1
|
Igarashi K, Funakoshi M, Kato S, Moriwaki T, Kato Y, Zhang-Akiyama QM. CiApex1 has AP endonuclease activity and abrogated AP site repair disrupts early embryonic development in Ciona intestinalis. Genes Genet Syst 2019; 94:81-93. [PMID: 30930342 DOI: 10.1266/ggs.18-00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Apurinic/apyrimidinic (AP) sites are the most common form of cytotoxic DNA damage. Since AP sites inhibit DNA replication and transcription, repairing them is critical for cell growth. However, the significance of repairing AP sites during early embryonic development has not yet been clearly determined. Here, we focused on APEX1 from the ascidian Ciona intestinalis (CiApex1), a homolog of human AP endonuclease 1 (APEX1), and examined its role in early embryonic development. Recombinant CiApex1 protein complemented the drug sensitivities of an AP endonuclease-deficient Escherichia coli mutant, and exhibited Mg2+-dependent AP endonuclease activity, like human APEX1, in vitro. Next, the effects of abnormal AP site repair on embryonic development were investigated. Treatment with methyl methanesulfonate, which alkylates DNA bases and generates AP sites, induced abnormal embryonic development. This abnormal phenotype was also caused by treatment with methoxyamine, which inhibits AP endonuclease activity. Furthermore, we constructed dominant-negative CiApex1, which inhibits CiApex1 action, and found that its expression impaired embryonic growth. These results suggested that AP site repair is essential for embryonic development and CiApex1 plays an important role in AP site repair during early embryonic development in C. intestinalis.
Collapse
Affiliation(s)
- Kento Igarashi
- Laboratory of Stress Response Biology, Department of Biological Sciences, Graduate School of Science, Kyoto University.,Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Masafumi Funakoshi
- Laboratory of Stress Response Biology, Department of Biological Sciences, Graduate School of Science, Kyoto University
| | - Seiji Kato
- Laboratory of Stress Response Biology, Department of Biological Sciences, Graduate School of Science, Kyoto University
| | - Takahito Moriwaki
- Laboratory of Stress Response Biology, Department of Biological Sciences, Graduate School of Science, Kyoto University.,Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University
| | - Yuichi Kato
- Laboratory of Stress Response Biology, Department of Biological Sciences, Graduate School of Science, Kyoto University.,Engineering Biology Research Center, Kobe University
| | - Qiu-Mei Zhang-Akiyama
- Laboratory of Stress Response Biology, Department of Biological Sciences, Graduate School of Science, Kyoto University
| |
Collapse
|
2
|
Yoon JH, Roy Choudhury J, Park J, Prakash S, Prakash L. Translesion synthesis DNA polymerases promote error-free replication through the minor-groove DNA adduct 3-deaza-3-methyladenine. J Biol Chem 2017; 292:18682-18688. [PMID: 28939775 PMCID: PMC5682974 DOI: 10.1074/jbc.m117.808659] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/19/2017] [Indexed: 11/06/2022] Open
Abstract
N3-Methyladenine (3-MeA) is formed in DNA by reaction with S-adenosylmethionine, the reactive methyl donor, and by reaction with alkylating agents. 3-MeA protrudes into the DNA minor groove and strongly blocks synthesis by replicative DNA polymerases (Pols). However, the mechanisms for replicating through this lesion in human cells remain unidentified. Here we analyzed the roles of translesion synthesis (TLS) Pols in the replication of 3-MeA-damaged DNA in human cells. Because 3-MeA has a short half-life in vitro, we used the stable 3-deaza analog, 3-deaza-3-methyladenine (3-dMeA), which blocks the DNA minor groove similarly to 3-MeA. We found that replication through the 3-dMeA adduct is mediated via three different pathways, dependent upon Polι/Polκ, Polθ, and Polζ. As inferred from biochemical studies, in the Polι/Polκ pathway, Polι inserts a nucleotide (nt) opposite 3-dMeA and Polκ extends synthesis from the inserted nt. In the Polθ pathway, Polθ carries out both the insertion and extension steps of TLS opposite 3-dMeA, and in the Polζ pathway, Polζ extends synthesis following nt insertion by an as yet unidentified Pol. Steady-state kinetic analyses indicated that Polι and Polθ insert the correct nt T opposite 3-dMeA with a much reduced catalytic efficiency and that both Pols exhibit a high propensity for inserting a wrong nt opposite this adduct. However, despite their low fidelity of synthesis opposite 3-dMeA, TLS opposite this lesion replicates DNA in a highly error-free manner in human cells. We discuss the implications of these observations for TLS mechanisms in human cells.
Collapse
Affiliation(s)
- Jung-Hoon Yoon
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-1061
| | - Jayati Roy Choudhury
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-1061
| | - Jeseong Park
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-1061
| | - Satya Prakash
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-1061
| | - Louise Prakash
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-1061
| |
Collapse
|
3
|
Akamatsu K, Shikazono N, Saito T. New method for estimating clustering of DNA lesions induced by physical/chemical mutagens using fluorescence anisotropy. Anal Biochem 2017; 536:78-89. [PMID: 28827125 DOI: 10.1016/j.ab.2017.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/02/2017] [Accepted: 08/11/2017] [Indexed: 12/31/2022]
Abstract
We have developed a new method for estimating the localization of DNA damage such as apurinic/apyrimidinic sites (APs) on DNA using fluorescence anisotropy. This method is aimed at characterizing clustered DNA damage produced by DNA-damaging agents such as ionizing radiation and genotoxic chemicals. A fluorescent probe with an aminooxy group (AlexaFluor488) was used to label APs. We prepared a pUC19 plasmid with APs by heating under acidic conditions as a model for damaged DNA, and subsequently labeled the APs. We found that the observed fluorescence anisotropy (robs) decreases as averaged AP density (λAP: number of APs per base pair) increases due to homo-FRET, and that the APs were randomly distributed. We applied this method to three DNA-damaging agents, 60Co γ-rays, methyl methanesulfonate (MMS), and neocarzinostatin (NCS). We found that robs-λAP relationships differed significantly between MMS and NCS. At low AP density (λAP < 0.001), the APs induced by MMS seemed to not be closely distributed, whereas those induced by NCS were remarkably clustered. In contrast, the AP clustering induced by 60Co γ-rays was similar to, but potentially more likely to occur than, random distribution. This simple method can be used to estimate mutagenicity of ionizing radiation and genotoxic chemicals.
Collapse
Affiliation(s)
- Ken Akamatsu
- Radiation DNA Damage Research Group, Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan.
| | - Naoya Shikazono
- Radiation DNA Damage Research Group, Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Takeshi Saito
- Radiation Biochemistry and Biological Function, Research Reactor Institute, Kyoto University, Kumatori, Sennan, Osaka 590-0494, Japan
| |
Collapse
|
4
|
Malvezzi S, Angelov T, Sturla SJ. Minor Groove 3-Deaza-Adenosine Analogues: Synthesis and Bypass in Translesion DNA Synthesis. Chemistry 2016; 23:1101-1109. [PMID: 27862447 DOI: 10.1002/chem.201604289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Indexed: 11/07/2022]
Abstract
Anticancer drugs that alkylate DNA in the minor groove may give rise to 3-alkyl-adenosine adducts that interfere with replication, inducing apoptosis in rapidly dividing cancer cells. However, translesion DNA synthesis (TLS) by polymerase enzymes (Pols) with the capacity to bypass DNA adducts may contribute to damage tolerance and drug resistance. 3-Alkyl-adenosine adducts are unstable and depurinate, which is a barrier to addressing chemical and enzymatic aspects of how they impact the progress of DNA Pols. To characterize structure-based relationships of 3-adenine alkylation relevant to cancer drugs on duplex stability and DNA Pol-catalyzed DNA synthesis, we synthesized stable 3-deaza-3-alkyl-adenosine analogues, including 3-deaza-3-phenethyl-adenosine and 3-deaza-3-methoxynaphthylethyl-adenosine, and incorporated them into oligonucleotides. A moderate reduction of duplex stability was observed on the basis of thermal denaturation data. Replication studies using purified Y-family human DNA Pols hPol η, κ, and ι indicated that these enzymes can perform TLS over the modified bases. hPol η had higher misincorporation rates when synthesizing opposite the modified bases compared with adenine, whereas hPol κ and ι maintained high fidelity. These results provide insight into how alterations in chemical structure reduce bypass of minor-groove adducts, and provide novel chemical probes for evaluating minor-groove DNA alkylation.
Collapse
Affiliation(s)
- Stefano Malvezzi
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Todor Angelov
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| |
Collapse
|
5
|
Nicklas JA, Carter EW, Albertini RJ. Both PIGA and PIGL mutations cause GPI-a deficient isolates in the Tk6 cell line. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:663-73. [PMID: 25970100 PMCID: PMC4607541 DOI: 10.1002/em.21953] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/27/2015] [Indexed: 05/21/2023]
Abstract
Molecular analysis of proaerolysin selected glycosylphosphatidylinositol anchor (GPI-a) deficient isolates in the TK6 cell line was performed. Initial studies found that the expected X-linked PIGA mutations were rare among the spontaneous isolates but did increase modestly after ethyl methane sulfate (EMS) treatment (but to only 50% of isolates). To determine the molecular bases of the remaining GPI-a deficient isolates, real-time analysis for all the 25 autosomal GPI-a pathway genes was performed on the isolates without PIGA mutations, determining that PIGL mRNA was absent for many. Further analysis determined these isolates had several different homozygous deletions of the 5' region of PIGL (17p12-p22) extending 5' (telomeric) through NCOR1 and some into the TTC19 gene (total deletion >250,000 bp). It was determined that the TK6 parent had a hemizygous deletion in 17p12-p22 (275,712 bp) extending from PIGL intron 2 into TTC19 intron 7. Second hit deletions in the other allele in the GPI-a deficient isolates led to the detected homozygous deletions. Several of the deletion breakpoints including the original first hit deletion were sequenced. As strong support for TK6 having a deletion, a number of the isolates without PIGA mutations nor homozygous PIGL deletions had point mutations in the PIGL gene. These studies show that the GPI-a mutation studies using TK6 cell line could be a valuable assay detecting point and deletion mutations in two genes simultaneously.
