1
|
Gao F, Ye F, Buck M, Zhang X. Subunit specialization in AAA+ proteins and substrate unfolding during transcription complex remodeling. Proc Natl Acad Sci U S A 2025; 122:e2425868122. [PMID: 40273105 PMCID: PMC12054792 DOI: 10.1073/pnas.2425868122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/12/2025] [Indexed: 04/26/2025] Open
Abstract
Bacterial RNA polymerase (RNAP) is a multisubunit enzyme that copies DNA into RNA in a process known as transcription. Bacteria use σ factors to recruit RNAP to promoter regions of genes that need to be transcribed, with 60% bacteria containing at least one specialized σ factor, σ54. σ54 recruits RNAP to promoters of genes associated with stress responses and forms a stable closed complex that does not spontaneously isomerize to the open state where promoter DNA is melted out and competent for transcription. The σ54-mediated open complex formation requires specific AAA+ proteins (ATPases Associated with diverse cellular Activities) known as bacterial enhancer-binding proteins (bEBPs). We have now obtained structures of new intermediate states of bEBP-bound complexes during transcription initiation, which elucidate the mechanism of DNA melting driven by ATPase activity of bEBPs and suggest a mechanistic model that couples the Adenosine triphosphate (ATP) hydrolysis cycle within the bEBP hexamer with σ54 unfolding. Our data reveal that bEBP forms a nonplanar hexamer with the hydrolysis-ready subunit located at the furthest/highest point of the spiral hexamer relative to the RNAP. ATP hydrolysis induces conformational changes in bEBP that drives a vectoral transiting of the regulatory N terminus of σ54 into the bEBP hexamer central pore causing the partial unfolding of σ54, while forming specific bEBP contacts with promoter DNA. Furthermore, our data suggest a mechanism of the bEBP AAA+ protein that is distinct from the hand-over-hand mechanism proposed for many other AAA+ proteins, highlighting the versatile mechanisms utilized by the large protein family.
Collapse
Affiliation(s)
- Forson Gao
- Section of structural and synthetic biology, Department of Infectious Disease, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Fuzhou Ye
- Section of structural and synthetic biology, Department of Infectious Disease, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Martin Buck
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Xiaodong Zhang
- Section of structural and synthetic biology, Department of Infectious Disease, Imperial College London, LondonSW7 2AZ, United Kingdom
- Deoxyribonucleic Acid Processing Machines Laboratory, The Francis Crick Institute, LondonNW1 1AT, United Kingdom
| |
Collapse
|
2
|
Carter MS, Tuttle MJ, Mancini JA, Martineau R, Hung CS, Gupta MK. Microbially Induced Calcium Carbonate Precipitation by Sporosarcina pasteurii: a Case Study in Optimizing Biological CaCO 3 Precipitation. Appl Environ Microbiol 2023; 89:e0179422. [PMID: 37439668 PMCID: PMC10467343 DOI: 10.1128/aem.01794-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Abstract
Current production of traditional concrete requires enormous energy investment that accounts for approximately 5 to 8% of the world's annual CO2 production. Biocement is a building material that is already in industrial use and has the potential to rival traditional concrete as a more convenient and more environmentally friendly alternative. Biocement relies on biological structures (enzymes, cells, and/or cellular superstructures) to mineralize and bind particles in aggregate materials (e.g., sand and soil particles). Sporosarcina pasteurii is a workhorse organism for biocementation, but most research to date has focused on S. pasteurii as a building material rather than a biological system. In this review, we synthesize available materials science, microbiology, biochemistry, and cell biology evidence regarding biological CaCO3 precipitation and the role of microbes in microbially induced calcium carbonate precipitation (MICP) with a focus on S. pasteurii. Based on the available information, we provide a model that describes the molecular and cellular processes involved in converting feedstock material (urea and Ca2+) into cement. The model provides a foundational framework that we use to highlight particular targets for researchers as they proceed into optimizing the biology of MICP for biocement production.
Collapse
Affiliation(s)
- Michael S. Carter
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Matthew J. Tuttle
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Joshua A. Mancini
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Rhett Martineau
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Chia-Suei Hung
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Maneesh K. Gupta
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| |
Collapse
|
3
|
A Role for the RNA Polymerase Gene Specificity Factor σ 54 in the Uniform Colony Growth of Uropathogenic Escherichia coli. J Bacteriol 2022; 204:e0003122. [PMID: 35357162 PMCID: PMC9017345 DOI: 10.1128/jb.00031-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The canonical function of a bacterial sigma (σ) factor is to determine the gene specificity of the RNA polymerase (RNAP). In several diverse bacterial species, the σ54 factor uniquely confers distinct functional and regulatory properties on the RNAP. A hallmark feature of the σ54-RNAP is the obligatory requirement for an activator ATPase to allow transcription initiation. Different activator ATPases couple diverse environmental cues to the σ54-RNAP to mediate adaptive changes in gene expression. Hence, the genes that rely upon σ54 for their transcription have a wide range of different functions suggesting that the repertoire of functions performed by genes, directly or indirectly affected by σ54, is not yet exhaustive. By comparing the growth patterns of prototypical enteropathogenic, uropathogenic, and nonpathogenic Escherichia coli strains devoid of σ54, we uncovered that the absence of σ54 results in two differently sized colonies that appear at different times specifically in the uropathogenic E. coli (UPEC) strain. Notably, UPEC bacteria devoid of individual activator ATPases of the σ54-RNAP do not phenocopy the σ54 mutant strain. Thus, it seems that σ54’s role as a determinant of uniform colony appearance in UPEC bacteria represents a putative non-canonical function of σ54 in regulating genetic information flow. IMPORTANCE RNA synthesis is the first step of gene expression. The multisubunit RNA polymerase (RNAP) is the central enzyme responsible for RNA synthesis in bacteria. The dissociable sigma (σ) factor subunit directs the RNAP to different sets of genes to allow their expression in response to various cellular needs. Of the seven σ factors in Escherichia coli and related bacteria, σ54 exists in a class of its own. This study has uncovered that σ54 is a determinant of the uniform growth of uropathogenic E. coli on solid media. This finding suggests a role for this σ54 in gene regulation that extends beyond its known function as an RNAP gene specificity factor.
Collapse
|
4
|
Shimada T, Furuhata S, Ishihama A. Whole set of constitutive promoters for RpoN sigma factor and the regulatory role of its enhancer protein NtrC in Escherichia coli K-12. Microb Genom 2021; 7. [PMID: 34787538 PMCID: PMC8743547 DOI: 10.1099/mgen.0.000653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The promoter selectivity of Escherichia coli RNA polymerase (RNAP) is determined by its promoter-recognition sigma subunit. The model prokaryote E. coli K-12 contains seven species of the sigma subunit, each recognizing a specific set of promoters. Using genomic SELEX (gSELEX) screening in vitro, we identified the whole set of ‘constitutive’ promoters recognized by the reconstituted RNAP holoenzyme alone, containing RpoD (σ70), RpoS (σ38), RpoH (σ32), RpoF (σ28) or RpoE (σ24), in the absence of other supporting regulatory factors. In contrast, RpoN sigma (σ54), involved in expression of nitrogen-related genes and also other cellular functions, requires an enhancer (or activator) protein, such as NtrC, for transcription initiation. In this study, a series of gSELEX screenings were performed to search for promoters recognized by the RpoN RNAP holoenzyme in the presence and absence of the major nitrogen response enhancer NtrC, the best-characterized enhancer. Based on the RpoN holoenzyme-binding sites, a total of 44 to 61 putative promoters were identified, which were recognized by the RpoN holoenzyme alone. In the presence of the enhancer NtrC, the recognition target increased to 61–81 promoters. Consensus sequences of promoters recognized by RpoN holoenzyme in the absence and presence of NtrC were determined. The promoter activity of a set of NtrC-dependent and -independent RpoN promoters was verified in vivo under nitrogen starvation, in the presence and absence of RpoN and/or NtrC. The promoter activity of some RpoN-recognized promoters increased in the absence of RpoN or NtrC, supporting the concept that the promoter-bound NtrC-enhanced RpoN holoenzyme functions as a repressor against RpoD holoenzyme. Based on our findings, we propose a model in which the RpoN holoenzyme fulfils the dual role of repressor and transcriptase for the same set of genes. We also propose that the promoter recognized by RpoN holoenzyme in the absence of enhancers is the ‘repressive’ promoter. The presence of high-level RpoN sigma in growing E. coli K-12 in rich medium may be related to the repression role of a set of genes needed for the utilization of ammonia as a nitrogen source in poor media. The list of newly identified regulatory targets of RpoN provides insight into E. coli survival under nitrogen-depleted conditions in nature.
