1
|
Malla A, Gupta S, Sur R. Glycolytic enzymes in non-glycolytic web: functional analysis of the key players. Cell Biochem Biophys 2024; 82:351-378. [PMID: 38196050 DOI: 10.1007/s12013-023-01213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
To survive in the tumour microenvironment, cancer cells undergo rapid metabolic reprograming and adaptability. One of the key characteristics of cancer is increased glycolytic selectivity and decreased oxidative phosphorylation (OXPHOS). Apart from ATP synthesis, glycolysis is also responsible for NADH regeneration and macromolecular biosynthesis, such as amino acid biosynthesis and nucleotide biosynthesis. This allows cancer cells to survive and proliferate even in low-nutrient and oxygen conditions, making glycolytic enzymes a promising target for various anti-cancer agents. Oncogenic activation is also caused by the uncontrolled production and activity of glycolytic enzymes. Nevertheless, in addition to conventional glycolytic processes, some glycolytic enzymes are involved in non-canonical functions such as transcriptional regulation, autophagy, epigenetic changes, inflammation, various signaling cascades, redox regulation, oxidative stress, obesity and fatty acid metabolism, diabetes and neurodegenerative disorders, and hypoxia. The mechanisms underlying the non-canonical glycolytic enzyme activities are still not comprehensive. This review summarizes the current findings on the mechanisms fundamental to the non-glycolytic actions of glycolytic enzymes and their intermediates in maintaining the tumor microenvironment.
Collapse
Affiliation(s)
- Avirup Malla
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Suvroma Gupta
- Department of Aquaculture Management, Khejuri college, West Bengal, Baratala, India.
| | - Runa Sur
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.
| |
Collapse
|
2
|
Abstract
The phenomenon of protein moonlighting was discovered in the 1980s and 1990s, and the current definition of what constitutes a moonlighting protein was provided at the end of the 1990s. Since this time, several hundred moonlighting proteins have been identified in all three domains of life, and the rate of discovery is accelerating as the importance of protein moonlighting in biology and medicine becomes apparent. The recent re-evaluation of the number of protein-coding genes in the human genome (approximately 19000) is one reason for believing that protein moonlighting may be a more general phenomenon than the current number of moonlighting proteins would suggest, and preliminary studies of the proportion of proteins that moonlight would concur with this hypothesis. Protein moonlighting could be one way of explaining the seemingly small number of proteins that are encoded in the human genome. It is emerging that moonlighting proteins can exhibit novel biological functions, thus extending the range of the human functional proteome. The several hundred moonlighting proteins so far discovered play important roles in many aspects of biology. For example, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), heat-shock protein 60 (Hsp60) and tRNA synthetases play a wide range of biological roles in eukaryotic cells, and a growing number of eukaryotic moonlighting proteins are recognized to play important roles in physiological processes such as sperm capacitation, implantation, immune regulation in pregnancy, blood coagulation, vascular regeneration and control of inflammation. The dark side of protein moonlighting finds a range of moonlighting proteins playing roles in various human diseases including cancer, cardiovascular disease, HIV and cystic fibrosis. However, some moonlighting proteins are being tested for their therapeutic potential, including immunoglobulin heavy-chain-binding protein (BiP), for rheumatoid arthritis, and Hsp90 for wound healing. In addition, it has emerged over the last 20 years that a large number of bacterial moonlighting proteins play important roles in bacteria–host interactions as virulence factors and are therefore potential therapeutic targets in bacterial infections. So as we progress in the 21st Century, it is likely that moonlighting proteins will be seen to play an increasingly important role in biology and medicine. It is hoped that some of the major unanswered questions, such as the mechanism of evolution of protein moonlighting, the structural biology of moonlighting proteins and their role in the systems biology of cellular systems can be addressed during this period.
Collapse
|
3
|
Inhibition of lactate dehydrogenase activity as an approach to cancer therapy. Future Med Chem 2014; 6:429-45. [PMID: 24635523 DOI: 10.4155/fmc.13.206] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the attempt of developing innovative anticancer treatments, growing interest has recently focused on the peculiar metabolic properties of cancer cells. In this context, LDH, which converts pyruvate to lactate at the end of glycolysis, is emerging as one of the most interesting molecular targets for the development of new inhibitors. In fact, because LDH activity is not needed for pyruvate metabolism through the TCA cycle, inhibitors of this enzyme should spare glucose metabolism of normal non-proliferating cells, which usually completely degrade the glucose molecule to CO2. This review is aimed at summarizing the available data on LDH biology in normal and neoplastic cells, which support the anticancer therapeutic approach based on LDH inhibition. These data encouraged pharmaceutical industries and academic institutions in the search of small-molecule inhibitors and promising candidates have recently been identified. The availability of inhibitors with drug-like properties will allow the evaluation in the near future of the real potential of LDH inhibition in anticancer treatment, also making the identification of the most responsive neoplastic conditions possible.
Collapse
|
4
|
Duka T, Anderson SM, Collins Z, Raghanti MA, Ely JJ, Hof PR, Wildman DE, Goodman M, Grossman LI, Sherwood CC. Synaptosomal lactate dehydrogenase isoenzyme composition is shifted toward aerobic forms in primate brain evolution. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:216-30. [PMID: 24686273 PMCID: PMC4096905 DOI: 10.1159/000358581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 01/13/2014] [Indexed: 01/11/2023]
Abstract
With the evolution of a relatively large brain size in haplorhine primates (i.e. tarsiers, monkeys, apes, and humans), there have been associated changes in the molecular machinery that delivers energy to the neocortex. Here we investigated variation in lactate dehydrogenase (LDH) expression and isoenzyme composition of the neocortex and striatum in primates using quantitative Western blotting and isoenzyme analysis of total homogenates and synaptosomal fractions. Analysis of isoform expression revealed that LDH in synaptosomal fractions from both forebrain regions shifted towards a predominance of the heart-type, aerobic isoform LDH-B among haplorhines as compared to strepsirrhines (i.e. lorises and lemurs), while in the total homogenate of the neocortex and striatum there was no significant difference in LDH isoenzyme composition between the primate suborders. The largest increase occurred in synapse-associated LDH-B expression in the neocortex, with an especially remarkable elevation in the ratio of LDH-B/LDH-A in humans. The phylogenetic variation in the ratio of LDH-B/LDH-A was correlated with species-typical brain mass but not the encephalization quotient. A significant LDH-B increase in the subneuronal fraction from haplorhine neocortex and striatum suggests a relatively higher rate of aerobic glycolysis that is linked to synaptosomal mitochondrial metabolism. Our results indicate that there is a differential composition of LDH isoenzymes and metabolism in synaptic terminals that evolved in primates to meet increased energy requirements in association with brain enlargement.
