1
|
Oscillatory potentials abnormalities in regular cannabis users: Amacrine cells dysfunction as a marker of central dopaminergic modulation. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110083. [PMID: 32860840 DOI: 10.1016/j.pnpbp.2020.110083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/04/2020] [Accepted: 08/03/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Cannabis is a neuromodulating substance that acts on central synaptic transmission. Regular cannabis use induces a decreased capacity for dopamine synthesis in the brain. The retina is considered an easy means of investigating dysfunctions of synaptic transmission in the brain. We have previously studied the impact of regular cannabis use on retinal function. Using the N95 wave of the pattern electroretinogram, we found a 6 ms-delayed ganglion cells response. Using the b-wave of the photopic flash electroretinogram, we found a 1 ms-delayed bipolar cells response. Here, we investigated amacrine cells function because these cells are located between the bipolar cells and the ganglion cells and contribute to amplifying the signal between these two layers of the retina. We tested the effect of regular cannabis use on these retinal dopaminergic cells. We assessed the role of these cells in amplifying the delay observed previously. METHODS We recorded dark-adapted 3.0 flash ERG oscillatory potentials in 56 regular cannabis users and 29 healthy controls. The amplitude and implicit time of OP1, OP2, OP3 and OP4 were evaluated. RESULTS Cannabis users showed a significant decrease in OP2 amplitude (p = 0.029, Mann-Whitney test) and OP3 amplitude (p = 0.024, Mann-Whitney test). No significant difference was found between the groups for OP1 and OP4 amplitude or for the implicit time of oscillatory potentials. CONCLUSIONS These results reflect the impact of regular cannabis use on amacrine cells function. They highlight abnormalities in dopaminergic transmission and are similar to those found in Parkinson's disease. Oscillatory potentials could be used as markers of central dopaminergic modulation.
Collapse
|
2
|
Dartois M, Haudiquet N, Albuisson E, Angioi-Duprez K, Schwan R, Laprévote V, Schwitzer T. Retinal dysfunctions in regular tobacco users: The retina as a window to the reward circuit in addictive disorders. J Psychiatr Res 2021; 136:351-357. [PMID: 33636691 DOI: 10.1016/j.jpsychires.2021.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/20/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
The nicotine contained in tobacco is a neuromodulator which affects neurotransmission within the brain. The retina is an easy way to study central synaptic transmission dysfunctions in neuropsychiatric disorders. The purpose of this study is to assess the impact of regular tobacco use on retinal function using pattern (PERG), flash (fERG) and multifocal (mfERG) electroretinogram (ERG). We recorded PERG, fERG and mfERG for 24 regular tobacco users and 30 healthy non-smoking subjects. The protocol was compliant with International Society for Clinical Electrophysiology of Vision standards. The amplitudes and peak times (PT) of P50, N95 waves (PERG), a-, b- and oscillatory potentials (fERG), and N1, P1, N2 (mfERG) were evaluated. Compared to non-smokers, the results (Mann-Whitney U test, Bonferroni correction) for tobacco users suggested a significant increase of ~ 1 ms in the PT of light-adapted 3.0 fERG b-wave (p = 0.002). Using mfERG, we observed the following increases in tobacco users: in ring 3 for P1 PT of ~1,5 ms and in ring 5 for P1 PT of ~ 1 ms and for N2 PT of ~ 1 ms (p = 0.002, p = 0.002 and p = 0.006). It is our hypothesis that these results reflect the consequences of regular tobacco use on retinal synaptic transmission, and more specifically on dopaminergic and cholinergic transmission. We deduce that the retina may provide a crucial site of investigation for neurotransmission modulation of the reward circuit in regular tobacco users.
Collapse
Affiliation(s)
- Mathilde Dartois
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France.
| | - Nicolas Haudiquet
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France.
| | - Eliane Albuisson
- CHRU-Nancy, DRCI, Département MPI, Unité de Méthodologie, Data management et Statistique UMDS, F-54000, Nancy, France; Université de Lorraine, Faculté de Médecine, InSciDenS, F-54000, Nancy, France; Université de Lorraine, CNRS, IECL, F-54000, Nancy, France; Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France.
| | - Karine Angioi-Duprez
- Service d'Ophtalmologie, CHRU Nancy, Nancy, France; Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France.
| | - Raymund Schwan
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France.
| | - Vincent Laprévote
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France.
| | - Thomas Schwitzer
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
3
|
Schwitzer T, Schwan R, Angioi-Duprez K, Lalanne L, Giersch A, Laprevote V. Cannabis use and human retina: The path for the study of brain synaptic transmission dysfunctions in cannabis users. Neurosci Biobehav Rev 2019; 106:11-22. [PMID: 30773228 DOI: 10.1016/j.neubiorev.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/08/2018] [Accepted: 12/02/2018] [Indexed: 01/01/2023]
Abstract
Owing to the difficulty of obtaining direct access to the functioning brain, new approaches are needed for the indirect exploration of brain disorders in neuroscience research. Due to its embryonic origin, the retina is part of the central nervous system and is well suited to the investigation of neurological functions in psychiatric and addictive disorders. In this review, we focus on cannabis use, which is a crucial public health challenge, since cannabis is one of the most widely used addictive drugs in industrialized countries. We first explain why studying retinal function is relevant when exploring the effects of cannabis use on brain function. Next, we describe both the retinal electrophysiological measurements and retinal dysfunctions observed after acute and regular cannabis use. We then discuss how these retinal dysfunctions may inform brain synaptic transmission abnormalities. Finally, we present various directions for future research on the neurotoxic effects of cannabis use.
Collapse
Affiliation(s)
- Thomas Schwitzer
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France.
| | - Raymund Schwan
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; Maison des Addictions, CHRU Nancy, Nancy, France
| | | | - Laurence Lalanne
- INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; Pôle de Psychiatrie Santé Mentale et Addictologie, Fédération de Médecine Translationnelle de Strasbourg, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Anne Giersch
- INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Vincent Laprevote
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Kaelberer MM, Buchanan KL, Klein ME, Barth BB, Montoya MM, Shen X, Bohórquez DV. A gut-brain neural circuit for nutrient sensory transduction. Science 2018; 361:361/6408/eaat5236. [PMID: 30237325 DOI: 10.1126/science.aat5236] [Citation(s) in RCA: 566] [Impact Index Per Article: 80.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022]
Abstract
The brain is thought to sense gut stimuli only via the passive release of hormones. This is because no connection has been described between the vagus and the putative gut epithelial sensor cell-the enteroendocrine cell. However, these electrically excitable cells contain several features of epithelial transducers. Using a mouse model, we found that enteroendocrine cells synapse with vagal neurons to transduce gut luminal signals in milliseconds by using glutamate as a neurotransmitter. These synaptically connected enteroendocrine cells are referred to henceforth as neuropod cells. The neuroepithelial circuit they form connects the intestinal lumen to the brainstem in one synapse, opening a physical conduit for the brain to sense gut stimuli with the temporal precision and topographical resolution of a synapse.
