRAIN RESEARCH 1986; 68:161-8. [PMID: 2882551 DOI: 10.1016/s0079-6123(08)60237-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Vanderhaeghen JJ, Goldman S, Lotstra F, Van Reeth O, Deschepper C, Rossier J, Schiffmann S. Co-existence of cholecystokinin- or gastrin-like peptides with other peptides in the hypophysis and the hypothalamus. Ann N Y Acad Sci 1985; 448:334-44. [PMID: 3875305 DOI: 10.1111/j.1749-6632.1985.tb29928.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The presence of cholecystokinin and gastrin has been reported in the hypothalamohypophyseal system. These peptides present a peculiar distribution in the hypothalamic nuclei, the median eminence, and the neurohypophysis. CCK and gastrin have close relationships with other peptides like oxytocin, CRF, vasopressin, and the enkephalins; these relationships vary in different projecting areas and in different types of hypothalamic neurons. The functional role of G-CCK in neurosecretion seems to be linked to the role of these closely associated peptides and certainly deserves further investigation.
Collapse
|
33
|
|
34
|
Metz J, Ruschemeier B, Moldenhauer G. Detection of glucagon in pancreatic A-cells by monoclonal antibodies. HISTOCHEMISTRY 1985; 82:357-61. [PMID: 3891694 DOI: 10.1007/bf00494065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The production of a mouse monoclonal antibody from a hybrid myeloma and its use for the detection of glucagon in tissue sections is reported. The hybrid clone isolated after fusion of mouse myeloma cells with hyperimmune spleen cells from a mouse previously immunized with porcine glucagon allowed us a standardized and permanent source of monoclonal antibodies in a culture cell system. The monoclonal antibody (3 GL 31) specifically reacts with pancreatic A-cells in several species including pig, rabbit, tupaia belangeri and sheep. No immunoreactivity is observed against gut cells and neurons.
Collapse
|
35
|
Morley JE, Bartness TJ, Gosnell BA, Levine AS. Peptidergic regulation of feeding. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1985; 27:207-98. [PMID: 2867979 DOI: 10.1016/s0074-7742(08)60559-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
36
|
Abstract
Two human glucagon-like peptides, GLP-1 and GLP-2, which are coencoded with pancreatic glucagon in the preproglucagon gene, do not significantly inhibit [125I]monoiodoglucagon binding to rat liver and brain membranes and do not activate adenylate cyclase in liver plasma membranes. Nevertheless, GLP-1 and GLP-2 were each found to be potent stimulators of both rat hypothalamic and pituitary adenylate cyclase. Only 30-50 pM concentrations of each peptide elicited half-maximal adenylate cyclase stimulation. Our data suggest that GLP-1 and GLP-2 may be neurotransmitters and/or neuroendocrine effectors, which would account for their high degree of sequence conservation through vertebrate evolution.
Collapse
|
37
|
Triepel J, Elger KH, Mader J, Weindl A, Metz J, Forssmann WG. Neurons of the A1/A2 region in the guinea pig medulla oblongata containing glucagon, glicentin, and dopamine-beta-hydroxylase immunoreactivity. ANATOMY AND EMBRYOLOGY 1984; 170:239-45. [PMID: 6395719 DOI: 10.1007/bf00318727] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glucagon- (GLU-IR), glicentin- (GLI-IR) and dopamine-beta-hydroxylase (DBH-IR) immunoreactive neurons were mapped in the medulla oblongata of colchicine pretreated guinea pigs. Numerous GLU-IR and GLI-IR perikarya are located in the area of the nucleus ambiguus, in the adjacent formatio reticularis, and less frequently in the nucleus reticularis lateralis, the nuclei raphe obscurus and commissuralis and the caudal part of the nucleus solitarius. In these nuclei, the coexistence of glicentin and glucagon within the same perikarya is demonstrated. DBH-IR is also found in neurons of the nuclei commissuralis, solitarius and reticularis lateralis (A1/A2 system of Dahlström and Fuxe 1964, 1965). However, a coexistence of GLU/GLI-IR and DBH-IR within the same neuron is not observed.