Collapse
Affiliation(s)
- Janice A. Nicklas
- Department of Pediatrics, University of Vermont College of Medicine, Burlington, VT
- Correspondence to: Janice A. Nicklas, Genetic Toxicology Laboratory, University of Vermont, 665 Spear St., Burlington, VT 05405,
| | - Elizabeth W. Carter
- Center for Clinical and Translational Science, Biomedical Informatics Unit, University of Vermont, Burlington,VT
| | - Richard J. Albertini
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT
| |
Collapse
|
6
|
Koivisto P. Regio and stereospecific DNA adduct formation in mouse lung at N6 and N7 position of adenine and guanine after 1,3 butadiene inhalation exposure. Biomarkers 2015; 3:385-97. [PMID: 23899391 DOI: 10.1080/135475098231039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Butadiene monoepoxide (BMO) alkylated guanine N7 and adenine N 6 adducts were prepared and enriched by solid phase extraction and HPLC. The purified adducts were analysed by a modified 32P-postlabelling assay, which utilized one dimensional TLC chromatography and a subsequent HPLC analysis with UV and radioactivity detectors. In vitro with Ct-DNA the formation of N7-dGMP and N 6-dAMP adducts were linear at a concentration range of 44 to 870 nmol of BMO per mg DNA at physiological pH. N7- dGMP and N 6-dAMP adducts were formed in a ratio of 200:1. In dGMP and in dAMP 48 % and 86 % of adducts were covalently bound to the C-2 carbon of BMO. CD-1 mice were inhalation exposed to butadiene for 5 days and 6 h per day. The N7-dGMP adduct level in lung samples of animals exposed to 200, 500 and 1300 ppm was 2.8 +/- 0.9 fmol, 11 +/- 2.0 fmol and 30 +/- 6.7 fmol in 10 mug DNA, respectively. The level of N 6-dAMP adducts in lung samples after 500 ppm and 1300 ppm exposure was 0.09 +/- 0.06 fmol and 0.11 +/- 0.05 fmol in 10 mug DNA. At 200 ppm the adduct level was below the detection limit. A sub-group of animals exposed to 1300 ppm was killed 3 weeks after the last exposure. N7-dGMP adducts were not detected but the level of N 6-dAMP adducts was not affected. N7-dGMP adducts were formed in a clear stereospecific manner in vivo. S -BMO adducts were the main product and represented 77 % (n = 4, SD = 2%) of total BMO adducts. No clear conclusion can be drawn about the enantiospecific DNA binding at the N 6 position of dAMP, because of the poor separation of the enantiomers. However, we could separate regioisomeric adducts which indicated that C-2 adducts represented 69 +/- 3 % of the total N 6 adducts formed in mice lung DNA. This observation is supported by the data derived from in vitro DNA experiments but is different to our previously published data, which indicates the 2:1 (C-1:C-2) ratio in regioisomer formation in nucleotides or nucleosides. We suggest that the data presented in this communication indicate a different mechanism between nucleotides and DNA in BMO-derived adduct formation- Dimroth rearrangement dominates in nucleotides, but in double stranded DNA a direct alkylation is probably the major mechanism of adduct formation.
Collapse
|
7
|
Chen HJC, Lin CR. Simultaneous quantification of ethylpurine adducts in human urine by stable isotope dilution nanoflow liquid chromatography nanospray ionization tandem mass spectrometry. J Chromatogr A 2013; 1322:69-73. [DOI: 10.1016/j.chroma.2013.10.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 11/28/2022]
|
8
|
Ito M, Ohba S, Gaensler K, Ronen SM, Mukherjee J, Pieper RO. Early Chk1 phosphorylation is driven by temozolomide-induced, DNA double strand break- and mismatch repair-independent DNA damage. PLoS One 2013; 8:e62351. [PMID: 23667469 PMCID: PMC3646831 DOI: 10.1371/journal.pone.0062351] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 03/21/2013] [Indexed: 01/06/2023] Open
Abstract
Temozolomide (TMZ) is a DNA methylating agent used to treat brain cancer. TMZ-induced O6-methylguanine adducts, in the absence of repair by O6-methylguanine DNA methyltransferase (MGMT), mispair during DNA replication and trigger cycles of futile mismatch repair (MMR). Futile MMR in turn leads to the formation of DNA single and double strand breaks, Chk1 and Chk2 phosphorylation/activation, cell cycle arrest, and ultimately cell death. Although both pChk1 and pChk2 are considered to be biomarkers of TMZ-induced DNA damage, cell-cycle arrest, and TMZ induced cytotoxicity, we found that levels of pChk1 (ser345), its downstream target pCdc25C (ser216), and the activity of its upstream activator ATR, were elevated within 3 hours of TMZ exposure, long before the onset of TMZ-induced DNA double strand breaks, Chk2 phosphorylation/activation, and cell cycle arrest. Furthermore, TMZ-induced early phosphorylation of Chk1 was noted in glioma cells regardless of whether they were MGMT-proficient or MGMT-deficient, and regardless of their MMR status. Early Chk1 phosphorylation was not associated with TMZ-induced reactive oxygen species, but was temporally associated with TMZ-induced alkalai-labile DNA damage produced by the non-O6-methylguanine DNA adducts and which, like Chk1 phosphorylation, was transient in MGMT-proficient cells but persistent in MGMT-deficient cells. These results re-define the TMZ-induced DNA damage response, and show that Chk1 phosphorylation is driven by TMZ-induced mismatch repair-independent DNA damage independently of DNA double strand breaks, Chk2 activation, and cell cycle arrest, and as such is a suboptimal biomarker of TMZ-induced drug action.
Collapse
Affiliation(s)
- Motokazu Ito
- Department of Neurological Surgery, University of California-San Francisco, San Francisco, California, United States of America
- The Brain Tumor Research Center, University of California-San Francisco, San Francisco, California, United States of America
| | - Shigeo Ohba
- Department of Neurological Surgery, University of California-San Francisco, San Francisco, California, United States of America
- The Brain Tumor Research Center, University of California-San Francisco, San Francisco, California, United States of America
| | - Karin Gaensler
- Department of Hematology/Oncology, University of California-San Francisco, San Francisco, California, United States of America
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California, United States of America
- The Brain Tumor Research Center, University of California-San Francisco, San Francisco, California, United States of America
| | - Joydeep Mukherjee
- Department of Neurological Surgery, University of California-San Francisco, San Francisco, California, United States of America
- The Brain Tumor Research Center, University of California-San Francisco, San Francisco, California, United States of America
| | - Russell O. Pieper
- Department of Neurological Surgery, University of California-San Francisco, San Francisco, California, United States of America
- The Brain Tumor Research Center, University of California-San Francisco, San Francisco, California, United States of America
- * E-mail: .
| |
Collapse
|
9
|
Ström CE, Mortusewicz O, Finch D, Parsons JL, Lagerqvist A, Johansson F, Schultz N, Erixon K, Dianov GL, Helleday T. CK2 phosphorylation of XRCC1 facilitates dissociation from DNA and single-strand break formation during base excision repair. DNA Repair (Amst) 2011; 10:961-9. [PMID: 21840775 DOI: 10.1016/j.dnarep.2011.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 07/05/2011] [Accepted: 07/14/2011] [Indexed: 10/17/2022]
Abstract
CK2 phosphorylates the scaffold protein XRCC1, which is required for efficient DNA single-strand break (SSB) repair. Here, we express an XRCC1 protein (XRCC1(ckm)) that cannot be phosphorylated by CK2 in XRCC1 mutated EM9 cells and show that the role of this post-translational modification gives distinct phenotypes in SSB repair and base excision repair (BER). Interestingly, we find that fewer SSBs are formed during BER after treatment with the alkylating agent dimethyl sulfate (DMS) in EM9 cells expressing XRCC1(ckm) (CKM cells) or following inhibition with the CK2 inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT). We also show that XRCC1(ckm) protein has a higher affinity for DNA than wild type XRCC1 protein and resides in an immobile fraction on DNA, in particular after damage. We propose a model whereby the increased affinity for DNA sequesters XRCC1(ckm) and the repair enzymes associated with it, at the repair site, which retards kinetics of BER. In conclusion, our results indicate that phosphorylation of XRCC1 by CK2 facilitates the BER incision step, likely by promoting dissociation from DNA.
Collapse
Affiliation(s)
- Cecilia E Ström
- Department of Genetics, Microbiology and Toxicology, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Benson RW, Norton MD, Lin I, Du Comb WS, Godoy VG. An active site aromatic triad in Escherichia coli DNA Pol IV coordinates cell survival and mutagenesis in different DNA damaging agents. PLoS One 2011; 6:e19944. [PMID: 21614131 PMCID: PMC3096655 DOI: 10.1371/journal.pone.0019944] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 04/07/2011] [Indexed: 12/16/2022] Open
Abstract
DinB (DNA Pol IV) is a translesion (TLS) DNA polymerase, which inserts a nucleotide opposite an otherwise replication-stalling N(2)-dG lesion in vitro, and confers resistance to nitrofurazone (NFZ), a compound that forms these lesions in vivo. DinB is also known to be part of the cellular response to alkylation DNA damage. Yet it is not known if DinB active site residues, in addition to aminoacids involved in DNA synthesis, are critical in alkylation lesion bypass. It is also unclear which active site aminoacids, if any, might modulate DinB's bypass fidelity of distinct lesions. Here we report that along with the classical catalytic residues, an active site "aromatic triad", namely residues F12, F13, and Y79, is critical for cell survival in the presence of the alkylating agent methyl methanesulfonate (MMS). Strains expressing dinB alleles with single point mutations in the aromatic triad survive poorly in MMS. Remarkably, these strains show fewer MMS- than NFZ-induced mutants, suggesting that the aromatic triad, in addition to its role in TLS, modulates DinB's accuracy in bypassing distinct lesions. The high bypass fidelity of prevalent alkylation lesions is evident even when the DinB active site performs error-prone NFZ-induced lesion bypass. The analyses carried out with the active site aromatic triad suggest that the DinB active site residues are poised to proficiently bypass distinctive DNA lesions, yet they are also malleable so that the accuracy of the bypass is lesion-dependent.