Collapse
Affiliation(s)
| | | | | | - Bradley B Barth
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Marcia M Montoya
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Diego V Bohórquez
- Department of Medicine, Duke University, Durham, NC, USA. .,Department of Neurobiology, Duke University, Durham, NC, USA.,Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
5
|
Schwitzer T, Schwan R, Bubl E, Lalanne L, Angioi-Duprez K, Laprevote V. Looking into the brain through the retinal ganglion cells in psychiatric disorders: A review of evidences. Prog Neuropsychopharmacol Biol Psychiatry 2017; 76:155-162. [PMID: 28336492 DOI: 10.1016/j.pnpbp.2017.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/06/2017] [Accepted: 03/19/2017] [Indexed: 01/11/2023]
Abstract
Psychiatry and neuroscience research need novel approaches to indirectly investigate brain function. As the retina is an anatomical and developmental extension of the central nervous system (CNS), changes in retinal function may reflect neurological dysfunctions in psychiatric disorders. The last and most integrated retinal relay before visual information transfer to the brain is the ganglion cell layer. Here, based on collected arguments, we argue that these cells offer a crucial site for indirectly investigating brain function. We describe the anatomical and physiological properties of these cells together with measurements of their functional properties named pattern electroretinogram (PERG). Based on ganglion cell dysfunctions measured with PERG in neurological disorders, we argue for the relevance of studying ganglion cell function in psychiatric research. We review studies that have evaluated ganglion cell function in psychiatric and addictive disorders and discuss how changes in PERG measurements could be functional markers of pathophysiological mechanisms of psychiatric disorders.
Collapse
Affiliation(s)
- Thomas Schwitzer
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adulte du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; EA7298, INGRES, Université de Lorraine, Vandœuvre-lès-Nancy, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France.
| | - Raymund Schwan
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adulte du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; EA7298, INGRES, Université de Lorraine, Vandœuvre-lès-Nancy, France; Maison des Addictions, CHRU Nancy, Nancy, France
| | - Emanuel Bubl
- Saarland University Medical Center, Department for Psychiatry and Psychotherapy, Homburg, Germany
| | - Laurence Lalanne
- INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | | | - Vincent Laprevote
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adulte du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France; EA7298, INGRES, Université de Lorraine, Vandœuvre-lès-Nancy, France; Maison des Addictions, CHRU Nancy, Nancy, France
| |
Collapse
|
6
|
Abstract
In diabetes, retinal blood flow is compromised, and retinal hypoxia is likely to be further intensified during periods of darkness. During dark adaptation, rod photoreceptors in the outer retina are maximally depolarized and continuously release large amounts of the neurotransmitter glutamate-an energetically demanding process that requires the highest oxygen consumption per unit volume of any tissue of the body. In complete darkness, even more oxygen is consumed by the outer retina, producing a steep fall in the retinal oxygen tension curve which reaches a nadir at the depth of the mitochondrial-rich rod inner segments. In contrast to the normal retina, the diabetic retina cannot meet the added metabolic load imposed by the dark-adapted rod photoreceptors; this exacerbates retinal hypoxia and stimulates the overproduction of vascular endothelial growth factor (VEGF). The use of nocturnal illumination to prevent dark adaptation, specifically reducing the rod photoreceptor dark current, should ameliorate diabetic retinopathy.
Collapse
Affiliation(s)
- David J Ramsey
- Department of Ophthalmology, Lahey Hospital & Medical Center, Tufts University School of Medicine, 41 Mall Road, Burlington, MA, 01805, USA.
| | - G B Arden
- University College London, London, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
7
|
Differential cellular expression of organic anion transporting peptides OATP1A2 and OATP2B1 in the human retina and brain: implications for carrier-mediated transport of neuropeptides and neurosteriods in the CNS. Pflugers Arch 2014; 467:1481-1493. [DOI: 10.1007/s00424-014-1596-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/28/2014] [Accepted: 08/06/2014] [Indexed: 02/07/2023]
|
8
|
Sherry DM, Ulshafer RJ. Neurotransmitter-specific identification and characterization of neurons in the all-cone retina of Anolis carolinensis II: Glutamate and aspartate. Vis Neurosci 2009; 9:313-23. [PMID: 1356423 DOI: 10.1017/s0952523800010725] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractImmunocytochemical and autoradiographic methods were used to identify neurons in the pure cone retina of the lizard (Anolis carolinensis) that are likely to employ glutamate (GLU) or aspartate (ASP) as a neurotransmitter.GLU immunocytochemistry demonstrated high levels of endogenous GLU in all cone types and numerous bipolar cells. Moderate GLU levels were found in horizontal and ganglion cells. Müller cells and most amacrine cells had very low GLU levels. GLU immunoreactivity (GLU-IR) in the cones was present from the inner segment to the synaptic pedicle. A large spherical cell type with moderate GLU-IR was identified in the proximal inner plexiform layer (IPL). These cells also contain ASP and have been tentatively identified as amacrine cells. Uptake of [3H]-L-GLU labeled all retinal layers. All cone types and Müller cells sequestered [3H]-D-ASP, a substrate specific for the GLU transporter.Anti-ASP labeling was observed in cones, horizontal cells, amacrine cells, and cells in the ganglion cell layer. ASP immunoreactivity (ASP-IR) in the cones was confined to the inner segment. One ASP-containing pyriform amacrine cell subtype ramifying in IPL sublamina b was identified.Analysis of GLU-IR, ASP-IR, and GABA-IR on serial sections indicated that there were two distinct populations of horizontal cells in the Anolis retina: one containing GABA-IR, GLU-IR, and ASP-IR; and another type containing only GLU-IR and ASP-IR. Light GLU-IR was frequently found in GABA-containing amacrine cells but ASP-IR was not.The distinct distributions of GLU and ASP may indicate distinctly different roles for these amino acids. GLU, not ASP, is probably the major neurotransmitter in the cone-biploar-ganglion cell pathway of the Anolis retina. Both GLU and ASP are present in horizontal cells and specific subpopulations of amacrine cells, but it is unclear if GLU or ASP have a neurotransmitter role in these cells.
Collapse
Affiliation(s)
- D M Sherry
- Department of Neuroscience, University of Florida, Gainesville
| | | |
Collapse
|
9
|
Abstract
The active component of the marijuana plant Cannabis sativa, Delta9-tetrahydrocannabinol (THC), produces numerous beneficial effects, including analgesia, appetite stimulation and nausea reduction, in addition to its psychotropic effects. THC mimics the action of endogenous fatty acid derivatives, referred to as endocannabinoids. The effects of THC and the endocannabinoids are mediated largely by metabotropic receptors that are distributed throughout the nervous and peripheral organ systems. There is great interest in endocannabinoids for their role in neuroplasticity as well as for therapeutic use in numerous conditions, including pain, stroke, cancer, obesity, osteoporosis, fertility, neurodegenerative diseases, multiple sclerosis, glaucoma and inflammatory diseases, among others. However, there has been relatively far less research on this topic in the eye and retina compared with the brain and other organ systems. The purpose of this review is to introduce the "cannabinergic" field to the retinal community. All of the fundamental works on cannabinoids have been performed in non-retinal preparations, necessitating extensive dependence on this literature for background. Happily, the retinal cannabinoid system has much in common with other regions of the central nervous system. For example, there is general agreement that cannabinoids suppress dopamine release and presynaptically reduce transmitter release from cones and bipolar cells. How these effects relate to light and dark adaptations, receptive field formation, temporal properties of ganglion cells or visual perception are unknown. The presence of multiple endocannabinoids, degradative enzymes with their bioactive metabolites, and receptors provides a broad spectrum of opportunities for basic research and to identify targets for therapeutic application to retinal diseases.
