1
|
Sun Q, Liu Y, Ni M, Song Y, Yang Q, Zhang J, Zhang Y, Tong Z. The Mining for Flowering-Related Genes Based on De Novo Transcriptome Sequencing in the Endangered Plant Phoebe chekiangensis. Int J Mol Sci 2025; 26:1000. [PMID: 39940774 PMCID: PMC11817208 DOI: 10.3390/ijms26031000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/28/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Phoebe chekiangensis is an indigenous, endangered, and valuable timber and garden tree species in China, which is notable for having a short juvenile phase (early flowering), unique among the Phoebe genus. However, the molecular mechanisms regulating the flowering of P. chekiangensis remain unexplored, primarily due to the lack of transcriptomic or genomic data. In the present study, transcriptome sequencing yielded 53 million RNA reads, resulting in 111,250 unigenes after de novo assembly. Of these, 47,525 unigenes (42.72%) were successfully annotated in the non-redundant (Nr) database. Furthermore, 15,605 unigenes were assigned to Clusters of Orthologous Groups (KOGs), and 36,370 unigenes were classified into Gene Ontology (GO) categories. A total of 16,135 unigenes were mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, involving 298 pathways. Based on the expression levels, Gibberellin signaling pathway-related genes were the most predominant expression levels. Hormonal analysis showed that gibberellin (GA) levels varied across tissues and flowering stages, as GA20 levels in leaves were low during full bloom, while GA1 and GA5 levels peaked in flowers. Furthermore, several key genes involved in gibberellin biosynthesis, including CPS, GID1, GA20ox, GA3ox, and GA2ox, exhibited stage-specific expression patterns. Certain genes were highly expressed during the initial phases of flowering, while others, like GA3ox and GA2ox, reached peak expression at full bloom. These findings provide valuable insights into the molecular mechanisms underlying flowering in P. chekiangensis, laying the foundation for future breeding efforts. This transcriptome dataset will serve as an important public resource for molecular research on this species, facilitating the discovery of functional genes related to its growth, development, and flowering regulation.
Collapse
Affiliation(s)
- Qinglin Sun
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F Univesity, Hangzhou 311300, China; (Q.S.); (Y.L.); (M.N.); (Q.Y.); (Z.T.)
| | - Yan Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F Univesity, Hangzhou 311300, China; (Q.S.); (Y.L.); (M.N.); (Q.Y.); (Z.T.)
| | - Mingyang Ni
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F Univesity, Hangzhou 311300, China; (Q.S.); (Y.L.); (M.N.); (Q.Y.); (Z.T.)
| | - Yandong Song
- Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China;
| | - Qi Yang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F Univesity, Hangzhou 311300, China; (Q.S.); (Y.L.); (M.N.); (Q.Y.); (Z.T.)
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F Univesity, Hangzhou 311300, China; (Q.S.); (Y.L.); (M.N.); (Q.Y.); (Z.T.)
| | - Yuting Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F Univesity, Hangzhou 311300, China; (Q.S.); (Y.L.); (M.N.); (Q.Y.); (Z.T.)
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F Univesity, Hangzhou 311300, China; (Q.S.); (Y.L.); (M.N.); (Q.Y.); (Z.T.)
| |
Collapse
|
2
|
Abrams AN, Kelly G, Hubbard J. NMR assignment of the conserved bacterial DNA replication protein DnaA domain IV. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:315-321. [PMID: 39365420 PMCID: PMC11511705 DOI: 10.1007/s12104-024-10206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
Chromosomal replication is a ubiquitous and essential cellular process. In bacteria, the master replication initiator DnaA plays a key role in promoting an open complex at the origin (oriC) and recruiting helicase in a tightly regulated process. The C-terminal domain IV specifically recognises consensus sequences of double-stranded DNA in oriC, termed DnaA-boxes, thereby facilitating the initial engagement of DnaA to oriC. Here, we report the 13Cβ and backbone 1H, 15N, and 13C chemical shift assignments of soluble DnaA domain IV from Bacillus subtilis at pH 7.6 and 298 K.
Collapse
Affiliation(s)
- Alexander Nguyen Abrams
- Newcastle University Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AH, UK
| | - Geoff Kelly
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Julia Hubbard
- Newcastle University Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AH, UK.
| |
Collapse
|
3
|
Putative Cooperative ATP-DnaA Binding to Double-Stranded DnaA Box and Single-Stranded DnaA-Trio Motif upon Helicobacter pylori Replication Initiation Complex Assembly. Int J Mol Sci 2021; 22:ijms22126643. [PMID: 34205762 PMCID: PMC8235120 DOI: 10.3390/ijms22126643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 01/03/2023] Open
Abstract
oriC is a region of the bacterial chromosome at which the initiator protein DnaA interacts with specific sequences, leading to DNA unwinding and the initiation of chromosome replication. The general architecture of oriCs is universal; however, the structure of oriC and the mode of orisome assembly differ in distantly related bacteria. In this work, we characterized oriC of Helicobacter pylori, which consists of two DnaA box clusters and a DNA unwinding element (DUE); the latter can be subdivided into a GC-rich region, a DnaA-trio and an AT-rich region. We show that the DnaA-trio submodule is crucial for DNA unwinding, possibly because it enables proper DnaA oligomerization on ssDNA. However, we also observed the reverse effect: DNA unwinding, enabling subsequent DnaA-ssDNA oligomer formation-stabilized DnaA binding to box ts1. This suggests the interplay between DnaA binding to ssDNA and dsDNA upon DNA unwinding. Further investigation of the ts1 DnaA box revealed that this box, together with the newly identified c-ATP DnaA box in oriC1, constitute a new class of ATP-DnaA boxes. Indeed, in vitro ATP-DnaA unwinds H. pylori oriC more efficiently than ADP-DnaA. Our results expand the understanding of H. pylori orisome formation, indicating another regulatory pathway of H. pylori orisome assembly.
Collapse
|
4
|
Leonard AC, Rao P, Kadam RP, Grimwade JE. Changing Perspectives on the Role of DnaA-ATP in Orisome Function and Timing Regulation. Front Microbiol 2019; 10:2009. [PMID: 31555240 PMCID: PMC6727663 DOI: 10.3389/fmicb.2019.02009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/16/2019] [Indexed: 01/20/2023] Open
Abstract
Bacteria, like all cells, must precisely duplicate their genomes before they divide. Regulation of this critical process focuses on forming a pre-replicative nucleoprotein complex, termed the orisome. Orisomes perform two essential mechanical tasks that configure the unique chromosomal replication origin, oriC to start a new round of chromosome replication: (1) unwinding origin DNA and (2) assisting with loading of the replicative DNA helicase on exposed single strands. In Escherichia coli, a necessary orisome component is the ATP-bound form of the bacterial initiator protein, DnaA. DnaA-ATP differs from DnaA-ADP in its ability to oligomerize into helical filaments, and in its ability to access a subset of low affinity recognition sites in the E. coli replication origin. The helical filaments have been proposed to play a role in both of the key mechanical tasks, but recent studies raise new questions about whether they are mandatory for orisome activity. It was recently shown that a version of E. coli oriC (oriCallADP), whose multiple low affinity DnaA recognition sites bind DnaA-ATP and DnaA-ADP similarly, was fully occupied and unwound by DnaA-ADP in vitro, and in vivo suppressed the lethality of DnaA mutants defective in ATP binding and ATP-specific oligomerization. However, despite their functional equivalency, orisomes assembled on oriCallADP were unable to trigger chromosome replication at the correct cell cycle time and displayed a hyper-initiation phenotype. Here we present a new perspective on DnaA-ATP, and suggest that in E. coli, DnaA-ATP is not required for mechanical functions, but rather is needed for site recognition and occupation, so that initiation timing is coupled to DnaA-ATP levels. We also discuss how other bacterial types may utilize DnaA-ATP and DnaA-ADP, and whether the high diversity of replication origins in the bacterial world reflects different regulatory strategies for how DnaA-ATP is used to control orisome assembly.
Collapse
Affiliation(s)
- Alan C Leonard
- Laboratory of Microbial Genetics, Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
| | - Prassanna Rao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Rohit P Kadam
- Laboratory of Microbial Genetics, Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
| | - Julia E Grimwade
- Laboratory of Microbial Genetics, Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
5
|
Abstract
The initiation of chromosomal DNA replication starts at a replication origin, which in bacteria is a discrete locus that contains DNA sequence motifs recognized by an initiator protein whose role is to assemble the replication fork machinery at this site. In bacteria with a single chromosome, DnaA is the initiator and is highly conserved in all bacteria. As an adenine nucleotide binding protein, DnaA bound to ATP is active in the assembly of a DnaA oligomer onto these sites. Other proteins modulate DnaA oligomerization via their interaction with the N-terminal region of DnaA. Following the DnaA-dependent unwinding of an AT-rich region within the replication origin, DnaA then mediates the binding of DnaB, the replicative DNA helicase, in a complex with DnaC to form an intermediate named the prepriming complex. In the formation of this intermediate, the helicase is loaded onto the unwound region within the replication origin. As DnaC bound to DnaB inhibits its activity as a DNA helicase, DnaC must dissociate to activate DnaB. Apparently, the interaction of DnaB with primase (DnaG) and primer formation leads to the release of DnaC from DnaB, which is coordinated with or followed by translocation of DnaB to the junction of the replication fork. There, DnaB is able to coordinate its activity as a DNA helicase with the cellular replicase, DNA polymerase III holoenzyme, which uses the primers made by primase for leading strand DNA synthesis.