Collapse
Affiliation(s)
- Tomohiro Shimada
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Shun Furuhata
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Akira Ishihama
- Micro-Nanotechnology Research Center, Hosei University, Koganei, Tokyo, Japan
| |
Collapse
|
5
|
Brauer M, Lassek C, Hinze C, Hoyer J, Becher D, Jahn D, Sievers S, Riedel K. What's a Biofilm?-How the Choice of the Biofilm Model Impacts the Protein Inventory of Clostridioides difficile. Front Microbiol 2021; 12:682111. [PMID: 34177868 PMCID: PMC8225356 DOI: 10.3389/fmicb.2021.682111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
The anaerobic pathogen Clostridioides difficile is perfectly equipped to survive and persist inside the mammalian intestine. When facing unfavorable conditions C. difficile is able to form highly resistant endospores. Likewise, biofilms are currently discussed as form of persistence. Here a comprehensive proteomics approach was applied to investigate the molecular processes of C. difficile strain 630Δerm underlying biofilm formation. The comparison of the proteome from two different forms of biofilm-like growth, namely aggregate biofilms and colonies on agar plates, revealed major differences in the formation of cell surface proteins, as well as enzymes of its energy and stress metabolism. For instance, while the obtained data suggest that aggregate biofilm cells express both flagella, type IV pili and enzymes required for biosynthesis of cell-surface polysaccharides, the S-layer protein SlpA and most cell wall proteins (CWPs) encoded adjacent to SlpA were detected in significantly lower amounts in aggregate biofilm cells than in colony biofilms. Moreover, the obtained data suggested that aggregate biofilm cells are rather actively growing cells while colony biofilm cells most likely severely suffer from a lack of reductive equivalents what requires induction of the Wood-Ljungdahl pathway and C. difficile’s V-type ATPase to maintain cell homeostasis. In agreement with this, aggregate biofilm cells, in contrast to colony biofilm cells, neither induced toxin nor spore production. Finally, the data revealed that the sigma factor SigL/RpoN and its dependent regulators are noticeably induced in aggregate biofilms suggesting an important role of SigL/RpoN in aggregate biofilm formation.
Collapse
Affiliation(s)
- Madita Brauer
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christian Lassek
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christian Hinze
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Juliane Hoyer
- Department for Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department for Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Susanne Sievers
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Influence of the Alternative Sigma Factor RpoN on Global Gene Expression and Carbon Catabolism in Enterococcus faecalis V583. mBio 2021; 12:mBio.00380-21. [PMID: 34006651 PMCID: PMC8262876 DOI: 10.1128/mbio.00380-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The alternative sigma factor σ54 has been shown to regulate the expression of a wide array of virulence-associated genes, as well as central metabolism, in bacterial pathogens. In Gram-positive organisms, the σ54 is commonly associated with carbon metabolism. In this study, we show that the Enterococcus faecalis alternative sigma factor σ54 (RpoN) and its cognate enhancer binding protein MptR are essential for mannose utilization and are primary contributors to glucose uptake through the Mpt phosphotransferase system. To gain further insight into how RpoN contributes to global transcriptional changes, we performed microarray transcriptional analysis of strain V583 and an isogenic rpoN mutant grown in a chemically defined medium with glucose as the sole carbon source. Transcripts of 340 genes were differentially affected in the rpoN mutant; the predicted functions of these genes mainly related to nutrient acquisition. These differentially expressed genes included those with predicted catabolite-responsive element (cre) sites, consistent with loss of repression by the major carbon catabolite repressor CcpA. To determine if the inability to efficiently metabolize glucose/mannose affected infection outcome, we utilized two distinct infection models. We found that the rpoN mutant is significantly attenuated in both rabbit endocarditis and murine catheter-associated urinary tract infection (CAUTI). Here, we examined a ccpA mutant in the CAUTI model and showed that the absence of carbon catabolite control also significantly attenuates bacterial tissue burden in this model. Our data highlight the contribution of central carbon metabolism to growth of E. faecalis at various sites of infection.
Collapse
|
7
|
Li H, Barber M, Lu J, Goel R. Microbial community successions and their dynamic functions during harmful cyanobacterial blooms in a freshwater lake. WATER RESEARCH 2020; 185:116292. [PMID: 33086464 PMCID: PMC7737503 DOI: 10.1016/j.watres.2020.116292] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 05/06/2023]
Abstract
The current study reports the community succession of different toxin and non-toxin producing cyanobacteria at different stages of cyanobacterial harmful algal blooms (CyanoHABs) and their connectivity with nitrogen and phosphorus cycles in a freshwater lake using an ecogenomics framework. Comprehensive high throughput DNA sequencing, water quality parameter measurements, and functional gene expressions over temporal and spatial scales were employed. Among the cyanobacterial community, the lake was initially dominated by Cyanobium during the months of May, June, and early July, and later primarily by Aphanizomenon and Dolichospermum depicting functional redundancy. Finally, Planktothrix appeared in late August and then the dominance switched to Planktothrix in September. Microcystis aeruginosa and Microcystis panniformis; two species responsible for cyanotoxin production, were also present in August and September, but in significantly smaller relative abundance. MC-LR (0.06-1.32 µg/L) and MC-RR (0.01-0.26 µg/L) were two major types of cyanotoxins detected. The presence of MC-LR and MC-RR were significantly correlated with the Microcystis-related genes (16SMic/mcyA/mcyG) and their expressions (r = 0.33 to 0.8, p < 0.05). The metabolic analyses further linked the presence of different cyanobacterial groups with distinct functions. The nitrogen metabolisms detected a relatively higher abundance of nitrite/nitrate reductase in early summer, indicating significant denitrification activity and the activation of N-fixation in the blooms dominated by Aphanizomenon/Dolichospermum (community richness) during nutrient-limited conditions. The phosphorus and carbohydrate metabolisms detected a trend to initiate a nutrient starvation alert and store nutrients from early summer, while utilizing the stored polyphosphate and carbohydrate (PPX and F6PPK) during the extreme ortho-P scarcity period, mostly in August or September. Specifically, the abundance of Aphanizomenon and Dolichospermum was positively correlated with the nitrogen-fixing nif gene and (p < 0.001) and the PPX enzyme for the stored polyphosphate utilization (r = 0.77, p < 0.001). Interestingly, the lake experienced a longer N-fixing period (2-3 months) before non-fixing cyanobacteria (Planktothrix) dominated the entire lake in late summer. The Provo Bay site, which is known to be nutrient-rich historically, had early episodes of filamentous cyanobacteria blooms compared to the rest of the lake.
Collapse
Affiliation(s)
- Hanyan Li
- Civil & Environmental Engineering, University of Utah, 110 S. Central Campus Drive, 2000 MCE, Salt Lake City, UT 84121, USA
| | - Mike Barber
- Civil & Environmental Engineering, University of Utah, 110 S. Central Campus Drive, 2000 MCE, Salt Lake City, UT 84121, USA
| | - Jingrang Lu
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Ramesh Goel
- Civil & Environmental Engineering, University of Utah, 110 S. Central Campus Drive, 2000 MCE, Salt Lake City, UT 84121, USA.
| |
Collapse
|
8
|
Li K, Wu G, Liao Y, Zeng Q, Wang H, Liu F. RpoN1 and RpoN2 play different regulatory roles in virulence traits, flagellar biosynthesis, and basal metabolism in Xanthomonas campestris. MOLECULAR PLANT PATHOLOGY 2020; 21:907-922. [PMID: 32281725 PMCID: PMC7280030 DOI: 10.1111/mpp.12938] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 05/08/2023]
Abstract
Homologous regulatory factors are widely present in bacteria, but whether homologous regulators synergistically or differentially regulate different biological functions remains mostly unknown. Here, we report that the homologous regulators RpoN1 and RpoN2 of the plant pathogen Xanthomonas campestris pv. campestris (Xcc) play different regulatory roles with respect to virulence traits, flagellar biosynthesis, and basal metabolism. RpoN2 directly regulated Xcc fliC and fliQ to modulate flagellar synthesis in X. campestris, thus affecting the swimming motility of X. campestris. Mutation of rpoN2 resulted in reduced production of biofilms and extracellular polysaccharides in Xcc. These defects may together cause reduced virulence of the rpoN2 mutant against the host plant. Moreover, we demonstrated that RpoN1 could regulate branched-chain fatty acid production and modulate the synthesis of diffusible signal factor family quorum sensing signals. Although RpoN1 and RpoN2 are homologues, the regulatory roles and biological functions of these proteins were not interchangeable. Overall, our report provides new insights into the two different molecular roles that form the basis for the transcriptional specialization of RpoN homologues.
Collapse
Affiliation(s)
- Kaihuai Li
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Guichun Wu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yuling Liao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural OrganismsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Quan Zeng
- Department of Plant Pathology and EcologyThe Connecticut Agricultural Experiment StationNew HavenCTUSA
| | - Haihong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural OrganismsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Fengquan Liu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| |
Collapse
|
9
|
Abstract
The Gram-negative envelope is a complex structure that consists of the inner membrane, the periplasm, peptidoglycan and the outer membrane, and protects the bacterial cell from the environment. Changing environmental conditions can cause damage, which triggers the envelope stress responses to maintain cellular homeostasis. In this Review, we explore the causes, both environmental and intrinsic, of envelope stress, as well as the cellular stress response pathways that counter these stresses. Furthermore, we discuss the damage to the cell that occurs when these pathways are aberrantly activated either in the absence of stress or to an excessive degree. Finally, we review the mechanisms whereby the σE response constantly acts to prevent cell death caused by highly toxic unfolded outer membrane proteins. Together, the recent work that we discuss has provided insights that emphasize the necessity for proper levels of stress response activation and the detrimental consequences that can occur in the absence of proper regulation.