Collapse
Affiliation(s)
- Stephen Yazulla
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, United States.
| |
Collapse
|
10
|
Aikawa H, Tomita H, Ishiguro SI, Nishikawa S, Sugano E, Tamai M. Increased expression of glutamate binding protein mRNA in rat retina after ischemia-reperfusion injury. TOHOKU J EXP MED 2003; 199:25-33. [PMID: 12688557 DOI: 10.1620/tjem.199.25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We investigated the distribution and expression of glutamate-binding protein (GBP) in the rat retinas after ischemia-reperfusion injury. Ischemia-reperfusion injury was induced in rats by clamping of the optic nerve for one hour. The distribution of GBP immunoreactivity was determined at 6, 24, 72, and 168 hours after reperfusion. Also, RT-PCR was performed to detect the change of GBP mRNA expression in the reperfused retinas. In untreated control retinas, GBP immunoreactivity was observed in the cells of ganglion cell layer, inner plexiform layer, and inner nuclear layer. At 6, 24, and 72 hours after reperfusion, GBP immunoreactivity was seen not only in the GCL, IPL, and INL, but also in the outer plexiform layer and photoreceptor outer segment. At 168 hours after reperfusion, GBP immunoreactivity in the OPL was decreased. Moreover, we found increased GBP mRNA expression at 24 hours after reperfusion. In this study, we demonstrated that ischemia-reperfusion induced increase of GBP immunoreactivity in the inner retina and increase of GBP mRNA expression in the rat retinas. Our results suggest that NMDA receptor-like complex may play some role in the ischemic cell death of the inner retina.
Collapse
Affiliation(s)
- Hiroko Aikawa
- Department of Ophthalmology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Schmitz F, Augustin I, Brose N. The synaptic vesicle priming protein Munc13-1 is absent from tonically active ribbon synapses of the rat retina. Brain Res 2001; 895:258-63. [PMID: 11259787 DOI: 10.1016/s0006-8993(01)02078-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ribbon synapses, for example of the retina, are specialized synapses that differ from conventional, phasically active synapses in several aspects. Ribbon synapses can tonically and yet very rapidly release neurotransmitter via synaptic vesicle exocytosis. This requires an optimization of the synaptic machinery and is at least partly due to the presence of synaptic ribbons that bind large numbers of synaptic vesicles and which are believed to participate in priming synaptic vesicles for exocytosis. In this paper we analyzed whether ribbon synapses of the retina employ similar priming factors, i.e. Munc13-1, as do conventional, non-ribbon containing phasically active synapses. We found that though present in conventional synapses of the retina Munc13-1 was completely absent from ribbon-containing synapses of the retina, both in the outer as well as in the inner plexiform layer. This indicates that ribbon synapses of the retina employ other, possibly more potent priming factors than phasically active conventional synapses.
Collapse
Affiliation(s)
- F Schmitz
- Leibniz-Institute for Neurobiology, Department of Neurochemistry and Molecular Biology, Brenneckestrasse 6, 39118 Magdeburg, Germany.
| | | | | |
Collapse
|
12
|
Sun H, Crossland WJ. Quantitative assessment of localization and colocalization of glutamate, aspartate, glycine, and GABA immunoreactivity in the chick retina. THE ANATOMICAL RECORD 2000; 260:158-79. [PMID: 10993953 DOI: 10.1002/1097-0185(20001001)260:2<158::aid-ar60>3.0.co;2-v] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We examined the posthatch chick retina for the frequency of occurrence of localization and colocalization of four amino acid transmitter candidates: glutamate (Glu), aspartate (Asp), gamma aminobutyric acid (GABA), and glycine (Gly) using postembedding methods. We support previous studies of Glu, Asp, GABA, and Gly localization in the direct and indirect functional pathways of the chick retina and extend these studies with new qualitative and quantitative observations. We found that photoreceptors show distinct cellular immunoreactivity for both Glu (Glu+) and Asp+, but not for Gly (Gly-) or GABA. Moreover, there is compartmentalization of Glu and Asp staining within the photoreceptors. All horizontal cells react strongly with Asp and Glu, about three-fourths are GABA+ and three-fourths of these are Gly+. Bipolar cells are uniformly Glu+, heterogeneously Asp+, occasionally Gly+, but GABA-. A majority of amacrine cells stain heterogeneously with all antibodies: 90% are Gly+, slightly more than half colocalize Glu, GABA, and Gly. Furthermore, amacrine cells in the outer two or three rows of cells are more likely to be stained by Gly than Glu, Asp, or GABA. Confirming previous studies, ganglion cells were mostly immunoreactive for Glu and Asp with fewer reactive for GABA and Gly. Strong and distinctly cellular immunoreactivity was found in both central and peripheral retina. Our findings show: 1) there is extensive colocalization of Glu, Asp, GABA, and Gly among most retinal neurons, including some cells that contain all four; 2) cells of the direct functional pathway tend to be labeled by Glu and Asp generally to the exclusion of GABA and Gly, while those of the indirect pathway tend to be labeled by GABA+ and/or Gly+ in addition to Glu+ and Asp+; 3) different cell body layers have distinct patterns of colocalization; and 4) there is no qualitative difference in staining patterns between peripheral and central retina.
Collapse
Affiliation(s)
- H Sun
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
13
|
Abstract
Retinitis pigmentosa refers to a family of hereditary retinal degenerations that lead to photoreceptor death and vision loss. The underlying cause(s) are not known. In recent years there has been accumulating evidence of neurochemical changes during degeneration. In particular, the amino acids glutamate, GABA, and glycine show alterations in labelling intensity in subsets of neurons. Furthermore, there are differences in the labelling of the precursors, glutamine and aspartate, prior to, during, and following loss of photoreceptors, suggesting that the metabolic pathways involved in neurotransmitter formation and degradation may be abnormal. In addition, there is an elevation in glutamine and arginine content within Müller cells prior to the onset of photoreceptor death. Investigations evaluating Müller cell function indicate that formation and degradation of glutamate, in particular, is abnormal in the degenerating retina from an early age. These studies suggest that even though the primary genetic defect of the RCS rat is within the retinal pigment epithelium, Müller cells develop abnormally, and may contribute to the observed photoreceptor loss.
