1
|
Ringe RP, Colin P, Ozorowski G, Allen JD, Yasmeen A, Seabright GE, Lee JH, Antanasijevic A, Rantalainen K, Ketas T, Moore JP, Ward AB, Crispin M, Klasse PJ. Glycan heterogeneity as a cause of the persistent fraction in HIV-1 neutralization. PLoS Pathog 2023; 19:e1011601. [PMID: 37903160 PMCID: PMC10635575 DOI: 10.1371/journal.ppat.1011601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/09/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023] Open
Abstract
Neutralizing antibodies (NAbs) to multiple epitopes on the HIV-1-envelope glycoprotein (Env) have been isolated from infected persons. The potency of NAbs is measured more often than the size of the persistent fraction of infectivity at maximum neutralization, which may also influence preventive efficacy of active or passive immunization and the therapeutic outcome of the latter. Many NAbs neutralize HIV-1 CZA97.012, a clone of a Clade-C isolate, to ~100%. But here NAb PGT151, directed to a fusion-peptide epitope, left a persistent fraction of 15%. NAb PGT145, ligating the Env-trimer apex, left no detectable persistent fraction. The divergence in persistent fractions was further analyzed by depletion of pseudoviral populations of the most PGT151- and PGT145-reactive virions. Thereby, neutralization by the non-depleting NAb increased, whereas neutralization by the depleting NAb decreased. Furthermore, depletion by PGT151 increased sensitivity to autologous neutralization by sera from rabbits immunized with soluble native-like CZA97.012 trimer: substantial persistent fractions were reduced. NAbs in these sera target epitopes comprising residue D411 at the V4-β19 transition in a defect of the glycan shield on CZA97.012 Env. NAb binding to affinity-fractionated soluble native-like CZA97.012 trimer differed commensurately with neutralization in analyses by ELISA and surface plasmon resonance. Glycan differences between PGT151- and PGT145-purified trimer fractions were then demonstrated by mass spectrometry, providing one explanation for the differential antigenicity. These differences were interpreted in relation to a new structure at 3.4-Å resolution of the soluble CZA97.012 trimer determined by cryo-electron microscopy. The trimer adopted a closed conformation, refuting apex opening as the cause of reduced PGT145 binding to the PGT151-purified form. The evidence suggests that differences in binding and neutralization after trimer purification or pseudovirus depletion with PGT145 or PGT151 are caused by variation in glycosylation, and that some glycan variants affect antigenicity through direct effects on antibody contacts, whereas others act allosterically.
Collapse
Affiliation(s)
- Rajesh P. Ringe
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Philippe Colin
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Gemma E. Seabright
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jeong Hyun Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Kimmo Rantalainen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas Ketas
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - P. J. Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| |
Collapse
|
2
|
Neutralization of Virus Infectivity by Antibodies: Old Problems in New Perspectives. ACTA ACUST UNITED AC 2014; 2014. [PMID: 27099867 DOI: 10.1155/2014/157895] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neutralizing antibodies (NAbs) can be both sufficient and necessary for protection against viral infections, although they sometimes act in concert with cellular immunity. Successful vaccines against viruses induce NAbs but vaccine candidates against some major viral pathogens, including HIV-1, have failed to induce potent and effective such responses. Theories of how antibodies neutralize virus infectivity have been formulated and experimentally tested since the 1930s; and controversies about the mechanistic and quantitative bases for neutralization have continually arisen. Soluble versions of native oligomeric viral proteins that mimic the functional targets of neutralizing antibodies now allow the measurement of the relevant affinities of NAbs. Thereby the neutralizing occupancies on virions can be estimated and related to the potency of the NAbs. Furthermore, the kinetics and stoichiometry of NAb binding can be compared with neutralizing efficacy. Recently, the fundamental discovery that the intracellular factor TRIM21 determines the degree of neutralization of adenovirus has provided new mechanistic and quantitative insights. Since TRIM21 resides in the cytoplasm, it would not affect the neutralization of enveloped viruses, but its range of activity against naked viruses will be important to uncover. These developments bring together the old problems of virus neutralization-mechanism, stoichiometry, kinetics, and efficacy-from surprising new angles.