Collapse
|
38
|
Abstract
The binding of radiolabeled glucagon to rat brain membranes was investigated. Regional distribution studies indicate higher specific binding of 125I-labeled monoiodoglucagon to olfactory tubercule, hippocampus, anterior pituitary, and amygdala membranes, with somewhat lower binding to membranes from septum, medulla, thalamus, olfactory bulb, and hypothalamus. 125I-labeled glucagon bound to rat brain synaptic plasma membrane fractions with high affinity (KD = 2.24 nM). Specific binding was greater to synaptosomal membrane fractions relative to myelin, mitochondrial nuclear, or microsomal fractions. Inclusion of 0.1 mM GTP in the binding assay reduced the glucagon binding affinity (KD = 44.5 nM). Several neuropeptides and other neuroactive substances tested did not affect binding of labeled glucagon to brain membranes. Three different glucagon analogs inhibited labeled glucagon binding. Synthetic human pancreatic growth hormone-releasing factor, hpGRF-44, also inhibited binding, although the concentration required for half-maximal displacement was 100-fold higher than for native glucagon. Addition of glucagon to brain membranes resulted in approximately equal to 3-fold maximal activation of adenylate cyclase over basal levels. Glucagon at a concentration of 4.74 nM was required for half-maximal activation of pituitary membrane adenylate cyclase. These findings provide evidence for rat brain binding sites that respond to the pancreatic form of glucagon and can transduce this binding into the activation of adenylate cyclase.
Collapse
|
39
|
Dorn A, Bernstein HG, Rinne A, Ziegler M, Hahn HJ, Ansorge S. Insulin- and glucagonlike peptides in the brain. Anat Rec (Hoboken) 1983; 207:69-77. [PMID: 6356989 DOI: 10.1002/ar.1092070108] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cellular localization and regional distribution of insulin- and glucagonlike substance, C-peptide-like immunoreactivity, thiol:protein disulphide oxidoreductase, TPO (E.C.1.8.4.2.), and insulin/glucagon-specific proteinase, ISP (E.C.3.4.22.-), are studied in the CNS of man, adult and juvenile rats, mice, tortoises, and frogs by use of immunohistochemistry. Furthermore, the content of immunoreactive insulin, glucagon, and C-peptide was estimated in human cadaver brains by radioimmunoassay. It could be shown that insulinlike immunoreactive material is widely distributed in the human brain and the CNS of juvenile rats as well as in mice, whereas in the CNS of adult rats and nonmammalian animals (frogs, tortoises) the polypeptide is restricted to a few nerve cell populations. C-peptide immunoreactivity was demonstrated in human CNS in the same nerve cells as insulin. By use of two different glucagon-antisera it was revealed that gut-type glucagon occurs in many nerve cells of human and mouse brains, as well as in the CNS of juvenile rats. On the other hand, pancreas-type glucagon was less widely distributed in the human brain and nearly not detectable in the CNS of mice and rats. With the exception of neurosecretory nerve cells, there was a high degree of coincidence between the localization of insulin and TPO. The immunoreaction against the ISP antiserum was weak, but correlated well with the distribution of insulin-immunoreactivity. The occurrence of TPO and ISP in the brain demonstrates the ability of nervous tissue to degrade insulin and glucagon. By radioimmunoassay it was established that human brain contains insulin, glucagon and C-peptide at concentrations that exceed blood levels. We conclude from our data that, at least in part, cerebral insulin and glucagon are products of the brain itself.
Collapse
|
40
|
Lund PK, Goodman RH, Montminy MR, Dee PC, Habener JF. Anglerfish islet pre-proglucagon II. Nucleotide and corresponding amino acid sequence of the cDNA. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32858-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
41
|
|
42
|
Sladek CD. Regulation of vasopressin release by neurotransmitters, neuropeptides and osmotic stimuli. PROGRESS IN BRAIN RESEARCH 1983; 60:71-90. [PMID: 6198689 DOI: 10.1016/s0079-6123(08)64376-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
43
|
Pittman QJ, Lawrence D, Lederis K. Presynaptic interactions in the neurohypophysis: endogenous modulators of release. PROGRESS IN BRAIN RESEARCH 1983; 60:319-32. [PMID: 6665148 DOI: 10.1016/s0079-6123(08)64399-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
44
|
Flanders KC, Mar DH, Folz RJ, England RD, Coolican SA, Harris DE, Floyd AD, Gurd RS. Semisynthetic derivatives of glucagon: (des-His1)N epsilon-acetimidoglucagon and N alpha-Biotinyl-N epsilon-acetimidoglucagon. Biochemistry 1982; 21:4244-51. [PMID: 7126542 DOI: 10.1021/bi00261a010] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
N epsilon-Acetimidoglucagon to be used for semisynthesis was prepared by reacting glucagon with methyl acetimidate hydrochloride at pH 10.2, favoring acetimidation of the sole epsilon-amino group. N epsilon-Acetimidoglucagon was isolated from the crude acetimidoglucagon mixture by anion-exchange chromatography at pH 9.4, producing a derivative which was identical with native glucagon on isoelectric focusing and which by amino acid analysis had greater than 98% of the lysine blocked. The yield was greater than that obtained when tetrahydrophthalic anhydride was used as a chromatographic handle to remove peptides with unreacted amino groups. N epsilon-Acetimidoglucagon closely resembled native glucagon in its biological activity and binding affinity, eliminating the need for deprotection. Semisynthetic N alpha-biotinyl-N epsilon-acetimidoglucagon, prepared by reacting (N-hydroxysuccinimido)biotin with N epsilon-acetimidoglucagon and purified by cation-exchange chromatography, was homogeneous upon isoelectric focusing (pI = 5.2) and exhibited 1.2% of the binding affinity, 2.4% of the biological potency, and 30% of the maximum activity of the native hormone. Preliminary fluorescence microscopy demonstrated binding of N alpha-biotinyl-N epsilon-acetimidoglucagon to glucagon specific receptors following exposure to fluorescein-labeled avidin. Capping of labeled receptors could be visualized with time. (Des-His1)N epsilon-acetimidoglucagon, prepared via a manual Edman degradation of N epsilon-acetimidoglucagon and isolated by cation-exchange chromatography, was homogeneous upon isoelectric focusing (pI = 5.2). The second residue, serine, has also been removed. Semisynthetic coupling of alternative residues to such derivatives will provide insight into the role of the amino-terminal residues in mediating the biological actions of the hormone.