Collapse
Affiliation(s)
- E L Fletcher
- Department of Anatomy and Cell Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
14
|
Kaneko T. Chapter VII Enzymes responsible for glutamate synthesis and degradation. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
15
|
Heidinger V, Dreyfus H, Sahel J, Christen Y, Hicks D. Excitotoxic damage of retinal glial cells depends upon normal neuron-glial interactions. Glia 1998; 23:146-55. [PMID: 9600383 DOI: 10.1002/(sici)1098-1136(199806)23:2<146::aid-glia6>3.0.co;2-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glutamate, the principal retinal neurotransmitter, can also act as a toxin when present in excessive concentrations as may occur in pathologies such as retinal ischemia or more generally in cerebral neuronal degenerative disease. As glial cells play pivotal roles in transfer of blood-borne molecules and in glutamate clearance, we investigated the effects of the excitatory amino acids glutamic and kainic acid on different in vitro preparations of retinal Müller glial cells. Glial viability or morphology were not influenced by excitatory amino acid exposure in either pure glial cultures or in monolayer cultures of mixed neonatal neurons and glia, whereas kainic acid specifically lysed amacrine cells in mixed or pure neuronal cultures. When retinal fragments were pre-incubated in excitatory amino acids prior to dissociation and seeding into culture, under these conditions Müller glial cells exhibited a dramatic loss of their normal epithelioid form to a retracted morphology. However, glial cell viability was not compromised, and rapid restoration of epithelioid in vitro glial morphology could be achieved by addition of exogenous epidermal and basic fibroblast growth factor to the culture medium. This study demonstrates that glial cells are structurally perturbed by excitotoxic conditions and that such effects are dependent on normal glial-neuronal interactions.
Collapse
Affiliation(s)
- V Heidinger
- Laboratoire de Physiopathologie Rétinienne, INSERM CJF 92/02, Médicale A, Centre Hospitalier et Universitaire de Strasbourg, France.
| | | | | | | | | |
Collapse
|
16
|
Senda T, Mita S, Kaneda K, Kikuchi M, Akaike A. Effect of SA4503, a novel sigma1 receptor agonist, against glutamate neurotoxicity in cultured rat retinal neurons. Eur J Pharmacol 1998; 342:105-11. [PMID: 9544798 DOI: 10.1016/s0014-2999(97)01450-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We examined the effects of sigma1 receptor agonists against glutamate-induced neurotoxicity in cultured retinal neurons. Primary cultures obtained from fetal rat retinas (16-19 d gestation) were used. The neurotoxic effect of glutamate was quantitatively assessed using the trypan blue exclusion method. A brief exposure of retinal cultures to glutamate (500 microM) led to delayed neuronal cell death. The glutamate-induced neurotoxicity was inhibited by (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo-[a,b]-cyclohepten-5 ,10-imine hydrogen maleate (MK-801). The sigma1 receptor agonists, 1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)-piperazine dihydrochloride (SA4503) and (+)-pentazocine at a concentration range of 0.1 approximately 100 microM reduced the glutamate-induced neurotoxicity in a dose-dependent manner. In addition, the neuroprotective effects of both SA4503 and (+)-pentazocine were antagonized by co-treatment with N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]ethylamine monohydrochloride (NE-100), a putative sigma1 receptor antagonist. These findings suggest that sigma1 receptor agonists protect retinal cells against glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- T Senda
- Discovery Research Division, Santen Pharmaceutical Co., Ltd., Osaka, Japan
| | | | | | | | | |
Collapse
|
17
|
Rosner M, Solberg Y, Turetz J, Belkin M. Neuroprotective therapy for argon-laser induced retinal injury. Exp Eye Res 1997; 65:485-95. [PMID: 9464182 DOI: 10.1006/exer.1997.0360] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Laser photocoagulation treatment of the central retina is often complicated by an immediate side effect of visual impairment, caused by the unavoidable laser-induced destruction of the normal tissue lying adjacent to the lesion and not affected directly by the laser beam. Furthermore, accidental laser injuries are at present untreatable. A neuroprotective therapy for salvaging the normal tissue might enhance the benefit obtained from treatment and allow safe perifoveal photocoagulation. We have developed a rat model for studying the efficacy of putative neuroprotective compounds in ameliorating laser-induced retinal damage. Four compounds were evaluated: the corticosteroid methylprednisolone, the glutamate-receptor blocker MK-801, the anti-oxidant enzyme superoxide dismutase, and the calcium-overload antagonist flunarizine. The study was carried out in two steps: in the first, the histopathological development of retinal laser injuries was studied. Argon laser lesions were inflicted in the retinas of 18 pigmented rats. The animals were killed after 3, 20 or 60 days and their retinal lesions were evaluated under the light microscope. The laser injury mainly involved the outer layers of the retina, where it destroyed significant numbers of photoreceptor cells. Over time, evidence of two major histopathological processes was observed: traction of adjacent normal retinal cells into the central area of the lesion forming an internal retinal bulging, and a retinal pigmented epithelial proliferative reaction associated with subretinal neovascularization and invasion of the retinal lesion site by phagocytes. The neuroprotective effects of each of the four compounds were verified in a second step of the study. For each drug tested, 12 rats were irradiated with argon laser inflictions: six of them received the tested agent while the other six were treated with the corresponding vehicle. Twenty days after laser exposure, the rats were killed and their lesions were subjected to image-analysis morphometry. The extent of retinal destruction was assessed by measuring the lesion diameter and the amount of photoreceptor cell loss in the outer nuclear layer. Methylprednisolone and MK-801 were shown to ameliorate laser-induced retinal damage, whereas both superoxide dismutase and flunarizine were ineffective. Furthermore, MK-801 diminished the proliferative reaction of the retinal pigment epithelial cells. On the basis of our results we suggest that the pigmented rat model is suitable for studying and screening various compounds for their neuroprotective efficacy in treating retinal laser injury. We further suggest that glutamate might play a key role in mediating retinal injury induced by laser irradiation.
Collapse
Affiliation(s)
- M Rosner
- Goldschleger Eye Research Institute, Tel-Aviv University, Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | | |
Collapse
|
18
|
Abstract
Glutamate transporters in the tiger salamander retina were studied by autoradiographic and intracellular recording techniques. When the retina was incubated with 15 microM L-[3H]glutamate, photoreceptors and Muller cells were labeled, indicating that these cells had high-affinity glutamate uptake transporters. A much higher dose of glutamate than kainate was required in the bath to produce the same membrane depolarization in horizontal cells (HCs), and the time course of glutamate-induced depolarization was much slower than that of the kainate-induced depolarization. Since glutamate is a substrate of glutamate transporters whereas kainate is not, we attribute these differences to the buffering of extracellular glutamate by glutamate transporters in the retina. D-aspartate (D-asp) increased the efficacy of bath-applied glutamate. Dihydrokainate (DHKA) exerted little effect on glutamate efficacy when applied alone, but it increased glutamate efficacy in the presence of D-asp. These results are consistent with the notion that glutamate transporters in Muller cells are D-asp sensitive and those in photoreceptors are DHKA and D-asp sensitive. Application of DHKA (1-2 mM) did not affect the dark membrane potential or the light responses in rods and cones, but it depolarized the HC dark membrane potential and reduced the HC peak and tail light responses. Our results suggest that DHKA-sensitive glutamate transporters in photoreceptors regulate glutamate levels in rod and cone synaptic clefts. They modulate dark membrane potential and the relative rod cone inputs in retinal HCs.