Collapse
|
3
|
Probing the functions of the paramyxovirus glycoproteins F and HN with a panel of synthetic antibodies. J Virol 2014; 88:11713-25. [PMID: 25122782 DOI: 10.1128/jvi.01707-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paramyxoviruses are enveloped negative-strand RNA viruses that are significant human and animal pathogens. Most paramyxoviruses infect host cells via the concerted action of a tetrameric attachment protein (variously called HN, H, or G) that binds either sialic acid or protein receptors on target cells and a trimeric fusion protein (F) that merges the viral envelope with the plasma membrane at neutral pH. F initially folds to a metastable prefusion conformation that becomes activated via a cleavage event during cellular trafficking. Upon receptor binding, the attachment protein, which consists of a globular head anchored to the membrane via a helical tetrameric stalk, triggers a major conformation change in F which results in fusion of virus and host cell membranes. We recently proposed a model for F activation in which the attachment protein head domains move following receptor binding to expose HN stalk residues critical for triggering F. To test the model in the context of wild-type viral glycoproteins, we used a restricted-diversity combinatorial Fab library and phage display to rapidly generate synthetic antibodies (sAbs) against multiple domains of the paramyxovirus parainfluenza 5 (PIV5) pre- and postfusion F and HN. As predicted by the model, sAbs that bind to the critical F-triggering region of the HN stalk do not disrupt receptor binding or neuraminidase (NA) activity but are potent inhibitors of fusion. An inhibitory prefusion F-specific sAb recognized a quaternary antigenic site and may inhibit fusion by preventing F refolding or by blocking the F-HN interaction. Importance: The paramyxovirus family of negative-strand RNA viruses cause significant disease in humans and animals. The viruses bind to cells via their receptor binding protein and then enter cells by fusion of their envelope with the host cell plasma membrane, a process mediated by a metastable viral fusion (F) protein. To understand the steps in viral membrane fusion, a library of synthetic antibodies to F protein and the receptor binding protein was generated in bacteriophage. These antibodies bound to different regions of the F protein and the receptor binding protein, and the location of antibody binding affected different processes in viral entry into cells.
Collapse
|
4
|
Alamares JG, Li J, Iorio RM. Monoclonal antibody routinely used to identify avirulent strains of Newcastle disease virus binds to an epitope at the carboxy terminus of the hemagglutinin-neuraminidase protein and recognizes individual mesogenic and velogenic strains. J Clin Microbiol 2005; 43:4229-33. [PMID: 16081986 PMCID: PMC1233966 DOI: 10.1128/jcm.43.8.4229-4233.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Newcastle disease virus (NDV) strains are classified as having high (velogenic), intermediate (mesogenic), or low (lentogenic) pathogenesis and virulence in chickens. Recent studies have established that the hemagglutinin-neuraminidase (HN) protein plays an important role in viral tropism and virulence. A monoclonal antibody (AVS-I) has previously been shown to be specific for lentogenic strains of NDV (Srinivasappa et al., Avian Dis. 30:562-567, 1986) and is routinely used to identify these strains. We have used competition antibody binding assays with a previously characterized panel of monoclonal antibodies, binding to chimeric HN proteins, and the characterization of an escape mutant to localize the binding site of AVS-I to the extreme carboxy terminus of the protein. In addition, we have shown that AVS-I does recognize at least one mesogenic strain and one velogenic strain of the virus, calling into question the potential of this antibody as a diagnostic reagent for avirulent NDV strains.