Collapse
Affiliation(s)
- Ryan W. Benson
- Department of Biology, Northeastern University, Boston, Massachusetts,
United States of America
| | - Matthew D. Norton
- Department of Biology, Northeastern University, Boston, Massachusetts,
United States of America
| | - Ida Lin
- Department of Biology, Northeastern University, Boston, Massachusetts,
United States of America
| | - William S. Du Comb
- Department of Biology, Northeastern University, Boston, Massachusetts,
United States of America
| | - Veronica G. Godoy
- Department of Biology, Northeastern University, Boston, Massachusetts,
United States of America
| |
Collapse
|
11
|
Beard BC, Trobridge GD, Ironside C, McCune JS, Adair JE, Kiem HP. Efficient and stable MGMT-mediated selection of long-term repopulating stem cells in nonhuman primates. J Clin Invest 2010; 120:2345-54. [PMID: 20551514 PMCID: PMC2898586 DOI: 10.1172/jci40767] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 04/21/2010] [Indexed: 12/23/2022] Open
Abstract
HSC transplantation using genetically modified autologous cells is a promising therapeutic strategy for various genetic diseases, cancer, and HIV. However, for many of these conditions, the current efficiency of gene transfer to HSCs is not sufficient for clinical use. The ability to increase the percentage of gene-modified cells following transplantation is critical to overcoming this obstacle. In vivo selection with mutant methylguanine methyltransferase (MGMTP140K) has been proposed to overcome low gene transfer efficiency to HSCs. Previous studies have shown efficient in vivo selection in mice and dogs but only transient selection in primates. Here, we report efficient and stable MGMTP140K-mediated multilineage selection in both macaque and baboon nonhuman primate models. Treatment consisting of both O6-benzylguanine (O6BG) and N,N'-bis(2-chloroethyl)-N-nitroso-urea (BCNU) stably increased the percentage of transgene-expressing cells from a range of initial levels of engrafted genetically modified cells, with the longest follow-up after drug treatment occurring over 2.2 years. Drug treatment was well tolerated, and selection occurred in myeloid, lymphoid, and erythroid cells as well as platelets. Retrovirus integration site analysis before and after drug treatments confirmed the presence of multiple clones. These nonhuman primate studies closely model a clinical setting and should have broad applications for HSC gene therapy targeting human diseases of malignant, genetic, and infectious nature, including HIV.
Collapse
Affiliation(s)
- Brian C. Beard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Medicine, Division of Hematology, and
Department of Pharmacy, University of Washington, Seattle Washington, USA
| | - Grant D. Trobridge
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Medicine, Division of Hematology, and
Department of Pharmacy, University of Washington, Seattle Washington, USA
| | - Christina Ironside
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Medicine, Division of Hematology, and
Department of Pharmacy, University of Washington, Seattle Washington, USA
| | - Jeannine S. McCune
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Medicine, Division of Hematology, and
Department of Pharmacy, University of Washington, Seattle Washington, USA
| | - Jennifer E. Adair
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Medicine, Division of Hematology, and
Department of Pharmacy, University of Washington, Seattle Washington, USA
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Medicine, Division of Hematology, and
Department of Pharmacy, University of Washington, Seattle Washington, USA
| |
Collapse
|
12
|
Chao MR, Chang YZ, Wong RH, Hu CW. Time course evaluation of N-nitrosodialkylamines-induced DNA alkylation and oxidation in liver of mosquito fish. Mutat Res 2009; 660:33-39. [PMID: 19007796 DOI: 10.1016/j.mrfmmm.2008.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/03/2008] [Accepted: 10/08/2008] [Indexed: 05/27/2023]
Abstract
Here we simultaneously measured N7-alkylguanines and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in liver of small fish, respectively, to assess the time course of the formation and removal of alkylation and oxidative damage to DNA caused by N-nitrosodialkylamines. Mosquito fish (Gambusia affinis) were killed at various times during (4 days) and post-exposure (16 days) to N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) alone or their combination with concentrations of 10 and 50mg/l. The modified guanine adducts were sensitively and selectively quantitated by isotope-dilution LC-MS/MS methods. During exposure, N7-methylguanine (N7-MeG) and N7-ethylguanine (N7-EtG) in liver DNA increased with the duration and dose of N-nitrosodialkylamine exposure, while 8-oxodG was dose-dependently induced within 1 day. It was found that NDMA formed substantially more N7-alkylated guanines and 8-oxodG than NDEA on the basis of adducts formed per micromolar concentration, suggesting that NDMA can be more easily bioactivated than NDEA to form reactive alkylating agents with the concomitant formation of oxygen radicals. After cessation of exposure, N7-alkylguanines remained elevated for 1 day and then gradually decreased over time but still higher than the background levels, even at day 16 (half-lives of 7-8 days). However, 8-oxodG was excised quickly from liver DNA and returned to the background level within 4 days post-exposure (half-lives less than 2 days). Taken together, this study firstly demonstrated that in addition to alkylation, N-nitrosodialkylamines can concurrently cause oxidative damage to DNA in vivo.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | | | | | | |
Collapse
|
13
|
Plosky BS, Frank EG, Berry DA, Vennall GP, McDonald JP, Woodgate R. Eukaryotic Y-family polymerases bypass a 3-methyl-2'-deoxyadenosine analog in vitro and methyl methanesulfonate-induced DNA damage in vivo. Nucleic Acids Res 2008; 36:2152-62. [PMID: 18281311 PMCID: PMC2367705 DOI: 10.1093/nar/gkn058] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
N3-methyl-adenine (3MeA) is the major cytotoxic lesion formed in DNA by SN2 methylating agents. The lesion presumably blocks progression of cellular replicases because the N3-methyl group hinders interactions between the polymerase and the minor groove of DNA. However, this hypothesis has yet to be rigorously proven, as 3MeA is intrinsically unstable and is converted to an abasic site, which itself is a blocking lesion. To circumvent these problems, we have chemically synthesized a 3-deaza analog of 3MeA (3dMeA) as a stable phosphoramidite and have incorporated the analog into synthetic oligonucleotides that have been used in vitro as templates for DNA replication. As expected, the 3dMeA lesion blocked both human DNA polymerases α and δ. In contrast, human polymerases η, ι and κ, as well as Saccharomyces cerevisiae polη were able to bypass the lesion, albeit with varying efficiencies and accuracy. To confirm the physiological relevance of our findings, we show that in S. cerevisiae lacking Mag1-dependent 3MeA repair, polη (Rad30) contributes to the survival of cells exposed to methyl methanesulfonate (MMS) and in the absence of Mag1, Rad30 and Rev3, human polymerases η, ι and κ are capable of restoring MMS-resistance to the normally MMS-sensitive strain.
Collapse
Affiliation(s)
- Brian S Plosky
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | | | | | | | | | | |
Collapse
|
14
|
Chao MR, Wang CJ, Yen CC, Yang HH, Lu YC, Chang L, Hu CW. Simultaneous determination of N7-alkylguanines in DNA by isotope-dilution LC-tandem MS coupled with automated solid-phase extraction and its application to a small fish model. Biochem J 2007; 402:483-90. [PMID: 17134374 PMCID: PMC1863567 DOI: 10.1042/bj20061447] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study, we report the development of a sensitive and selective assay based on LC (liquid chromatography)-MS/MS (tandem MS) to simultaneously measure N7-MeG (N7-methylguanine) and N7-EtG (N7-ethylguanine) in DNA hydrolysates. With the use of isotope internal standards (15N5-N7-MeG and 15N5-N7-EtG) and on-line SPE (solid-phase extraction), the detection limit of this method was estimated as 0.42 fmol and 0.17 fmol for N7-MeG and N7-EtG respectively. The high sensitivity achieved here makes this method applicable to small experimental animals. This method was applied to measure N7-alkylguanines in liver DNA from mosquito fish (Gambusia affinis) that were exposed to NDMA (N-nitrosodimethylamine) and NDEA (N-nitrosodiethylamine) alone or their combination over a wide range of concentrations (1-100 mg/l). Results showed that the background level of N7-MeG in liver of control fish was 7.89+/-1.38 mmol/mol of guanine, while N7-EtG was detectable in most of the control fish with a range of 0.05-0.19 mmol/mol of guanine. N7-MeG and N7-EtG were significantly induced by NDMA and NDEA respectively, at a concentration as low as 1 mg/l and increased in a dose-dependent manner. Taken together, this LC-MS/MS assay provides the sensitivity and high throughput required to evaluate the extent of alkylated DNA lesions in small animal models of cancer induced by alkylating agents.
Collapse
Affiliation(s)
- Mu-Rong Chao
- *Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
- Correspondence may be addressed to either of these authors (email or )
| | - Chien-Jen Wang
- †Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| | - Cheng-Chieh Yen
- *Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Hsi-Hsien Yang
- ‡Department of Environmental Engineering and Management, Chaoyang University of Technology, Wufong, Taichung 413, Taiwan
| | - Yao-Cheng Lu
- *Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Louis W. Chang
- †Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| | - Chiung-Wen Hu
- §Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
- Correspondence may be addressed to either of these authors (email or )
| |
Collapse
|
15
|
Harrison KL, Crosbie PAJ, Agius RM, Barber PV, Carus M, Margison GP, Povey AC. No association between N7-methyldeoxyguanosine and 8-oxodeoxyguanosine levels in human lymphocyte DNA. Mutat Res 2006; 600:125-30. [PMID: 16765387 DOI: 10.1016/j.mrfmmm.2006.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 03/14/2006] [Accepted: 03/24/2006] [Indexed: 05/10/2023]
Abstract
To examine associations between two different classes of DNA damage that can occur through endogenous processes or exogenous exposures such as smoking, N7-methyldeoxyguanosine (N7-MedG) and 8-oxodeoxyguanosine (8-oxodG) levels were measured in lymphocyte DNA from 22 bronchoscopy patients. 8-OxodG and N7-MedG was detected in 100% and 91% of samples, respectively with 8-oxodG levels being approx 20 times higher (mean 8.39+/-3.578-oxodG/10(6)dG versus 0.41+/-0.33 N7-MedG/10(6) dG) which provides an indication of the relative importance of the agents that induce oxidative DNA damage or alkylation damage. The sources of these genotoxic lesions remain to be established but N7-MedG and 8-oxodG levels were not correlated (r(2)<0.01) suggesting that there is no association between alkylating agent and reactive oxygen species exposure, their metabolism and/or the DNA repair processes that can remove this DNA damage.