Collapse
Affiliation(s)
- S Chodavarapu
- Michigan State University, East Lansing, MI, United States
| | - J M Kaguni
- Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
6
|
Abstract
In recent years it has become clear that complex regulatory circuits control the initiation step of DNA replication by directing the assembly of a multicomponent molecular machine (the orisome) that separates DNA strands and loads replicative helicase at oriC, the unique chromosomal origin of replication. This chapter discusses recent efforts to understand the regulated protein-DNA interactions that are responsible for properly timed initiation of chromosome replication. It reviews information about newly identified nucleotide sequence features within Escherichia coli oriC and the new structural and biochemical attributes of the bacterial initiator protein DnaA. It also discusses the coordinated mechanisms that prevent improperly timed DNA replication. Identification of the genes that encoded the initiators came from studies on temperature-sensitive, conditional-lethal mutants of E. coli, in which two DNA replication-defective phenotypes, "immediate stop" mutants and "delayed stop" mutants, were identified. The kinetics of the delayed stop mutants suggested that the defective gene products were required specifically for the initiation step of DNA synthesis, and subsequently, two genes, dnaA and dnaC, were identified. The DnaA protein is the bacterial initiator, and in E. coli, the DnaC protein is required to load replicative helicase. Regulation of DnaA accessibility to oriC, the ordered assembly and disassembly of a multi-DnaA complex at oriC, and the means by which DnaA unwinds oriC remain important questions to be answered and the chapter discusses the current state of knowledge on these topics.
Collapse
|
7
|
Wolański M, Donczew R, Zawilak-Pawlik A, Zakrzewska-Czerwińska J. oriC-encoded instructions for the initiation of bacterial chromosome replication. Front Microbiol 2015; 5:735. [PMID: 25610430 PMCID: PMC4285127 DOI: 10.3389/fmicb.2014.00735] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/05/2014] [Indexed: 01/09/2023] Open
Abstract
Replication of the bacterial chromosome initiates at a single origin of replication that is called oriC. This occurs via the concerted action of numerous proteins, including DnaA, which acts as an initiator. The origin sequences vary across species, but all bacterial oriCs contain the information necessary to guide assembly of the DnaA protein complex at oriC, triggering the unwinding of DNA and the beginning of replication. The requisite information is encoded in the unique arrangement of specific sequences called DnaA boxes, which form a framework for DnaA binding and assembly. Other crucial sequences of bacterial origin include DNA unwinding element (DUE, which designates the site at which oriC melts under the influence of DnaA) and binding sites for additional proteins that positively or negatively regulate the initiation process. In this review, we summarize our current knowledge and understanding of the information encoded in bacterial origins of chromosomal replication, particularly in the context of replication initiation and its regulation. We show that oriC encoded instructions allow not only for initiation but also for precise regulation of replication initiation and coordination of chromosomal replication with the cell cycle (also in response to environmental signals). We focus on Escherichia coli, and then expand our discussion to include several other microorganisms in which additional regulatory proteins have been recently shown to be involved in coordinating replication initiation to other cellular processes (e.g., Bacillus, Caulobacter, Helicobacter, Mycobacterium, and Streptomyces). We discuss diversity of bacterial oriC regions with the main focus on roles of individual DNA recognition sequences at oriC in binding the initiator and regulatory proteins as well as the overall impact of these proteins on the formation of initiation complex.
Collapse
Affiliation(s)
- Marcin Wolański
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław Wrocław, Poland
| | - Rafał Donczew
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław Wrocław, Poland ; Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| |
Collapse
|
8
|
Wang F, Lu CH, Willner I. From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem Rev 2014; 114:2881-941. [PMID: 24576227 DOI: 10.1021/cr400354z] [Citation(s) in RCA: 498] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fuan Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | | | | |
Collapse
|
9
|
Leonard AC, Grimwade JE. Regulation of DnaA assembly and activity: taking directions from the genome. Annu Rev Microbiol 2012; 65:19-35. [PMID: 21639790 DOI: 10.1146/annurev-micro-090110-102934] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To ensure proper timing of chromosome duplication during the cell cycle, bacteria must carefully regulate the activity of initiator protein DnaA and its interactions with the unique replication origin oriC. Although several protein regulators of DnaA are known, recent evidence suggests that DnaA recognition sites, in multiple genomic locations, also play an important role in controlling assembly of pre-replicative complexes. In oriC, closely spaced high- and low-affinity recognition sites direct DnaA-DnaA interactions and couple complex assembly to the availability of active DnaA-ATP. Additional recognition sites at loci distant from oriC modulate DnaA-ATP availability by repressing new synthesis, recharging inactive DnaA-ADP, or titrating DnaA. Relying on genomic DnaA binding sites, as well as protein regulators, to control DnaA function appears to provide the best combination of high precision and dynamic regulation necessary to couple DNA replication with cell growth over a range of nutritional conditions.
Collapse
Affiliation(s)
- Alan C Leonard
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida 32901, USA.
| | | |
Collapse
|
10
|
Affiliation(s)
- Ofer I. Wilner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
11
|
Replication of Vibrio cholerae chromosome I in Escherichia coli: dependence on dam methylation. J Bacteriol 2010; 192:3903-14. [PMID: 20511501 DOI: 10.1128/jb.00311-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We successfully substituted Escherichia coli's origin of replication oriC with the origin region of Vibrio cholerae chromosome I (oriCI(Vc)). Replication from oriCI(Vc) initiated at a similar or slightly reduced cell mass compared to that of normal E. coli oriC. With respect to sequestration-dependent synchrony of initiation and stimulation of initiation by the loss of Hda activity, replication initiation from oriC and oriCI(Vc) were similar. Since Hda is involved in the conversion of DnaA(ATP) (DnaA bound to ATP) to DnaA(ADP) (DnaA bound to ADP), this indicates that DnaA associated with ATP is limiting for V. cholerae chromosome I replication, which similar to what is observed for E. coli. No hda homologue has been identified in V. cholerae yet. In V. cholerae, dam is essential for viability, whereas in E. coli, dam mutants are viable. Replacement of E. coli oriC with oriCI(Vc) allowed us to specifically address the role of the Dam methyltransferase and SeqA in replication initiation from oriCI(Vc). We show that when E. coli's origin of replication is substituted by oriCI(Vc), dam, but not seqA, becomes important for growth, arguing that Dam methylation exerts a critical function at the origin of replication itself. We propose that Dam methylation promotes DnaA-assisted successful duplex opening and replisome assembly at oriCI(Vc) in E. coli. In this model, methylation at oriCI(Vc) would ease DNA melting. This is supported by the fact that the requirement for dam can be alleviated by increasing negative supercoiling of the chromosome through oversupply of the DNA gyrase or loss of SeqA activity.
Collapse
|
12
|
Stepankiw N, Kaidow A, Boye E, Bates D. The right half of the Escherichia coli replication origin is not essential for viability, but facilitates multi-forked replication. Mol Microbiol 2009; 74:467-79. [PMID: 19737351 DOI: 10.1111/j.1365-2958.2009.06877.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replication initiation is a key event in the cell cycle of all organisms and oriC, the replication origin in Escherichia coli, serves as the prototypical model for this process. The minimal sequence required for oriC function was originally determined entirely from plasmid studies using cloned origin fragments, which have previously been shown to differ dramatically in sequence requirement from the chromosome. Using an in vivo recombineering strategy to exchange wt oriCs for mutated ones regardless of whether they are functional origins or not, we have determined the minimal origin sequence that will support chromosome replication. Nearly the entire right half of oriC could be deleted without loss of origin function, demanding a reassessment of existing models for initiation. Cells carrying the new DnaA box-depleted 163 bp minimal oriC exhibited little or no loss of fitness under slow-growth conditions, but were sensitive to rich medium, suggesting that the dense packing of initiator binding sites that is a hallmark of prokaryotic origins, has likely evolved to support the increased demands of multi-forked replication.