Collapse
Affiliation(s)
- J H Yang
- Cullen Eye Institute, Houston, TX, USA
| | | |
Collapse
|
19
|
Abstract
We used post-embedding immunocytochemistry to determine the cellular localization of glutamate, gamma-amino butyric acid (GABA), glycine, aspartate, glutamine, arginine, and taurine in the normal and degenerating rat retina. Müller's cell function was also evaluated by determining the uptake and degradation characteristics for glutamate. Immunocytochemical localization of amino acids in adult Royal College of Surgeons (RCS) and control rat retinas were similar with respect to cell classes. Differences in the intensity of labelling for glutamate, aspartate, glutamine, and glycine were observed in several classes of neurons, but the most prominent differences were shown by bipolar cells of the adult RCS rat retina. In addition, glutamine labelling within Müller's cells was higher in the RCS rat than the control. These changes may have occurred because of alterations in the glutamate production or degradation pathways. We tested this hypothesis by determining Müller's cells glutamate uptake and degradation characteristics in adult and postnatal day 16 RCS retinas. High affinity uptake of 3[H]-glutamate revealed an accumulation of grains over Müller's cell bodies in the adult RCS retina implying glutamate degradation anomalies. We confirmed anomalies in glutamate metabolism in RCS Müller's cells by showing that exogenously applied glutamate was degraded over a longer time course in postnatal day 16 RCS retinas, compared to control retinas. Differences in arginine immunoreactivity in adult and immature RCS retinas conform to the presumed dysfunction of Müller's cells in these degenerating retinas. The anomalies of amino acid localization, uptake and degradation lead us to conclude that Müller's cells in the RCS retina show abnormal function by postnatal day 16; an earlier time to previously reported anatomical and functional changes in this animal model of retinal degeneration.
Collapse
Affiliation(s)
- E L Fletcher
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
20
|
Abstract
Immunocytochemical methods were used to visualize glutamate immunoreactivity in the cat retina and to compare its localization with that of aspartate, GABA, and glycine. The cellular and subcellular distribution of glutamate was analyzed at the light-microscopic level by optical densitometry and at the electron-microscopic level by immunogold quantification. The findings were consistent with the proposed role for glutamate as the neurotransmitter of photoreceptors and bipolar cells as particularly high concentrations of staining were found in synaptic terminals of these cells. Ganglion cells were also consistently stained. Aspartate was totally colocalized with glutamate in neuronal cell bodies but the synaptic levels of aspartate were much lower than for glutamate. In addition to the staining of photoreceptor, bipolar, and ganglion cells, glutamate immunoreactivity was also observed in approximately 60% of the amacrine cells. These cells exhibited colocalization with either GABA or glycine. The elevated levels of Glu in amacrine cells may reflect its role as a transmitter precursor in GABAergic cells and as an energy source for mitochondria in glycinergic cells.
Collapse
Affiliation(s)
- L Jojich
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, USA
| | | |
Collapse
|
21
|
Picaud S, Larsson HP, Wellis DP, Lecar H, Werblin F. Cone photoreceptors respond to their own glutamate release in the tiger salamander. Proc Natl Acad Sci U S A 1995; 92:9417-21. [PMID: 7568144 PMCID: PMC40996 DOI: 10.1073/pnas.92.20.9417] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Pulse-like currents resembling miniature postsynaptic currents were recorded in patch-clamped isolated cones from the tiger salamander retina. The events were absent in isolated cones without synaptic terminals. The frequency of events was increased by either raising the osmotic pressure or depolarizing the cell. It was decreased by the application of either glutamate or the glutamate-transport blockers dihydrokainate and D,L-threo-3-hydroxyaspartate. The events required external Na+ for which Li+ could not substitute. The reversal potential of these currents followed the equilibrium potential for Cl- when internal Cl- concentration was changed. Thus, these miniature currents appear to represent the presynaptic activation of the glutamate receptor with glutamate transporter-like pharmacology, caused by the photoreceptor's own vesicular glutamate release. Using a noninvasive method to preserve the intracellular Cl- concentration, we showed that glutamate elicits an outward current in isolated cones. Fluorescence of the membrane-permeable form of fura-2 was used to monitor Ca2+ entry at the cone terminal as a measure of membrane depolarization. The increase in intracellular Ca2+ concentration, elicited by puff application of 30 mM KCl, was completely suppressed in the presence of 100 microM glutamate. Puff application of glutamate alone had no measurable depolarizing effect. These results suggest that the equilibrium potential for Cl-, ECl, was more negative than the activation range for Ca2+ channels and that glutamate elicited an outward current, hyperpolarizing the cones.
Collapse
Affiliation(s)
- S Picaud
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | | | |
Collapse
|
22
|
Takatsuna Y, Chiba T, Adachi-Usami E, Kaneko T. Distribution of phosphate-activated glutaminase-like immunoreactivity in the retina of rodents. Curr Eye Res 1994; 13:629-37. [PMID: 7805393 DOI: 10.3109/02713689408999898] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The distribution of phosphate-activated glutaminase-like immunoreactivity was examined in the retinas of rodents. Intense glutaminase immunoreactivity was observed in many neuronal perikarya in the ganglion cell layer and inner nuclear layer including those of ganglion, bipolar and amacrine cells and possibly horizontal cells. Almost all bipolar cells containing protein kinase C were immunoreactive for glutaminase, suggesting that the majority of glutaminase immunoreactive bipolar cells were of the ON type. Intense glutaminase immunoreactivity was also found in the neuropil of the inner and outer plexiform layers and around the outer limiting membrane. Weak to moderate immunoreactivity was seen in the outer nuclear layer and photoreceptor inner and outer segments. Under electron microscopy, glutaminase immunoreactivity was seen in bipolar cell axons and amacrine cell processes in the inner plexiform layer. In the outer plexiform layer, immunoreactivity was found in the Müller cell processes, but not in the photoreceptor cell terminals. These results indicate that ganglion cells and ON type bipolar cells use glutaminase to produce transmitter glutamate and suggest glutaminase has additional roles in Müller cells. A population of amacrine cells and horizontal cells showed immunoreactivity to glutaminase.
Collapse
Affiliation(s)
- Y Takatsuna
- Department of Ophthalmology, Chiba University School of Medicine, Japan
| | | | | | | |
Collapse
|
23
|
Salceda R, Vilchis MC. High affinity uptake of glutamate and aspartate in the developing rat retina. Curr Eye Res 1994; 13:297-302. [PMID: 7913432 DOI: 10.3109/02713689408995791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Uptake for glutamate and aspartate in both retina and synaptosomes was found to be saturable, temperature sensitive, sodium dependent and reduced by metabolic inhibitors. The P1 and P2 synaptosomal fractions showed high affinity systems for glutamate (3 and 9 microM) and aspartate (6 and 3 microM) respectively. Early after birth, glutamate accumulation was much higher than that of aspartate. It showed a rapid increase reaching the adult values about day 15. Aspartate uptake progressively increases with age up to about day 30. Our findings suggest that glutamate and aspartate may be transmitters at specific cell populations in the rat retina.