Collapse
|
10
|
Abstract
Azotobacters have been used as biofertilizer since more than a century. Azotobacters fix nitrogen aerobically, elaborate plant hormones, solubilize phosphates and also suppress phytopathogens or reduce their deleterious effect. Application of wild type Azotobacters results in better yield of cereals like corn, wheat, oat, barley, rice, pearl millet and sorghum, of oil seeds like mustard and sunflower, of vegetable crops like tomato, eggplant, carrot, chillies, onion, potato, beans and sugar beet, of fruits like mango and sugar cane, of fiber crops like jute and cotton and of tree like oak. In addition to the structural genes of the enzyme nitrogenase and of other accessory proteins, A. vinelandii chromosomes contain the regulatory genes nifL and nifA. NifA must bind upstream of the promoters of all nif operons for enabling their expression. NifL on activation by oxygen or ammonium, interacts with NifA and neutralizes it. Nitrogen fixation has been enhanced by deletion of nifL and by bringing nifA under the control of a constitutive promoter, resulting in a strain that continues to fix nitrogen in presence of urea fertilizer. Additional copies of nifH (the gene for the Fe-protein of nitrogenase) have been introduced into A. vinelandii, thereby augmenting nitrogen fixation. The urease gene complex ureABC has been deleted, the ammonia transport gene amtB has been disrupted and the expression of the glutamine synthase gene has been regulated to enhance urea and ammonia excretion. Gluconic acid has been produced by introducing the glucose dehydrogenase gene, resulting in enhanced solubilization of phosphate.
Collapse
|
11
|
Pazos-Rojas LA, Muñoz-Arenas LC, Rodríguez-Andrade O, López-Cruz LE, López-Ortega O, Lopes-Olivares F, Luna-Suarez S, Baez A, Morales-García YE, Quintero-Hernández V, Villalobos-López MA, De la Torre J, Muñoz-Rojas J. Desiccation-induced viable but nonculturable state in Pseudomonas putida KT2440, a survival strategy. PLoS One 2019; 14:e0219554. [PMID: 31323038 PMCID: PMC6641147 DOI: 10.1371/journal.pone.0219554] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/26/2019] [Indexed: 01/21/2023] Open
Abstract
The potential of Pseudomonas putida KT2440 to act as a plant-growth promoter or as a bioremediator of toxic compounds can be affected by desiccation. In the present work, the bacterial survival ratio (BSR) in response to air desiccation was evaluated for P. putida KT2440 in the presence of different protectors. The BSR in the presence of nonreducing disaccharides, such as trehalose, was high after 15 days of desiccation stress (occurring at 30°C and 50% relative humidity), whereas in the absence of a protector the bacterial counts diminished to nondetectable numbers (ca 2.8 log CFU/mL). The LIVE/DEAD staining method showed that bacteria protected with trehalose maintained increased numbers of green cells after desiccation while cells without protection were all observed to be red. This indicated that nonprotected bacteria had compromised membrane integrity. However, when nonprotected bacteria subjected to 18 days of desiccation stress were rehydrated for a short time with maize root exudates or for 48 h with water (prolonged rehydration), the bacterial counts were as high as that observed for those not subjected to desiccation stress, suggesting that the cells entered the viable but nonculturable (VBNC) state under desiccation and that they returned to a culturable state after those means of rehydration. Interestingly an increase in the green color intensity of cells that returned to a culturable state was observed using LIVE/DEAD staining method, indicating an improvement in their membrane integrity. Cellular activity in the VBNC state was determined. A GFP-tagged P. putida strain expressing GFP constitutively was subjected to desiccation. After 12 days of desiccation, the GFP-tagged strain lost culturability, but it exhibited active GFP expression, which in turn made the cells green. Furthermore, the expression of 16S rRNA, rpoN (housekeeping), mutL, mutS (encoding proteins from the mismatch repair complex), and oprH (encoding an outer membrane protein) were examined by RT-PCR. All evaluated genes were expressed by both types of cells, culturable and nonculturable, indicating active molecular processes during the VBNC state.
Collapse
Affiliation(s)
- Laura Abisaí Pazos-Rojas
- Ecology and Survival of Microorganisms Research Group (ESMRG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla, Tlaxcala, Mexico
- Licenciatura en Biotecnología, Facultad de Ciencias Biológicas, BUAP, Puebla, Mexico
| | | | - Osvaldo Rodríguez-Andrade
- Ecology and Survival of Microorganisms Research Group (ESMRG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Lesther Emanuel López-Cruz
- Ecology and Survival of Microorganisms Research Group (ESMRG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | | | - Fábio Lopes-Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Silvia Luna-Suarez
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla, Tlaxcala, Mexico
| | - Antonino Baez
- Ecology and Survival of Microorganisms Research Group (ESMRG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Yolanda Elizabeth Morales-García
- Ecology and Survival of Microorganisms Research Group (ESMRG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
- Licenciatura en Biotecnología, Facultad de Ciencias Biológicas, BUAP, Puebla, Mexico
| | - Verónica Quintero-Hernández
- Ecology and Survival of Microorganisms Research Group (ESMRG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
- CONACYT, ESMRG, LEMM, CICM, IC, BUAP, Puebla, México
| | | | - Jesús De la Torre
- Department of Environmental Protection, CSIC-Estación Experimental del Zaidín, Granada, Spain
| | - Jesús Muñoz-Rojas
- Ecology and Survival of Microorganisms Research Group (ESMRG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
- * E-mail:
| |
Collapse
|
12
|
Helmann JD. Where to begin? Sigma factors and the selectivity of transcription initiation in bacteria. Mol Microbiol 2019; 112:335-347. [PMID: 31119812 DOI: 10.1111/mmi.14309] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcription is the fundamental process that enables the expression of genetic information. DNA-directed RNA polymerase (RNAP) uses one strand of the DNA duplex as template to produce complementary RNA molecules that serve in translation (rRNA, tRNA), protein synthesis (mRNA) and regulation (sRNA). Although the RNAP core is catalytically competent for RNA synthesis, the selectivity of transcription initiation requires a sigma (σ) factor for promoter recognition and opening. Expression of alternative σ factors provides a powerful mechanism to control the expression of discrete sets of genes (a σ regulon) in response to specific nutritional, developmental or stress-related signals. Here, I review the key insights that led to the original discovery of σ factor 50 years ago and the subsequent discovery of alternative σ factors as a ubiquitous mechanism of bacterial gene regulation. These studies form a prelude to the more recent, genomics-enabled insights into the vast diversity of σ factors in bacteria.
Collapse
Affiliation(s)
- John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
13
|
NtrC Adds a New Node to the Complex Regulatory Network of Biofilm Formation and vps Expression in Vibrio cholerae. J Bacteriol 2018; 200:JB.00025-18. [PMID: 29735756 DOI: 10.1128/jb.00025-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/30/2018] [Indexed: 01/27/2023] Open
Abstract
The biofilm growth mode is important in both the intestinal and environmental phases of the Vibrio cholerae life cycle. Regulation of biofilm formation involves several transcriptional regulators and alternative sigma factors. One such factor is the alternative sigma factor RpoN, which positively regulates biofilm formation. RpoN requires bacterial enhancer-binding proteins (bEBPs) to initiate transcription. The V. cholerae genome encodes seven bEBPs (LuxO, VC1522, VC1926 [DctD-1], FlrC, NtrC, VCA0142 [DctD-2], and PgtA) that belong to the NtrC family of response regulators (RRs) of two-component regulatory systems. The contribution of these regulators to biofilm formation is not well understood. In this study, we analyzed biofilm formation and the regulation of vpsL expression by RpoN activators. Mutants lacking NtrC had increased biofilm formation and vpsL expression. NtrC negatively regulates the expression of core regulators of biofilm formation (vpsR, vpsT, and hapR). NtrC from V. cholerae supported growth and activated glnA expression when nitrogen availability was limited. However, the repressive activity of NtrC toward vpsL expression was not affected by the nitrogen sources present. This study unveils the role of NtrC as a regulator of vps expression and biofilm formation in V. choleraeIMPORTANCE Biofilms play an important role in the Vibrio cholerae life cycle, contributing to both environmental survival and transmission to a human host. Identifying key regulators of V. cholerae biofilm formation is necessary to fully understand how this important growth mode is modulated in response to various signals encountered in the environment and the host. In this study, we characterized the role of RRs that function as coactivators of RpoN in regulating biofilm formation and identified new components in the V. cholerae biofilm regulatory circuitry.
Collapse
|
14
|
Castro NSS, Laia CAT, Maiti BK, Cerqueira NMFSA, Moura I, Carepo MSP. Small phospho-donors phosphorylate MorR without inducing protein conformational changes. Biophys Chem 2018; 240:25-33. [PMID: 29883882 DOI: 10.1016/j.bpc.2018.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/10/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
Abstract
Phosphorylation is an essential mechanism of protein control and plays an important role in biology. The two-component system (TCS) is a bacterial regulation mechanism mediated by a response regulator (RR) protein and a kinase protein, which synchronize the regulatory circuit according to the environment. Phosphorylation is a key element in TCS function as it controls RR activity. In the present study, we characterize the behavior of MorR, an RR associated with Mo homeostasis, upon acetylphosphate and phosphoramidate treatment in vitro. Our results show that MorR was phosphorylated by both phospho-donors. Fluorescence experiments showed that MorR tryptophan emission is quenched by phosphoramidate. Furthermore, theoretical and computational results demonstrate that phosphorylation by phosphoramidate is more favorable than that by acetylphosphate. In conclusion, phosphorylated MorR is a monomeric protein and phosphorylation does not appear to induce observable conformational changes in the protein structure.