Collapse
Affiliation(s)
- Nicholas Stepankiw
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
13
|
Shaheen SM, Ouimet MC, Marczynski GT. Comparative analysis of Caulobacter chromosome replication origins. MICROBIOLOGY-SGM 2009; 155:1215-1225. [PMID: 19332823 DOI: 10.1099/mic.0.025528-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Caulobacter crescentus (CB15) initiates chromosome replication only in stalked cells and not in swarmers. To better understand this dimorphic control of chromosome replication, we isolated replication origins (oris) from freshwater Caulobacter (FWC) and marine Caulobacter (MCS) species. Previous studies implicated integration host factor (IHF) and CcrM DNA methylation sites in replication control. However, ori IHF and CcrM sites identified in the model FWC CB15 were only conserved among closely related FWCs. DnaA boxes and CtrA binding sites are established CB15 ori components. CtrA is a two-component regulator that blocks chromosome replication selectively in CB15 swarmers. DnaA boxes and CtrA sites were found in five FWC and three MCS oris. Usually, a DnaA box and a CtrA site were paired, suggesting that CtrA binding regulates DnaA activity. We tested this hypothesis by site-directed mutagenesis of an MCS10 ori which contains only one CtrA binding site overlapping a critical DnaA box. This overlapping site is unique in the whole MCS10 genome. Selective DnaA box mutations decreased replication, while selective CtrA binding site mutations increased replication of MCS10 ori plasmids. Therefore, both FWC and MCS oris use CtrA to repress replication. Despite this similarity, phylogenetic analysis unexpectedly shows that CtrA usage evolved separately among these Caulobacter oris. We discuss consensus oris and convergent ori evolution in differentiating bacteria.
Collapse
Affiliation(s)
- S M Shaheen
- McGill University, Department of Microbiology and Immunology, 3775 University Street, Room 506, Montreal, QC H3A 2B4, Canada
| | - Marie-Claude Ouimet
- McGill University, Department of Microbiology and Immunology, 3775 University Street, Room 506, Montreal, QC H3A 2B4, Canada
| | - Gregory T Marczynski
- McGill University, Department of Microbiology and Immunology, 3775 University Street, Room 506, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
14
|
Aloui A, Chatty A, El May A, Landoulsi A. The effect of methylation on DNA replication in Salmonella enterica serovar typhimurium. C R Biol 2007; 330:576-80. [PMID: 17637438 DOI: 10.1016/j.crvi.2007.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Revised: 06/02/2007] [Accepted: 06/05/2007] [Indexed: 11/22/2022]
Abstract
The DNA adenine methylase of Salmonella typhimurium methylates adenine at GATC sequences. Strains deficient in this methylase are not well transformed by methylated plasmids, but unmethylated plasmids transform them at high frequencies. Hemimethylated daughter molecules accumulate after the transformation of dam(-) strains with fully methylated plasmids, suggesting that hemimethylation prevents DNA replication. It will also be shown that plasmids isolated from dam(-) bacteria are hemimethylated by restriction enzyme digestion. These results may explain why newly formed daughter molecules are not substrates for immediate reinitiation of DNA replication in dam(-) bacteria.
Collapse
Affiliation(s)
- Amine Aloui
- Laboratoire de biochimie et biologie moléculaire, Unité de biochimie des lipides et interaction des macromolécules en biologie, 03/UR/0902, faculté des sciences de Bizerte, Zarzouna 7021, Tunisia.
| | | | | | | |
Collapse
|
15
|
New criteria for selecting the origin of DNA replication in Wolbachia and closely related bacteria. BMC Genomics 2007; 8:182. [PMID: 17584494 PMCID: PMC1914354 DOI: 10.1186/1471-2164-8-182] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 06/20/2007] [Indexed: 11/30/2022] Open
Abstract
Background The annotated genomes of two closely related strains of the intracellular bacterium Wolbachia pipientis have been reported without the identifications of the putative origin of replication (ori). Identifying the ori of these bacteria and related alpha-Proteobacteria as well as their patterns of sequence evolution will aid studies of cell replication and cell density, as well as the potential genetic manipulation of these widespread intracellular bacteria. Results Using features that have been previously experimentally verified in the alpha-Proteobacterium Caulobacter crescentus, the origin of DNA replication (ori) regions were identified in silico for Wolbachia strains and eleven other related bacteria belonging to Ehrlichia, Anaplasma, and Rickettsia genera. These features include DnaA-, CtrA- and IHF-binding sites as well as the flanking genes in C. crescentus. The Wolbachia ori boundary genes were found to be hemE and COG1253 protein (CBS domain protein). Comparisons of the putative ori region among related Wolbachia strains showed higher conservation of bases within binding sites. Conclusion The sequences of the ori regions described here are only similar among closely related bacteria while fundamental characteristics like presence of DnaA and IHF binding sites as well as the boundary genes are more widely conserved. The relative paucity of CtrA binding sites in the ori regions, as well as the absence of key enzymes associated with DNA replication in the respective genomes, suggest that several of these obligate intracellular bacteria may have altered replication mechanisms. Based on these analyses, criteria are set forth for identifying the ori region in genome sequencing projects.
Collapse
|
16
|
Hanawa F, Okamoto M, Towers GHN. Inhibition of Restriction Enzyme's DNA Sequence Recognition by PUVA Treatment†¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0740269ioreds2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Nievera C, Torgue JJC, Grimwade JE, Leonard AC. SeqA blocking of DnaA-oriC interactions ensures staged assembly of the E. coli pre-RC. Mol Cell 2007; 24:581-92. [PMID: 17114060 PMCID: PMC1939805 DOI: 10.1016/j.molcel.2006.09.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 08/02/2006] [Accepted: 09/25/2006] [Indexed: 11/23/2022]
Abstract
DnaA occupies only the three highest-affinity binding sites in E. coli oriC throughout most of the cell cycle. Immediately prior to initiation of chromosome replication, DnaA interacts with additional recognition sites, resulting in localized DNA-strand separation. These two DnaA-oriC complexes formed during the cell cycle are functionally and temporally analogous to yeast ORC and pre-RC. After initiation, SeqA binds to hemimethylated oriC, sequestering oriC while levels of active DnaA are reduced, preventing reinitiation. In this paper, we investigate how resetting of oriC to the ORC-like complex is coordinated with SeqA-mediated sequestration. We report that oriC resets to ORC during sequestration. This was possible because SeqA blocked DnaA binding to hemimethylated oriC only at low-affinity recognition sites associated with GATC but did not interfere with occupation of higher-affinity sites. Thus, during the sequestration period, SeqA repressed pre-RC assembly while ensuring resetting of E. coli ORC.
Collapse
Affiliation(s)
| | | | | | - Alan C. Leonard
- Corresponding author: Alan C. Leonard, Email , Tel. (321) 674 8577, Fax (321) 674 7990
| |
Collapse
|
18
|
Sibley CD, MacLellan SR, Finan T. The Sinorhizobium meliloti chromosomal origin of replication. Microbiology (Reading) 2006; 152:443-455. [PMID: 16436432 DOI: 10.1099/mic.0.28455-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The predicted chromosomal origin of replication (oriC) from the alfalfa symbiontSinorhizobium melilotiis shown to allow autonomous replication of a normally non-replicating plasmid withinS. meliloticells. This is the first chromosomal replication origin to be experimentally localized in theRhizobiaceaeand its location, adjacent tohemE, is the same as fororiCinCaulobacter crescentus, the only experimentally characterized alphaproteobacterialoriC. Using an electrophoretic mobility shift assay and purifiedS. melilotiDnaA replication initiation protein, binding sites for DnaA were mapped in theS. meliloti oriCregion. Mutations in these sites eliminated autonomous replication.S. melilotithat expressed DnaA from a plasmidlacpromoter was observed to form pleomorphic filamentous cells, suggesting that cell division was perturbed. Interestingly, this cell phenotype is reminiscent of differentiated bacteroids found inside plant cells in alfalfa root nodules.
Collapse
Affiliation(s)
- Christopher D Sibley
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario, Canada L8S 4K1
| | - Shawn R MacLellan
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario, Canada L8S 4K1
| | - Turlough Finan
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
19
|
Hansen FG, Christensen BB, Nielsen CB, Atlung T. Insights into the quality of DnaA boxes and their cooperativity. J Mol Biol 2005; 355:85-95. [PMID: 16298387 DOI: 10.1016/j.jmb.2005.10.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 10/11/2005] [Accepted: 10/11/2005] [Indexed: 11/21/2022]
Abstract
Plasmids carrying the mioC promoter region with its two DnaA boxes are as efficient in titration of DnaA protein as plasmids carrying a replication-inactivated oriC region with its five DnaA boxes. The two DnaA boxes upstream of the mioC promoter were mutated in various ways to study the cooperativity between the DnaA boxes, and to study in vivo the in vitro-defined 9mer DnaA box consensus sequence (TT(A)/(T)TNCACA). The quality and cooperativity of the DnaA boxes were determined in two complementary ways: as titration of DnaA protein leading to derepression of the dnaA promoter, and as repression of the mioC promoter caused by the DnaA protein binding to the DnaA boxes. Titration of DnaA protein correlated with repression of the mioC promoter. The level of titration and repression with the normal promoter-proximal box (TTTTCCACA) depends strongly on the presence and the quality of a DnaA box in the promoter-distal position, whereas a promoter-proximal DnaA box with the sequence TTATCCACA titrated DnaA protein and caused significant repression of the mioC promoter without a promoter-distal DnaA box. The quality of the eight different consensus DnaA boxes located in the promoter-proximal position was determined: TTATCCACA had the highest affinity for DnaA protein. In the third position, A was better than T, and the four possibilities in the fifth position could be ranked as C >A >or=G >T. Parallel in vitro experiments using a purified DNA-binding domain of DnaA protein gave the same ranking of the binding affinities of the eight DnaA boxes.