Collapse
Affiliation(s)
- Kathryn L Harrison
- Centre for Occupational and Environmental Health, Division of Epidemiology and Health Sciences, Medical School, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Sterling CH, Sweasy JB. DNA polymerase 4 of Saccharomyces cerevisiae is important for accurate repair of methyl-methanesulfonate-induced DNA damage. Genetics 2005; 172:89-98. [PMID: 16219787 PMCID: PMC1456199 DOI: 10.1534/genetics.105.049254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DNA polymerase 4 protein (Pol4) of Saccharomyces cerevisiae is a member of the X family of DNA polymerases whose closest human relative appears to be DNA polymerase lambda. Results from previous genetic studies conflict over the role of Pol4 in vivo. Here we show that deletion of Pol4 in a diploid strain of the SK1 genetic background results in sensitivity to methyl methanesulfonate (MMS). However, deletion of Pol4 in other strain backgrounds and in haploid strains does not yield an observable phenotype. The MMS sensitivity of a Pol4-deficient strain can be rescued by deletion of YKu70. We also show that deletion of Pol4 results in a 6- to 14-fold increase in the MMS-induced mutation frequency and in a significant increase in AT-to-TA transversions. Our studies suggest that Pol4 is critical for accurate repair of DNA lesions induced by MMS.
Collapse
Affiliation(s)
- Catherine H Sterling
- Department of Therapeutic Radiology and Genetics, Yale University, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
17
|
Chao MR, Wang CJ, Chang LW, Hu CW. Quantitative determination of urinary N7-ethylguanine in smokers and non-smokers using an isotope dilution liquid chromatography/tandem mass spectrometry with on-line analyte enrichment. Carcinogenesis 2005; 27:146-51. [PMID: 16000398 DOI: 10.1093/carcin/bgi177] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous studies demonstrated the presence of unknown direct-acting ethylating agents arising from cigarette smoke. We hypothesized that such agents would also lead to ethylation of guanine in DNA followed by depurination/repair and excretion of N7-ethylguanine (N7-EtG) in urine. In this study, a highly specific and sensitive liquid chromatographic/tandem mass spectrometric (LC/MS/MS) method was firstly developed for measuring urinary N7-EtG. With the use of an isotope internal standard (15N5-N7-EtG) and on-line enrichment techniques, the detection limit of this method was estimated as 0.59 pg/ml (0.33 pmol) on-column. This method was then applied to measure urinary samples obtained from 35 non-smokers and 32 smokers with dietary control. The results showed that the mean urinary levels of N7-EtG were 85.5+/-105 and 28.1+/-19.4 pg/mg creatinine for smokers and non-smokers, respectively. Smokers had about three times higher level of N7-EtG than non-smokers (P<0.005). It was further noted that the urinary level of N7-EtG was significantly associated with cotinine for smokers (r=0.49, P<0.005). Taken together, this is the first study that demonstrated the presence of N7-EtG in urine, and that cigarette smoke was highly responsible for the increased urinary excretion of N7-EtG. This non-invasive measurement of urinary N7-EtG would be useful for the surveillance of ethylating agent exposure and its associated cancer risk in the future.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, No. 110, Sec.1, Chien-Kuo N Road, Taichung 402, Taiwan
| | | | | | | |
Collapse
|
18
|
Margison G. A new damage limitation exercise: ironing (Fe(II)) out minor DNA methylation lesions. DNA Repair (Amst) 2002; 1:1057-61. [PMID: 12531015 DOI: 10.1016/s1568-7864(02)00169-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Geoff Margison
- Cancer Research UK Carcinogenesis Group, Paterson Institute for Cancer Research, Christie Hospital Trust, Manchester, M20 4BX, UK.
| |
Collapse
|
19
|
Plosky B, Samson L, Engelward BP, Gold B, Schlaen B, Millas T, Magnotti M, Schor J, Scicchitano DA. Base excision repair and nucleotide excision repair contribute to the removal of N-methylpurines from active genes. DNA Repair (Amst) 2002; 1:683-96. [PMID: 12509290 DOI: 10.1016/s1568-7864(02)00075-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many different cellular pathways have evolved to protect the genome from the deleterious effects of DNA damage that result from exposure to chemical and physical agents. Among these is a process called transcription-coupled repair (TCR) that catalyzes the removal of DNA lesions from the transcribed strand of expressed genes, often resulting in a preferential bias of damage clearance from this strand relative to its non-transcribed counterpart. Lesions subject to this type of repair include cyclobutane pyrimidine dimers that are normally repaired by nucleotide excision repair (NER) and thymine glycols (TGs) that are removed primarily by base excision repair (BER). While the mechanism underlying TCR is not completely clear, it is known that its facilitation requires proteins used by other repair pathways like NER. It is also believed that the signal for TCR is the stalled RNA polymerase that results when DNA damage prevents its translocation during transcription elongation. While there is a clear role for some NER proteins in TCR, the involvement of BER proteins is less clear. To explore this further, we studied the removal of 7-methylguanine (7MeG) and 3-methyladenine (3MeA) from the dihydrofolate reductase (dhfr) gene of murine cell lines that vary in their repair phenotypes. 7MeG and 3MeA constitute the two principal N-methylpurines formed in DNA following exposure to methylating agents. In mammalian cells, alkyladenine DNA alkyladenine glycosylase (Aag) is the major enzyme required for the repair of these lesions via BER, and their removal from the total genome is quite rapid. There is no observable TCR of these lesions in specific genes in DNA repair proficient cells; however, it is possible that the rapid repair of these adducts by BER masks any TCR. The repair of 3MeA and 7MeG was examined in cells lacking Aag, NER, or both Aag and NER to determine if rapid overall repair masks TCR. The results show that both 3MeA and 7MeG are removed without strand bias from the dhfr gene of BER deficient (Aag deficient) and NER deficient murine cell lines. Furthermore, repair of 3MeA in this region is highly dependent on Aag, but repair of 7MeG is equally efficient in the repair proficient, BER deficient, and NER deficient cell lines. Strikingly, in the absence of both BER and NER, neither 7MeG nor 3MeA is repaired. These results demonstrate that NER, but not TCR, contributes to the repair of 7MeG, and to a lesser extent 3MeA.
Collapse
Affiliation(s)
- Brian Plosky
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Branda RF, O'Neill JP, Brooks EM, Trombley LM, Nicklas JA. The effect of folate deficiency on the cytotoxic and mutagenic responses to ethyl methanesulfonate in human lymphoblastoid cell lines that differ in p53 status. Mutat Res 2001; 473:51-71. [PMID: 11166026 DOI: 10.1016/s0027-5107(00)00138-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Folic acid deficiency acts synergistically with alkylating agents to increase genetic damage at the HPRT locus in Chinese hamster ovary cells in vitro and in rat splenocytes in vivo. The present studies extend these observations to human cells and, in addition, investigate the role of p53 activity on mutation induction. The human lymphoblastoid cell lines TK6 and WTK1 are derived from the same parental cell line (WI-L2), but WTK1 expresses mutant p53. Treatment of folate-replete or deficient WTK1 and TK6 cells with increasing concentrations (0-50microg/ml) of ethyl methanesulfonate (EMS) resulted in significantly different HPRT mutation dose-response relationships (P<0.01), indicating that folate deficiency increased the EMS-induced mutant frequency in both cell lines, but with a greater effect in TK6 cells. Molecular analyses of 152 mutations showed that the predominant mutation (65%) in both cell types grown in the presence or absence of folic acid was a G>A transition on the non-transcribed strand. These transitions were mainly at non-CpG sites, particularly when these bases were flanked 3' by a purine or on both sides by G:C base pairs. A smaller number of G>A transitions occurred on the transcribed strand (C>T=14%), resulting in 79% total G:C>A:T transitions. There were more genomic deletions in folate-deficient (15%) as compared to replete cells (4%) of both cell types. Mutations that altered RNA splicing were common in both cell types and under both folate conditions, representing 33% of the total mutations. These studies indicate that cells expressing p53 activity exhibit a higher rate of mutation induction but are more sensitive to the toxic effects of alkylating agents than those lacking p53 activity. Folate deficiency tends to reduce toxicity but increase mutation induction after EMS treatment. The p53 gene product did not have a major influence on the molecular spectrum after treatment with EMS, while folate deficiency increased the frequency of deletions in both cell types.
Collapse
Affiliation(s)
- R F Branda
- Department of Medicine and The Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | | | |
Collapse
|
21
|
Holt S, Roy G, Mitra S, Upton PB, Bogdanffy MS, Swenberg JA. Deficiency of N-methylpurine-DNA-glycosylase expression in nonparenchymal cells, the target cell for vinyl chloride and vinyl fluoride. Mutat Res 2000; 460:105-15. [PMID: 10882851 DOI: 10.1016/s0921-8777(00)00019-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ability to repair promutagenic damage resulting from exposure to carcinogens is a critical factor in determining quantitative relationships in carcinogenesis, including the target cell for neoplasia. One major pathway for the repair of alkylating agent-induced DNA damage involves removal of alkylated bases by N-methylpurine-DNA-glycosylase (MPG), the first enzyme in base excision repair. We have measured the expression level of MPG mRNA in liver, lung, and kidney of Sprague-Dawley rats as a function of age. A quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) method was used to measure cellular MPG mRNA. MPG mRNA was readily detectable in each tissue analyzed and the age-dependent and tissue specific expressions were not statistically different. The lowest amount of mRNA was measured in preweanling liver and the highest amounts were found in preweanling lung and kidney. Since MPG is reported to be responsible for excision of 1,N(6)-ethenoadenine and N(2),3-ethenoguanine, two promutagenic DNA adducts of vinyl chloride (VC) and vinyl fluoride (VF), we examined the regulation of this enzyme after carcinogen exposure. Expression of MPG was induced in rat liver by these carcinogens. In order to determine the repair capacity in different cell populations of liver, we measured MPG gene expression in isolated hepatocytes and nonparenchymal cells (NPC). The amount of MPG mRNA was 4.5-5 times higher in hepatocytes than in NPC of control rats. Induction of MPG expression was observed in hepatocytes of VF exposed-rats but not in NPC. The expression of MPG in NPC was only 15% of that of the hepatocytes from exposed rats. Western blots of MPG protein confirmed the cell type differences, but did not show increased protein in exposed vs. control liver and hepatocytes. Since metabolism of VC and VF requires CYP2E1, an enzyme exhibiting much greater activity in hepatocytes, formation of etheno adducts preferentially occurs in hepatocytes. These data suggest that cellular differences in the repair of N-alkylpurines may be a critical mechanism in the development of cell specificity in VC carcinogenesis.