Collapse
Affiliation(s)
- Nathália S S Castro
- LAQV-REQUIMTE, Departamento de Química, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - César A T Laia
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Biplab K Maiti
- LAQV-REQUIMTE, Departamento de Química, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Nuno M F S A Cerqueira
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Isabel Moura
- LAQV-REQUIMTE, Departamento de Química, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Marta S P Carepo
- LAQV-REQUIMTE, Departamento de Química, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
15
|
Cheng F, Tang XL, Kardashliev T. Transcription Factor-Based Biosensors in High-Throughput Screening: Advances and Applications. Biotechnol J 2018; 13:e1700648. [DOI: 10.1002/biot.201700648] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/17/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Tsvetan Kardashliev
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zürich; Mattenstrasse 26 4058 Basel Switzerland
| |
Collapse
|
16
|
McNerney MP, Styczynski MP. Small molecule signaling, regulation, and potential applications in cellular therapeutics. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 10. [PMID: 28960879 DOI: 10.1002/wsbm.1405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
Small molecules have many important roles across the tree of life: they regulate processes from metabolism to transcription, they enable signaling within and between species, and they serve as the biochemical building blocks for cells. They also represent valuable phenotypic endpoints that are promising for use as biomarkers of disease states. In the context of engineering cell-based therapeutics, they hold particularly great promise for enabling finer control over the therapeutic cells and allowing them to be responsive to extracellular cues. The natural signaling and regulatory functions of small molecules can be harnessed and rewired to control cell activity and delivery of therapeutic payloads, potentially increasing efficacy while decreasing toxicity. To that end, this review considers small molecule-mediated regulation and signaling in bacteria. We first discuss some of the most prominent applications and aspirations for responsive cell-based therapeutics. We then describe the transport, signaling, and regulation associated with three classes of molecules that may be exploited in the engineering of therapeutic bacteria: amino acids, fatty acids, and quorum-sensing signaling molecules. We also present examples of existing engineering efforts to generate cells that sense and respond to levels of different small molecules. Finally, we discuss future directions for how small molecule-mediated regulation could be harnessed for therapeutic applications, as well as some critical considerations for the ultimate success of such endeavors. WIREs Syst Biol Med 2018, 10:e1405. doi: 10.1002/wsbm.1405 This article is categorized under: Biological Mechanisms > Cell Signaling Biological Mechanisms > Metabolism Translational, Genomic, and Systems Medicine > Therapeutic Methods.
Collapse
Affiliation(s)
- Monica P McNerney
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mark P Styczynski
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
17
|
Liu Y, Lardi M, Pedrioli A, Eberl L, Pessi G. NtrC-dependent control of exopolysaccharide synthesis and motility in Burkholderia cenocepacia H111. PLoS One 2017; 12:e0180362. [PMID: 28662146 PMCID: PMC5491218 DOI: 10.1371/journal.pone.0180362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/14/2017] [Indexed: 11/18/2022] Open
Abstract
Burkholderia cenocepacia is a versatile opportunistic pathogen that survives in a wide variety of environments, which can be limited in nutrients such as nitrogen. We have previously shown that the sigma factor σ54 is involved in the control of nitrogen assimilation and virulence in B. cenocepacia H111. In this work, we investigated the role of the σ54 enhancer binding protein NtrC in response to nitrogen limitation and in the pathogenicity of H111. Of 95 alternative nitrogen sources tested the ntrC showed defects in the utilisation of nitrate, urea, L-citrulline, acetamide, DL-lactamide, allantoin and parabanic acid. RNA-Seq and phenotypic analyses of an ntrC mutant strain showed that NtrC positively regulates two important phenotypic traits: exopolysaccharide (EPS) production and motility. However, the ntrC mutant was not attenuated in C. elegans virulence.
Collapse
Affiliation(s)
- Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Martina Lardi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Alessandro Pedrioli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- * E-mail: (LE); (GP)
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- * E-mail: (LE); (GP)
| |
Collapse
|
18
|
Riordan JT, Mitra A. Regulation of Escherichia coli Pathogenesis by Alternative Sigma Factor N. EcoSal Plus 2017; 7. [PMID: 28635589 PMCID: PMC11575691 DOI: 10.1128/ecosalplus.esp-0016-2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Indexed: 01/09/2023]
Abstract
σN (also σ54) is an alternative sigma factor subunit of the RNA polymerase complex that regulates the expression of genes from many different ontological groups. It is broadly conserved in the Eubacteria with major roles in nitrogen metabolism, membrane biogenesis, and motility. σN is encoded as the first gene of a five-gene operon including rpoN (σN), ptsN, hpf, rapZ, and npr that has been genetically retained among species of Escherichia, Shigella, and Salmonella. In an increasing number of bacteria, σN has been implicated in the control of genes essential to pathogenic behavior, including those involved in adherence, secretion, immune subversion, biofilm formation, toxin production, and resistance to both antimicrobials and biological stressors. For most pathogens how this is achieved is unknown. In enterohemorrhagic Escherichia coli (EHEC) O157, Salmonella enterica, and Borrelia burgdorferi, regulation of virulence by σN requires another alternative sigma factor, σS, yet the model by which σN-σS virulence regulation is predicted to occur is varied in each of these pathogens. In this review, the importance of σN to bacterial pathogenesis is introduced, and common features of σN-dependent virulence regulation discussed. Emphasis is placed on the molecular mechanisms underlying σN virulence regulation in E. coli O157. This includes a review of the structure and function of regulatory pathways connecting σN to virulence expression, predicted input signals for pathway stimulation, and the role for cognate σN activators in initiation of gene systems determining pathogenic behavior.
Collapse
Affiliation(s)
- James T Riordan
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620
| | - Avishek Mitra
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
19
|
Fazli M, Rybtke M, Steiner E, Weidel E, Berthelsen J, Groizeleau J, Bin W, Zhi BZ, Yaming Z, Kaever V, Givskov M, Hartmann RW, Eberl L, Tolker-Nielsen T. Regulation of Burkholderia cenocepacia biofilm formation by RpoN and the c-di-GMP effector BerB. Microbiologyopen 2017; 6. [PMID: 28419759 PMCID: PMC5552954 DOI: 10.1002/mbo3.480] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/01/2017] [Accepted: 03/07/2017] [Indexed: 11/25/2022] Open
Abstract
Knowledge about the molecular mechanisms that are involved in the regulation of biofilm formation is essential for the development of biofilm‐control measures. It is well established that the nucleotide second messenger cyclic diguanosine monophosphate (c‐di‐GMP) is a positive regulator of biofilm formation in many bacteria, but more knowledge about c‐di‐GMP effectors is needed. We provide evidence that c‐di‐GMP, the alternative sigma factor RpoN (σ54), and the enhancer‐binding protein BerB play a role in biofilm formation of Burkholderia cenocepacia by regulating the production of a biofilm‐stabilizing exopolysaccharide. Our findings suggest that BerB binds c‐di‐GMP, and activates RpoN‐dependent transcription of the berA gene coding for a c‐di‐GMP‐responsive transcriptional regulator. An increased level of the BerA protein in turn induces the production of biofilm‐stabilizing exopolysaccharide in response to high c‐di‐GMP levels. Our findings imply that the production of biofilm exopolysaccharide in B. cenocepacia is regulated through a cascade involving two consecutive transcription events that are both activated by c‐di‐GMP. This type of regulation may allow tight control of the expenditure of cellular resources.
Collapse
Affiliation(s)
- Mustafa Fazli
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Rybtke
- Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth Steiner
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Elisabeth Weidel
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Jens Berthelsen
- Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julie Groizeleau
- Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wu Bin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Boo Zhao Zhi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zhang Yaming
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Michael Givskov
- Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Rolf W Hartmann
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Casella LG, Weiss A, Pérez-Rueda E, Antonio Ibarra J, Shaw LN. Towards the complete proteinaceous regulome of Acinetobacter baumannii. Microb Genom 2017; 3:mgen000107. [PMID: 28663824 PMCID: PMC5382811 DOI: 10.1099/mgen.0.000107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/27/2017] [Indexed: 11/18/2022] Open
Abstract
The emergence of Acinetobacter baumannii strains, with broad multidrug-resistance phenotypes and novel virulence factors unique to hypervirulent strains, presents a major threat to human health worldwide. Although a number of studies have described virulence-affecting entities for this organism, very few have identified regulatory elements controlling their expression. Previously, our group has documented the global identification and curation of regulatory RNAs in A. baumannii. As such, in the present study, we detail an extension of this work, the performance of an extensive bioinformatic analysis to identify regulatory proteins in the recently annotated genome of the highly virulent AB5075 strain. In so doing, 243 transcription factors, 14 two-component systems (TCSs), 2 orphan response regulators, 1 hybrid TCS and 5 σ factors were found. A comparison of these elements between AB5075 and other clinical isolates, as well as a laboratory strain, led to the identification of several conserved regulatory elements, whilst at the same time uncovering regulators unique to hypervirulent strains. Lastly, by comparing regulatory elements compiled in this study to genes shown to be essential for AB5075 infection, we were able to highlight elements with a specific importance for pathogenic behaviour. Collectively, our work offers a unique insight into the regulatory network of A. baumannii strains, and provides insight into the evolution of hypervirulent lineages.