Collapse
Affiliation(s)
- R Salceda
- Departamento de Neurociencias, Instituto de Fisiología Celular, UNAM, México DF, México
| | | |
Collapse
|
24
|
Koontz MA, Hendrickson AE. Comparison of immunolocalization patterns for the synaptic vesicle proteins p65 and synapsin I in macaque monkey retina. Synapse 1993; 14:268-82. [PMID: 8248851 DOI: 10.1002/syn.890140405] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The distributions of the two synaptic vesicle proteins p65 [Matthew et al. (1981) J. Cell Biol., 91:257-269] and synapsin I [De Camilli et al. (1983) J. Cell Biol., 96:1337-1354] were compared in macaque monkey retina using pre-embedding immunocytochemistry for both light and electron microscopy. The monoclonal antibody AB-48 against p65 labeled ribbon-containing synaptic terminals of cone, rod, and bipolar cells as well as many conventional synapses of amacrine cells. In contrast, a polyclonal antiserum against synapsin I (SYN I) labeled many amacrine conventional synapses but no photoreceptor or bipolar ribbon synaptic terminals. Horizontal cell pre- and post-synaptic profiles in the outer plexiform layer were not labeled by either antibody. At the light microscopic level, the banding patterns in the inner plexiform layer also differed for the two antibodies, with four bands of AB-48 immunoreactivity in sublayers S1, S2, S4, and S5 but only three bands of SYN I immunoreactivity in S1, S3, and S5. SYN I also labeled varicose fibers in both the inner nuclear layer and the outer plexiform layer that are probably processes of dopaminergic and GABAergic interplexiform cells. Varicose fibers in the ganglion cell layer were labeled by both antibodies. These results provide the first electron microscopic immunocytochemical labeling for AB-48 and SYN I in intact retina and confirm that AB-48 labels both ribbon and conventional synaptic terminals, whereas SYN I labels only conventional synapses.
Collapse
Affiliation(s)
- M A Koontz
- Department of Ophthalmology, University of Washington, Seattle 98195
| | | |
Collapse
|
25
|
Crooks J, Kolb H. Localization of GABA, glycine, glutamate and tyrosine hydroxylase in the human retina. J Comp Neurol 1992; 315:287-302. [PMID: 1346792 DOI: 10.1002/cne.903150305] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A light microscope study using postembedding immunocytochemistry techniques to demonstrate the common neurotransmitter candidates gamma-aminobutyric acid (GABA), glycine, glutamate, and tyrosine hydroxylase for dopamine has been done on human retina. By using an antiserum to GABA, we found GABA-immunoreactivity (GABA-IR) to be primarily in amacrine cells lying in the inner nuclear layer (INL) or displaced to the ganglion cell layer (GCL). A few stained cells in the INL, which are probably interplexiform cells, were observed to project thin processes towards the outer plexiform layer (OPL). There were heavily stained bands of immunoreactivity in strata 1, 3 and 5 of the inner plexiform layer (IPL). An occasional ganglion cell was also GABA-IR. By using an antiserum to glycine, stained cells were observed at all levels of the INL. Most of these were amacrines, but a few bipolar cells were also glycine-IR. Displaced amacrine cells and large-bodied cells, which are probably ganglion cells, stained in the GCL. The bipolar cells that stained appeared to include both diffuse and midget varieties. The AII amacrine cell of the rod pathway was clearly stained in our material but at a lower intensity than two other amacrine cell types tentatively identified as A8 and A3 or A4. Again, there was stratified staining in the IPL, with strata 2 and 4 being most immunoreactive. An antiserum to glutamate revealed that most of the neurons of the vertical pathways in the human retina were glutamate-IR. Rod and cone photoreceptor synaptic endings labeled as did the majority of bipolar and ganglion cells. The rod photoreceptor stained more heavily than the cone photoreceptor in our material. While both midget and diffuse cone bipolar cell types were clearly glutamate-IR, rod bipolars were not noticeably stained. The most strongly staining glutamate-IR processes of the IPL lay in the outer half, in sublamina a. The antiserum to tyrosine hydroxylase (TOH) revealed two different amacrine cell types. Strongly immunoreactive cells (TOH1) had their cell bodies in the INL and their dendrites ramified in a dense plexus in stratum 1 of the IPL. Fine processes arising from their cell bodies or from the stratum 1 plexus passed through the INL to reach the OPL but did not produce long-ranging ramifications therein. The less immunoreactive amacrines (TOH2) lay in the INL, the center of the IPL or the GCL and emitted thick dendrites that were monostratified in stratum 3 of the IPL.
Collapse
Affiliation(s)
- J Crooks
- Department of Ophthalmology, University of Utah School of Medicine, Salt Lake City 84108
| | | |
Collapse
|
26
|
Gebhard R. Histochemical demonstration of glutamate dehydrogenase and phosphate-activated glutaminase activities in semithin sections of the rat retina. HISTOCHEMISTRY 1992; 97:101-3. [PMID: 1618633 DOI: 10.1007/bf00271288] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The activities of the glutamate metabolizing enzymes phosphate-activated glutaminase (PAG) and glutamate dehydrogenase (Gldh) are demonstrated in semithin sections of the rat retina. Highest activities of both enzymes are found in the photoreceptor inner segments, PAG additionally in the outer plexiform layer and Gldh in the inner plexiform layer and in mueller glial cells. Although their non randomly distribution makes a role in neurotransmitter metabolism possible, their high activities in inner segments point towards the general problem of the functional interpretation of both molecules.
Collapse
Affiliation(s)
- R Gebhard
- Department of Neuroanatomy, University of Düsseldorf, Federal Republic of Germany
| |
Collapse
|
27
|
Davanger S, Ottersen OP, Storm-Mathisen J. Glutamate, GABA, and glycine in the human retina: an immunocytochemical investigation. J Comp Neurol 1991; 311:483-94. [PMID: 1684589 DOI: 10.1002/cne.903110404] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The distribution of the neuroactive amino acids glutamate, GABA, and glycine in the human retina was examined in consecutive semithin sections treated with antisera specific for fixed glutamate, GABA, and glycine, respectively. Glutamate immunoreactivity was conspicuous in all photoreceptor cells (rods more strongly labelled than cones), and in a majority (85-89%) of the cells in the inner nuclear layer (INL). Rod spherules and cone pedicles showed a greater enrichment of glutamate immunoreactivity than the parent cell bodies and inner segments. Also, structures of the inner plexiform layer (IPL) were labelled. A large majority (83-91%) of cells in the ganglion cell layer (GCL) was strongly stained, as were most axons in the nerve fibre layer. Müller cell processes appeared unstained. GABA immunoreactivity was present in presumed amacrine but not in bipolar-like cells. The stained cells were restricted to the inner 1/3 of the INL and were more frequent in central than in peripheral retina (40% and 26% of all cells in the inner 1/2 of INL, respectively). GABA positive cell processes, probably originating from interplexiform cells, appeared to traverse the INL and end in the outer plexiform layer. Dense immunolabeling was found in the IPL. GABA immunoreactive cells (some also stained for glutamate) comprised 23% of all GCL cells in the peripheral retina, but only 5% in the central retina. Most of them were localized adjacent to the IPL. A few GABA positive (possibly ganglion) cells extended a single fibre toward the nerve fibre layer. Solitary GABA positive fibres were seen in this layer and in the optic nerve. Glycine immunoreactivity was observed in cells with the location typical of amacrine and bipolar (peripheral retina) cells, as well as in punctate structures of the IPL. In contrast to the GABA positive cells, the glycine positive cells were more frequent in the peripheral than in the central retina (42% and 23% of all cells in inner 1/3 of INL, respectively). A few cells in the GCL (0.5-1.5%) were glycine positive. Glutamate colocalized with GABA or glycine in a majority of the cells stained for either of these inhibitory transmitters (90-95% of the GABA positive cells, and 80-86% of the glycine positive cells, in the INL). Some bipolar cells were stained for both glutamate and glycine. Colocalization of GABA and glycine occurred in a subpopulation (3-4%) of presumed amacrine cells, about half of which was also glutamate positive.