Collapse
Affiliation(s)
- Flemming G Hansen
- The Molecular Physiology Group, BioCentrum-DTU, Technical University of Denmark, Building 301 DK-2800 Lyngby, Denmark
| | | | | | | |
Collapse
|
20
|
Kawakami H, Keyamura K, Katayama T. Formation of an ATP-DnaA-specific initiation complex requires DnaA Arginine 285, a conserved motif in the AAA+ protein family. J Biol Chem 2005; 280:27420-30. [PMID: 15901724 DOI: 10.1074/jbc.m502764200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Escherichia coli DnaA protein, a member of the AAA+ superfamily, initiates replication from the chromosomal origin oriC in an ATP-dependent manner. Nucleoprotein complex formed on oriC with the ATP-DnaA multimer but not the ADP-DnaA multimer is competent to unwind the oriC duplex. The oriC region contains ATP-DnaA-specific binding sites termed I2 and I3, which stimulate ATP-DnaA-dependent oriC unwinding. In this study, we show that the DnaA R285A mutant is inactive for oriC replication in vivo and in vitro and that the mutation is associated with specific defects in oriC unwinding. In contrast, activities of DnaA R285A are sustained in binding to the typical DnaA boxes and to ATP and ADP, formation of multimeric complexes on oriC, and loading of the DnaB helicase onto single-stranded DNA. Footprint analysis of the DnaA-oriC complex reveals that the ATP form of DnaA R285A does not interact with ATP-DnaA-specific binding sites such as the I sites. A subgroup of DnaA molecules in the oriC complex must contain the Arg-285 residue for initiation. Sequence and structural analyses suggest that the DnaA Arg-285 residue is an arginine finger, an AAA+ family-specific motif that recognizes ATP bound to an adjacent subunit in a multimeric complex. In the context of these and previous results, the DnaA Arg-285 residue is proposed to play a unique role in the ATP-dependent conformational activation of an initial complex by recognizing ATP bound to DnaA and by modulating the structure of the DnaA multimer to allow interaction with ATP-DnaA-specific binding sites in the complex.
Collapse
Affiliation(s)
- Hironori Kawakami
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
21
|
Abstract
DNA-unwinding elements are specific base sequences that are located in the origin of DNA replication where they provide the start point for strand separation and unwinding of the DNA double helix. In the present work we have obtained the first characterization of the opening of individual base pairs in DNA-unwinding elements. The three DNA molecules investigated reproduce the 13-mer DNA-unwinding elements present in the Escherichia coli chromosome. The base sequences of the three 13-mers are conserved in the origins of replication of enteric bacterial chromosomes. The exchange of imino protons with solvent protons was measured for each DNA as a function of the concentration of exchange catalyst using nuclear magnetic resonance spectroscopy. The exchange rates provided the rates and the equilibrium constants for opening of individual base pairs in each DNA at 20 degrees C. The results reveal that the kinetics and energetics of the opening reactions for AT/TA base pairs are different in the three DNA-unwinding elements due to long range effects of the base sequence. These differences encompass the AT/TA base pairs that are conserved in various bacterial genomes. Furthermore, a qualitative correlation is observed between the kinetics and energetics of opening of AT/TA base pairs and the location of the corresponding DNA-unwinding element in the origin of DNA replication.
Collapse
Affiliation(s)
- Daniel Coman
- Department of Chemistry and the Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459, USA
| | | |
Collapse
|
22
|
Dasgupta S, Løbner-Olesen A. Host controlled plasmid replication: Escherichia coli minichromosomes. Plasmid 2005; 52:151-68. [PMID: 15518873 DOI: 10.1016/j.plasmid.2004.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 08/06/2004] [Indexed: 11/26/2022]
Abstract
Escherichia coli minichromosomes are plasmids replicating exclusively from a cloned copy of oriC, the chromosomal origin of replication. They are therefore subject to the same types of replication control as imposed on the chromosome. Unlike natural plasmid replicons, minichromosomes do not adjust their replication rate to the cellular copy number and they do not contain information for active partitioning at cell division. Analysis of mutant strains where minichromosomes cannot be established suggest that their mere existence is dependent on the factors that ensure timely once per cell cycle initiation of replication. These observations indicate that replication initiation in E. coli is normally controlled in such a way that all copies of oriC contained within the cell, chromosomal and minichromosomal, are initiated within a fairly short time interval of the cell cycle. Furthermore, both replication and segregation of the bacterial chromosome seem to be controlled by sequences outside the origin itself.
Collapse
Affiliation(s)
- Santanu Dasgupta
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24, Sweden
| | | |
Collapse
|
23
|
Saha A, Haralalka S, Bhadra RK. A naturally occurring point mutation in the 13-mer R repeat affects the oriC function of the large chromosome of Vibrio cholerae O1 classical biotype. Arch Microbiol 2004; 182:421-7. [PMID: 15375645 DOI: 10.1007/s00203-004-0708-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The genome of Vibrio cholerae consists of two circular chromosomes of different sizes. Here, a comparative analysis of the replication origins of the large chromosomes (oriCIvc) of classical and El Torbio types of the pathogen is reported. Extensive nucleotide sequence analyses revealed that the oriCIvc region has six DnaA boxes instead of the five found in Escherichia coli oriC. The additional DnaA box, designated Rv, was unique in V. cholerae as well as in other members of the family Vibrionaceae. However, Rv was not found to be essential for the autonomous replication function of the 307-bp oriCIvc minimal region. In contrast to El Tor and the recently evolved V. cholerae 0139 strains, the oriCIvc region of the classical biotype showed only a single base transition (T-->G) in a highly conserved AT-rich 13-mer R repeat region. From the minichromosome copy number and its transformational efficiency analyses, it appears that the single base substitution in the oriCIvc of the classical biotype has a significant effect on its replication initiation.
Collapse
Affiliation(s)
- Arjun Saha
- Infectious Diseases Division, Indian Institute of Chemical Biology, Kolkata, India
| | | | | |
Collapse
|
24
|
Lartigue C, Blanchard A, Renaudin J, Thiaucourt F, Sirand-Pugnet P. Host specificity of mollicutes oriC plasmids: functional analysis of replication origin. Nucleic Acids Res 2004; 31:6610-8. [PMID: 14602921 PMCID: PMC275544 DOI: 10.1093/nar/gkg848] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recently, artificial oriC plasmids containing the chromosomal dnaA gene and surrounding DnaA box sequences were obtained for the mollicutes Spiroplasma citri and Mycoplasma pulmonis. In order to study the specificity of these plasmids among mollicutes, a set of similar oriC plasmids was developed for three mycoplasmas belonging to the mycoides cluster, Mycoplasma mycoides subsp. mycoides LC (MmmLC), M.mycoides subsp. mycoides SC (MmmSC) and Mycoplasma capricolum subsp. capricolum. Mycoplasmas from the mycoides cluster, S.citri and M.pulmonis were used as recipients for transformation experiments by homologous and heterologous oriC plasmids. All five mollicutes were successfully transformed by homologous plasmids, suggesting that the dnaA gene region represents the functional replication origin of the mollicute chromosomes. However, the ability of mollicutes to replicate heterologous oriC plasmids was found to vary noticeably with the species. For example, the oriC plasmid from M.capricolum did not replicate in the closely related species MmmSC and MmmLC. In contrast, plasmids harbouring the oriC from MmmSC, MmmLC and the more distant species S.citri were all found to replicate in M.capricolum. Our results suggest that the cis-elements present in oriC sequences are not the only determinants of this host specificity.
Collapse
Affiliation(s)
- Carole Lartigue
- UMR GDPP, INRA-Université Victor Segalen Bordeaux 2, BP 81, 33883 Villenave d'Ornon Cedex, France
| | | | | | | | | |
Collapse
|
25
|
McGarry KC, Ryan VT, Grimwade JE, Leonard AC. Two discriminatory binding sites in the Escherichia coli replication origin are required for DNA strand opening by initiator DnaA-ATP. Proc Natl Acad Sci U S A 2004; 101:2811-6. [PMID: 14978287 PMCID: PMC365702 DOI: 10.1073/pnas.0400340101] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Initiation of DNA replication in eukaryotes, archea, and eubacteria requires interaction of structurally conserved ATP-binding initiator proteins and origin DNA to mediate assembly of replisomes. However, the specific requirement for ATP in the early steps of initiation remains unclear. This is true even for the well studied Escherichia coli replication origin, oriC, where the ATP form of initiator DnaA is necessary and sufficient for initial DNA strand separation, but the five DnaA-binding sites (R boxes) with consensus sequence 5'TGTGNAT/AAA bind both active ATP-DnaA and inactive ADP-DnaA with equal affinity. By using dimethyl sulfate footprinting, we recently identified two initiator-binding sites, I2 and I3, with sequence 5'TG/TGGATCAG/A. We now show that sites I2 and I3 preferentially bind DnaA-ATP and are required for origin unwinding. Guanine at position 3 determines DnaA-ATP preference, and changing this base to thymine at both I sites allows DnaA-ADP to bind and open oriC, although DNA strand separation is not precisely localized in the AT-rich region. These observations indicate that specific initiator binding sites within a replication origin can be important determinants of an ATP-dependent molecular switch regulating DNA strand separation.