Collapse
Affiliation(s)
- Leila G Casella
- 1Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA
| | - Andy Weiss
- 1Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA
| | - Ernesto Pérez-Rueda
- 2Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM, Mérida, Yucatán, Mexico.,3Instituto de Biotecnología, UNAM, Cuernavaca, Morelos, Mexico
| | - J Antonio Ibarra
- 4Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Delegación Miguel Hidalgo, CP, 11340 Mexico, DF, Mexico
| | - Lindsey N Shaw
- 1Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL 33620-5150, USA
| |
Collapse
|
21
|
Wang Y, Liu F, Wang W. Kinetics of transcription initiation directed by multiple cis-regulatory elements on the glnAp2 promoter. Nucleic Acids Res 2016; 44:10530-10538. [PMID: 27899598 PMCID: PMC5159524 DOI: 10.1093/nar/gkw1150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 11/21/2022] Open
Abstract
Transcription initiation is orchestrated by dynamic molecular interactions, with kinetic steps difficult to detect. Utilizing a hybrid method, we aim to unravel essential kinetic steps of transcriptional regulation on the glnAp2 promoter, whose regulatory region includes two enhancers (sites I and II) and three low-affinity sequences (sites III-V), to which the transcriptional activator NtrC binds. By structure reconstruction, we analyze all possible organization architectures of the transcription apparatus (TA). The main regulatory mode involves two NtrC hexamers: one at enhancer II transiently associates with site V such that the other at enhancer I can rapidly approach and catalyze the σ54-RNA polymerase holoenzyme. We build a kinetic model characterizing essential steps of the TA operation; with the known kinetics of the holoenzyme interacting with DNA, this model enables the kinetics beyond technical detection to be determined by fitting the input-output function of the wild-type promoter. The model further quantitatively reproduces transcriptional activities of various mutated promoters. These results reveal different roles played by two enhancers and interpret why the low-affinity elements conditionally enhance or repress transcription. This work presents an integrated dynamic picture of regulated transcription initiation and suggests an evolutionarily conserved characteristic guaranteeing reliable transcriptional response to regulatory signals.
Collapse
Affiliation(s)
- Yaolai Wang
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Feng Liu
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China .,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China .,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
22
|
Lee JH, Zhao Y. Integration Host Factor Is Required for RpoN-Dependent hrpL Gene Expression and Controls Motility by Positively Regulating rsmB sRNA in Erwinia amylovora. PHYTOPATHOLOGY 2016; 106:29-36. [PMID: 26368515 DOI: 10.1094/phyto-07-15-0170-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Erwinia amylovora requires an hrp-type III secretion system (T3SS) to cause disease. It has been reported that HrpL, the master regulator of T3SS, is transcriptionally regulated by sigma factor 54 (RpoN), YhbH, and HrpS. In this study, the role of integration host factor (IHF) in regulating hrpL and T3SS gene expression was investigated. IHF is a nucleoid-associated protein that regulates gene expression by influencing nucleoid structure and DNA bending. Our results showed that both ihfA and ihfB mutants of E. amylovora did not induce necrotic lesions on pear fruits. Growth of both mutants was greatly reduced, and expression of the hrpL and T3SS genes was significantly down-regulated as compared with those of the wild type. In addition, expression of the ihfA, but not the ihfB gene, was under auto-suppression by IHF. Furthermore, both ihfA and ihfB mutants were hypermotile, due to significantly reduced expression of small RNA (sRNA) rsmB. Electrophoresis mobility shift assay further confirmed that IHF binds to the promoters of the hrpL and ihfA genes, as well as the rsmB sRNA gene. These results indicate that IHF is required for RpoN-dependent hrpL gene expression and virulence, and controls motility by positively regulating the rsmB sRNA in E. amylovora.
Collapse
Affiliation(s)
- Jae Hoon Lee
- First and second authors: Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Youfu Zhao
- First and second authors: Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
23
|
Kadoya R, Kodama Y, Matsumoto K, Taguchi S. Indirect positive effects of a sigma factor RpoN deletion on the lactate-based polymer production in Escherichia coli. Bioengineered 2015. [PMID: 26218242 PMCID: PMC4825821 DOI: 10.1080/21655979.2015.1069449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
The production of bacterial polyesters, polyhydroxyalkanoates (PHAs), has been improved by several rational approaches such as overexpression and/or engineering of the enzymes directly related to PHA biosynthetic pathways. In this study, a new approach at transcription level has been applied to a new category of the copolymer of lactate (LA) and 3-hydroxybutyrate (3HB), P(LA-co-3HB). When the 4 disrupting mutants of sigma factors in Escherichia coli, rpoN, rpoS, fliA, fecI, were used as platforms for production of P(LA-co-3HB), increases in the production level and LA fraction of the copolymer were observed for the mutant strain with rpoN disruption. These positive impacts on the polymer production were caused in an "indirect manner" via changes in the multiple genes governed by RpoN. A genome-wide engineering by sigma factors would be a versatile approach for the production of value-added products of interest and available for combination with the other beneficial tools.
Collapse
Affiliation(s)
- Ryosuke Kadoya
- a Division of Biotechnology and Macromolecular Chemistry; Graduate School of Engineering; Hokkaido University ; Kita-ku, Sapporo , Japan.,b CREST; JST; Sanbancho ; Chiyoda-ku, Tokyo , Japan
| | - Yu Kodama
- a Division of Biotechnology and Macromolecular Chemistry; Graduate School of Engineering; Hokkaido University ; Kita-ku, Sapporo , Japan
| | - Ken'ichiro Matsumoto
- a Division of Biotechnology and Macromolecular Chemistry; Graduate School of Engineering; Hokkaido University ; Kita-ku, Sapporo , Japan
| | - Seiichi Taguchi
- a Division of Biotechnology and Macromolecular Chemistry; Graduate School of Engineering; Hokkaido University ; Kita-ku, Sapporo , Japan.,b CREST; JST; Sanbancho ; Chiyoda-ku, Tokyo , Japan
| |
Collapse
|
24
|
Fernandez-López R, Ruiz R, de la Cruz F, Moncalián G. Transcription factor-based biosensors enlightened by the analyte. Front Microbiol 2015; 6:648. [PMID: 26191047 PMCID: PMC4486848 DOI: 10.3389/fmicb.2015.00648] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/15/2015] [Indexed: 01/17/2023] Open
Abstract
Whole cell biosensors (WCBs) have multiple applications for environmental monitoring, detecting a wide range of pollutants. WCBs depend critically on the sensitivity and specificity of the transcription factor (TF) used to detect the analyte. We describe the mechanism of regulation and the structural and biochemical properties of TF families that are used, or could be used, for the development of environmental WCBs. Focusing on the chemical nature of the analyte, we review TFs that respond to aromatic compounds (XylS-AraC, XylR-NtrC, and LysR), metal ions (MerR, ArsR, DtxR, Fur, and NikR) or antibiotics (TetR and MarR). Analyzing the structural domains involved in DNA recognition, we highlight the similitudes in the DNA binding domains (DBDs) of these TF families. Opposite to DBDs, the wide range of analytes detected by TFs results in a diversity of structures at the effector binding domain. The modular architecture of TFs opens the possibility of engineering TFs with hybrid DNA and effector specificities. Yet, the lack of a crisp correlation between structural domains and specific functions makes this a challenging task.
Collapse
Affiliation(s)
| | | | | | - Gabriel Moncalián
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria – Consejo Superior de Investigaciones CientíficasSantander, Spain
| |
Collapse
|
25
|
σ54-Dependent Response to Nitrogen Limitation and Virulence in Burkholderia cenocepacia Strain H111. Appl Environ Microbiol 2015; 81:4077-89. [PMID: 25841012 DOI: 10.1128/aem.00694-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/31/2015] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Burkholderia are versatile bacteria capable of colonizing highly diverse environmental niches. In this study, we investigated the global response of the opportunistic pathogen Burkholderia cenocepacia H111 to nitrogen limitation at the transcript and protein expression levels. In addition to a classical response to nitrogen starvation, including the activation of glutamine synthetase, PII proteins, and the two-component regulatory system NtrBC, B. cenocepacia H111 also upregulated polyhydroxybutyrate (PHB) accumulation and exopolysaccharide (EPS) production in response to nitrogen shortage. A search for consensus sequences in promoter regions of nitrogen-responsive genes identified a σ(54) consensus sequence. The mapping of the σ(54) regulon as well as the characterization of a σ(54) mutant suggests an important role of σ(54) not only in control of nitrogen metabolism but also in the virulence of this organism.
Collapse
|
26
|
Yaryura PM, Conforte VP, Malamud F, Roeschlin R, de Pino V, Castagnaro AP, McCarthy Y, Dow JM, Marano MR, Vojnov AA. XbmR, a new transcription factor involved in the regulation of chemotaxis, biofilm formation and virulence in Xanthomonas citri subsp. citri. Environ Microbiol 2014; 17:4164-76. [PMID: 25346091 DOI: 10.1111/1462-2920.12684] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 10/19/2014] [Indexed: 12/22/2022]
Abstract
Xanthomonas citri subsp. citri (Xcc) is the causal agent of citrus canker. Biofilm formation on citrus leaves plays an important role in epiphytic survival of Xcc. Biofilm formation is affected by transposon insertion in XAC3733, which encodes a transcriptional activator of the NtrC family, not linked to a gene encoding a sensor protein, thus could be considered as an 'orphan' regulator whose function is poorly understood in Xanthomonas spp. Here we show that mutation of XAC3733 (named xbmR) resulted in impaired structural development of the Xcc biofilm, loss of chemotaxis and reduced virulence in grapefruit plants. All defective phenotypes were restored to wild-type levels by the introduction of PA2567 from Pseudomonas aeruginosa, which encodes a phosphodiesterase active in the degradation of cyclic diguanosine monophosphate (c-di-GMP). A knockout of xbmR led to a substantial downregulation of fliA that encodes a σ(28) transcription factor, as well as fliC and XAC0350 which are potential member of the σ(28) regulon. XAC0350 encodes an HD-GYP domain c-di-GMP phosphodiesterase. These findings suggest that XbmR is a key regulator of flagellar-dependent motility and chemotaxis exerting its action through a regulatory pathway that involves FliA and c-di-GMP.