Collapse
Affiliation(s)
- S Holt
- Department of Environmental Sciences and Engineering and Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599-7400, USA
| | | | | | | | | | | |
Collapse
|
22
|
Branda RF, Lafayette AR, O'Neill JP, Nicklas JA. The effect of folate deficiency on the hprt mutational spectrum in Chinese hamster ovary cells treated with monofunctional alkylating agents. Mutat Res 1999; 427:79-87. [PMID: 10393262 DOI: 10.1016/s0027-5107(99)00095-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Folic acid deficiency acts synergistically with alkylating agents to increase DNA strand breaks and mutant frequency at the hprt locus in Chinese hamster ovary (CHO) cells. To elucidate the mechanism of this synergy, molecular analyses of hprt mutants were performed. Recently, our laboratory showed that folate deficiency increased the percentage of clones with intragenic deletions after exposure to ethyl methanesulfonate (EMS) but not N-nitroso-N-ethylurea (ENU) compared to clones recovered from folate replete medium. This report describes molecular analyses of the 37 hprt mutant clones obtained that did not contain deletions. Folate deficient cells treated with EMS had a high frequency of G>A transitions at non-CpG sites on the non-transcribed strand, particularly when these bases were flanked on both sides by G:C base pairs. Thirty-three percent of these mutations were in the run of six G's in exon 3. EMS-treated folate replete cells had a slightly (but not significantly) lower percentage of G>A transitions, and the same sequence specificity. Treatment of folate deficient CHO cells with ENU resulted in predominantly T>A transversions and C>T transitions relative to the non-transcribed strand. These findings suggest a model to explain the synergy between folate deficiency and alkylating agents: (1) folate deficiency causes extensive uracil incorporation into DNA; (2) greatly increased utilization of base excision repair to remove uracil and to correct alkylator damage leads to error-prone DNA repair. In the case of EMS, this results in more intragenic deletions and G:C to A:T mutations due to impaired ligation of single-strand breaks generated during base excision repair and a decreased capacity to remove O6-ethylguanine. In the case of ENU additional T>A transversions and C>T transitions are seen, perhaps due to mis-pairing of O2-ethylpyrimidines. Correction of folate deficiency may reduce the frequency of these types of genetic damage during alkylator therapy.
Collapse
Affiliation(s)
- R F Branda
- Department of Medicine and the Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | |
Collapse
|
23
|
Haque K, Cooper DP, Povey AC. Formation and persistence of N7-methylguanine DNA adducts in the target pyloric tissue following chronic exposure to N-methyl-N'-nitro-N-nitrosoguanidine. Biomarkers 1999; 4:254-62. [PMID: 23889176 DOI: 10.1080/135475099230787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Outbred 7-week old male Wistar rats were exposed for 21 days to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) via the drinking water and N7-methyl deoxyguanosine 3'-monophosphate (N7-MedGp) levels in DNA from the pyloric mucosa (target tissue) and white blood cells (wbc: non-target tissue) were determined by (32)P-postlabelling. Exposure to MNNG resulted in the non-linear, dose-related formation of N7-medGp in both tissues. Adduct levels in the pyloric mucosa were determined to be 1058, 5.4 and 1.1 μmole N7-medGp mole(-1) deoxyguanosine 3'-monophosphate (dGp) after exposure to 4.1, 0.62 and 0.006 mg MNNG kg(-1) day(-1) respectively whereas adduct levels in the wbc DNA were lower at 5.2, 0.52 and 0.68 μmoles N7-medGp mole(-1) dGp after exposure to 4.1, 0.62 and 0.062 mg MNNG kg(-1) day(-1) respectively. In addition, the persistence of N7-medGp was investigated. Loss of adduct occurred rapidly, with a decrease of 87 and 97% respectively in target tissue and wbc DNA by 48 h after cessation of 4.1 mg MNNG kg(-1) day(-1) exposure; 14 days post-MNNG treatment, however, N7-medGp was still detectable (0.46 μmole N7-medGp mole(-1) dGp) in pyloric mucosal DNA. The quantitation of N7-medGp after exposure to low doses of carcinogen, i.e. 0.006 mg MNNG kg(-1) day(-1), approaching environmentally relevant levels has not been previously reported, and indicates that the (32)P-postlabelling assay developed here possesses sufficient sensitivity to quantitate N7- medGp in human DNA arising from environmental exposure to methylating agents.
Collapse
Affiliation(s)
- K Haque
- Cancer Research Campaign Section of Genome Damage and Repair, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, M20 9BX, UK
| | | | | |
Collapse
|
24
|
Miao F, Bouziane M, O'Connor TR. Interaction of the recombinant human methylpurine-DNA glycosylase (MPG protein) with oligodeoxyribonucleotides containing either hypoxanthine or abasic sites. Nucleic Acids Res 1998; 26:4034-41. [PMID: 9705516 PMCID: PMC147787 DOI: 10.1093/nar/26.17.4034] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methylpurine-DNA glycosylases (MPG proteins, 3-methyladenine-DNA glycosylases) excise numerous damaged bases from DNA during the first step of base excision repair. The damaged bases removed by these proteins include those induced by both alkylating agents and/or oxidizing agents. The intrinsic kinetic parameters (k(cat) and K(m)) for the excision of hypoxanthine by the recombinant human MPG protein from a 39 bp oligodeoxyribonucleotide harboring a unique hypoxanthine were determined. Comparison with other reactions catalyzed by the human MPG protein suggests that the differences in specificity are primarily in product release and not binding. Analysis of MPG protein binding to the 39 bp oligodeoxyribonucleotide revealed that the apparent dissociation constant is of the same order of magnitude as the K(m) and that a 1:1 complex is formed. The MPG protein also forms a strong complex with the product of excision, an abasic site, as well as with a reduced abasic site. DNase I footprinting experiments with the MPG protein on an oligodeoxyribonucleotide with a unique hypoxanthine at a defined position indicate that the protein protects 11 bases on the strand with the hypoxanthine and 12 bases on the complementary strand. Competition experiments with different length, double-stranded, hypoxanthine-containing oligodeoxyribonucleotides show that the footprinted region is relatively small. Despite the small footprint, however, oligodeoxyribonucleotides comprising <15 bp with a hypoxanthine have a 10-fold reduced binding capacity compared with hypoxanthine-containing oligodeoxyribonucleotides >20 bp in length. These results provide a basis for other structural studies of the MPG protein with its targets.
Collapse
Affiliation(s)
- F Miao
- Beckman Research Institute, City of Hope National Medical Center, 1450 East Duarte Road, Duarte, CA 91010, USA
| | | | | |
Collapse
|
25
|
Op het Veld CW, Jansen J, Zdzienicka MZ, Vrieling H, van Zeeland AA. Methyl methanesulfonate-induced hprt mutation spectra in the Chinese hamster cell line CHO9 and its xrcc1-deficient derivative EM-C11. Mutat Res 1998; 398:83-92. [PMID: 9626968 DOI: 10.1016/s0027-5107(97)00243-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Chinese hamster cell mutant EM-C11, which is hypersensitive to the cell killing effects of alkylating agents compared to its parental line CHO9, has been used to study the impact of base excision repair on the mutagenic effects of DNA methylation damage. This cell line has a defect in the xrcc1 gene. XRCC1 can interact with DNA polymerase-beta, thereby suppressing strand displacement, and DNA ligase III, both of which have been implicated in base excision repair. XRCC1 may, therefore, allow efficient ligation of single-strand breaks generated during base excision repair. Both EM-C11 and CHO9 cells were treated with methyl methanesulfonate (MMS), a DNA-methylating agent reacting predominantly with nitrogen atoms generating adducts which are substrates for the base excision repair pathway. EM-C11 cells are much more sensitive to the cytotoxic effects of MMS than CHO9: for EM-C11, the dose of MMS inducing 10% survival is 6-fold lower than that for CHO9. In contrast, mutation induction at the hprt locus following MMS is similar in EM-C11 and CHO9. Molecular analysis of hprt gene mutations showed that although the largest class of hprt mutations, both in EM-C11 and CHO9 cells, consisted of GC > AT transitions, most likely caused by O6-methylguanine, the size of this class was smaller in EM-C11. The fraction of deletion mutants in EM-C11, however, was twice as large as that found in CHO9 cells. These results suggest that reduced ligation efficiency of single-strand breaks generated during base excision repair, as result of a defect in XRCC1, may lead to the formation of deletions.