Collapse
Affiliation(s)
- Kevin C McGarry
- Department of Biological Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Studies of prokaryotic chromosome replication have focused almost exclusively on organisms with one chromosome. We defined and characterized the origins of replication of the two Vibrio cholerae chromosomes, oriCI(vc) and oriCII(vc). OriCII(vc) differs from the origin assigned by bioinformatic analysis and is unrelated to oriCI(vc). OriCII(vc)-based replication requires an internal 12 base pair repeat and two hypothetical genes that flank oriCII(vc). One of these genes is conserved among diverse genera of the family Vibrionaceae and encodes an origin binding protein. The other gene codes for an RNA and not a protein. OriCII(vc)- but not oriCI(vc)-based replication is negatively regulated by a DNA sequence adjacent to oriCII(vc). There is an unprecedented requirement for DNA adenine methyltransferase in both oriCI(vc)- and oriCII(vc)-based replication. Our studies of replication in V. cholerae indicate that microorganisms having multiple chromosomes may utilize unique mechanisms for the control of replication.
Collapse
Affiliation(s)
- Elizabeth S Egan
- Departments of Microbiology, Medicine, and Genetics, Tufts University School of Medicine and Howard Hughes Medical Institute, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
27
|
Simmons LA, Felczak M, Kaguni JM. DnaA Protein of Escherichia coli: oligomerization at the E. coli chromosomal origin is required for initiation and involves specific N-terminal amino acids. Mol Microbiol 2003; 49:849-58. [PMID: 12864864 DOI: 10.1046/j.1365-2958.2003.03603.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Iterated DnaA box sequences within the replication origins of bacteria and prokaryotic plasmids are recognized by the replication initiator, DnaA protein. At the E. coli chromosomal origin, oriC, DnaA is speculated to oligomerize to initiate DNA replication. We developed an assay of oligomer formation at oriC that relies on complementation between two dnaA alleles that are inactive by themselves. One allele is dnaA46; its inactivity at the non-permissive temperature is due to a specific defect in ATP binding. The second allele, T435K, does not support DNA replication because of its inability to bind to DnaA box sequences within oriC. We show that the T435K allele can complement the dnaA46(Ts) allele. The results support a model of oligomer formation in which DnaA box sequences of oriC are bound by DnaA46 to which T435K then binds to form an active complex. Relying on this assay, leucine 5, tryptophan 6 and cysteine 9 in a predicted alpha helix were identified that, when altered, interfere with oligomer formation. Glutamine 8 is additionally needed for oligomer formation on an oriC-containing plasmid, suggesting that the structure of the DnaA-oriC complex at the chromosomal oriC locus is similar but not identical to that assembled on a plasmid. Other evidence suggests that proline 28 of DnaA is involved in the recruitment of DnaB to oriC. These results provide direct evidence that DnaA oligomerization at oriC is required for initiation to occur.
Collapse
Affiliation(s)
- Lyle A Simmons
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-131, USA
| | | | | |
Collapse
|
28
|
Abstract
Caulobacter crescentus permits detailed analysis of chromosome replication control during a developmental cell cycle. Its chromosome replication origin (Cori) may be prototypical of the large and diverse class of alpha-proteobacteria. Cori has features that both affiliate and distinguish it from the Escherichia coli chromosome replication origin. For example, requirements for DnaA protein and RNA transcription affiliate both origins. However, Cori is distinguished by several features, and especially by five binding sites for the CtrA response regulator protein. To selectively repress and limit chromosome replication, CtrA receives both protein degradation and protein phosphorylation signals. The signal mediators, proteases, response regulators, and kinases, as well as Cori DNA and the replisome, all show distinct patterns of temporal and spatial organization during cell cycle progression. Future studies should integrate our knowledge of biochemical activities at Cori with our emerging understanding of cytological dynamics in C. crescentus and other bacteria.
Collapse
Affiliation(s)
- Gregory T Marczynski
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada H3A 2B4.
| | | |
Collapse
|
29
|
Ryan VT, Grimwade JE, Nievera CJ, Leonard AC. IHF and HU stimulate assembly of pre-replication complexes at Escherichia coli oriC by two different mechanisms. Mol Microbiol 2002; 46:113-24. [PMID: 12366835 DOI: 10.1046/j.1365-2958.2002.03129.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pre-replication complexes (pre-RC) assemble on replication origins and unwind DNA in the presence of chromatin proteins. As components of Escherichia coli pre-RC, two histone-like proteins HU and IHF (integration host factor), stimulate initiator DnaA-catalysed unwinding of the chromosomal replication origin, oriC. Using in vivo footprint analysis just before DNA synthesis initiates, we detect IHF binding coincident with a shift of DnaA to weaker central oriC sites. Integration host factor redistributed pre-bound DnaA to identical sites in vitro. HU did not redistribute DnaA, but suppressed binding specifically at I3. These results suggest that different pathways mediated by bacterial chromatin proteins exist to regulate pre-RC assembly and unwind oriC.
Collapse
Affiliation(s)
- Valorie T Ryan
- Department of Biological Services, Florida Institute of Technology, 150 W. University Blvd, Melbourne, Florida 32901, USA
| | | | | | | |
Collapse
|
30
|
Yen MR, Lin NT, Hung CH, Choy KT, Weng SF, Tseng YH. oriC region and replication termination site, dif, of the Xanthomonas campestris pv. campestris 17 chromosome. Appl Environ Microbiol 2002; 68:2924-33. [PMID: 12039751 PMCID: PMC123971 DOI: 10.1128/aem.68.6.2924-2933.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 13-kb DNA fragment containing oriC and the flanking genes thdF, orf900, yidC, rnpA, rpmH, oriC, dnaA, dnaN, recF, and gyrB was cloned from the gram-negative plant pathogen Xanthomonas campestris pv. campestris 17. These genes are conserved in order with other eubacterial oriC genes and code for proteins that share high degrees of identity with their homologues, except for orf900, which has a homologue only in Xylella fastidiosa. The dnaA/dnaN intergenic region (273 bp) identified to be the minimal oriC region responsible for autonomous replication has 10 pure AT clusters of four to seven bases and only three consensus DnaA boxes. These findings are in disagreement with the notion that typical oriCs contain four or more DnaA boxes located upstream of the dnaA gene. The X. campestris pv. campestris 17 attB site required for site-specific integration of cloned fragments from filamentous phage phiLf replicative form DNA was identified to be a dif site on the basis of similarities in nucleotide sequence and function with the Escherichia coli dif site required for chromosome dimer resolution and whose deletion causes filamentation of the cells. The oriC and dif sites were located at 12:00 and 6:00, respectively, on the circular X. campestris pv. campestris 17 chromosome map, similar to the locations found for E. coli sites. Computer searches revealed the presence of both the dif site and XerC/XerD recombinase homologues in 16 of the 42 fully sequenced eubacterial genomes, but eight of the dif sites are located far away from the 6:00 point instead of being placed opposite the cognate oriC. The differences in the relative position suggest that mechanisms different from that of E. coli may participate in the control of chromosome replication.
Collapse
Affiliation(s)
- Ming-Ren Yen
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
Berenstein D, Olesen K, Speck C, Skovgaard O. Genetic organization of the Vibrio harveyi DnaA gene region and analysis of the function of the V. harveyi DnaA protein in Escherichia coli. J Bacteriol 2002; 184:2533-8. [PMID: 11948168 PMCID: PMC134989 DOI: 10.1128/jb.184.9.2533-2538.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Vibrionaceae family is distantly related to Enterobacteriaceae within the group of bacteria possessing the Dam methylase system. We have cloned, sequenced, and analyzed the dnaA gene region of Vibrio harveyi and found that although the organization of the V. harveyi dnaA region differs from that of Escherichia coli, the expression of both genes is autoregulated and ATP-DnaA binds cooperatively to ATP-DnaA boxes in the dnaA promoter region. The DnaA proteins of V. harveyi and E. coli are interchangeable and function nearly identically in controlling dnaA transcription and the initiation of chromosomal DNA replication despite the evolutionary distance between these bacteria.