Collapse
Affiliation(s)
- Pablo M Yaryura
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Valeria P Conforte
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Florencia Malamud
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Roxana Roeschlin
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET). Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, S2000FHN, Rosario, Argentina
| | - Verónica de Pino
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Atilio P Castagnaro
- Estación Experimental Agroindustrial Obispo Colombres, Av. William Cross, 3150, Las Talitas, Tucumán, Argentina
| | - Yvonne McCarthy
- School of Microbiology, University College Cork, Cork, Ireland
| | - J Maxwell Dow
- School of Microbiology, University College Cork, Cork, Ireland
| | - María R Marano
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET). Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, S2000FHN, Rosario, Argentina
| | - Adrián A Vojnov
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
27
|
Álvarez-Ordóñez A, Begley M, Clifford T, Deasy T, Collins B, Hill C. Transposon mutagenesis reveals genes involved in osmotic stress and drying in Cronobacter sakazakii. Food Res Int 2014. [DOI: 10.1016/j.foodres.2013.10.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Oakeson KF, Gil R, Clayton AL, Dunn DM, von Niederhausern AC, Hamil C, Aoyagi A, Duval B, Baca A, Silva FJ, Vallier A, Jackson DG, Latorre A, Weiss RB, Heddi A, Moya A, Dale C. Genome degeneration and adaptation in a nascent stage of symbiosis. Genome Biol Evol 2014; 6:76-93. [PMID: 24407854 PMCID: PMC3914690 DOI: 10.1093/gbe/evt210] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2013] [Indexed: 02/07/2023] Open
Abstract
Symbiotic associations between animals and microbes are ubiquitous in nature, with an estimated 15% of all insect species harboring intracellular bacterial symbionts. Most bacterial symbionts share many genomic features including small genomes, nucleotide composition bias, high coding density, and a paucity of mobile DNA, consistent with long-term host association. In this study, we focus on the early stages of genome degeneration in a recently derived insect-bacterial mutualistic intracellular association. We present the complete genome sequence and annotation of Sitophilus oryzae primary endosymbiont (SOPE). We also present the finished genome sequence and annotation of strain HS, a close free-living relative of SOPE and other insect symbionts of the Sodalis-allied clade, whose gene inventory is expected to closely resemble the putative ancestor of this group. Structural, functional, and evolutionary analyses indicate that SOPE has undergone extensive adaptation toward an insect-associated lifestyle in a very short time period. The genome of SOPE is large in size when compared with many ancient bacterial symbionts; however, almost half of the protein-coding genes in SOPE are pseudogenes. There is also evidence for relaxed selection on the remaining intact protein-coding genes. Comparative analyses of the whole-genome sequence of strain HS and SOPE highlight numerous genomic rearrangements, duplications, and deletions facilitated by a recent expansion of insertions sequence elements, some of which appear to have catalyzed adaptive changes. Functional metabolic predictions suggest that SOPE has lost the ability to synthesize several essential amino acids and vitamins. Analyses of the bacterial cell envelope and genes encoding secretion systems suggest that these structures and elements have become simplified in the transition to a mutualistic association.
Collapse
Affiliation(s)
| | - Rosario Gil
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
| | | | | | | | - Cindy Hamil
- Department of Human Genetics, University of Utah
| | - Alex Aoyagi
- Department of Human Genetics, University of Utah
| | - Brett Duval
- Department of Human Genetics, University of Utah
| | | | - Francisco J. Silva
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
| | - Agnès Vallier
- INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | | | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana FISABIO – Salud Pública, Valencia, Spain
| | | | - Abdelaziz Heddi
- INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana FISABIO – Salud Pública, Valencia, Spain
| | - Colin Dale
- Department of Biology, University of Utah
| |
Collapse
|
29
|
Vidangos N, Maris AE, Young A, Hong E, Pelton JG, Batchelor JD, Wemmer DE. Structure, function, and tethering of DNA-binding domains in σ⁵⁴ transcriptional activators. Biopolymers 2013; 99:1082-96. [PMID: 23818155 PMCID: PMC3932985 DOI: 10.1002/bip.22333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 11/07/2022]
Abstract
We compare the structure, activity, and linkage of DNA-binding domains (DBDs) from σ(54) transcriptional activators and discuss how the properties of the DBDs and the linker to the neighboring domain are affected by the overall properties and requirements of the full proteins. These transcriptional activators bind upstream of specific promoters that utilize σ(54)-polymerase. Upon receiving a signal the activators assemble into hexamers, which then, through adenosine triphosphate (ATP) hydrolysis, drive a conformational change in polymerase that enables transcription initiation. We present structures of the DBDs of activators nitrogen regulatory protein C 1 (NtrC1) and Nif-like homolog 2 (Nlh2) from the thermophile Aquifex aeolicus. The structures of these domains and their relationship to other parts of the activators are discussed. These structures are compared with previously determined structures of the DBDs of NtrC4, NtrC, ZraR, and factor for inversion stimulation. The N-terminal linkers that connect the DBDs to the central domains in NtrC1 and Nlh2 were studied and found to be unstructured. Additionally, a crystal structure of full-length NtrC1 was solved, but density of the DBDs was extremely weak, further indicating that the linker between ATPase and DBDs functions as a flexible tether. Flexible linking of ATPase and DBDs is likely necessary to allow assembly of the active hexameric ATPase ring. The comparison of this set of activators also shows clearly that strong dimerization of the DBD only occurs when other domains do not dimerize strongly.
Collapse
Affiliation(s)
- Natasha Vidangos
- Department of Chemistry and QB3 Institute, University of California, Berkeley, CA, 94720-1460
| | | | | | | | | | | | | |
Collapse
|
30
|
van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 2013; 77:628-95. [PMID: 24296575 PMCID: PMC3973380 DOI: 10.1128/mmbr.00025-13] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now.
Collapse
|
31
|
Samuels DJ, Frye JG, Porwollik S, McClelland M, Mrázek J, Hoover TR, Karls AC. Use of a promiscuous, constitutively-active bacterial enhancer-binding protein to define the σ⁵⁴ (RpoN) regulon of Salmonella Typhimurium LT2. BMC Genomics 2013; 14:602. [PMID: 24007446 PMCID: PMC3844500 DOI: 10.1186/1471-2164-14-602] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/28/2013] [Indexed: 11/10/2022] Open
Abstract
Background Sigma54, or RpoN, is an alternative σ factor found widely in eubacteria. A significant complication in analysis of the global σ54 regulon in a bacterium is that the σ54 RNA polymerase holoenzyme requires interaction with an active bacterial enhancer-binding protein (bEBP) to initiate transcription at a σ54-dependent promoter. Many bacteria possess multiple bEBPs, which are activated by diverse environmental stimuli. In this work, we assess the ability of a promiscuous, constitutively-active bEBP—the AAA+ ATPase domain of DctD from Sinorhizobium meliloti—to activate transcription from all σ54-dependent promoters for the characterization of the σ54 regulon of Salmonella Typhimurium LT2. Results The AAA+ ATPase domain of DctD was able to drive transcription from nearly all previously characterized or predicted σ54-dependent promoters in Salmonella under a single condition. These promoters are controlled by a variety of native activators and, under the condition tested, are not transcribed in the absence of the DctD AAA+ ATPase domain. We also identified a novel σ54-dependent promoter upstream of STM2939, a homolog of the cas1 component of a CRISPR system. ChIP-chip analysis revealed at least 70 σ54 binding sites in the chromosome, of which 58% are located within coding sequences. Promoter-lacZ fusions with selected intragenic σ54 binding sites suggest that many of these sites are capable of functioning as σ54-dependent promoters. Conclusion Since the DctD AAA+ ATPase domain proved effective in activating transcription from the diverse σ54-dependent promoters of the S. Typhimurium LT2 σ54 regulon under a single growth condition, this approach is likely to be valuable for examining σ54 regulons in other bacterial species. The S. Typhimurium σ54 regulon included a high number of intragenic σ54 binding sites/promoters, suggesting that σ54 may have multiple regulatory roles beyond the initiation of transcription at the start of an operon.
Collapse
Affiliation(s)
- David J Samuels
- Department of Microbiology, University of Georgia, 30602, Athens, GA, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Batchelor JD, Lee PS, Wang AC, Doucleff M, Wemmer DE. Structural mechanism of GAF-regulated σ(54) activators from Aquifex aeolicus. J Mol Biol 2013; 425:156-70. [PMID: 23123379 PMCID: PMC3544215 DOI: 10.1016/j.jmb.2012.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/26/2012] [Accepted: 10/26/2012] [Indexed: 11/22/2022]
Abstract
The σ subunits of bacterial RNA polymerase occur in many variant forms and confer promoter specificity to the holopolymerase. Members of the σ(54) family of σ subunits require the action of a 'transcriptional activator' protein to open the promoter and initiate transcription. The activator proteins undergo regulated assembly from inactive dimers to hexamers that are active ATPases. These contact σ(54) directly and, through ATP hydrolysis, drive a conformational change that enables promoter opening. σ(54) activators use several different kinds of regulatory domains to respond to a wide variety of intracellular signals. One common regulatory module, the GAF domain, is used by σ(54) activators to sense small-molecule ligands. The structural basis for GAF domain regulation in σ(54) activators has not previously been reported. Here, we present crystal structures of GAF regulatory domains for Aquifex aeolicus σ(54) activators NifA-like homolog (Nlh)2 and Nlh1 in three functional states-an 'open', ATPase-inactive state; a 'closed', ATPase-inactive state; and a 'closed', ligand-bound, ATPase-active state. We also present small-angle X-ray scattering data for Nlh2-linked GAF-ATPase domains in the inactive state. These GAF domain dimers regulate σ(54) activator proteins by holding the ATPase domains in an inactive dimer conformation. Ligand binding of Nlh1 dramatically remodels the GAF domain dimer interface, disrupting the contacts with the ATPase domains. This mechanism has strong parallels to the response to phosphorylation in some two-component regulated σ(54) activators. We describe a structural mechanism of GAF-mediated enzyme regulation that appears to be conserved among humans, plants, and bacteria.