Collapse
Affiliation(s)
- C W Op het Veld
- MGC-Department of Radiation Genetics and Chemical Mutagenesis, Leiden University, AL Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Sitaram A, Plitas G, Wang W, Scicchitano DA. Functional nucleotide excision repair is required for the preferential removal of N-ethylpurines from the transcribed strand of the dihydrofolate reductase gene of Chinese hamster ovary cells. Mol Cell Biol 1997; 17:564-70. [PMID: 9001209 PMCID: PMC231781 DOI: 10.1128/mcb.17.2.564] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transcription-coupled repair of DNA adducts is an essential factor that must be considered when one is elucidating biological endpoints resulting from exposure to genotoxic agents. Alkylating agents comprise one group of chemical compounds which modify DNA by reacting with oxygen and nitrogen atoms in the bases of the double helix. To discern the role of transcription-coupled DNA repair of N-ethylpurines present in discrete genetic domains, Chinese hamster ovary cells were exposed to N-ethyl-N-nitrosourea, and the clearance of the damage from the dihydrofolate reductase gene was investigated. The results indicate that N-ethylpurines were removed from the dihydrofolate reductase gene of nucleotide excision repair-proficient Chinese hamster ovary cells; furthermore, when repair rates in the individual strands were determined, a statistically significant bias in the removal of ethyl-induced, alkali-labile sites was observed, with clearance occurring 30% faster from the transcribed strand than from its nontranscribed counterpart at early times after exposure. In contrast, removal of N-ethylpurines was observed in the dihydrofolate reductase locus in cells that lacked nucleotide excision repair, but both strands were repaired at the same rate, indicating that transcription-coupled clearance of these lesions requires the presence of active nucleotide excision repair.
Collapse
Affiliation(s)
- A Sitaram
- Department of Biology, New York University, New York, New York 10003, USA
| | | | | | | |
Collapse
|
27
|
Roy R, Brooks C, Mitra S. Purification and biochemical characterization of recombinant N-methylpurine-DNA glycosylase of the mouse. Biochemistry 1994; 33:15131-40. [PMID: 7999773 DOI: 10.1021/bi00254a024] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mouse N-methylpurine-DNA glycosylase (MPG), responsible for the removal of most N-alkyladducts in DNA, was purified to homogeneity as a recombinant nonfusion protein from Escherichia coli. Only 10-15% of the protein was present in the soluble form in E. coli cells. The N-terminal amino acid sequence of the purified protein which lacks 48 residues from the amino terminus of the wild type protein was identical to that predicted from the nucleotide sequence. The glycosylase hydrolyzes 3-methyladenine (m3A), 7-methylguanine(m7G), and 3-methylguanine (m3G) from DNA, and the Km and kcat values were 130 nM and 0.8 min-1 for m3A, and 860 nM and 0.2 min-1 for m7G, respectively, when methylated calf thymus DNA was used as the substrate. A comparison of kcat/Km values for different bases indicates that the enzyme was more efficient in excising both m3A and m3G than m7G from methylated DNA. The enzyme showed moderate binding affinities (KA) for both methylated (5.8 x 10(7) M-1) and nonmethylated DNAs (4.2 x 10(7) M-1). The mouse protein has an extinction coefficient E280nm1% of 10.5 and a pI of 9.3. The enzyme activity was optimal in the presence of 100 mM NaCl, with a broad pH optimum of 8.5-9.5. The enzymatic release of both m3A and m7G was stimulated 50-75% by 0.5 mM MgCl2 and 0.02 mM spermine but inhibited by higher concentrations of these agents. Product inhibition by 40-50% of the reaction occurred in the presence of 10 mM m3A or m7G. However, 1.0 mM m3A stimulated release of m7G. The enzyme was inhibited by 60% in the presence of 0.9 mg/mL DNA which, at the same time, protected it from thermal inactivation.
Collapse
Affiliation(s)
- R Roy
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston 77555
| | | | | |
Collapse
|
28
|
Oesch F, Weiss CM, Klein S. Use of oligonucleotides containing ethenoadenine to study the repair of this DNA lesion. Determination of individual and collective repair activities. Arch Toxicol 1994; 68:358-63. [PMID: 8092927 DOI: 10.1007/s002040050082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oligonucleotide duplexes of a defined sequence containing one 1,N6-ethenoadenosine (EA) were synthesized and used as substrates to study the repair of this DNA lesion in cell homogenates of peripheral mononuclear blood cells of 39 male and female workers, exposed to vinyl chloride. These data were compared to data from 39 employees of the same company working in other production plants and to data from a control group of 39 persons, living in an area without vinyl chloride production. After incubation of the 5'- and 3'-labeled oligonucleotide duplex with cell homogenate, a specific nicking activity, releasing the deoxyribosyl phosphate originally carrying the EA, was found. This activity was used to determine the individual and collective repair activities for ethenoadenine. The exposed group showed a mean of 158.5 +/- 39.9 (SD) fmol product fragment and did not differ significantly from the mean value of the two control groups with 156.5 +/- 42.9 fmol and 161.2 +/- 53.6 fmol, respectively. Large interindividual variations were found, ranging from 4.9-fold in the exposed to 8.2- and 7.2-fold in the control groups. The development of an assay for ethenoadenine repair is significant for understanding the role of EA repair in eukaryotic cells.
Collapse
Affiliation(s)
- F Oesch
- Institute of Toxicology, University of Mainz, Germany
| | | | | |
Collapse
|
29
|
Dosanjh MK, Roy R, Mitra S, Singer B. 1,N6-ethenoadenine is preferred over 3-methyladenine as substrate by a cloned human N-methylpurine-DNA glycosylase (3-methyladenine-DNA glycosylase). Biochemistry 1994; 33:1624-8. [PMID: 8110764 DOI: 10.1021/bi00173a002] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A lethal DNA adduct induced by methylating agents, 3-methyladenine (m3A), is removed by both the constitutive (Tag) and inducible (AlkA) bacterial m3A-DNA glycosylases. The human 3-methyladenine-DNA glycosylase also releases m3A as well as other methylated bases. The rate of release of m3A from alkylated DNA by the purified or recombinant human m3A glycosylase is much higher than that of the other methylated bases. We now find that a partially purified recombinant human m3A-DNA glycosylase, expressed in Escherichia coli, releases at least 10-fold more 1,N6-ethenoadenine (epsilon A) than m3A from DNA. epsilon A is completely unrelated to m3A since it is a heterocyclic adduct produced by the carcinogen vinyl chloride. The rates of release of epsilon A and m3A were both dependent on protein concentration and time. The differential release of epsilon A and m3A occurs regardless of whether DNA containing each adduct is assayed separately or is assayed in a mixed substrate containing both DNAs. This result raises the question of what structural features are involved in recognition and excision by the human m3A-DNA glycosylase and what may be its primary substrate.
Collapse
Affiliation(s)
- M K Dosanjh
- Life Sciences Division, Donner Laboratory, Lawrence Berkeley Laboratory, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
30
|
Burkhart JG, Malling HV. Mutagenesis and transgenic systems: perspective from the mutagen, N-ethyl-N-nitrosourea. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1993; 22:1-6. [PMID: 8339722 DOI: 10.1002/em.2850220103] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- J G Burkhart
- National Institute Environmental Health Sciences, Research Triangle Park, NC 27709
| | | |
Collapse
|
31
|
Singer B, Antoccia A, Basu AK, Dosanjh MK, Fraenkel-Conrat H, Gallagher PE, Kuśmierek JT, Qiu ZH, Rydberg B. Both purified human 1,N6-ethenoadenine-binding protein and purified human 3-methyladenine-DNA glycosylase act on 1,N6-ethenoadenine and 3-methyladenine. Proc Natl Acad Sci U S A 1992; 89:9386-90. [PMID: 1409645 PMCID: PMC50136 DOI: 10.1073/pnas.89.20.9386] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We previously described a protein, isolated from human tissues and cells, that bound to a defined double-stranded oligonucleotide containing a single site-specifically placed 1,N6-ethenoadenine. It was further demonstrated that this protein was a glycosylase and released 1,N6-ethenoadenine. We now find that this enzyme also releases 3-methyladenine from methylated DNA and that 3-methyladenine-DNA glycosylase behaves in the same manner, binding to the ethenoadenine-containing oligonucleotide and cleaving both ethenoadenine and 3-methyladenine from DNA containing these adducts. The rate and extent of glycosylase activities toward the two adducts are similar.
Collapse
Affiliation(s)
- B Singer
- Donner Laboratory, Life Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley 94720
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Samson L, Derfler B, Boosalis M, Call K. Cloning and characterization of a 3-methyladenine DNA glycosylase cDNA from human cells whose gene maps to chromosome 16. Proc Natl Acad Sci U S A 1991; 88:9127-31. [PMID: 1924375 PMCID: PMC52665 DOI: 10.1073/pnas.88.20.9127] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We described previously the isolation of a Saccharomyces cerevisiae 3-methyladenine (3-MeAde) DNA glycosylase repair gene (MAG) by its expression in glycosylase-deficient Escherichia coli alkA tag mutant cells and its ability to rescue these cells from the toxic effects of alkylating agents. Here we extend this cross-species functional complementation approach to the isolation of a full-length human 3-MeAde DNA glycosylase cDNA that rescues alkA tag E. coli from killing by methyl methanesulfonate, and we have mapped the gene to human chromosome 16. The cloned cDNA, expressed from the pBR322 beta-lactamase promoter, contains an 894-base-pair open reading frame encoding a 32,894-Da protein able to release 3-MeAde, but not 7-methylguanine, from alkylated DNA. Surprisingly, the predicted human protein does not share significant amino acid sequence homology with the bacterial AlkA and Tag glycosylases or the yeast MAG glycosylase, but it does share extensive amino acid sequence homology with a rat 3-MeAde DNA glycosylase and significant DNA sequence homology with genes from several mammalian species. The cloning of a human 3-MeAde DNA glycosylase cDNA represents a key step in generating 3-MeAde repair-deficient cells and the determination of the in vivo role of this DNA repair enzyme in protecting against the toxic and carcinogenic effects of alkylating agents.
Collapse
Affiliation(s)
- L Samson
- Molecular and Cellular Toxicology, Harvard School of Public Health, Boston, MA 02115
| | | | | | | |
Collapse
|
33
|
Murphy KE, Braymer HD. Serratia marcescens rpr gene sensitizes Escherichia coli wild-type, xth, and nfo strains to methyl methanesulphonate. Mol Microbiol 1990; 4:651-5. [PMID: 1693747 DOI: 10.1111/j.1365-2958.1990.tb00634.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It is reported here that the rpr DNA repair gene of Serratia marcescens does not complement an Escherichia coli xth nfo AP endonuclease mutation for resistance to methyl methanesulphonate (MMS). Rather, rpr sensitized Escherichia coli wild-type, xth, and nfo strains to MMS. Also, it was found that rpr could not complement a triple tag alkA recA mutation in E. coli, indicating that there are limits to rpr complementing capabilities. It was determined that rpr gene dosage was not a factor in recA complementation. MMS sensitization of an E. coli wild-type strain, however, was directly related to rpr copy number. These data indicate that Rpr does not have an associated AP endonuclease activity, and that it is incapable of substituting for Tag I, Tag II, and RecA in a tag alkA recA background.