Collapse
Affiliation(s)
- S Davanger
- Department of Anatomy, University of Oslo, Norway
| | | | | |
Collapse
|
28
|
Abstract
Amacrine cells of the rhesus monkey, Macaca mulatta, were studied in 38 retinas Golgi-impregnated as whole, flat preparations. By using criteria of dendritic morphology, span of arborization, and level of arborization in the inner plexiform layer, 26 types of amacrine cell ranging in size of dendritic span from 30 microns to 2 mm were identified and listed in increasing size of dendritic span. In some instances, different cell types could be grouped together due to similar morphological features. For example, 1 group, "knotty amacrine cells," has small cell bodies and a profusion of small, varicose, intertwined processes that span up to 30 microns and are essentially monostratified, but each of the 3 types ends in different strata. Another group is 2 types with about 20 fine radiating processes spanning 1 mm that possess some prominent varicosities. One of these has all of its processes terminating in the innermost stratum of the inner plexiform layer ("spidery"-type 2 amacrine cells). The other with predominantly similarly ending processes has some that also terminate in the outermost stratum ("spidery"-type 1 amacrines). These 2 cell types likely correspond to the type 1 and type 2 indolamine-accumulating amacrine cells in rabbit retina. Other types are individuals which cannot be grouped together but resemble familiar types in cat retina (AII and A13). Other types can be correlated with their putative neurotransmitter (type 1 CA-dopamine) or transmitter/drug receptor ("spiny"-benzodiazepine receptor) phenotype. Many types as yet have no known correlate from other Golgi studies or clues as to transmitter or receptor phenotype. This study provides evidence for an unprecedented number of amacrine cell types in the primate retina. The similar morphologies of different types of amacrine cell types within a group suggest other common features within these groups such as neurotransmitter phenotype.
Collapse
Affiliation(s)
- A P Mariani
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
29
|
|
30
|
Yoneda Y, Ogita K. Solubilization of quisqualate-sensitive [3H]glutamate binding activity from rat retina. J Neurochem 1989; 52:1501-7. [PMID: 2565374 DOI: 10.1111/j.1471-4159.1989.tb09200.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Binding activity of a putative central neurotransmitter, L-glutamic acid, was examined in the supernatant preparations solubilized from rat retinal membranes by Nonidet P-40. [3H]Glutamate binding activity increased linearly with increasing concentrations of the solubilized proteins up to 15 micrograms. The binding activity reached an equilibrium within 10 min at 2 degrees C, while increasing with incubation time up to 60 min at 30 degrees C. Addition of an excess of nonradioactive glutamate rapidly decreased the activity at 30 degrees C. Scatchard analysis revealed that the solubilized retinal binding activity consisted of a single component with a KD of 0.25 microM and a Bmax of 57.4 pmol/mg protein. The solubilized binding activity exhibited a stereospecificity and a structure selectivity to L-glutamate, and was abolished by quisqualate, L-glutamate diethyl ester, and DL-2-amino-3-phosphonopropionate. None of the other agonists and antagonists for the central excitatory amino acid receptors affected the binding activity. Reduction of incubation temperature from 30 degrees C to 2 degrees C resulted in a drastic attenuation of the binding activity due to decrement of the number of the apparent binding sites. Cation-exchange column chromatography revealed that unidentified radioactive material was in fact formed during the incubation of [3H]glutamate with the retinal preparations at 30 degrees C. These results suggest that retinal [3H]glutamate binding activity may be derived at least in part from the quisqualate-sensitive membranous enzyme with a stereospecific and structure-selective high affinity for the central neurotransmitter.
Collapse
Affiliation(s)
- Y Yoneda
- Department of Pharmacology, Setsunan University, Hirakata, Osaka, Japan
| | | |
Collapse
|
31
|
Abstract
This paper describes the first demonstration of taurine-like immunoreactivity in the mammalian retina using an antiserum raised in rabbits. In rat, cat and guinea pig retina a peroxidase-antiperoxidase immunocytochemical technique showed high levels of taurine immunostaining in photoreceptor inner segments and synaptic terminals, in subpopulations of amacrine and bipolar somata and their synaptic processes in the inner plexiform layer, including numerous large terminals near and on ganglion cell somata. Using the Protein A-gold technique for ultrastructural studies in the rat, the presence of synaptic ribbons confirmed that some of these taurine-containing terminals were from bipolar cells. Lower levels of immunostaining were seen in the pigment epithelium and distal parts of glial cells.
Collapse
Affiliation(s)
- N Lake
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
32
|
Ladanyi M, Beaudet A. In-vivo labeling of (3H)D-aspartate uptake sites in monkey retina. Cell Tissue Res 1986; 243:59-63. [PMID: 3002629 DOI: 10.1007/bf00221852] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Following prolonged topical application of (3H)D-aspartate in vivo, selective labeling of three distinct cell classes was observed in light-microscopic radioautographs from squirrel monkey retina. Müller (glial) cell bodies and their processes were intensely and consistently labeled in all preparations. Moderately labeled perikarya were occasionally detected in the area of bipolar cells, within the inner nuclear layer. These were particularly numerous in sections from the central retina where an intense diffuse labeling of the inner plexiform layer was also prominent. Finally, moderate to dense accumulations of label were observed over the cell bodies, internal segments and fiber processes of cone photoreceptors. These results strongly suggest that cones, as well as a sub-population of bipolar cells, use glutamate and/or aspartate as neurotransmitter(s) in monkey retina.
Collapse
|
33
|
Greenberger LM, Besharse JC. Stimulation of photoreceptor disc shedding and pigment epithelial phagocytosis by glutamate, aspartate, and other amino acids. J Comp Neurol 1985; 239:361-72. [PMID: 2864363 DOI: 10.1002/cne.902390402] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It has been reported that aspartate and glutamate selectively impair the structure (Olney, '82) and function (e.g., Furakawa and Hanawa, '55) of second- and third-order retinal neurons while leaving the photoreceptor unaffected. Either amino acid may mimic the endogenous photoreceptor neurotransmitter (Ehinger, '82). We report here that excitatory amino acids also induce massive rod photoreceptor disc shedding in eyecups of Xenopus laevis maintained in vitro. Disc shedding is the process whereby photoreceptors eliminate effete discs. It involves interaction between the distal outer segment and pigment epithelium. Millimolar L-aspartate and L-glutamate, as well as micromolar kainic acid, a glutamate analog, stimulate disc shedding three- to fivefold higher than normal light-evoked shedding levels and result in extensive inner retinal damage. Fifty-millimolar KCl, 1.0 microM ouabain, and replacement of sodium with choline also stimulate disc shedding and alter retinal structure. Extensive neurotoxicity appears unrelated to disc shedding since other amino acids having no significant or marginal effects on retinal structure also stimulate shedding. While the site and mechanism of action of these effectors, and in particular the excitatory amino acids, is now undefined, the data show that amino acids thought to act directly and specifically on inner retinal neurons can also markedly alter photoreceptor and pigment epithelial metabolism.