Collapse
Affiliation(s)
- Tetyana Duka
- Department of Anthropology, The George Washington University, Washington, DC
| | - Sarah M. Anderson
- Department of Anthropology, The George Washington University, Washington, DC
| | - Zachary Collins
- Department of Anthropology, The George Washington University, Washington, DC
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH
| | - John J. Ely
- Alamogordo Primate Facility, Holloman Air Force Base, NM
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Derek E. Wildman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Morris Goodman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC
| |
Collapse
|
5
|
Fiume L, Vettraino M, Carnicelli D, Arfilli V, Di Stefano G, Brigotti M. Galloflavin prevents the binding of lactate dehydrogenase A to single stranded DNA and inhibits RNA synthesis in cultured cells. Biochem Biophys Res Commun 2013; 430:466-9. [DOI: 10.1016/j.bbrc.2012.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/05/2012] [Indexed: 11/26/2022]
|
6
|
Lactate dehydrogenase A promotes communication between carbohydrate catabolism and virulence in Bacillus cereus. J Bacteriol 2011; 193:1757-66. [PMID: 21296961 DOI: 10.1128/jb.00024-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diarrheal potential of a Bacillus cereus strain is essentially dictated by the amount of secreted nonhemolytic enterotoxin (Nhe). Expression of genes encoding Nhe is regulated by several factors, including the metabolic state of the cells. To identify metabolic sensors that could promote communication between central metabolism and nhe expression, we compared four strains of the B. cereus group in terms of metabolic and nhe expression capacities. We performed growth performance measurements, metabolite analysis, and mRNA measurements of strains F4430/73, F4810/72, F837/76, and PA cultured under anoxic and fully oxic conditions. The results showed that expression levels of nhe and ldhA, which encodes lactate dehydrogenase A (LdhA), were correlated in both aerobically and anaerobically grown cells. We examined the role of LdhA in the F4430/73 strain by constructing an ldhA mutant. The ldhA mutation was more deleterious to anaerobically grown cells than to aerobically grown cells, causing growth limitation and strong deregulation of key fermentative genes. More importantly, the ldhA mutation downregulated enterotoxin gene expression under both anaerobiosis and aerobiosis, with a more pronounced effect under anaerobiosis. Therefore, LdhA was found to exert a major control on both fermentative growth and enterotoxin expression, and it is concluded that there is a direct link between fermentative metabolism and virulence in B. cereus. The data presented also provide evidence that LdhA-dependent regulation of enterotoxin gene expression is oxygen independent. This study is the first report to describe a role of a fermentative enzyme in virulence in B. cereus.
Collapse
|
7
|
Abstract
Most cancer cells exhibit increased glycolysis and use this metabolic pathway for generation of ATP as a main source of their energy supply. This phenomenon is known as the Warburg effect and is considered as one of the most fundamental metabolic alterations during malignant transformation. In recent years, there are significant progresses in our understanding of the underlying mechanisms and the potential therapeutic implications. Biochemical and molecular studies suggest several possible mechanisms by which this metabolic alteration may evolve during cancer development. These mechanisms include mitochondrial defects and malfunction, adaptation to hypoxic tumor microenvironment, oncogenic signaling, and abnormal expression of metabolic enzymes. Importantly, the increased dependence of cancer cells on glycolytic pathway for ATP generation provides a biochemical basis for the design of therapeutic strategies to preferentially kill cancer cells by pharmacological inhibition of glycolysis. Several small molecules have emerged that exhibit promising anticancer activity in vitro and in vivo, as single agent or in combination with other therapeutic modalities. The glycolytic inhibitors are particularly effective against cancer cells with mitochondrial defects or under hypoxic conditions, which are frequently associated with cellular resistance to conventional anticancer drugs and radiation therapy. Because increased aerobic glycolysis is commonly seen in a wide spectrum of human cancers and hypoxia is present in most tumor microenvironment, development of novel glycolytic inhibitors as a new class of anticancer agents is likely to have broad therapeutic applications.
Collapse
Affiliation(s)
- H Pelicano
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
8
|
Abstract
Although glycolysis is a biochemical pathway that evolved under ancient anaerobic terrestrial conditions, recent studies have provided evidence that some glycolytic enzymes are more complicated, multifaceted proteins rather than simple components of the glycolytic pathway. These glycolytic enzymes have acquired additional non-glycolytic functions in transcriptional regulation [hexokinase (HK)-2, lactate dehydrogenase A, glyceraldehyde-3-phosphate dehydrogenase (GAPD) and enolase 1], stimulation of cell motility (glucose-6-phosphate isomerase) and the regulation of apoptosis (glucokinase, HK and GAPD). The existence of multifaceted roles of glycolytic proteins suggests that links between metabolic sensors and transcription are established directly through enzymes that participate in metabolism. These roles further underscore the need to consider the non-enzymatic functions of enzymes in proteomic studies of cells and tissues.
Collapse
Affiliation(s)
- Jung-Whan Kim
- Graduate Program in Pathobiology, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
9
|
Abstract
Many genes are expressed in mammalian liver in a sexually dimorphic manner. DNA microarray analysis has shown that growth hormone (GH) and its sex-dependent pattern of pituitary secretion play a major role in establishing the sexually dimorphic patterns of liver gene expression. However, GH may exert effects on protein post-translational modification and nuclear localization that are not reflected at the mRNA level. To investigate these potential effects of GH, we used two-dimensional gel electrophoresis followed by LC-MS/MS to: 1) identify rat liver nuclear proteins whose abundance or state of post-translational modification displays sex-dependent differences; and 2) determine the role of the plasma GH profile in establishing these differences. Nuclear extracts prepared from livers of individual male (n=9) and female (n=5) adult rats, and from males given GH by continuous infusion for 7 days to feminize liver gene expression (n=5 rats), were resolved by two-dimensional electrophoresis. Image analysis of SYPRO Ruby-stained gels revealed 165 sexually dimorphic protein spots that differ in normalized volume between male and female groups by >1.5-fold at p<0.05. Sixty of these proteins exhibited female-like changes in spot abundance following continuous GH treatment. Comparison of male and GH-treated male groups revealed 130 proteins that displayed >1.5-fold differences in abundance, with 60 of these GH-responsive spots being sexually dimorphic. Thus, GH plays an important role in establishing the sex-dependent differences in liver nuclear protein content. Twenty-eight of the sexually dimorphic and/or GH-regulated protein spots were identified by LC-MS/MS. Proteins identified include regucalcin, nuclear factor 45, and heterogeneous nuclear ribonucleoproteins A3, D-like, and K, in addition to proteins such as GST, normally associated with cytosolic extracts but also reported to be localized in the nucleus.
Collapse
Affiliation(s)
- Ekaterina V Laz
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
10
|
Sardesai N, Babu CR. Cold stress induces switchover of respiratory pathway to lactate glycolysis in psychrotrophic Rhizobium strains. Folia Microbiol (Praha) 2000; 45:177-82. [PMID: 11271829 DOI: 10.1007/bf02817420] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Two psychrotrophic strains of Rhizobium, DDSS69, a non-cold acclimated strain, and ATR1, a cold acclimated strain, were subjected to cold stress. A 4-fold increase in the specific activity of lactate dehydrogenase (LDH) was characteristic for cold stressed cells of DDSS69, whereas ATR1 showed a higher LDH activity in general, which increased 1.5-fold under cold stress. Cold sensitive mutants of DDSS69 which could not grow below 15 degrees C, in contrast to the wild type which could grow at 5 degrees C, were isolated using Tn5-tagged mutagenesis. These mutants showed a 40% lower LDH activity than the wild type grown at 5 degrees C that was comparable to the wild type grown at 15 degrees C. High specific activity of succinic dehydrogenase (SDH) at 28 degrees C in both strains and mutants indicated that aerobic respiration via the citrate cycle is the normal mode of saccharide utilization. Shifts to lower temperatures decreased the specific activity of SDH. However, alcohol dehydrogenase (ADH) activity remained very low in both the strains and the mutants at low temperatures indicating that a shift from aerobic saccharide metabolism to anaerobic one under cold stress involves lactate glycolysis rather than alcohol fermentation. There was an increase in membrane-bound ATPase activity under cold stress which is correlated to higher LDH activity. These data show that, in psychrotrophic Rhizobium strains, cold stress induces a switchover of respiratory metabolism from aerobic to anaerobic pathway, especially lactate glycolysis.