Collapse
Affiliation(s)
- Dvora Berenstein
- Department of Life Sciences and Chemistry, Roskilde University, DK-4000 Roskilde, Denmark
| | | | | | | |
Collapse
|
32
|
Abstract
Applying various restriction enzymes on a specially designed 1.5 kb DNA fragment revealed that the inhibitory effects of psoralens + UVA irradiation (PUVA) treatment on restriction endonuclease activities are caused by recognition inhibition. In this study restriction enzymes that have a 5'-TpA sequence at the cleaving site (KpnI, XbaI, PmeI and DraI), and the noncleaving site (PacI) in recognition sites, or have two 5'-TpA sequences at the recognition site, and a nonspecific sequence between the recognition and the cleaving sites (BciVI), were inhibited by PUVA treatment. Most of the other restriction enzymes used in this study, which do not have a 5'-TpA sequence at their restriction site, were not inhibited by PUVA treatment, although a 5'-TpA sequence is located adjacent (SmaI) or very close (BamHI, SacI and PstI) to the recognition and cleaving sites for these enzymes. Because SphI, which does not have 5'-TpA at its restriction site, was strongly inhibited by PUVA treatment, the 5'-CpA sequence is suggested to be a new binding site of psoralens after UVA irradiation.
Collapse
Affiliation(s)
- F Hanawa
- Forestry and Forest Products Research Institute (FFPRI), P.O. Box 16, Tsukuba, Ibaraki 305-8687, Japan.
| | | | | |
Collapse
|
33
|
Lee YS, Han JS, Jeon Y, Hwang DS. The arc two-component signal transduction system inhibits in vitro Escherichia coli chromosomal initiation. J Biol Chem 2001; 276:9917-23. [PMID: 11133990 DOI: 10.1074/jbc.m008629200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Under anaerobic growth conditions, Escherichia coli operates a two-component signal transduction system, termed Arc, that consists of ArcB protein, a transmembrane sensor kinase and ArcA protein, the cognate response regulator. In response to low oxygen levels, autophosphorylated ArcB phosphorylates ArcA, and the resulting phosphorylated ArcA (ArcA-P) functions as a transcriptional regulator of the genes necessary to maintain anaerobic growth. Under anaerobic conditions, cells maintain a slow growth rate, suggesting that the initiation of chromosomal replication is regulated to reduce the initiation frequency. DNase I footprinting experiments revealed that ArcA-P binds to the left region of the chromosomal origin, oriC. ArcA-P did not affect the in vitro replication of plasmid DNA containing the ColE1 origin nor the in vitro replication of viral DNAs; however, ArcA-P specifically inhibited in vitro E. coli chromosomal replication. This inhibition was caused by the prevention of open complex formation, a necessary step in the initiation of chromosomal replication. Our in vitro results suggest that the Arc two-component system participates in regulating chromosomal initiation under anaerobic growth conditions.
Collapse
Affiliation(s)
- Y S Lee
- Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
34
|
Landoulsi A, Kohiyama M. DnaA protein dependent denaturation of negative supercoiled oriC DNA minicircles. Biochimie 2001; 83:33-9. [PMID: 11254972 DOI: 10.1016/s0300-9084(00)01223-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The DnaA protein binds specifically and tightly to oriC supercoiled 641 bp minicircle DNA. The binding of the initiator promoted a partial unwinding of the superhelical oriC minicircle (Mc-oriC). Open complexes are detected either by a change in the linking number or by the sensitivity to the attack of a single strand specific Bal 31 nuclease. The open complex is found only in the presence of the DnaA protein.
Collapse
Affiliation(s)
- A Landoulsi
- Département de Biologie, Laboratoire de Biochimie des Proteines, Faculté des Sciences de Tunis, Campus Universitaire, 1060, Tunis, Tunisia
| | | |
Collapse
|
35
|
Blinkova A, Ginés-Candelaria E, Ross JD, Walker JR. Suppression of a DnaX temperature-sensitive polymerization defect by mutation in the initiation gene, dnaA, requires functional oriC. Mol Microbiol 2000; 36:913-25. [PMID: 10844678 DOI: 10.1046/j.1365-2958.2000.01911.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Temperature sensitivity of DNA polymerization and growth, resulting from mutation of the tau and gamma subunits of Escherichia coli DNA polymerase III, are suppressed by Cs,Sx mutations of the initiator gene, dnaA. These mutations simultaneously cause defective initiation at 20 degrees C. Efficient suppression, defined as restoration of normal growth rate at 39 degrees C to essentially all the cells, depends on functional oriC. Increasing DnaA activity in a strain capable of suppression, by introducing a copy of the wild-type allele, increasing the suppressor gene dosage or introducing a seqA mutation, reversed the suppression. This suggests that the suppression mechanism depends on reduced activity of DnaACs, Sx. Models that assume that suppression results from an initiation defect or from DnaACs,Sx interaction with polymerization proteins during nascent strand synthesis are proposed.
Collapse
Affiliation(s)
- A Blinkova
- Section of Molecular Genetics and Microbiology, and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
36
|
Celis RT. Repression and activation of arginine transport genes in Escherichia coli K 12 by the ArgP protein. J Mol Biol 1999; 294:1087-95. [PMID: 10600368 DOI: 10.1006/jmbi.1999.3308] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Escherichia coli K 12, arginine modulates the functioning of the arginine transport system. Cells grown in the presence of arginine show a 60 % reduction in the active incorporation of radioactive arginine. This regulation of arginine transport is independent of the regulation of arginine biosynthesis. Previously, a mutant was isolated with a 90 % reduction of arginine transport. The mutation affected also the transport of ornithine and lysine. It was mapped and assigned to a locus named argP at minute 65 of the E. coli linkage map. Genetic studies showed that in argP/argP(+) merodiploids, the mutated argP allele is dominant. The argP(+) gene was cloned and sequenced. Analysis of the sequenced gene revealed that it is identical with iciA, an E. coli gene that encodes an inhibitor of chromosomal initiation of replication in vitro. The sequence analysis of the mutated argP gene identified a single mutation that led to the substitution of proline for serine in the C-terminal domain of the ArgP protein. This protein has homology with a large group of prokaryotic regulatory proteins known as the LysR family. Proteins from this family have been shown to function as transcriptional regulators. Here, it is shown that the ArgP protein activates the formation of the ArgK protein, an ATP-binding protein essential for the operation of the arginine transport system. In the presence of L-arginine, ArgP inhibits its own synthesis.
Collapse
Affiliation(s)
- R T Celis
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
37
|
Theis JF, Yang C, Schaefer CB, Newlon CS. DNA sequence and functional analysis of homologous ARS elements of Saccharomyces cerevisiae and S. carlsbergensis. Genetics 1999; 152:943-52. [PMID: 10388814 PMCID: PMC1460646 DOI: 10.1093/genetics/152.3.943] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ARS elements of Saccharomyces cerevisiae are the cis-acting sequences required for the initiation of chromosomal DNA replication. Comparisons of the DNA sequences of unrelated ARS elements from different regions of the genome have revealed no significant DNA sequence conservation. We have compared the sequences of seven pairs of homologous ARS elements from two Saccharomyces species, S. cerevisiae and S. carlsbergensis. In all but one case, the ARS308-ARS308(carl) pair, significant blocks of homology were detected. In the cases of ARS305, ARS307, and ARS309, previously identified functional elements were found to be conserved in their S. carlsbergensis homologs. Mutation of the conserved sequences in the S. carlsbergensis ARS elements revealed that the homologous sequences are required for function. These observations suggested that the sequences important for ARS function would be conserved in other ARS elements. Sequence comparisons aided in the identification of the essential matches to the ARS consensus sequence (ACS) of ARS304, ARS306, and ARS310(carl), though not of ARS310.
Collapse
Affiliation(s)
- J F Theis
- Department of Microbiology and Molecular Genetics, New Jersey Medical School and Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
38
|
Marczynski GT. Chromosome methylation and measurement of faithful, once and only once per cell cycle chromosome replication in Caulobacter crescentus. J Bacteriol 1999; 181:1984-93. [PMID: 10094673 PMCID: PMC93608 DOI: 10.1128/jb.181.7.1984-1993.1999] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Caulobacter crescentus exhibits cell-type-specific control of chromosome replication and DNA methylation. Asymmetric cell division yields a replicating stalked cell and a nonreplicating swarmer cell. The motile swarmer cell must differentiate into a sessile stalked cell in order to replicate and execute asymmetric cell division. This program of cell division implies that chromosome replication initiates in the stalked cell only once per cell cycle. DNA methylation is restricted to the predivisional cell stage, and since DNA synthesis produces an unmethylated nascent strand, late DNA methylation also implies that DNA near the replication origin remains hemimethylated longer than DNA located further away. In this report, both assumptions are tested with an engineered Tn5-based transposon, Tn5Omega-MP. This allows a sensitive Southern blot assay that measures fully methylated, hemimethylated, and unmethylated DNA duplexes. Tn5Omega-MP was placed at 11 sites around the chromosome and it was clearly demonstrated that Tn5Omega-MP DNA near the replication origin remained hemimethylated longer than DNA located further away. One Tn5Omega-MP placed near the replication origin revealed small but detectable amounts of unmethylated duplex DNA in replicating stalked cells. Extra DNA synthesis produces a second unmethylated nascent strand. Therefore, measurement of unmethylated DNA is a critical test of the "once and only once per cell cycle" rule of chromosome replication in C. crescentus. Fewer than 1 in 1,000 stalked cells prematurely initiate a second round of chromosome replication. The implications for very precise negative control of chromosome replication are discussed with respect to the bacterial cell cycle.