Collapse
Affiliation(s)
- Joseph D. Batchelor
- Graduate Group in Biophysics and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| | - Peter S. Lee
- Graduate Group in Biophysics and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| | - Andrew C. Wang
- Graduate Group in Biophysics and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| | - Michaeleen Doucleff
- Graduate Group in Biophysics and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| | - David E. Wemmer
- Graduate Group in Biophysics and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| |
Collapse
|
33
|
Abstract
The ability to degrade the amino acid histidine to ammonia, glutamate, and a one-carbon compound (formate or formamide) is a property that is widely distributed among bacteria. The four or five enzymatic steps of the pathway are highly conserved, and the chemistry of the reactions displays several unusual features, including the rearrangement of a portion of the histidase polypeptide chain to yield an unusual imidazole structure at the active site and the use of a tightly bound NAD molecule as an electrophile rather than a redox-active element in urocanase. Given the importance of this amino acid, it is not surprising that the degradation of histidine is tightly regulated. The study of that regulation led to three central paradigms in bacterial regulation: catabolite repression by glucose and other carbon sources, nitrogen regulation and two-component regulators in general, and autoregulation of bacterial regulators. This review focuses on three groups of organisms for which studies are most complete: the enteric bacteria, for which the regulation is best understood; the pseudomonads, for which the chemistry is best characterized; and Bacillus subtilis, for which the regulatory mechanisms are very different from those of the Gram-negative bacteria. The Hut pathway is fundamentally a catabolic pathway that allows cells to use histidine as a source of carbon, energy, and nitrogen, but other roles for the pathway are also considered briefly here.
Collapse
|
34
|
Liao JC, Hou SY, Chao YP. Pathway analysis, engineering, and physiological considerations for redirecting central metabolism. Biotechnol Bioeng 2012; 52:129-40. [PMID: 18629859 DOI: 10.1002/(sici)1097-0290(19961005)52:1<129::aid-bit13>3.0.co;2-j] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The rate and yield of producing a metabolite is ultimately limited by the ability to channel metabolic fluxes from central metabolism to the desired biosynthesis pathway. Redirection of central metabolism thus is essential to high-efficiency production of biochemicals. This task begins with pathway analysis, which considers only the stoichiometry of the reaction networks but not the regulatory mechanisms. An approach extended from convex analysis is used to determine the basic reaction modes, which allows the determination of optimal and suboptimal flux distributions, yield, and the dispensable sets of reactions. Genes responsible for reactions in the same dispensable set can be deleted simultaneously. This analysis serves as an initial guideline for pathway engineering. Using this analysis, we successfully constructed an Escherichia coli strain that can channel the metabolic flow from carbohydrate to the aromatic pathway with theoretical yield. This analysis also predicts a novel cycle involving phosphoenolpyruvate (PEP) carboxykinase (Pck) and the glyoxylate shunt, which can substitute the tricarboxylic acid cycle with only slightly less efficiency. However, the full cycle could not be confirmed in vivo, possibly because of the regulatory mechanism not considered in the pathway analysis.In addition to the kinetic regulation, we have obtained evidence suggesting that central metabolites are involved in specific regulons in E. coli. Overexpression of PEP-forming enzymes (phosphoenolpyruvate synthase [Pps] and Pck) stimulates the glucose consumption rate, represses the heat shock response, and negatively regulates the Ntr regulon. These results suggest that some glycolytic intermediates may serve as a signal in the regulation of the phosphotransferase system, heat shock response, and nitrogen regulation. However, the role of central metabolites in these regulations has not been determined conclusively. (c) 1996 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- J C Liao
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122
| | | | | |
Collapse
|
35
|
Romeo A, Sonnleitner E, Sorger-Domenigg T, Nakano M, Eisenhaber B, Bläsi U. Transcriptional regulation of nitrate assimilation in Pseudomonas aeruginosa occurs via transcriptional antitermination within the nirBD–PA1779–cobA operon. Microbiology (Reading) 2012; 158:1543-1552. [DOI: 10.1099/mic.0.053850-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Alessandra Romeo
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Elisabeth Sonnleitner
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Theresa Sorger-Domenigg
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Masayuki Nakano
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Birgit Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, 138671 Singapore
| | - Udo Bläsi
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
36
|
Kim M, Zhang Z, Okano H, Yan D, Groisman A, Hwa T. Need-based activation of ammonium uptake in Escherichia coli. Mol Syst Biol 2012; 8:616. [PMID: 23010999 PMCID: PMC3472687 DOI: 10.1038/msb.2012.46] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/15/2012] [Indexed: 11/09/2022] Open
Abstract
The efficient sequestration of nutrients is vital for the growth and survival of microorganisms. Some nutrients, such as CO2 and NH3, are readily diffusible across the cell membrane. The large membrane permeability of these nutrients obviates the need of transporters when the ambient level is high. When the ambient level is low, however, maintaining a high intracellular nutrient level against passive back diffusion is both challenging and costly. Here, we study the delicate management of ammonium (NH4+/NH3) sequestration by E. coli cells using microfluidic chemostats. We find that as the ambient ammonium concentration is reduced, E. coli cells first maximize their ability to assimilate the gaseous NH3 diffusing into the cytoplasm and then abruptly activate ammonium transport. The onset of transport varies under different growth conditions, but always occurring just as needed to maintain growth. Quantitative modeling of known interactions reveals an integral feedback mechanism by which this need-based uptake strategy is implemented. This novel strategy ensures that the expensive cost of upholding the internal ammonium concentration against back diffusion is kept at a minimum.
Collapse
Affiliation(s)
- Minsu Kim
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Zhongge Zhang
- Section of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Hiroyuki Okano
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Dalai Yan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander Groisman
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Terence Hwa
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
- Section of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA
- Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
37
|
Francke C, Groot Kormelink T, Hagemeijer Y, Overmars L, Sluijter V, Moezelaar R, Siezen RJ. Comparative analyses imply that the enigmatic Sigma factor 54 is a central controller of the bacterial exterior. BMC Genomics 2011; 12:385. [PMID: 21806785 PMCID: PMC3162934 DOI: 10.1186/1471-2164-12-385] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 08/01/2011] [Indexed: 02/06/2023] Open
Abstract
Background Sigma-54 is a central regulator in many pathogenic bacteria and has been linked to a multitude of cellular processes like nitrogen assimilation and important functional traits such as motility, virulence, and biofilm formation. Until now it has remained obscure whether these phenomena and the control by Sigma-54 share an underlying theme. Results We have uncovered the commonality by performing a range of comparative genome analyses. A) The presence of Sigma-54 and its associated activators was determined for all sequenced prokaryotes. We observed a phylum-dependent distribution that is suggestive of an evolutionary relationship between Sigma-54 and lipopolysaccharide and flagellar biosynthesis. B) All Sigma-54 activators were identified and annotated. The relation with phosphotransfer-mediated signaling (TCS and PTS) and the transport and assimilation of carboxylates and nitrogen containing metabolites was substantiated. C) The function annotations, that were represented within the genomic context of all genes encoding Sigma-54, its activators and its promoters, were analyzed for intra-phylum representation and inter-phylum conservation. Promoters were localized using a straightforward scoring strategy that was formulated to identify similar motifs. We found clear highly-represented and conserved genetic associations with genes that concern the transport and biosynthesis of the metabolic intermediates of exopolysaccharides, flagella, lipids, lipopolysaccharides, lipoproteins and peptidoglycan. Conclusion Our analyses directly implicate Sigma-54 as a central player in the control over the processes that involve the physical interaction of an organism with its environment like in the colonization of a host (virulence) or the formation of biofilm.
Collapse
Affiliation(s)
- Christof Francke
- TI Food and Nutrition, P,O,Box 557, 6700AN Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
38
|
Deng Y, Wu J, Tao F, Zhang LH. Listening to a new language: DSF-based quorum sensing in Gram-negative bacteria. Chem Rev 2010; 111:160-73. [PMID: 21166386 DOI: 10.1021/cr100354f] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yinyue Deng
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673
| | | | | | | |
Collapse
|
39
|
A NAC for regulating metabolism: the nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae. J Bacteriol 2010; 192:4801-11. [PMID: 20675498 DOI: 10.1128/jb.00266-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen assimilation control protein (NAC) is a LysR-type transcriptional regulator (LTTR) that is made under conditions of nitrogen-limited growth. NAC's synthesis is entirely dependent on phosphorylated NtrC from the two-component Ntr system and requires the unusual sigma factor σ54 for transcription of the nac gene. NAC activates the transcription of σ70-dependent genes whose products provide the cell with ammonia or glutamate. NAC represses genes whose products use ammonia and also represses its own transcription. In addition, NAC also subtly adjusts other cellular functions to keep pace with the supply of biosynthetically available nitrogen.