Collapse
Affiliation(s)
- N Sardesai
- Department of Botany, University of Delhi, Delhi-110 007, India.
| | | |
Collapse
|
11
|
Jungmann RA, Huang D, Tian D. Regulation ofLDH-A gene expression by transcriptional and posttranscriptional signal transduction mechanisms. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1097-010x(199809/10)282:1/2<188::aid-jez21>3.0.co;2-p] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Popanda O, Fox G, Thielmann HW. Modulation of DNA polymerases alpha, delta and epsilon by lactate dehydrogenase and 3-phosphoglycerate kinase. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1397:102-17. [PMID: 9545551 DOI: 10.1016/s0167-4781(97)00229-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Literature documents that glycolytic enzymes (among them lactate dehydrogenase and 3-phosphoglycerate kinase) can reside in nuclei of mammalian cells and exert functions in DNA replication, transcription and DNA repair, in addition to their role as catalysts in the cytoplasm. Transfer of glycolytic enzymes to cell nuclei requires modification, for example phosphorylation. We studied the effects of phosphorylated lactate dehydrogenase and 3-phosphoglycerate kinase on (i) UV-induced DNA repair, using permeabilized human fibroblasts, and (ii) in vitro DNA synthesis catalyzed by purified DNA polymerases alpha, delta, and epsilon from proliferating rat liver. (i) Phosphorylated lactate dehydrogenase stimulated UV-induced DNA repair synthesis in normal fibroblasts in a dose-dependent manner; the unphosphorylated enzyme slightly inhibited. In repair-deficient xeroderma pigmentosum fibroblasts reparative synthesis was not enhanced whether lactate dehydrogenase was phosphorylated or not, indicating that reparative DNA synthesis must be possible in order to be stimulated. (ii) Activity of purified DNA polymerases alpha, delta, and epsilon was differentially stimulated or inhibited, according to the phosphorylation status of lactate dehydrogenase. DNA polymerases were also modulated by 3-phosphoglycerate kinase, depending on the primer-templates used which were gapped DNA (mimicking a repair mode of DNA synthesis) or single-stranded M13 DNA (representing the replicative mode of DNA synthesis). Since glycolytic enzymes in cell nuclei retain binding ability for their cofactors, cytoplasmic substrates and inhibitors, a regulatory linkage might exist between the energy state of a cell and its replicative and reparative functions.
Collapse
Affiliation(s)
- O Popanda
- German Cancer Research Center, Interaction of Carcinogens with Biological Macromolecules Division, Heidelberg, Germany
| | | | | |
Collapse
|
13
|
Zwartjes RE, West H, Hattar S, Ren X, Noel F, Nuñez-Regueiro M, MacPhee K, Homayouni R, Crow MT, Byrne JH, Eskin A. Identification of specific mRNAs affected by treatments producing long-term facilitation in Aplysia. Learn Mem 1998; 4:478-95. [PMID: 10701873 DOI: 10.1101/lm.4.6.478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neural correlates of long-term sensitization of defensive withdrawal reflexes in Aplysia occur in sensory neurons in the pleural ganglia and can be mimicked by exposure of these neurons to serotonin (5-HT). Studies using inhibitors indicate that transcription is necessary for production of long-term facilitation by 5-HT. Several mRNAs that change in response to 5-HT have been identified, but the molecular events responsible for long-term facilitation have not yet been fully described. To detect additional changes in mRNAs, we investigated the effects of 5-HT (1.5 hr) on levels of mRNA in pleural-pedal ganglia using in vitro translation. Four mRNAs were affected by 5-HT, three of which were identified as calmodulin (CaM), phosphoglycerate kinase (PGK), and a novel gene product (protein 3). Using RNase protection assays, we found that 5-HT increased all three mRNAs in the pleural sensory neurons. CaM and protein 3 mRNAs were also increased in the sensory neurons by sensitization training. Furthermore, stimulation of peripheral nerves of pleural-pedal ganglia, an in vitro analog of sensitization training, increased the incorporation of labeled amino acids into CaM, PGK, and protein 3. These results indicate that increases in CaM, PGK, and protein 3 are part of the early response of sensory neurons to stimuli that produce long-term facilitation, and that CaM and protein 3 could have a role in the generation of long-term sensitization.
Collapse
Affiliation(s)
- R E Zwartjes
- Department of Biochemical and Biophysical Sciences, University of Houston, Texas 77204-5934, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dang CV, Lewis BC, Dolde C, Dang G, Shim H. Oncogenes in tumor metabolism, tumorigenesis, and apoptosis. J Bioenerg Biomembr 1997; 29:345-54. [PMID: 9387095 DOI: 10.1023/a:1022446730452] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ability of cancer cells to overproduce lactic acid aerobically was recognized by Warburg about seven decades ago, although its molecular basis has been elusive. Increases in glucose transport and hexokinase activity in cancer cells appear to account for the increased flux of glucose through the cancer cells. Herein we review current findings indicating that the c-Myc oncogenic transcription factor and hypoxia-inducible factor 1 (HIF-1) are able to bind the lactate dehydrogenase A promoter cis acting elements, which resemble the core carbohydrate response element (ChoRE), CACGTG. These and other observations suggest that the normal cell responds physiologically to changes in oxygen tension or the availability of glucose by altering glycolysis through the ChoRE, which hypothetically binds c-Myc, HIF-1, or related factors. The neoplastic cell is hypothesized to augment glycolysis by activation of ChoRE/ HIF-1 sites through direct interaction with c-Myc or through activation of HIF-1 or HIF-1-like activity. We hypothesize that oncogene products either stimulate HIF-1 and related factors or, in the case of c-Myc, directly activate hypoxia/glucose responsive elements in glycolytic enzyme genes to increase the ability of cancer cells to undergo aerobic glycolysis.
Collapse
Affiliation(s)
- C V Dang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
15
|
Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A 1997; 94:6658-63. [PMID: 9192621 PMCID: PMC21214 DOI: 10.1073/pnas.94.13.6658] [Citation(s) in RCA: 853] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/1997] [Accepted: 04/28/1997] [Indexed: 02/07/2023] Open
Abstract
Cancer cells are able to overproduce lactic acid aerobically, whereas normal cells undergo anaerobic glycolysis only when deprived of oxygen. Tumor aerobic glycolysis was recognized about seven decades ago; however, its molecular basis has remained elusive. The lactate dehydrogenase-A gene (LDH-A), whose product participates in normal anaerobic glycolysis and is frequently increased in human cancers, was identified as a c-Myc-responsive gene. Stably transfected Rat1a fibroblasts that overexpress LDH-A alone or those transformed by c-Myc overproduce lactic acid. LDH-A overexpression is required for c-Myc-mediated transformation because lowering its level through antisense LDH-A expression reduces soft agar clonogenicity of c-Myc-transformed Rat1a fibroblasts, c-Myc-transformed human lymphoblastoid cells, and Burkitt lymphoma cells. Although antisense expression of LDH-A did not affect the growth of c-Myc-transformed fibroblasts adherent to culture dishes under normoxic conditions, the growth of these adherent cells in hypoxia was reduced. These observations suggest that an increased LDH-A level is required for the growth of a transformed spheroid cell mass, which has a hypoxic internal microenvironment. Our studies have linked c-Myc to the induction of LDH-A, whose expression increases lactate production and is necessary for c-Myc-mediated transformation.