Collapse
Affiliation(s)
- K E Murphy
- Department of Microbiology, Louisiana State University, Baton Rouge 70803
| | | |
Collapse
|
34
|
Montesano R, Hall J, Hollstein M, Mironov N, Wild CP. Alkylation repair in human tissues. BASIC LIFE SCIENCES 1990; 53:437-52. [PMID: 2282048 DOI: 10.1007/978-1-4613-0637-5_33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- R Montesano
- Unit of Mechanisms of Carcinogenesis, International Agency for Research on Cancer, Lyon, France
| | | | | | | | | |
Collapse
|
35
|
Daniel FB, Chang LW, Schenck KM, DeAngelo AB, Skelly MF. The further development of a mammalian DNA alkaline unwinding bioassay with potential application to hazard identification for contaminants from environmental samples. Toxicol Ind Health 1989; 5:647-65. [PMID: 2815100 DOI: 10.1177/074823378900500506] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recently, we have detailed a DNA alkaline unwinding assay (DAUA) that can be used to rapidly measure chemically induced strand breaks in mammalian cells (Daniel et al., 1985). In this paper we present further development of this assay, including: (1) studies on the relationship between DNA adducts and DNA strand breaks; (2) evaluation of the role of cytotoxicity in DNA strand breaks; and (3) application of the DAUA to cell preparations from the liver of mice dosed with methylating agents. The level of DNA adducts produced in human CCRF-CEM cells by treatment with benzo(a)pyrene diol-epoxide (BPDE), N-acetoxy-2-acetyl aminofluorene (AAAF), and various methylating agents was linear with concentration over several orders of magnitude. Likewise, the level of strand breaks increased with the concentration over the same dose range. The strand breaks/adduct ratio ranged from 0.05 for the methyl adducts to 0.001 for the BPDE adducts. Using these values and the inherent sensitivity of the DAUA (circa 100 to 1000 breaks/cell), (Daniel et al., 1985), the ability of the assay to detect DNA damage induced by various classes of chemical carcinogens can be calculated. The DAUA appears to be useful for assessing the relative potency of various environmental genotoxic effects on mammalian cells. In addition, it can be conducted on cells isolated from target organs of whole animals.
Collapse
Affiliation(s)
- F B Daniel
- Biochemical and Molecular Toxicology Branch, U.S. Environmental Protection Agency, Cincinnati, OH 45268
| | | | | | | | | |
Collapse
|
36
|
Murphy KE, Guzder SN, Braymer HD. Evidence for unique DNA repair activity encoded by a cloned Serratia marcescens gene: suppression of Escherichia coli mutations that reduce repair of alkylated DNA. J Bacteriol 1989; 171:5179-82. [PMID: 2670906 PMCID: PMC210336 DOI: 10.1128/jb.171.9.5179-5182.1989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A recombinant plasmid containing a Serratia marcescens DNA repair gene has been analyzed biochemically and genetically in Escherichia coli mutants deficient for repair of alkylated DNA. The cloned gene suppressed sensitivity to methyl methanesulfonate of an E. coli strain deficient in 3-methyladenine DNA glycosylases I and II (i.e., E. coli tag alkA) and two different E. coli recA mutants. Attempts to suppress the methyl methanesulfonate sensitivity of the E. coli recA mutant by using the cloned E. coli tag and alkA genes were not successful. Southern blot analysis did not reveal any homology between the S. marcescens gene and various known E. coli DNA repair genes. Biochemical analysis with the S. marcescens gene showed that the encoded DNA repair protein liberated 3-methyladenine from alkylated DNA, indicating that the DNA repair molecular is an S. marcescens 3-methyladenine DNA glycosylase. The ability to suppress both types of E. coli DNA repair mutations, however, suggests that the S. marcescens gene is a unique bacterial DNA repair gene.
Collapse
Affiliation(s)
- K E Murphy
- Program in Genetics, Louisiana State University, Baton Rouge 70803-1715
| | | | | |
Collapse
|
37
|
Abstract
Arsenic compounds are known carcinogens. Although many carcinogens are also mutagens, we have previously shown that sodium arsenite is not mutagenic at either the Na+/K+ ATPase or hprt locus in Chinese hamster V79 cells. It can, however, enhance UV-mutagenesis. We now confirm the nonmutagenicity of sodium arsenite in line G12, a pSV2gpt-transformed V79 (hprt-) cell line, which is able to detect multilocus deletions in addition to point mutations and small deletions. The lack of arsenic mutagenicity has led to studies emphasizing its comutagenicity. Sodium arsenite at relatively nontoxic concentrations (5 microM for 24 h or 10 microM for 3 h) is comutagenic with N-methyl-N-nitrosourea (MMU) at the hprt locus in V79 cells. Using a nick translation assay, which measures DNA strand breaks by incorporating radioactive deoxyribonucleoside monophosphate at their 3'OH ends in permeabilized cells, we found that much more incorporation was seen in cells treated with MNU (4 mM, 15 min) followed by 3-h incubation with 10 microM sodium arsenite compared with cells exposed to the same MNU treatment followed by 3-h incubation without sodium arsenite. This result shows that in the presence of arsenite, strand breaks resulting from MNU or its repair accumulate over a 3-h period. We suggest that the repair of MNU-induced DNA lesions may be inhibited by arsenite either by affecting the incorporation of dNMPs into the MNU-damaged DNA template or by interfering with the ligation step.
Collapse
Affiliation(s)
- J H Li
- Institute of Environmental Medicine, New York University Medical Center, NY 10016
| | | |
Collapse
|
38
|
A reduced rate of bulky DNA adduct removal is coincident with differentiation of human neuroblastoma cells induced by nerve growth factor. Mol Cell Biol 1989. [PMID: 3146694 DOI: 10.1128/mcb.8.9.3964] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human SY5Y neuroblastoma cells which were differentiated in culture by treatment with 7S murine nerve growth factor for 5 weeks and selection with aphidicolin (L. Jensen, Dev. Biol. 120:56-64, 1987) demonstrated a considerably slower rate of removal of DNA adducts of benzo[a]pyrene, benzo[a]pyrenediolepoxide, and N7-methylguanine than did undifferentiated mitotic cells. A dramatic decline in unscheduled DNA synthesis induced by UV radiation was similarly observed. DNA polymerase beta and uracil DNA glycosylase were unchanged after differentiation, DNA polymerase alpha and DNA methylase decreased roughly threefold, and total apurinic-apyrimidinic endonuclease activity increased roughly threefold after treatment.
Collapse
|
39
|
Murphy KE, Braymer HD. Molecular cloning and characterization of a genetic region from Serratia marcescens involved in DNA repair. Mol Microbiol 1989; 3:249-55. [PMID: 2668689 DOI: 10.1111/j.1365-2958.1989.tb01814.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report here the molecular isolation of a DNA fragment which encodes Tag-like activity from the Gram-negative bacterium Serratia marcescens. A recombinant plasmid encoding Tag-like activity was isolated from a S. marcescens plasmid gene library by complementation of an Escherichia coli tag mutant, which is deficient in 3-methyladenine DNA glycosylase I. The clone complements E. coli tag, recA, alkA, but not alkB, mutants for resistance to the DNA-damaging agent methyl methanesulphonate (MMS). The coding region of the Tag activity, initially isolated on a 6.5kb BamHI fragment, was defined to a 1.8kb BglII-SmaI fragment. Labelling of plasmid-encoded proteins using maxicells revealed that the 1.8kb fragment encodes two proteins of molecular weights 42,000 and 16,000. Data presented here suggest that the cloned fragment encodes a DNA repair protein(s) that has similar activity to the 3-methyladenine DNA glycosylase I of E. coli.
Collapse
Affiliation(s)
- K E Murphy
- Programme in Genetics, Louisiana State University, Baton Rouge 70803
| | | |
Collapse
|
40
|
Park JW, Ames BN. 7-Methylguanine adducts in DNA are normally present at high levels and increase on aging: analysis by HPLC with electrochemical detection. Proc Natl Acad Sci U S A 1988; 85:7467-70. [PMID: 3174647 PMCID: PMC282212 DOI: 10.1073/pnas.85.20.7467] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The 7-methylguanine adduct in the DNA of rat liver is determined as an indicator of exposure to exogenous and endogenous methylating agents. A method for the analysis of 7-methylguanine adducts has been developed by combining the selectivity of separation of reversed-phase HPLC with the specificity and high sensitivity of electrochemical detection. The sensitivity of the method is about 10,000-fold that of optical methods and is sufficient to determine the endogenous background of DNA methylation. DNA from the liver of normal young rats (6 months old) contains 7-methylguanine at a level of 1 residue per 31,000 bases in mitochondrial DNA and 1 residue per 105,000 bases in nuclear DNA. These levels increase about 2.5-fold in old rats (24 months old). We attribute this strikingly high level of adducts to endogenous methylation, which could contribute to aging and cancer.
Collapse
Affiliation(s)
- J W Park
- Department of Biochemistry, University of California, Berkeley 94720
| | | |
Collapse
|
41
|
Jensen L, Linn S. A reduced rate of bulky DNA adduct removal is coincident with differentiation of human neuroblastoma cells induced by nerve growth factor. Mol Cell Biol 1988; 8:3964-8. [PMID: 3146694 PMCID: PMC365460 DOI: 10.1128/mcb.8.9.3964-3968.1988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human SY5Y neuroblastoma cells which were differentiated in culture by treatment with 7S murine nerve growth factor for 5 weeks and selection with aphidicolin (L. Jensen, Dev. Biol. 120:56-64, 1987) demonstrated a considerably slower rate of removal of DNA adducts of benzo[a]pyrene, benzo[a]pyrenediolepoxide, and N7-methylguanine than did undifferentiated mitotic cells. A dramatic decline in unscheduled DNA synthesis induced by UV radiation was similarly observed. DNA polymerase beta and uracil DNA glycosylase were unchanged after differentiation, DNA polymerase alpha and DNA methylase decreased roughly threefold, and total apurinic-apyrimidinic endonuclease activity increased roughly threefold after treatment.