Collapse
|
45
|
Watson SJ, Seidah NG, Chrétien M. The carboxy terminus of the precursor to vasopressin and neurophysin: immunocytochemistry in rat brain. Science 1982; 217:853-5. [PMID: 6125034 DOI: 10.1126/science.6125034] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A pituitary glycopeptide whose amino acid sequence was previously identified has now been recognized as the final portion of the precursor to arginine vasopressin and its associated neurophysin. Immunocytochemical techniques with antiserums against this 39 amino acid peptide and vasopressin were used to study their distribution in the rat central nervous system. The peptide is located in vasopressin-synthesizing cells in the neurosecretory magnocellular nuclei. Positively stained fibers project from the magnocellular nuclei through the median eminence to the posterior pituitary. Studies of the homozygous Brattleboro rat, which is known to be deficient in the production of vasopressin and its related neurophysin, also show the absence of immunoreactivity to this peptide. These immunocytochemical data strongly indicate that the peptide is synthesized with vasopressin.
Collapse
|
46
|
Watson SJ, Akil H, Fischli W, Goldstein A, Zimmerman E, Nilaver G, van wimersma Griedanus TB. Dynorphin and vasopressin: common localization in magnocellular neurons. Science 1982; 216:85-7. [PMID: 6121376 DOI: 10.1126/science.6121376] [Citation(s) in RCA: 350] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The opioid peptide dynorphin is widely distributed in neuronal tissue of rats. By immunocytochemical methods, it was shown previously that dynorphin-like immunoreactivity is present in the posterior pituitary and the cells of the hypothalamic neurosecretory magnocellular nuclei which also are responsible for the synthesis of oxytocin, vasopressin, and their neurophysins. By using an affinity-purified antiserum to the non-enkephalin part of the dynorphin molecule it has now been demonstrated that dynorphin and vasopressin occur in the same hypothalamic cells of rats, whereas dynorphin and oxytocin occur in separate cells. Homozygous Brattleboro rats (deficient in vasopressin) have magnocellular neurons that contain dynorphin separate from oxytocin. Thus dynorphin and vasopressin, although they occur in the same cells, appear to be under separate genetic control and presumably arise from different precursors.
Collapse
|
47
|
Sanders DJ, Zahedi-Asl S, Marr AP. Glucagon and CCK in human brain: controls and patients with senile dementia of Alzheimer type. PROGRESS IN BRAIN RESEARCH 1982; 55:465-71. [PMID: 7163497 DOI: 10.1016/s0079-6123(08)64215-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
48
|
O'Donohue TL, Charlton CG, Miller RL, Boden G, Jacobowitz DM. Identification, characterization, and distribution of secretin immunoreactivity in rat and pig brain. Proc Natl Acad Sci U S A 1981; 78:5221-4. [PMID: 6946469 PMCID: PMC320380 DOI: 10.1073/pnas.78.8.5221] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Secretin immunoreactivity was detected in the central nervous system of the rat and pig with a highly specific radioimmunoassay. The secretin immunoreactivity in the rat and pig brain and duodenum extracts was fractionated by using a reverse-phase high-pressure liquid chromatographic system. The immunoreactive secretin from pig brain and duodenum coeluted precisely with synthetic porcine secretin. However, immunoreactive secretin extracted from rat brain and duodenum eluted slightly before porcine secretin. These data suggest a slight difference in the structure of rat and pig secretin. The detection of secretin in the brain lays the groundwork for studies to determine the role of the peptide in central nervous system function.
Collapse
|