Collapse
Affiliation(s)
- Judith G. Alamares
- Department of Molecular Genetics and Microbiology, Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Jianrong Li
- Department of Molecular Genetics and Microbiology, Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Ronald M. Iorio
- Department of Molecular Genetics and Microbiology, Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
- Corresponding author. Mailing address: Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Ave. No., Worcester, MA 01655-0122. Phone: (508) 856-5257. Fax: (508) 856-5920. E-mail:
| |
Collapse
|
5
|
Thali M, Charles M, Furman C, Cavacini L, Posner M, Robinson J, Sodroski J. Resistance to neutralization by broadly reactive antibodies to the human immunodeficiency virus type 1 gp120 glycoprotein conferred by a gp41 amino acid change. J Virol 1994; 68:674-80. [PMID: 7507184 PMCID: PMC236502 DOI: 10.1128/jvi.68.2.674-680.1994] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A neutralization-resistant variant of human immunodeficiency virus type 1 (HIV-1) that emerged during in vitro propagation of the virus in the presence of neutralizing serum from an infected individual has been described. A threonine-for-alanine substitution at position 582 in the gp41 transmembrane envelope glycoprotein of the variant virus was responsible for the neutralization-resistant phenotype (M.S. Reitz, Jr., C. Wilson, C. Naugle, R. C. Gallo, and M. Robert-Guroff, Cell 54:57-63, 1988). The mutant virus also exhibited reduced sensitivity to neutralization by 30% of HIV-1-positive sera that neutralized the parental virus, suggesting that a significant fraction of the neutralizing activity within these sera can be affected by the amino acid change in gp41 (C. Wilson, M. S. Reitz, Jr., K. Aldrich, P. J. Klasse, J. Blomberg, R. C. Gallo, and M. Robert-Guroff, J. Virol. 64:3240-3248, 1990). It is shown here that the change of alanine 582 to threonine specifically confers resistance to neutralizing by antibodies directed against both groups of discontinuous, conserved epitopes related to the CD4 binding site on the gp120 exterior envelope glycoprotein. Only minor differences in binding of these antibodies to wild-type and mutant envelope glycoproteins were observed. Thus, the antigenic structure of gp120 can be subtly affected by an amino acid change in gp41, with important consequences for sensitivity to neutralization.
Collapse
Affiliation(s)
- M Thali
- Division of Human Retrovirology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The establishment of an experimental persistent infection with Junin virus, the aetiological agent of argentine hemorrhagic fever, involves the emergence of antigenic variants in brain and blood of the cricetid Calomys musculinus. We demonstrate that antigenic variants can also be isolated in vitro under the selective pressure of polyclonal antibodies and from a long-term infected C. musculinus primary embryo fibroblast culture. The participation of neutralizing antibodies and host cells in the appearance of viral variants in vivo is discussed.
Collapse
Affiliation(s)
- L E Alché
- Department of Biochemistry, School of Science, University of Buenos Aires, Argentine
| | | |
Collapse
|
7
|
Iorio RM, Glickman RL. Fusion mutants of Newcastle disease virus selected with monoclonal antibodies to the hemagglutinin-neuraminidase. J Virol 1992; 66:6626-33. [PMID: 1404607 PMCID: PMC240158 DOI: 10.1128/jvi.66.11.6626-6633.1992] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Australia-Victoria (AV) isolate of Newcastle disease virus (NDV) induces fusion from within but not fusion from without. L1, a neuraminidase (NA)-deficient virus derived from AV, has the opposite fusion phenotype from the wild-type virus. It fails to induce the former mode of fusion, but has gained a limited ability to promote the latter. Monoclonal antibodies to antigenic site 23 on the hemagglutinin-neuraminidase (HN) glycoprotein have previously been shown to select variants of the AV isolate that have altered NA activity or receptor-binding affinity. By using an antibody to this site, variants of L1 have been selected. Three of the variants have gained an increased affinity for sialic acid-containing receptors, as evidenced by the resistance of their hemagglutinating activity to the presence of reduced amounts of sialic acid on the surface of chicken erythrocytes. All four variants still have very low levels of NA activity, comparable to that of the parent virus, L1. The alteration in receptor-binding affinity results in a decreased potential for elution from cellular receptors and correlates with an increased ability to promote both modes of fusion. A single amino acid substitution in the HN protein of each variant, responsible for its escape from neutralization, has been identified. These studies identify two HN residues, 193 and 203, at which monoclonal antibody-selected substitution influences the receptor recognition properties of NDV and may influence its ability to promote syncytium formation.