Collapse
Affiliation(s)
- L Jensen
- Department of Biochemistry, University of California, Berkeley 94720
| | | |
Collapse
|
42
|
Brent TP, Dolan ME, Fraenkel-Conrat H, Hall J, Karran P, Laval L, Margison GP, Montesano R, Pegg AE, Potter PM. Repair of O-alkylpyrimidines in mammalian cells: a present consensus. Proc Natl Acad Sci U S A 1988; 85:1759-62. [PMID: 3162305 PMCID: PMC279858 DOI: 10.1073/pnas.85.6.1759] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Enzymatic repair of the O-alkylpyrimidines (O2- and O4-alkylthymine, O2-alkylcytosine) and alkyl phosphotriesters has been studied in Escherichia coli, and the two proteins involved, a glycosylase (DNA-3-methyladenine glycosylase) and a methyltransferase (DNA-O6-methylguanine:protein-L-cysteine S-methyltransferase, EC 2.1.1.63), have been well characterized. In mammals or mammalian cells treated with carcinogenic alkylating agents, loss of these derivatives has been demonstrated repeatedly. Nevertheless, mammalian repair proteins that are analogous to those from E. coli do not detectably act on these alkyl derivatives. A variety of techniques has been used by many investigators in the United States and Europe, who conclude here that the mode of O-alkylpyrimidine and alkyl phosphotriester repair in mammalian cells differs from that in E. coli. New approaches and methods are needed to characterize these processes at the biochemical and molecular level.
Collapse
Affiliation(s)
- T P Brent
- St. Jude Children's Research Hospital, Memphis, TN 38101
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Tan KB, Mattern MR, Boyce RA, Schein PS. Elevated DNA topoisomerase II activity in nitrogen mustard-resistant human cells. Proc Natl Acad Sci U S A 1987; 84:7668-71. [PMID: 2823270 PMCID: PMC299361 DOI: 10.1073/pnas.84.21.7668] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A human Burkitt lymphoma cell line, Raji-HN2, made 10-fold more resistant to nitrogen mustard (HN2) than the parental Raji cell line, exhibited the following characteristics when compared to the parental Raji cells: (i) decreased HN2-induced DNA interstrand crosslinking; (ii) increased (3-fold) DNA topoisomerase II [DNA topoisomerase (ATP-hydrolyzing), EC 5.99.1.3] activity; (iii) increased (4- to 11-fold) sensitivity to topoisomerase II inhibitors; (iv) increased (2-fold) glutathione content; and (v) increased (2-fold) cell doubling time. The resistant phenotype was unstable and was maintained by weekly treatment of the cells with HN2. Growing the resistant cells in the absence of HN2 resulted in a time-dependent decrease in both resistance to HN2 and topoisomerase II activity and an increase in DNA interstrand crosslinking induced by HN2. We hypothesize that HN2 resistance is due to enhanced monoadduct repair with resultant decreased DNA crosslinking and that this process is mediated by topoisomerase II.
Collapse
Affiliation(s)
- K B Tan
- Department of Molecular Pharmacology, Smith Kline & French Laboratories, Philadelphia, PA 19101
| | | | | | | |
Collapse
|
45
|
Male R, Haukanes BI, Helland DE, Kleppe K. Substrate specificity of 3-methyladenine-DNA glycosylase from calf thymus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 165:13-9. [PMID: 3569288 DOI: 10.1111/j.1432-1033.1987.tb11188.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
3-Methyladenine-DNA glycosylase from calf thymus recognizes both 3-methyladenine (3-mAde), 7-methylguanine (7-mGua) and 3-methylguanine (3-mGua) residues in calf thymus DNA; the rate of release of 3-mAde is approximately eightfold higher than that for 7-mGua. The best DNA polymer substrates appeared to be those having an A-type helical conformation such as d(A-T)n and d(G-C)n. The Km values for release of 3-mAde and 7-mGua were approximately the same for the above mentioned two substrates whereas the Vmax for excision of 3-mAde was threefold higher than that of 7-mGua. The rate of hydrolysis of 7-mGua residues in d(G-C)n was similar to that found for the excision of 3-mAde in calf thymus DNA. The polymer d(G)n X d(C)m, which possesses a B-type helical conformation, was a poor substrate and the rate of excision here was approximately the same as with calf thymus DNA having the B-type structure. Polyamines greatly influenced the activity and at low concentrations a 50-100% increase in the release of 7-mGua, but not 3-mAde, was observed. With higher concentrations the rate of excision of both bases decreased sharply. The sequence specificity of the DNA glycosylase on naturally occurring DNA was studied using methylated DNA fragments from the plasmid pUC18. The results revealed that some 3-mAde as well as 7-mGua residues were seldom attacked. These 3-mAde residues were positioned either 5' to another Ade residue or in a stretch of pyrimidines, and the 7-mGua residue 3' to another Gua residue. The 3-mAde residue most frequently recognized was situated 3' to another Ade residue, and in the case of 7-mGua it was the central Gua residue in the sequence -G-G-G-.
Collapse
|
46
|
Kaasen I, Evensen G, Seeberg E. Amplified expression of the tag+ and alkA+ genes in Escherichia coli: identification of gene products and effects on alkylation resistance. J Bacteriol 1986; 168:642-7. [PMID: 3536857 PMCID: PMC213529 DOI: 10.1128/jb.168.2.642-647.1986] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have constructed plasmids which overproduce the tag and alkA gene products of Escherichia coli, i.e., 3-methyladenine DNA glycosylases I and II. The tag and alkA gene products were identified radiochemically in maxi- or minicells as polypeptides of 21 and 30 kilodaltons, respectively, which are consistent with the gel filtration molecular weights of the enzyme activities, thus confirming the identity of the cloned genes. High expression of the tag+-coded glycosylase almost completely suppressed the alkylation sensitivity of alkA mutants, indicating that high levels of 3-methyladenine DNA glycosylase I will eliminate the need for 3-methyladenine DNA glycosylase II in repair of alkylated DNA. Furthermore, overproduction of the alkA+-coded glycosylase greatly sensitizes wild-type cells to alkylation, suggesting that only a limited expression of this enzyme will allow efficient DNA repair.
Collapse
|
47
|
Briscoe WT, Cotter LE. DNA sequence has an effect on the extent and kinds of alkylation of DNA by a potent carcinogen. Chem Biol Interact 1985; 56:321-31. [PMID: 4075454 DOI: 10.1016/0009-2797(85)90014-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A system has been developed to study the effects of base sequence (neighboring bases) upon the alkylation of guanine (G) and adenine (A) bases in DNA. The study was performed on the synthetic polydeoxyribonucleotides, poly(dG).poly(dC), poly(dG-dC).poly(dG-dC), poly(dA).poly(dT), poly(dA-dT).poly(dA-dT), poly(dA-dC).poly(dG-dT), poly(dA-dG).poly(dC-dT), as well as calf thymus DNA. Each polynucleotide was treated with N-[3H]methyl-N-nitrosourea (MNU), depurinated, and the freed alkylpurines separated by HPLC and quantitated by liquid scintillation counting. The amounts of 3-methylguanine (3-MG), 7-MG, and O6-MG relative to guanine, and 3-methyladenine (3-MA) and 1-MA plus 7-MA relative to adenine, and also the O6-MG/7-MG ratios were highly reproducible for a given polynucleotide. Significant differences were found in the amounts of each of the methylpurines formed when compared among the six synthetic polynucleotides and DNA. This evidence is interpreted as an effect upon alkylation which is ultimately dependent upon the base sequence. These findings may have significance in defining the specificity of chemical carcinogens in terms of the susceptability to modification of nucleotide sequences such as those found in certain oncogenes.
Collapse
|
48
|
Singer B. In vivo formation and persistence of modified nucleosides resulting from alkylating agents. ENVIRONMENTAL HEALTH PERSPECTIVES 1985; 62:41-8. [PMID: 4085444 PMCID: PMC1568687 DOI: 10.1289/ehp.856241] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Alkylating agents are ubiquitous in the human environment and are continuously synthesized in vivo. Although many classes exist, interest has been focused on the N-nitroso compounds, since many are mutagens for bacteria, phage, and cells, and carcinogens for mammals. In contrast to aromatic amines and polyaromatic hydrocarbons which can react at carbons, simple alkylating agents react with nitrogens and oxygens: 13 sites are possible, including the internucleotide phosphodiester. However, only the N-nitroso compounds react extensively with oxygens. In vivo, most possible derivatives have been found after administration of methyl and ethyl nitroso compounds. The ethylating agents are more reactive toward oxygens than are the methylating agents and are more carcinogenic in terms of total alkylation. This is true regardless of whether or not the compounds require metabolic activation. It has been hypothesized that the level and persistence of specific derivatives in a "target" cell correlates with oncogenesis. However, no single derivative can be solely responsible for this complex process, since correlations cannot be made for even a single carcinogen acting on various species or cell types. Some derivatives are chemically unstable, and the glycosyl bond is broken (3- and 7-alkylpurines), leaving apurinic sites which may be mutagenic. These, as well as most adducts, are recognized by different enzymatic activities which remove/repair at various rates and efficiencies depending on the number of alkyl derivatives, as well as enzyme content in the cell and recognition of the enzyme. Evaluation of human exposure requires early and sensitive methods to detect the initial damage and the extent of repair of each of the many promutagenic adducts.
Collapse
|
49
|
Effects of aphidicolin and/or 2‘,3‘-dideoxythymidine on DNA repair induced in HeLa cells by four types of DNA-damaging agents. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(19)85098-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
50
|
Chandrasecaran S, Kan LS. Preparation of Three Decadeoxyribonucleotides Containing an Uncommon or Modified Base. J CHIN CHEM SOC-TAIP 1985. [DOI: 10.1002/jccs.198500027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|