Collapse
Affiliation(s)
- G T Marczynski
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec, Canada H3A 2B4.
| |
Collapse
|
39
|
Spangenberg C, Montie TC, Tümmler B. Structural and functional implications of sequence diversity of Pseudomonas aeruginosa genes oriC, ampC and fliC. Electrophoresis 1998; 19:545-50. [PMID: 9588800 DOI: 10.1002/elps.1150190414] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sequence analysis of three representative gene loci, oriC, ampC and fliC, in 19 Pseudomonas aeruginosa strains revealed a low sequence diversity that does not correlate with the extensive diversity of P. aeruginosa habitats. Single point mutations lead to a mean sequence diversity of 0.40%, 0.38% and 0.59% for oriC, ampC and a-type fliC, respectively, but of only 0.05% for b-type flagellin genes. The analyzed genes encode highly conserved functions that are subject to strong selective pressure. The detected nucleotide substitutions of oriC, accumulating in a central 95 bp region, affect neither the putative DnaA binding sites nor the 13 bp direct repeats that presumably provide the sites to open oriC duplex DNA. Even in P. aeruginosa strain DSM 1128, which exhibits an unusually high sequence variability in several analyzed genes, the 9 bp and 13 bp motifs are conserved, reflecting their essential functional role in replication initiation. The two flagellin types, differing by 37-38% in their primary structure, exhibit pronounced structural and functional homology, as shown by alignment of flagellin variants by hydrophobicity index, probability of surface exposure, chain flexibility and antigenicity, and by cross-reactivity between both proteins using specific antisera. Five nonsynonymous nucleotide substitutions of ampC lead to beta-lactamase variants that differ in recognition and turnover of substrate, as deduced from the three-dimensional structure of the highly homologous Enterobacter cloacae beta-lactamase and confirmed by inhibition kinetics. The identified point mutations in the three genes are classified as selectively equivalent sequence variants indicating neutral genetic drift as a mechanism of molecular evolution in P. aeruginosa, rather than positive selection.
Collapse
Affiliation(s)
- C Spangenberg
- Klinische Forschergruppe, Zentrum Biochemie, Medizinische Hochschule Hannover, Germany.
| | | | | |
Collapse
|
40
|
Bonnefoy E. The ribosomal S16 protein of Escherichia coli displaying a DNA-nicking activity binds to cruciform DNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:852-9. [PMID: 9288907 DOI: 10.1111/j.1432-1033.1997.t01-1-00852.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have recently shown that the ribosomal S16 protein of Escherichia coli is a magnesium-dependent DNase which introduces nicks into supercoiled DNA molecules [Oberto, J., Bonnefoy, E., Mouray, E., Pellegrini, O., Wikstrom, P. M. & Rouvière-Yaniv, J. (1996) Mol. Microbiol. 19, 1319-1330]. In this work we analysed the DNA-binding and DNA-nicking properties of S16 using two different approaches. Gel-retardation assays showed that S16 is a structure-specific DNA-binding protein displaying a preferential binding for cruciform DNA structures. This specific binding to cruciform DNA was further investigated using a supercoiled plasmid carrying the origin of replication of E. coli (oriC) which is an (A+T)-rich DNA region with abundant palindromic sequences susceptible of forming cruciform-like structures in vivo. We show that the nicks introduced by S16 in oriC are not randomly positioned but are precisely localised near such palindromic sequences. In addition, the nicking activity of S16 appeared to be sequence dependent since the cuts introduced by S16 occurred next to an adenine, in most cases an unpaired adenine, usually followed by a GTT sequence. Overall these experiments indicate that S16 requires a cruciform-like DNA structure to bind DNA and the presence of a particular sequence in order to introduce specific single-stranded cuts into a DNA molecule.
Collapse
Affiliation(s)
- E Bonnefoy
- Institut de Biologie Physico-Chimique, Laboratoire de Physiologie Bactérienne, UPR9073, Paris, France
| |
Collapse
|
41
|
Pearson CE, Zorbas H, Price GB, Zannis-Hadjopoulos M. Inverted repeats, stem-loops, and cruciforms: significance for initiation of DNA replication. J Cell Biochem 1996; 63:1-22. [PMID: 8891900 DOI: 10.1002/(sici)1097-4644(199610)63:1%3c1::aid-jcb1%3e3.0.co;2-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Inverted repeats occur nonrandomly in the DNA of most organisms. Stem-loops and cruciforms can form from inverted repeats. Such structures have been detected in pro- and eukaryotes. They may affect the supercoiling degree of the DNA, the positioning of nucleosomes, the formation of other secondary structures of DNA, or directly interact with proteins. Inverted repeats, stem-loops, and cruciforms are present at the replication origins of phage, plasmids, mitochondria, eukaryotic viruses, and mammalian cells. Experiments with anti-cruciform antibodies suggest that formation and stabilization of cruciforms at particular mammalian origins may be associated with initiation of DNA replication. Many proteins have been shown to interact with cruciforms, recognizing features like DNA crossovers, four-way junctions, and curved/bent DNA of specific angles. A human cruciform binding protein (CBP) displays a novel type of interaction with cruciforms and may be linked to initiation of DNA replication.
Collapse
Affiliation(s)
- C E Pearson
- McGill Cancer Centre, McGill University, Montréal, Quebec, Canada
| | | | | | | |
Collapse
|
42
|
Pearson CE, Zorbas H, Price GB, Zannis-Hadjopoulos M. Inverted repeats, stem-loops, and cruciforms: Significance for initiation of DNA replication. J Cell Biochem 1996. [DOI: 10.1002/(sici)1097-4644(199610)63:1<1::aid-jcb1>3.0.co;2-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Salazar L, Fsihi H, de Rossi E, Riccardi G, Rios C, Cole ST, Takiff HE. Organization of the origins of replication of the chromosomes of Mycobacterium smegmatis, Mycobacterium leprae and Mycobacterium tuberculosis and isolation of a functional origin from M. smegmatis. Mol Microbiol 1996; 20:283-93. [PMID: 8733228 DOI: 10.1111/j.1365-2958.1996.tb02617.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The genus Mycobacterium is composed of species with widely differing growth rates ranging from approximately three hours in Mycobacterium smegmatis to two weeks in Mycobacterium leprae. As DNA replication is coupled to cell duplication, it may be regulated by common mechanisms. The chromosomal regions surrounding the origins of DNA replication from M. smegmatis, M. tuberculosis, and M. leprae have been sequenced, and show very few differences. The gene order, rnpA-rpmH-dnaA-dnaN-recF-orf-gyrB-gyrA, is the same as in other Gram-positive organisms. Although the general organization in M. smegmatis is very similar to that of Streptomyces spp., a closely related genus, M. tuberculosis and M. leprae differ as they lack an open reading frame, between dnaN and recF, which is similar to the gnd gene of Escherichia coli. Within the three mycobacterial species, there is extensive sequence conservation in the intergenic regions flanking dnaA, but more variation from the consensus DnaA box sequence was seen than in other bacteria. By means of subcloning experiments, the putative chromosomal origin of replication of M. smegmatis, containing the dnaA-dnaN region, was shown to promote autonomous replication in M. smegmatis, unlike the corresponding regions from M. tuberculosis or M. leprae.
Collapse
Affiliation(s)
- L Salazar
- Laboratorio de Genética Molecular, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | | | | | | | | | | | | |
Collapse
|
44
|
Rajagopalan M, Qin MH, Nash DR, Madiraju MV. Mycobacterium smegmatis dnaA region and autonomous replication activity. J Bacteriol 1995; 177:6527-35. [PMID: 7592430 PMCID: PMC177505 DOI: 10.1128/jb.177.22.6527-6535.1995] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Two key elements that are thought to be required for replication initiation in eubacteria are the DnaA protein, a trans-acting factor, and the replication origin, a cis-acting element. As a first step in studying the replication initiation process in mycobacteria, we have isolated a 4-kb chromosomal DNA fragment from Mycobacterium smegmatis that contains the dnaA gene. Nucleotide sequence analysis of this region revealed homologies with the rpmH gene, which codes for the ribosomal protein L34, the dnaA gene, which codes for the replication initiator protein DnaA, and the 5' end of the dnaN gene, which codes for the beta subunit of DNA polymerase III. Further, we provide evidence that when cloned into pUC18, a plasmid that is nonreplicative in M. smegmatis, the DNA fragment containing the dnaA gene and its flanking regions rendered the former capable of autonomous replication in M. smegmatis. We suggest that the M. smegmatis chromosomal origin of replication is located within the 4-kb DNA fragment.