Collapse
Affiliation(s)
- H Shim
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Baumgart E, Fahimi HD, Stich A, Völkl A. L-lactate dehydrogenase A4- and A3B isoforms are bona fide peroxisomal enzymes in rat liver. Evidence for involvement in intraperoxisomal NADH reoxidation. J Biol Chem 1996; 271:3846-55. [PMID: 8632003 DOI: 10.1074/jbc.271.7.3846] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The subcellular localization of l-lactate dehydrogenase (LDH) in rat hepatocytes has been studied by analytical subcellular fractionation combined with the immunodetection of LDH in isolated subcellular fractions and liver sections by immunoblotting and immunoelectron microscopy. The results clearly demonstrate the presence of LDH in the matrix of peroxisomes in addition to the cytosol. Both cytosolic and peroxisomal LDH subunits have the same molecular mass (35.0 kDa) and show comparable cross-reactivity with an anti-cytosolic LDH antibody. As revealed by activity staining or immunoblotting after isoelectric focussing, both intracellular compartments contain the same liver-specific LDH-isoforms (LDH-A4 > LDH-A3B) with the peroxisomes comprising relatively more LDH-A3B than the cytosol. Selective KCl extraction as well as resistance to proteinase K and immunoelectron microscopy revealed that at least 80% of the LDH activity measured in highly purified peroxisomal fractions is due to LDH as a bona fide peroxisomal matrix enzyme. In combination with the data of cell fractionation, this implies that at least 0.5% of the total LDH activity in hepatocytes is present in peroxisomes. Since no other enzymes of the glycolytic pathway (such as phosphoglucomutase, phosphoglucoisomerase, and glyceraldehyde-3-phosphate dehydrogenase) were found in highly purified peroxisomal fractions, it does not seem that LDH in peroxisomes participates in glycolysis. Instead, the marked elevation of LDH in peroxisomes of rats treated with the hypolipidemic drug bezafibrate, concomitantly to the induction of the peroxisomal beta-oxidation enzymes, strongly suggests that intraperoxisomal LDH may be involved in the reoxidation of NADH generated by the beta-oxidation pathway. The interaction of LDH and the peroxisomal palmitoyl-CoA beta-oxidation system could be verified in a modified beta-oxidation assay by adding increasing amounts of pyruvate to the standard assay mixture and recording the change of NADH production rates. A dose-dependent decrease of NADH produced was simulated with the lowest NADH value found at maximal LDH activity. The addition of oxamic acid, a specific inhibitor of LDH, to the system or inhibition of LDH by high pyruvate levels (up to 20 mm) restored the NADH values to control levels. A direct effect of pyruvate on palmitoyl-CoA oxidase and enoyl-CoA hydratase was excluded by measuring those enzymes individually in separate assays. An LDH-based shuttle across the peroxisomal membrane should provide an efficient system to regulate intraperoxisomal NAD+/NADH levels and maintain the flux of fatty acids through the peroxisomal beta-oxidation spiral.
Collapse
Affiliation(s)
- E Baumgart
- Institute for Anatomy and Cell Biology II, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Federal Republic of Germany
| | | | | | | |
Collapse
|
17
|
Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G. Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci U S A 1995; 92:10467-71. [PMID: 7479821 PMCID: PMC40632 DOI: 10.1073/pnas.92.23.10467] [Citation(s) in RCA: 306] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The adenovirus type 2/5 E1A proteins transform primary baby rat kidney (BRK) cells in cooperation with the activated Ras (T24 ras) oncoprotein. The N-terminal half of E1A (exon 1) is essential for this transformation activity. While the C-terminal half of E1A (exon 2) is dispensable, a region located between residues 225 and 238 of the 243R E1A protein negatively modulates in vitro T24 ras cooperative transformation as well as the tumorigenic potential of E1A/T24 ras-transformed cells. The same C-terminal domain is also required for binding of a cellular 48-kDa phosphoprotein, C-terminal binding protein (CtBP). We have cloned the cDNA for CtBP via yeast two-hybrid interaction cloning. The cDNA encodes a 439-amino acid (48 kDa) protein that specifically interacts with exon 2 in yeast two-hybrid, in vitro protein binding, and in vivo coimmunoprecipitation analyses. This protein requires residues 225-238 of the 243R E1A protein for interaction. The predicted protein sequence of the isolated cDNA is identical to amino acid sequences obtained from peptides prepared from biochemically purified CtBP. Fine mapping of the CtBP-binding domain revealed that a 6-amino acid motif highly conserved among the E1A proteins of various human and animal adenoviruses is required for this interaction. These results suggest that interaction of CtBP with the E1A proteins may play a critical role in adenovirus replication and oncogenic transformation.
Collapse
Affiliation(s)
- U Schaeper
- Institute for Molecular Virology, St. Louis University Medical Center, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
18
|
Short ML, Huang D, Milkowski DM, Short S, Kunstman K, Soong CJ, Chung KC, Jungmann RA. Analysis of the rat lactate dehydrogenase A subunit gene promoter/regulatory region. Biochem J 1994; 304 ( Pt 2):391-8. [PMID: 7998973 PMCID: PMC1137506 DOI: 10.1042/bj3040391] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The rat lactate dehydrogenase (LDH) A subunit gene promoter contains a putative AP-1 binding site at -295/-289 bp, two consensus Sp1 binding sites at -141/-136 bp and -103/-98 bp, and a single copy of a consensus cyclic AMP-responsive element (CRE) at -48 to -41 bp upstream of the transcription initiation site. Additionally, an as yet unidentified silencer element is located within the -1173/-830 bp 5'-flanking region. Transient transfection analyses of a -1173/+25 bp LDH A-chLoramphenicol acetyltransferase fusion gene has indicated a complete inability of the promoter fragment to direct basal or forskolin-induced transcription. Deletion of the -1173/-830 bp sequence restored basal and cyclic AMP (cAMP)-inducible activity. Point mutations in the Sp1 binding sites of a -830/+25 bp promoter fragment reduced basal but not the relative degree of cAMP-inducible activity. cAMP-regulated transcriptional activity was dependent upon an 8 bp CRE, -TGACGTCA-, located at the -48/-41 bp upstream region. Mutations in the CRE abolished cAMP-mediated induction and reduced basal activity by about 65%. The CRE binds a 47 kDa protein which has previously been identified as CRE binding protein (CREB)-327, an isoform of the activating transcription factor/CREB transcription factor gene family. Co-transfection of a vector that expresses the catalytic subunit of cAMP-dependent protein kinase stimulates LDH A subunit promoter activity suggesting that cAMP induces LDH A subunit gene expression through phosphorylative modification of CREB-327. This study emphasizes a fundamental role of several modules including Sp1 and CREB binding sites in regulating basal and cAMP-mediated transcriptional activity of the LDH A gene.
Collapse
Affiliation(s)
- M L Short
- Department of Cellular, Molecular, and Structural Biology, Northwestern University Medical School, Chicago, IL 60611
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Bennett CF, Chiang MY, Wilson-Lingardo L, Wyatt JR. Sequence specific inhibition of human type II phospholipase A2 enzyme activity by phosphorothioate oligonucleotides. Nucleic Acids Res 1994; 22:3202-9. [PMID: 8065936 PMCID: PMC310297 DOI: 10.1093/nar/22.15.3202] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Phosphorothioate oligonucleotides were identified which directly inhibited human type II phospholipase A2 (PLA2) enzyme activity in a sequence specific manner. The minimum pharmacophore common to all oligonucleotides which inhibited PLA2 enzyme activity consisted of two sets of three or more consecutive guanosine residues in a row. These oligonucleotides appear to form G quartets resulting in the formation of oligonucleotide aggregates. Additionally, a phosphorothioate backbone was required to be effective inhibitors of type II PLA2. The activity of one oligodeoxynucleotide, IP 3196 (5'-GGGTGGGTATAGAAGGGCTCC-3') has been characterized in more detail. IP 3196 inhibited PLA2 enzyme activity when the substrate was presented in the form of a phospholipid bilayer but not when presented in the form of a mixed micelle with anionic detergents. Human type II PLA2 was 50-fold more sensitive to inhibition by IP 3196 than venom and pancreatic type I enzymes. These data demonstrate that phosphorothioate oligonucleotides can specifically inhibit human type II PLA2 enzyme activity in a sequence specific manner.