Collapse
|
34
|
Johnson AT, Kretzer FL, Hittner HM, Glazebrook PA, Bridges CD, Lam DM. Development of the subretinal space in the preterm human eye: ultrastructural and immunocytochemical studies. J Comp Neurol 1985; 233:497-505. [PMID: 3884672 DOI: 10.1002/cne.902330409] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To investigate the development of the subretinal space in the human infant, eyes were obtained from 12 live-born, anomaly-free, preterm infants from 20 to 32 weeks gestation and from one 3-month postterm infant. The retinas were studied by light microscopy, electron microscopy, and immunocytochemistry. The immunocytochemical studies utilized rabbit antiserum against purified bovine interstitial retinol binding protein (IRBP). A subretinal space containing IRBP was present in the central retina at 20 weeks and extended further into the periphery (expressed as a percentage of the distance from the optic disc to the ora serrata in the temporal hemisphere) as the retina developed. At 28 weeks, IRBP was absent only from the most peripheral 25% of the retina and reached the temporal ora serrata at 32 weeks. At 3 months postterm, IRBP immunofluorescence outlined fully developed photoreceptors, which were present from the optic disc to the ora serrata. The appearance of IRBP in the subretinal space correlated with the development of the first photoreceptor outer segment discs.
Collapse
|
35
|
Mosinger JL, Altschuler RA. Aspartate aminotransferase-like immunoreactivity in the guinea pig and monkey retinas. J Comp Neurol 1985; 233:255-68. [PMID: 2857736 DOI: 10.1002/cne.902330207] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The excitatory amino acids, aspartate and glutamate, have been proposed as retinal neurotransmitters. Aspartate aminotransferase (AAT) is an enzyme which is involved in the routine metabolism of these amino acids and may be involved in the specific synthesis of glutamate and/or aspartate for use as a neurotransmitter. On the basis of the hypothesis that increased levels of aspartate aminotransferase may reflect a transmitter role for aspartate and/or glutamate, we have localized aspartate aminotransferase in the guinea pig and cynamolgus monkey retinas with light and electron microscopic immunohistochemical techniques. AAT-like immunoreactivity is localized to the cones of guinea pig retina and to monkey rods. Both species contain a subpopulation of immunoreactive amacrine cells as well as a subpopulation of immunoreactive cells in the ganglion cell layer. Immunostaining is seen in bipolar cells and terminals in the monkey but not in the guinea pig retina. We have performed quantitative analysis of the immunoreactive staining in the outer plexiform layer and described the synaptic organization of immunoreactive processes in the inner plexiform layer (IPL). Labeled amacrine processes in both species form synaptic contacts predominantly to and from bipolar terminals in the inner third of the IPL and to and from other amacrine and small unidentified processes in the outer portion of the IPL. The majority of labeled bipolar terminals in the monkey retina are seen in the inner third of the IPL where they synapse exclusively onto amacrine processes. Labeled bipolar terminals in the outer third of the IPL occasionally synapse onto ganglion processes.
Collapse
|
36
|
Tachibana M. Permeability changes induced by L-glutamate in solitary retinal horizontal cells isolated from Carassius auratus. J Physiol 1985; 358:153-67. [PMID: 2580079 PMCID: PMC1193336 DOI: 10.1113/jphysiol.1985.sp015545] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Solitary horizontal cells isolated from goldfish retinae are depolarized by L-glutamate (Glu) (Ishida, Kaneko & Tachibana, 1984), a possible candidate for the transmitter of photoreceptors. The underlying mechanisms were analysed under voltage-clamp conditions using 'giga-seal' suction pipettes in the whole-cell recording configuration. Glu induced an inward current at the resting membrane potential (ca. -57 mV). Membrane depolarization decreased the amplitude of Glu-induced current and reversed its polarity to outward beyond approximately -3 mV. Membrane hyperpolarization below the resting potential decreased the amplitude of the Glu-induced inward current. When a K current through the anomalous rectifier, which is activated by membrane hyperpolarization (Tachibana, 1983), was blocked by Cs ions, this phenomenon disappeared and the Glu-induced current increased in amplitude with hyperpolarization. Mg ions had no effect on the reduction of the Glu-induced current at hyperpolarized potentials. It was strongly suggested that Glu produced two types of conductance change; a conductance increase due to an activation of Glu channels and a conductance decrease due to a blockage of the K current through the anomalous rectifier. The latter effect is analysed in detail in the following paper (Kaneko & Tachibana, 1985b). The Glu-activated channel was permeable to cations (Na, K, Ca, Mg, Tris and choline ions) with low selectivity, but not to anions. The least effective dose of Glu was less than 10 microM. The relation between the Glu-induced current and the membrane potential curved upwards near the reversal potential, and this relation was not affected by Mg ions.
Collapse
|
37
|
Fong SL, Liou GI, Landers RA, Alvarez RA, Gonzalez-Fernandez F, Glazebrook PA, Lam DM, Bridges CD. Characterization, localization, and biosynthesis of an interstitial retinol-binding glycoprotein in the human eye. J Neurochem 1984; 42:1667-76. [PMID: 6427409 DOI: 10.1111/j.1471-4159.1984.tb12758.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human eyes contain an Mr 135K retinol-binding protein that is analogous to interstitial retinol-binding protein ( IRBP ) in the subretinal space of bovine eyes. It is a glycoprotein, because it binds 125I-concanavalin A, 125I-wheat germ agglutinin and 125I-Lens culinaris hemagglutinin. It does not bind Ricinus communis agglutinin I. After desialation, it binds Ricinus communis agglutinin I, but loses its capacity to bind wheat germ agglutinin. These observations, coupled with the known specificities of these lectins, suggest that at least one of the oligosaccharide chains is a sialated , biantennary complex type containing fucose. Both by direct analysis of dissected ocular tissues and by immunocytochemistry it was shown that human interstitial retinol binding protein is an extracellular protein that is confined predominantly to the subretinal space. Monkey retinas incubated in vitro in medium containing [3H]leucine were shown to synthesize and secrete this protein into the medium, a conclusion that was confirmed by immunoprecipitation with an immunoglobulin fraction prepared from rabbit antibovine IRBP serum. Virtually no other labeled proteins were detectable in the medium. It is concluded that interstitial retinol-binding protein meets many of the requirements for a putative transport protein implicated in the transfer of retinol between the pigment epithelium and retina during the visual cycle, and that the neural retina may play an important role in regulating its amount in the subretinal space.
Collapse
|