Collapse
Affiliation(s)
- M Rajagopalan
- Department of Microbiology, University of Texas Health Center at Tyler 75710, USA
| | | | | | | |
Collapse
|
45
|
Bates DB, Asai T, Cao Y, Chambers MW, Cadwell GW, Boye E, Kogoma T. The DnaA box R4 in the minimal oriC is dispensable for initiation of Escherichia coli chromosome replication. Nucleic Acids Res 1995; 23:3119-25. [PMID: 7667087 PMCID: PMC366880 DOI: 10.1093/nar/23.16.3119] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have developed a genetic system with which to replace oriC+ on the Escherichia coli chromosome with modified oriC sequences constructed on plasmids. Using this system we have demonstrated that chromosomal oriC can tolerate the insertion of a 2 kb fragment at the HindIII site between DnaA boxes R3 and R4, whereas the same insertion completely inactivates cloned oriC. We have further found that although R4 is essential for the origin activity of cloned oriC, cells carrying a deletion of R4 in chromosomal oriC are viable. These results indicate that the oriC sequence necessary for initiation of chromosome replication is different from the so-called minimal oriC that was determined with cloned oriC. Flow cytometric analyses have revealed that these oriC mutations confer the initiation asynchrony phenotype. Introduction of the R4 deletion into a fis::kan mutant, which lacks the DNA bending protein FIS, renders the mutant cells inviable.
Collapse
Affiliation(s)
- D B Bates
- Department of Cell Biology, University of New Mexico Health Sciences Center, Albuquerque 87131, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Zakrzewska-Czerwińska J, Majka J, Schrempf H. Minimal requirements of the Streptomyces lividans 66 oriC region and its transcriptional and translational activities. J Bacteriol 1995; 177:4765-71. [PMID: 7642504 PMCID: PMC177243 DOI: 10.1128/jb.177.16.4765-4771.1995] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Deletion analysis of a previously constructed minichromosome revealed that a stretch of DNA which is longer than 623 bp but shorter than 837 bp is required for autonomous replication of the Streptomyces lividans chromosome. Each of the dnaA and dnaN genes flanking the oriC region is individually transcribed from two promoters. Within the intergenic, nontranslatable region between the dnaA and dnaN genes, five main transcripts and several less abundant transcripts of various lengths as well as one of the promoters were identified. The introduction of additional DnaA boxes in S. lividans led to a significant increase in dnaA gene transcripts and to an enhanced level of the DnaA (73-kDa) protein. In summary, the data suggest that dnaA gene transcription is autoregulated and that initiation of the S. lividans chromosome is tightly controlled.
Collapse
Affiliation(s)
- J Zakrzewska-Czerwińska
- Department of Microbiology, Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | | | | |
Collapse
|
47
|
Margolin W, Bramhill D, Long SR. The dnaA gene of Rhizobium meliloti lies within an unusual gene arrangement. J Bacteriol 1995; 177:2892-900. [PMID: 7751302 PMCID: PMC176964 DOI: 10.1128/jb.177.10.2892-2900.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Rhizobium meliloti exists either as a free-living soil organism or as a differentiated endosymbiont bacteroid form within the nodules of its host plant, alfalfa (Medicago sativa), where it fixes atmospheric N2. Differentiation is accompanied by major changes in DNA replication and cell division. In addition, R. meliloti harbors three unique large circular chromosome-like elements whose replication coordination may be complex. As part of a study of DNA replication control in R. meliloti, we isolated a dnaA homolog. The deduced open reading frame predicts a protein of 57 kDa that is 36% identical to the DnaA protein of Escherichia coli, and the predicted protein was confirmed by immunoblot analysis. In a comparison with the other known DnaA proteins, this protein showed the highest similarity to that of Caulobacter crescentus and was divergent in some domains that are highly conserved in other unrelated species. The dnaA genes of a diverse group of bacteria are adjacent to a common set of genes. Surprisingly, analysis of the DNA sequence flanking dnaA revealed none of these genes, except for an rpsT homolog, also found upstream of dnaA in C. crescentus. Instead, upstream of rpsT lie homologs of fpg, encoding a DNA glycosylase, and fadB1, encoding an enoyl-coenzyme A hydratase with a strikingly high (53 to 55%) level of predicted amino acid identity to two mammalian mitochondrial homologs. Downstream of dnaA, there are two open reading frames that are probably expressed but are not highly similar to any genes in the databases. These results show that R. meliloti dnaA is located within a novel gene arrangement.
Collapse
Affiliation(s)
- W Margolin
- Department of Biological Sciences, Stanford University, California 94305-5020, USA
| | | | | |
Collapse
|
48
|
Todd A, Landry S, Pearson CE, Khoury V, Zannis-Hadjopoulos M. Deletion analysis of minimal sequence requirements for autonomous replication of ors8, a monkey early-replicating DNA sequence. J Cell Biochem 1995; 57:280-9. [PMID: 7759565 DOI: 10.1002/jcb.240570212] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have generated a panel of deletion mutants of ors8 (483 bp), a mammalian autonomously replicating DNA sequence, previously isolated by extrusion of nascent monkey (CV-1) DNA from replication bubbles active at the onset of S phase. The deletion mutants were tested for replication function by the DpnI resistance assay, in vivo, after transfection into HeLa cells, and in vitro. An internal fragment of 186-bp that is required for autonomous replication function of ors8 was identified. This fragment, when subcloned into pBR322 and similarly tested, was capable of autonomous replication in vivo and in vitro. The 186-bp fragment contains several repeated sequence motifs, such as the ATTA and ATTTAT motifs, occurring three and five times, respectively, the sequences TAGG and TAGA, occurring three and seven times, respectively, two 5'-ATT-3' repeats, a 44-bp imperfect inverted repeat (IR) sequence, and an imperfect consensus binding element for the transcription factor Oct-1. A measurable sequence-directed DNA curvature was also detected, coinciding with the AT-rich regions of the 186-bp fragment.
Collapse
Affiliation(s)
- A Todd
- McGill Cancer Centre, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
49
|
Pearson CE, Ruiz MT, Price GB, Zannis-Hadjopoulos M. Cruciform DNA binding protein in HeLa cell extracts. Biochemistry 1994; 33:14185-96. [PMID: 7947830 DOI: 10.1021/bi00251a030] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have analyzed by band-shift assays HeLa cell protein-DNA interactions on a stable cruciform DNA molecule. The stable cruciform was formed by heteroduplexing the HindIII-SphI fragment of SV40 virus DNA that contains the origin of replication with a derivative mutant containing a heterologous substitution at the central inverted repeat. We have identified a novel binding activity in HeLa cell extracts with specificity for the cruciform-containing DNA and no apparent sequence specificity. The activity is protein-dependent, void of detectable nuclease activity, and distinct from that reported for HMG1. A cruciform binding protein (CBP) with an apparent molecular weight of 66 kDa was enriched from HeLa cell extracts. In addition to the CBP, we have detected sequence-specific binding activities to sites proximal to the cruciform. Binding to one such site is increased in the cruciform-containing heteroduplex DNA by comparison to its linear homoduplex counterpart, suggesting transmission of structural effects by the stem-loops to their local environment.
Collapse
Affiliation(s)
- C E Pearson
- McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
50
|
Suhan M, Chen SY, Thompson HA, Hoover TA, Hill A, Williams JC. Cloning and characterization of an autonomous replication sequence from Coxiella burnetii. J Bacteriol 1994; 176:5233-43. [PMID: 8071197 PMCID: PMC196706 DOI: 10.1128/jb.176.17.5233-5243.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A Coxiella burnetii chromosomal fragment capable of functioning as an origin for the replication of a kanamycin resistance (Kanr) plasmid was isolated by use of origin search methods utilizing an Escherichia coli host. The 5.8-kb fragment was subcloned into phagemid vectors and was deleted progressively by an exonuclease III-S1 technique. Plasmids containing progressively shorter DNA fragments were then tested for their capability to support replication by transformation of an E. coli polA strain. A minimal autonomous replication sequence (ARS) was delimited to 403 bp. Sequencing of the entire 5.8-kb region revealed that the minimal ARS contained two consensus DnaA boxes, three A + T-rich 21-mers, a transcriptional promoter leading rightwards, and potential integration host factor and factor of inversion stimulation binding sites. Database comparisons of deduced amino acid sequences revealed that open reading frames located around the ARS were homologous to genes often, but not always, found near bacterial chromosomal origins; these included identities with rpmH and rnpA in E. coli and identities with the 9K protein and 60K membrane protein in E. coli and Pseudomonas species. These and direct hybridization data suggested that the ARS was chromosomal and not associated with the resident plasmid QpH1. Two-dimensional agarose gel electrophoresis did not reveal the presence of initiating intermediates, indicating that the ARS did not initiate chromosome replication during laboratory growth of C. burnetii.
Collapse
Affiliation(s)
- M Suhan
- Department of Microbiology and Immunology, West Virginia University, Morgantown 26506-9177
| | | | | | | | | | | |
Collapse
|