Collapse
Affiliation(s)
- C F Bennett
- Department of Molecular Pharmacology, ISIS Pharmaceuticals, Carlsbad, CA 92008
| | | | | | | |
Collapse
|
20
|
Xia X, Werner D, Popanda O, Thielmann HW. Expression of mitochondrial genes and DNA-repair-related nuclear genes is altered in xeroderma pigmentosum fibroblasts. J Cancer Res Clin Oncol 1994; 120:454-64. [PMID: 8207043 DOI: 10.1007/bf01191798] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Differential hybridization was used to detect repair defects in xeroderma pigmentosum (XP) that are not amenable to current analyses. cDNA libraries were constructed from cytoplasmic RNA of normal and XP fibroblast strains (complementation groups A and D) and analyzed for differential gene expression. More than 40,000 lambda gt10 cDNA clones were differentially screened with in vitro transcripts made from cDNA in the pBluescript vector. Six differential clones were detected in the libraries of the XP group A and D strains which caused stronger or weaker signals when probed with transcripts from XP strains than with those from the normal strains. Two clones coded for mitochondrial genes: mitochondrial 16 S rRNA and ATPase 6L. Overexpression of mitochondrial genes in XP may indicate that functions of the ATP-generating system are impaired since such functions are intensified whenever they become insufficient, for example as a consequence of DNA damage. It is tempting to assume that abnormal mitochondria are one of the causes for the neurological malfunctions in XP. Furthermore, densitometric analysis of Northern blots revealed that mRNA of lactate dehydrogenase, chain M, was less abundant in four XP group A strains (extent of reduction: 70%) and in two XP group D strains (extent of reduction: 58%). Enzyme activity was also diminished. In addition, mRNA of the gene for glyceraldehyde-3-phosphate dehydrogenase was less expressed in the same XP group A and D fibroblast strains investigated (reduction in both complementation groups: 50%). Both glycolytic enzymes have nuclear functions apart from their role in sugar metabolism. Lactate dehydrogenase, chain M, is identical to a helix-destabilizing protein; it is closely associated with chromatin and unfolded DNA, suggesting a role in DNA synthesis and transcription. The 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase is involved in transcription and was shown to be identical to uracil-DNA glycosylase, a base-excision repair enzyme. We presume that the nuclear functions of these glycolytic enzymes may be thwarted in the XP strains investigated and may account for malfunctions in XP, particularly for neurological disturbances.
Collapse
Affiliation(s)
- X Xia
- Division of Interaction of Carcinogens with Biological Macromolecules, German Cancer Research Center, Heidelberg
| | | | | | | |
Collapse
|
21
|
Radha V, Kamatkar S, Swarup G. Binding of a protein-tyrosine phosphatase to DNA through its carboxy-terminal noncatalytic domain. Biochemistry 1993; 32:2194-201. [PMID: 8443161 DOI: 10.1021/bi00060a010] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The noncatalytic domain of a non-receptor-type protein-tyrosine phosphatase (the T-cell phosphatase or PTP-S) isolated from a rat spleen cDNA library shows homology with the basic domains of transcription factors Fos and Jun [Swarup, G., Kamatkar, S., Radha, V., & Rema, V. (1991) FEBS Lett. 280,65-69]. We have expressed this phosphatase in Escherichia coli under the control of T7 promoter. The PTP-S gene product expressed in E. coli shows protein-tyrosine phosphatase activity and binds to DNA at pH 7.4 as determined by DNA affinity chromatography, Southwestern blotting, and gel retardation methods. The carboxy-terminal region of this phosphatase was fused with glutathione S-transferase by constructing expression vectors. Experiments using fusion proteins with glutathione S-transferase suggest that the carboxy-terminal 57 amino acids of PTP-S are sufficient for DNA binding. Deletion of the C-terminal 57 amino acids of PTP-S protein abolished its DNA binding property, as determined by Southwestern blotting, but not its enzymatic activity. This suggests that the C-terminal 57 amino acids are essential for the DNA binding function of this protein but not for its enzymatic activity. Another non-receptor-type protein-tyrosine phosphatase, PTP-1, when expressed in enzymatically active form in E. coli did not bind to DNA. These results suggest that a nontransmembrane protein-tyrosine phosphatase, PTP-S, binds to DNA in vitro through its carboxy-terminal noncatalytic region.
Collapse
Affiliation(s)
- V Radha
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|
22
|
Voorter CE, Wintjes LT, Heinstra PW, Bloemendal H, De Jong WW. Comparison of stability properties of lactate dehydrogenase B4/epsilon-crystallin from different species. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 211:643-8. [PMID: 8436124 DOI: 10.1111/j.1432-1033.1993.tb17592.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
epsilon-Crystallin occurs as an abundant lens protein in many birds and in crocodiles and has been identified as heart-type lactate dehydrogenase (LDH-B4). Lens proteins have, due to their longevity and environmental conditions, extraordinary requirements for structural stability. To study lens-protein stability, we compared various parameters of LDH-B4/epsilon-crystallin from lens and/or heart of duck, which has abundant amounts of this enzyme in its lenses, and of chicken and pig, which have no epsilon-crystallin. Measuring the thermostability of LDH-B4 from the different sources, the t50 values (temperature at which 50% of the enzyme activity remains after a 20-min period) for LDH-B4 from duck heart, duck lens and chicken heart were all found to be around 76 degrees C, whereas pig heart LDH-B4 was less thermostable, having a t50 value of 62.5 degrees C. A similar tendency was found with urea inactivation studies. Plotting the first-order rate constants obtained from inactivation kinetic plots against urea concentration, it was clear that LDH-B4 from pig heart was less stable in urea than the homologous enzymes from duck heart, chicken heart and duck lens. The duck and chicken enzymes were also much more resistant against proteolysis than the porcine enzyme. Therefore, it is concluded that avian LDH-B4 is structurally more stable than the homologous enzyme in mammals. This greater stability might make it suitable to function as a crystallin, as in duck, but is not necessarily associated with high lens expression, as in chicken.
Collapse
Affiliation(s)
- C E Voorter
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
Abstract
The structure of the interphase nucleus is a major area of current interest in cell biology. It is thought likely that the nucleus is organised around some form of structural matrix and that this matrix will play a role in processes as diverse as chromosome replication and the integration of gene expression. However, the structure of the matrix within the nucleus has remained elusive, largely because attempts to define it have been dogged by technical problems arising from the great complexity of this organelle. This situation is now being changed by the application of in situ analysis and of molecular genetic methodologies which are opening up this hitherto intractable field.
Collapse
Affiliation(s)
- R S Jack
- Institut für Genetik, Universität zu Köln, Federal Republic of Germany
| | | |
Collapse
|
24
|
Xanthoudakis S, Miao G, Wang F, Pan YC, Curran T. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J 1992; 11:3323-35. [PMID: 1380454 PMCID: PMC556867 DOI: 10.1002/j.1460-2075.1992.tb05411.x] [Citation(s) in RCA: 621] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The DNA binding activity of Fos and Jun is regulated in vitro by a post-translational mechanism involving reduction-oxidation. Redox regulation occurs through a conserved cysteine residue located in the DNA binding domain of Fos and Jun. Reduction of this residue by chemical reducing agents or by a ubiquitous nuclear redox factor (Ref-1) recently purified from Hela cells, stimulates AP-1 DNA binding activity in vitro, whereas oxidation or chemical modification of the cysteine has an inhibitory effect on DNA binding activity. Here we demonstrate that the protein product of the ref-1 gene stimulates the DNA binding activity of Fos-Jun heterodimers, Jun-Jun homodimers and Hela cell AP-1 proteins as well as that of several other transcription factors including NF-kappa B, Myb and members of the ATF/CREB family. Furthermore, immunodepletion analysis indicates that Ref-1 is the major AP-1 redox activity in Hela nuclear extracts. Interestingly, Ref-1 is a bifunctional protein; it also possesses an apurinic/apyrimidinic (AP) endonuclease DNA repair activity. However, the redox and DNA repair activities of Ref-1 can, in part, be distinguished biochemically. This study suggests a novel link between transcription factor regulation, oxidative signalling and DNA repair processes in higher eukaryotes.