Collapse
Affiliation(s)
- R M Iorio
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| | | |
Collapse
|
8
|
Sădziene A, Rosa PA, Thompson PA, Hogan DM, Barbour AG. Antibody-resistant mutants of Borrelia burgdorferi: in vitro selection and characterization. J Exp Med 1992; 176:799-809. [PMID: 1339462 PMCID: PMC2119346 DOI: 10.1084/jem.176.3.799] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We used polyclonal antisera and monoclonal antibodies (mAbs) to inhibit the growth of clonal populations of two strains of Borrelia burgdorferi, the Lyme disease agent, and thereby select for antibody-resistant mutants. mAbs were directed at the outer membrane proteins, OspA or OspB. Mutants resistant to the growth-inhibiting properties of the antibodies were present in the populations at frequencies ranging from 10(-5) to 10(-2). The several escape variants that were examined were of four classes. Class I mutants were resistant to all mAbs; they lacked OspA and OspB and the linear plasmid that encodes them. Two other proteins were expressed in larger amounts in class I mutants; mAbs to these proteins inhibited the mutant but not the wild-type cells. Class II mutants were resistant to some but not all mAbs; they had truncated OspA and/or OspB proteins. Class III mutants were resistant only to the selecting mAb; they had full-length Osp proteins that were not bound by the selecting antibody in Western blots. In two class III mutants resistant to different anti-OspA mAbs, missense mutations were demonstrated in the ospA genes. Class IV mutants were likewise resistant only to selecting antibody, but in this case the selecting antibody still bound in Western blots.
Collapse
Affiliation(s)
- A Sădziene
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284
| | | | | | | | | |
Collapse
|
9
|
Iorio RM, Syddall RJ, Sheehan JP, Bratt MA, Glickman RL, Riel AM. Neutralization map of the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus: domains recognized by monoclonal antibodies that prevent receptor recognition. J Virol 1991; 65:4999-5006. [PMID: 1651419 PMCID: PMC248963 DOI: 10.1128/jvi.65.9.4999-5006.1991] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Monoclonal antibodies (MAbs) to the hemagglutinin-neuraminidase (HN) glycoprotein of Newcastle disease virus delineate seven overlapping antigenic sites which form a continuum on the surface of the molecule. Antibodies to five of these sites neutralize viral infectivity principally by preventing attachment of the virion to cellular receptors. Through the identification of single amino acid substitutions in variants which escape neutralization by MAbs to these five antigenic sites, a neutralization map of HN was constructed, identifying several residues that contribute to the epitopes recognized by MAbs which block the attachment function of the molecule. These epitopes are defined, at least in part, by three domains on HN: residues 193 to 201; 345 to 353 (which include the only linear epitope we have identified in HN); and a C-terminal domain composed of residues 494, 513 to 521, and 569. To identify HN residues directly involved in receptor recognition, each of the variants was tested for its ability to agglutinate periodate-modified chicken erythrocytes. One variant with a single amino acid substitution at residue 193 was 2.5- to 3-fold more resistant to periodate treatment of erythrocytes than the wild-type virus, suggesting that this residue influences the binding of virus to a sialic acid-containing receptor(s) on the cell surface.
Collapse
Affiliation(s)
- R M Iorio
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Prehaud C, Coulon P, LaFay F, Thiers C, Flamand A. Antigenic site II of the rabies virus glycoprotein: structure and role in viral virulence. J Virol 1988; 62:1-7. [PMID: 2446011 PMCID: PMC250493 DOI: 10.1128/jvi.62.1.1-7.1988] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Twelve monoclonal antibodies neutralizing the CVS strain of rabies virus were used to characterize antigenic site II of the viral glycoprotein. Nineteen antigenic mutants resistant to neutralization by some of these antibodies were selected; some continued to normally or partially bind the antibody, whereas others did not. Mutations conferring resistance to neutralization by site II-specific monoclonal antibodies were localized into two clusters, the first between amino acids 34 and 42 (seven groups of mutants) and the second at amino acids 198 and 200 (three groups of mutants). Two intermediate mutations were identified at positions 147 and 184. Four mutations resulted in reduced pathogenicity after intramuscular inoculation of the virus in adult mice. One of the mutants, M23, was 300 times and the others were 10 to 30 times less pathogenic than CVS. In three cases the attenuated phenotype was related to an important modification of antigenic site II, whereas the other known antigenic sites were unchanged.
Collapse
Affiliation(s)
- C Prehaud
- Laboratoire de Génétique des Virus, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
12
|
Tiffin AI. Monoclonal antibodies and their use in microbiology. SOCIETY FOR APPLIED BACTERIOLOGY SYMPOSIUM SERIES 1987; 16:127S-139S. [PMID: 3127888 DOI: 10.1111/j.1365-2672.1987.tb03618.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- A I Tiffin
- Department of Microbiology, Reading University, UK
| |
Collapse
|