Collapse
Affiliation(s)
- S Xanthoudakis
- Department of Molecular Oncology and Virology, Roche Institute of Molecular Biology, New York, NY
| | | | | | | | | |
Collapse
|
25
|
Egea G, Ureña JM, Graña X, Marsal J, Carreras J, Climent F. Nuclear location of phosphoglycerate mutase BB isozyme in rat tissues. HISTOCHEMISTRY 1992; 97:269-75. [PMID: 1314249 DOI: 10.1007/bf00267638] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have previously reported (Ureña et al. Eur. J. Cell Biol. 1990) that in skeletal muscle, type MM phosphoglycerate mutase isozyme is present in the nucleus as well as in the cytosol. To determine whether type BB phosphoglycerate mutase isozyme is also present in nucleus, the subcellular location of this isozyme was studied in different rat tissues by cell fractionation and immunogold techniques. With the aid of high affinity-purified anti-phosphoglycerate mutase BB isozyme antibodies, the isozyme was located in the nucleus of neuronal, astroglial and liver cells but not in the nucleus of oligodendroglial and endothelial cells. Biochemical studies on purified nuclear fractions also demonstrated the presence of phosphoglycerate mutase activity in the nucleus. Both immunocytochemical and biochemical techniques showed that nuclear phosphoglycerate mutase-specific activity depended on the type of cell.
Collapse
Affiliation(s)
- G Egea
- Unitat de Bioquimica, Facultat de Medicina, Universitat de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Meyer-Siegler K, Mauro DJ, Seal G, Wurzer J, deRiel JK, Sirover MA. A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci U S A 1991; 88:8460-4. [PMID: 1924305 PMCID: PMC52528 DOI: 10.1073/pnas.88.19.8460] [Citation(s) in RCA: 258] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have isolated and characterized a plasmid (pChug 20.1) that contains the cDNA of a nuclear uracil DNA glycosylase (UDG) gene isolated from normal human placenta. This cDNA directed the synthesis of a fusion protein (Mr 66,000) that exhibited UDG activity. The enzymatic activity was specific for a uracil-containing polynucleotide substrate and was inhibited by a glycosylase antibody or a beta-galactosidase antibody. Sequence analysis demonstrated an open reading frame that encoded a protein of 335 amino acids of calculated Mr 36,050 and pI 8.7, corresponding to the Mr 37,000 and pI 8.1 of purified human placental UDG. No homology was seen between this cDNA and the UDG of herpes simplex virus, Escherichia coli, and yeast; nor was there homology with the putative human mitochondrial UDG cDNA or with a second human nuclear UDG cDNA. Surprisingly, a search of the GenBank data base revealed that the cDNA of UDG was completely homologous with the 37-kDa subunit of human glyceraldehyde-3-phosphate dehydrogenase. Human erythrocyte glyceraldehyde-3-phosphate dehydrogenase was obtained commercially in its tetrameric form. A 37-kDa subunit was isolated from it and shown to possess UDG activity equivalent to that seen for the purified human placental UDG. The multiple functions of this 37-kDa protein as here and previously reported indicate that it possesses a series of activities, depending on its oligomeric state. Accordingly, mutation(s) in the gene of this multifunctional protein may conceivably result in the diverse cellular phenotypes of Bloom syndrome.
Collapse
Affiliation(s)
- K Meyer-Siegler
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140
| | | | | | | | | | | |
Collapse
|
27
|
Yu L, Jiang Z, Tong T. 64DP in the nucleus of human hepatocyte. Chin J Cancer Res 1991. [DOI: 10.1007/bf02955260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
28
|
Citovsky V, Knorr D, Zambryski P. Gene I, a potential cell-to-cell movement locus of cauliflower mosaic virus, encodes an RNA-binding protein. Proc Natl Acad Sci U S A 1991; 88:2476-80. [PMID: 11607169 PMCID: PMC51255 DOI: 10.1073/pnas.88.6.2476] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cauliflower mosaic virus (CaMV) is a double-stranded DNA (dsDNA) pararetrovirus capable of cell-to-cell movement presumably through intercellular connections, the plasmodesmata, of the infected plant. This movement is likely mediated by a specific viral protein encoded by the gene I locus. Here we report that the purified gene I protein binds RNA and single-stranded DNA (ssDNA) but not dsDNA regardless of nucleotide sequence specificity. The binding is highly cooperative, and the affinity of the gene I protein for RNA is 10-fold higher than for ssDNA. CaMV replicates by reverse transcription of a 358 RNA that is homologous to the entire genome. We propose that the 35S RNA may be involved in cell-to-cell movement of CaMV as an intermediate that is transported through plasmodesmata as an RNA-gene I protein complex.
Collapse
Affiliation(s)
- V Citovsky
- Department of Plant Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
29
|
Phosphotyrosine-containing lactate dehydrogenase is restricted to the nuclei of PC12 pheochromocytoma cells. Mol Cell Biol 1990. [PMID: 1689001 DOI: 10.1128/mcb.10.2.770] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There are five lactate dehydrogenase (LDH) isoenzymes, composed of various combinations of two types of subunits. LDH-5, which contains only the LDH A subunit, is known to be present in both the cytoplasm and the nucleus, to act as a single-stranded DNA-binding protein possibly functioning in transcription and/or replication, and to undergo phosphorylation of tyrosine 238 in approximately 1% of the enzyme after cell transformation by certain tumor viruses. We have characterized LDH from wild-type PC12 pheochromocytoma cells and from a PC12 variant (MPT1) that exhibits altered lactate metabolism and altered expression of multiple genes. Wild-type and MPT1 cells contain different proportions of LDH isoenzymes, with LDH-5 being more predominant in wild-type cells than in the variant. A small fraction of LDH from PC12 cells contains phosphotyrosine. Approximately 99% of the total LDH activity is located in the cytoplasm, but all of the phosphotyrosine-containing LDH is located in the nucleus. Furthermore, essentially all of the nuclear LDH contains phosphotyrosine. These results suggest that tyrosine phosphorylation can affect its role in the nucleus.
Collapse
|
30
|
Zhong XH, Howard BD. Phosphotyrosine-containing lactate dehydrogenase is restricted to the nuclei of PC12 pheochromocytoma cells. Mol Cell Biol 1990; 10:770-6. [PMID: 1689001 PMCID: PMC360877 DOI: 10.1128/mcb.10.2.770-776.1990] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
There are five lactate dehydrogenase (LDH) isoenzymes, composed of various combinations of two types of subunits. LDH-5, which contains only the LDH A subunit, is known to be present in both the cytoplasm and the nucleus, to act as a single-stranded DNA-binding protein possibly functioning in transcription and/or replication, and to undergo phosphorylation of tyrosine 238 in approximately 1% of the enzyme after cell transformation by certain tumor viruses. We have characterized LDH from wild-type PC12 pheochromocytoma cells and from a PC12 variant (MPT1) that exhibits altered lactate metabolism and altered expression of multiple genes. Wild-type and MPT1 cells contain different proportions of LDH isoenzymes, with LDH-5 being more predominant in wild-type cells than in the variant. A small fraction of LDH from PC12 cells contains phosphotyrosine. Approximately 99% of the total LDH activity is located in the cytoplasm, but all of the phosphotyrosine-containing LDH is located in the nucleus. Furthermore, essentially all of the nuclear LDH contains phosphotyrosine. These results suggest that tyrosine phosphorylation can affect its role in the nucleus.
Collapse
Affiliation(s)
- X H Zhong
- Department of Biological Chemistry, School of Medicine, University of California, Los Angeles 90024
| | | |
Collapse
|
31
|
|
32
|
Mahoungou C, Ghrir R, Lecaer JP, Mignotte B, Barat-Gueride M. The amino-terminal sequence of the Xenopus laevis mitochondrial SSB is homologous to that of the Escherichia coli protein. FEBS Lett 1988; 235:267-70. [PMID: 3042458 DOI: 10.1016/0014-5793(88)81276-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two closely related forms of the single-stranded DNA binding protein purified from Xenopus laevis oocytes mitochondria have been identified. Their amino terminal sequences exhibit homology with the Escherichia coli SSB protein.
Collapse
Affiliation(s)
- C Mahoungou
- Laboratoire de Biologie Générale, Université de Paris-Sud, Orsay, France
| | | | | | | | | |
Collapse
|
33
|
Mignotte B, Marsault J, Barat-Gueride M. Effects of the Xenopus laevis mitochondrial single-stranded DNA-binding protein on the activity of DNA polymerase gamma. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 174:479-84. [PMID: 3391165 DOI: 10.1111/j.1432-1033.1988.tb14123.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The single-stranded DNA-binding protein from Xenopus laevis oocyte mitochondria, which has been found associated with the D loop, binds to ssDNA in stoichiometric amounts and can under certain conditions stimulate the activity of the DNA polymerase gamma. Its properties suggest that it is involved in strand displacement during the replication of the mitochondrial genome.
Collapse
Affiliation(s)
- B Mignotte
- Laboratoire de Biologie Générale, Université de Paris-Sud, Orsay, France
| | | | | |
Collapse
|
34
|
Ballard DW, Philbrick WM, Bothwell AL. Identification of a novel 9-kDa polypeptide from nuclear extracts. DNA binding properties, primary structure, and in vitro expression. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68498-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Ryazanov AG, Ashmarina LI, Muronetz VI. Association of glyceraldehyde-3-phosphate dehydrogenase with mono- and polyribosomes of rabbit reticulocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 171:301-5. [PMID: 3276518 DOI: 10.1111/j.1432-1033.1988.tb13790.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
It has been shown recently that glyceraldehyde-3-phosphate dehydrogenase (GAPD) is one of the three major RNA-binding proteins of rabbit reticulocytes [Ryazanov, A. G. (1985) FEBS Lett. 192, 131-134]. It was suggested that, due to its RNA-binding capacity, GAPD can form loose dynamic complexes with polyribosomes. This communication reports that a considerable amount of GAPD activity can be found in the mono- and polyribosome fraction after sucrose gradient centrifugation of rabbit reticulocyte lysate. An increase of ionic strength, as well as the addition of exogenous RNA to the extract, result in the removal of GAPD from the complex with mono- and polyribosomes. It appears that GAPD forms the complex with polyribosomes due to the interaction with some exposed RNA regions of these structures. Although the interaction of GAPD with ribosomes is weak, it can be detected under physiological ionic conditions by the difference boundary sedimentation velocity technique. Association of GAPD with mono- and polyribosomes can be prevented by a low concentration (10 microM) of NADH, but not NAD+. A nitrocellulose filter binding assay also shows that NADH has a stronger inhibitory effect on the enzyme-RNA complex formation, as compared with NAD+. We propose that the RNA-mediated association of GAPD with mono- and polyribosomes can provide compartmentation of the energy-supplying system on these structures within the cell. This can maintain a high local concentration of ATP and GTP near the sites of protein synthesis.
Collapse
Affiliation(s)
- A G Ryazanov
- Institute of Protein Research, Academy of Sciences of the USSR, Pushchino
| | | | | |
Collapse
|
36
|
Benner S, Ellington AD. Interpreting the behavior of enzymes: purpose or pedigree? CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1988; 23:369-426. [PMID: 3067974 DOI: 10.3109/10409238809082549] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To interpret the growing body of data describing the structural, physical, and chemical behaviors of biological macromolecules, some understanding must be developed to relate these behaviors to the evolutionary processes that created them. Behaviors that are the products of natural selection reflect biological function and offer clues to the underlying chemical principles. Nonselected behaviors reflect historical accident and random drift. This review considers experimental data relevant to distinguishing between nonfunctional and functional behaviors in biological macromolecules. In the first segment, tools are developed for building functional and historical models to explain macromolecular behavior. These tools are then used with recent experimental data to develop a general outline of the relationship between structure, behavior, and natural selection in proteins and nucleic acids. In segments published elsewhere, specific functional and historical models for three properties of enzymes--kinetics, stereospecificity, and specificity for cofactor structures--are examined. Functional models appear most suitable for explaining the kinetic behavior of proteins. A mixture of functional and historical models appears necessary to understand the stereospecificity of enzyme reactions. Specificity for cofactor structures appears best understood in light of purely historical models based on a hypothesis of an early form of life exclusively using RNA catalysis.
Collapse
Affiliation(s)
- S Benner
- Organische Chemie, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | |
Collapse
|
37
|
Li SS, Pan YE, Sharief FS, Evans MJ, Lin MF, Clinton GM, Holbrook JJ. Cancer-associated lactate dehydrogenase is a tyrosylphosphorylated form of human LDH-A, skeletal muscle isoenzyme. Cancer Invest 1988; 6:93-101. [PMID: 3365574 DOI: 10.3109/07357908809077032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cancer-associated lactate dehydrogenase is a tyrosylphosphorylated form of human skeletal muscle isoenzyme, since the partial amino acid sequences of human liver LDH-K/A protein were found to be identical with the known primary structure of human LDH-A isoenzyme and the LDH-A isoenzymes from human placenta and bovine muscle were shown to be tyrosylphosphorylated. This tyrosylphosphorylated LDH-K/A protein was also found to be complexed with 21 kD, 30 kD, and 56 kD proteins.
Collapse
Affiliation(s)
- S S Li
- Laboratory of Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | | | | | | | | | | | | |
Collapse
|
38
|
Svaren J, Inagami S, Lovegren E, Chalkley R. DNA denatures upon drying after ethanol precipitation. Nucleic Acids Res 1987; 15:8739-54. [PMID: 3684571 PMCID: PMC306402 DOI: 10.1093/nar/15.21.8739] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have observed that ethanol precipitation and subsequent drying of small (less than 400 bp) radiolabelled DNA fragments is able to induce a transition to a form that migrates aberrantly on acrylamide gels. This unusual form has increased sensitivity to S1 nuclease, decreased sensitivity to restriction enzymes, and a concentration dependence for the reversion to the duplex form. Apparently, DNA denatures upon dehydration so that redissolving at low dilution will allow the collapse of DNA fragments into single-stranded hairpin structures. These structures are stable enough at low dilution to prevent complete reannealing of single stranded species. These single stranded species show strong binding to unidentified proteins present in nuclear extracts. This may give rise to misleading interpretations of mobility shift assays, especially if the single-stranded conformers have a similar mobility to the duplex fragment, which can occur in fragments that are 50-100 bp long. Evidence is presented that DNA, in general, denatures upon dehydration, but that hindrances to rotation in the solid state may prevent long fragments from dissociating.
Collapse
Affiliation(s)
- J Svaren
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | | | | | | |
Collapse
|
39
|
Abstract
Crystallins, the principal components of the lens, have been regarded simply as soluble, structural proteins. It now appears that the major taxon-specific crystallins of vertebrates and invertebrates are either enzymes or closely related to enzymes. In terms of sequence similarity, size, and other physical characteristics delta-crystallin is closely related to argininosuccinate lyase, tau-crystallin to enolase, and SIII-crystallin to glutathione S-transferase; moreover, it has recently been demonstrated that epsilon-crystallin is an active lactate dehydrogenase. Enzymes may have been recruited several times as lens proteins, perhaps because of the developmental history of the tissue or simply because of evolutionary pragmatism (the selection of existing stable structures for a new structural role).
Collapse
|
40
|
Use of HPLC Comparative Peptide Mapping in Structure/Function Studies. Proteins 1987. [DOI: 10.1007/978-1-4613-1787-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Grosse F, Nasheuer HP, Scholtissek S, Schomburg U. Lactate dehydrogenase and glyceraldehyde-phosphate dehydrogenase are single-stranded DNA-binding proteins that affect the DNA-polymerase-alpha-primase complex. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 160:459-67. [PMID: 3536507 DOI: 10.1111/j.1432-1033.1986.tb10062.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Affinity chromatography on double-stranded (ds) and single-stranded (ss) DNA-cellulose columns was employed to find analogs of the Escherichia coli and T4 single-stranded DNA binding proteins (SSB proteins) in calf thymus. The interaction of several purified SSB proteins with the pure DNA-polymerase-alpha--primase complex on DNA synthesis on activated DNA and on primase-initiated M13 DNA served as a criterion for a possible involvement of one of these proteins in the process of DNA replication. Two SSB proteins were purified to essential homogeneity. These most abundant proteins exhibited apparent relative molecular masses of 35,000 (SSB-35) and 37,000 (SSB-37) for the protomers and 140,000 and 80,000 for the native enzymes. Both proteins resisted elution with 0.5 mg/ml dextran sulfate and were eluted from the ssDNA-cellulose with 0.2 M and 1 M NaCl, respectively. SSB-35 stimulated the DNA-polymerase-alpha--primase complex from the same organism up to fivefold over a broad range of DNA covering. By contrast, SSB-37 inhibited the primase-initiated replication of M13 DNA. Like most eukaryotic SSB proteins, these proteins showed a 300-fold preference for binding to ssDNA over dsDNA in a nitrocellulose filter binding assay, as well as strong binding to several DNA and RNA homopolymers. Furthermore, we provide evidence for a cooperative mode of binding for SSB-37. Although SSB-35 and SSB-37 behave as typically eukaryotic SSB proteins in all assays employed, we tested these SSB proteins for dehydrogenase activities as well. SSB-35 was found to be identical with lactate dehydrogenase and SSB-37 was identical with a dimeric form of glyceraldehyde-3-phosphate dehydrogenase. These results imply that further studies are mandatory in order to prove the authenticity of eukaryotic SSB proteins.
Collapse
|
42
|
Hoffman NE, Bent AF, Hanson AD. Induction of lactate dehydrogenase isozymes by oxygen deficit in barley root tissue. PLANT PHYSIOLOGY 1986; 82:658-63. [PMID: 16665087 PMCID: PMC1056184 DOI: 10.1104/pp.82.3.658] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Lactate dehydrogenase (LDH) activity in attached roots of barley and other cereals increased up to 20-fold during several days of severe hypoxia, reaching a maximum of about 2 micromoles per minute per gram fresh weight. In barley, induction of LDH activity was significant at 2.6% O(2) and greatest at 0.06%, the lowest O(2) concentration tested. Upon return to aerobic conditions, induced LDH activity declined with an apparent half-life of 2 days. The isozyme profile of barley LDH comprised 5 bands, consistent with a tetrameric enzyme with subunits encoded by two different Ldh genes. Changes in staining intensity of the isozymes as a function of O(2) level suggested that one Ldh gene was preferentially expressed in severe hypoxia. When tracer [U-(14)C]glucose was supplied to induced roots under hypoxic conditions, lactate acquired label, but much less than either ethanol or alanine. Most of the [(14)C] lactate was secreted into the medium, whereas most other labeled anionic products were retained in the root. Neither hypoxic induction of LDH, nor lactate secretion by induced roots, is predicted from the Davies-Roberts hypothesis, which holds that lactate glycolysis ceases soon after the onset of hypoxia due to acidosis brought about by lactate accumulation in the cytoplasm. These results imply a functional significance for LDH beyond that assigned it in this hypothesis.
Collapse
Affiliation(s)
- N E Hoffman
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | | | | |
Collapse
|
43
|
Sapp M, Knippers R, Richter A. DNA binding properties of a 110 kDa nucleolar protein. Nucleic Acids Res 1986; 14:6803-20. [PMID: 3763392 PMCID: PMC311700 DOI: 10.1093/nar/14.17.6803] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A single strand specific DNA binding protein was purified to homogeneity from calf thymus nucleoprotein. The monomeric protein is elongated in shape and has a molecular mass of 110 kDa. Since immunocytochemistry revealed that the protein is predominantly located in the nucleolus we refer to it as the 110 kDa nucleolar protein. The protein binds not only to single stranded DNA but also to single stranded RNA, including homopolymeric synthetic RNA. We have used the single stranded DNA binding properties of the 110 kDa protein in model studies to investigate its effects on the configuration of nucleic acid. Our results are: only 50-55 protein molecules are sufficient to saturate all binding sites on the 6408 nucleotides of phage fd DNA; protein binding cause a compaction of single stranded DNA; large nucleoprotein aggregates are formed in the presence of divalent cations; this is due to protein-protein interactions which occur at moderately high concentrations of magnesium-, calcium or manganese ions; the protein induces the reassociation of complementary nucleic acid sequences. We speculate that the 110 kDa protein performs similar reactions in vivo and may have a function related to the processing and packaging of preribosomal RNA.
Collapse
|
44
|
Morgenegg G, Winkler GC, Hübscher U, Heizmann CW, Mous J, Kuenzle CC. Glyceraldehyde-3-phosphate dehydrogenase is a nonhistone protein and a possible activator of transcription in neurons. J Neurochem 1986; 47:54-62. [PMID: 2423647 DOI: 10.1111/j.1471-4159.1986.tb02830.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A single-stranded DNA-binding protein of Mr 35,000 (35K protein) was isolated from calf cerebral cortex by affinity chromatography on immobilized double-stranded and single-stranded DNA. Its localization in the nuclear compartment was demonstrated by immunohistochemistry. Previous studies had uncovered a homologous nonhistone chromosomal protein in the nuclei of rat cerebral cortex neurons, cerebellar neurons, oligodendrocytes, and liver cells. The rat protein accumulated in the nuclear compartment of neurons in exact temporal coincidence with the arrest of cell division and the initiation of terminal differentiation. Therefore, in the present work, the 35K protein was tested for an activating role in RNA transcription. During the course of this study we became aware that the 35K protein was identical to a glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12). When authentic GAPDH from rabbit skeletal muscle was injected into Xenopus laevis oocytes, it greatly stimulated RNA polymerase II transcription, whereas the 35K protein from calf brain did not. This apparent discrepancy was partially resolved by the finding that rabbit muscle GAPDH could be fractionated into two components by affinity chromatography on single-stranded DNA cellulose. Only 5% of the applied protein was retained on the column and could be eluted with a shallow salt gradient identical to the one used for the isolation of the 35K protein. This single-stranded DNA-binding component of rabbit muscle GAPDH did not stimulate transcription. Apparently, the 35K protein from calf brain corresponded to this single-stranded DNA-binding subfraction, which explained its failure to activate transcription.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
45
|
Sharief FS, Wilson SH, Li SS. Identification of the mouse low-salt-eluting single-stranded DNA-binding protein as a mammalian lactate dehydrogenase-A isoenzyme. Biochem J 1986; 233:913-6. [PMID: 3707535 PMCID: PMC1153117 DOI: 10.1042/bj2330913] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A 36,000-Mr protein purified from mouse myeloma on the basis of selective binding to a single-stranded DNA (ssDNA)-cellulose column has been identified as the lactate dehydrogenase A (LDH-A) subunit. A homogeneous preparation of this mouse myeloma ssDNA-binding protein, termed the 'low-salt-eluting protein', was found to possess LDH activity, and rabbit antiserum prepared against this protein was shown to cross-react with purified 36,000-Mr LDH-A subunits from mouse and bovine sources. In addition, bovine and human LHD-A4 isoenzymes were shown to be capable of binding ssDNA. These enzymic and immunological identities with LDH-A were not observed with purified helix-destabilizing protein 1 from mouse myeloma. A model for ssDNA-LDH binding is discussed.
Collapse
|
46
|
Ozasa H, Shindo Y. mRNA activity of M-type lactate dehydrogenase in dermatofibrosarcoma protuberans. J Dermatol 1985; 12:502-5. [PMID: 3913688 DOI: 10.1111/j.1346-8138.1985.tb02882.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|