Collapse
|
40
|
Zhao K, Liu M, Burgess RR. Promoter and regulon analysis of nitrogen assimilation factor, sigma54, reveal alternative strategy for E. coli MG1655 flagellar biosynthesis. Nucleic Acids Res 2009; 38:1273-83. [PMID: 19969540 PMCID: PMC2831329 DOI: 10.1093/nar/gkp1123] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacteria core RNA polymerase (RNAP) must associate with a σ factor to recognize promoter sequences. Promoters recognized by the σ54 (or σN) associated RNA polymerase are unique in having conserved positions around −24 and −12 nucleotides upstream from the transcriptional start site. Using DNA microarrays representing the entire Escherichia coli genome and promoter validation approaches, we identify 40 in vivo targets of σ54, the nitrogen assimilation σ factor, and estimate that there are 70 σ54 promoters in total. Immunoprecipitation assays have been performed to further evaluate the efficiency of our approaches. In addition, promoter consensus binding search and primer extension assay helped us to identify a new σ54 promoter carried by insB-5 in the upstream of flhDC operon. The involvement of σ54 in flagellar biosynthesis in sequenced E. coli strain MG1655 indicates a fluid gene regulation phenomenon carried by some mobile elements in bacteria genome.
Collapse
Affiliation(s)
- Kai Zhao
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
41
|
Batchelor JD, Sterling HJ, Hong E, Williams ER, Wemmer DE. Receiver domains control the active-state stoichiometry of Aquifex aeolicus sigma54 activator NtrC4, as revealed by electrospray ionization mass spectrometry. J Mol Biol 2009; 393:634-43. [PMID: 19699748 DOI: 10.1016/j.jmb.2009.08.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 08/12/2009] [Accepted: 08/12/2009] [Indexed: 11/16/2022]
Abstract
A common challenge with studies of proteins in vitro is determining which constructs and conditions are most physiologically relevant. sigma(54) activators are proteins that undergo regulated assembly to form an active ATPase ring that enables transcription by sigma(54)-polymerase. Previous studies of AAA(+) ATPase domains from sigma(54) activators have shown that some are heptamers, while others are hexamers. Because active oligomers assemble from off-state dimers, it was thought that even-numbered oligomers should dominate, and that heptamer formation would occur when individual domains of the activators, rather than the intact proteins, were studied. Here we present results from electrospray ionization mass spectrometry experiments characterizing the assembly states of intact NtrC4 (a sigma(54) activator from Aquifex aeolicus, an extreme thermophile), as well as its ATPase domain alone, and regulatory-ATPase and ATPase-DNA binding domain combinations. We show that the full-length and activated regulatory-ATPase proteins form hexamers, whereas the isolated ATPase domain, unactivated regulatory-ATPase, and ATPase-DNA binding domain form heptamers. Activation of the N-terminal regulatory domain is the key factor stabilizing the hexamer form of the ATPase, relative to the heptamer.
Collapse
Affiliation(s)
- Joseph D Batchelor
- Graduate Group in Biophysics, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
42
|
Structure of the RNA polymerase core-binding domain of sigma(54) reveals a likely conformational fracture point. J Mol Biol 2009; 390:70-82. [PMID: 19426742 DOI: 10.1016/j.jmb.2009.04.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 04/24/2009] [Accepted: 04/28/2009] [Indexed: 11/22/2022]
Abstract
Transcription initiation by bacterial sigma(54)-RNA polymerase requires a conformational change of the holopolymerase-DNA complex, driven by an enhancer-binding protein. Although structures of the core polymerase and the more common sigma(70) factor have been determined, little is known about the structure of the sigma(54) variant. We report here the structure of an Aquifex aeolicus sigma(54) domain (residues 69-198), which binds core RNA polymerase. The structure is composed of two distinct subdomains held together by a small, conserved hydrophobic interface that appears to act as a fracture point in the structure. The N-terminal, four-helical subdomain has a negative surface and conserved residues that likely contact the core polymerase, while the C-terminal, three-helical bundle has a strongly positive patch that could contact DNA. Sequence conservation indicates that these structural features are conserved and are important for the role of sigma(54) in the polymerase complex.
Collapse
|
43
|
Effect of temperature up-shift on fermentation and metabolic characteristics in view of gene expressions in Escherichia coli. Microb Cell Fact 2008; 7:35. [PMID: 19055729 PMCID: PMC2634768 DOI: 10.1186/1475-2859-7-35] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 12/02/2008] [Indexed: 11/23/2022] Open
Abstract
Background Escherichia coli induces heat shock genes to the temperature up-shift, and changes the metabolism by complicated mechanism. The heat shock response is of practical importance for the variety of applications such as temperature-induced heterologous protein production, simultaneous saccharification and fermentation (SSF) etc. However, the effect of heat shock on the metabolic regulation is not well investigated. It is strongly desired to understand the metabolic changes and its mechanism upon heat shock in practice for the efficient metabolite production by temperature up-shift. In the present research, therefore, we investigated the effect of temperature up-shift from 37°C to 42°C on the metabolism in view of gene expressions. Results The results of aerobic batch and continuous cultivations of E. coli BW25113 indicate that more acetate was accumulated with lower biomass yield and less glucose consumption rate at 42°C as compared to the case at 37°C. The down- regulation of the glucose uptake rate corresponds to the down-regulation of ptsG gene expression caused by the up-regulation of mlc gene expression. In accordance with up-regulation of arcA, which may be caused by the lower oxygen solubility at 42°C, the expressions of the TCA cycle-related genes and the respiratory chain gene cyoA were down-regulated. The decreased activity of TCA cycle caused more acetate formation at higher temperature, which is not preferred in heterologous protein production etc. This can be overcome by the arcA gene knockout to some extent. The time courses of gene expressions revealed that the heat shock genes such as groEL, dnaK, htpG and ibpB as well as mlc were expressed in much the same way as that of rpoH during the first 10–20 minutes after temperature up-shift. Under microaerobic condition, the fermentation changed in such a way that formate and lactate were more produced due to up-regulation of pflA and ldhA genes while ethanol was less produced due to down-regulation of adhE gene at higher temperature as compared to the case at 37°C. Conclusion The present result clarified the mechanism of metabolic changes upon heat shock from 37°C to 42°C based on gene expressions of heat shock genes, global regulators, and the metabolic pathway genes. It is recommended to use arcA gene knockout mutant to prevent higher acetate production upon heat shock, where it must be noted that the cell yield may be decreased due to TCA cycle activation by arcA gene knockout.
Collapse
|
44
|
Batchelor JD, Doucleff M, Lee CJ, Matsubara K, De Carlo S, Heideker J, Lamers MH, Pelton JG, Wemmer DE. Structure and regulatory mechanism of Aquifex aeolicus NtrC4: variability and evolution in bacterial transcriptional regulation. J Mol Biol 2008; 384:1058-75. [PMID: 18955063 DOI: 10.1016/j.jmb.2008.10.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 10/06/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
Abstract
Genetic changes lead gradually to altered protein function, making deduction of the molecular basis for activity from a sequence difficult. Comparative studies provide insights into the functional consequences of specific changes. Here we present structural and biochemical studies of NtrC4, a sigma-54 activator from Aquifex aeolicus, and compare it with NtrC1 (a paralog) and NtrC (a homolog from Salmonella enterica) to provide insight into how a substantial change in regulatory mechanism may have occurred. Activity assays show that assembly of NtrC4's active oligomer is repressed by the N-terminal receiver domain, and that BeF3- addition (mimicking phosphorylation) removes this repression. Observation of assembly without activation for NtrC4 indicates that it is much less strongly repressed than NtrC1. The crystal structure of the unactivated receiver-ATPase domain combination shows a partially disrupted interface. NMR structures of the regulatory domain show that its activation mechanism is very similar to that of NtrC1. The crystal structure of the NtrC4 DNA-binding domain shows that it is dimeric and more similar in structure to NtrC than NtrC1. Electron microscope images of the ATPase-DNA-binding domain combination show formation of oligomeric rings. Sequence alignments provide insights into the distribution of activation mechanisms in this family of proteins.
Collapse
Affiliation(s)
- Joseph D Batchelor
- Graduate Group in Biophysics, Physical Biosciences Division, Lawrence Berkeley National Laboratory and the Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
A wide range of Bacteria and Archaea sense cellular 2-oxoglutarate (2OG) as an indicator of nitrogen limitation. 2OG sensor proteins are varied, but most of those studied belong to the PII superfamily. Within the PII superfamily, GlnB and GlnK represent a widespread family of homotrimeric proteins (GlnB-K) that bind and respond to 2OG and ATP. In some bacterial phyla, GlnB-K proteins are covalently modified, depending on enzymes that sense cellular glutamine as an indicator of nitrogen sufficiency. GlnB-K proteins are central clearing houses of nitrogen information and bind and modulate a variety of nitrogen assimilation regulators and enzymes. NifI(1) and NifI(2) comprise a second widespread family of PII proteins (NifI) that are heteromultimeric, respond to 2OG and ATP, and bind and regulate dinitrogenase in Euryarchaeota and many Bacteria.
Collapse
Affiliation(s)
- John A Leigh
- Department of Microbiology, University of Washington, Seattle, Washington 98195-7242, USA.
| | | |
Collapse
|
46
|
Andrade MO, Alegria MC, Guzzo CR, Docena C, Rosa MCP, Ramos CHI, Farah CS. The HD-GYP domain of RpfG mediates a direct linkage between the Rpf quorum-sensing pathway and a subset of diguanylate cyclase proteins in the phytopathogen Xanthomonas axonopodis pv citri. Mol Microbiol 2007; 62:537-51. [PMID: 17020586 DOI: 10.1111/j.1365-2958.2006.05386.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bacteria use extracellular levels of small diffusible autoinducers to estimate local cell-density (quorum-sensing) and to regulate complex physiological processes. The quorum-sensing signal transduction pathway of Xanthomonas spp. phytopathogens has special features that distinguish it from that of other pathogens. This pathway consists of RpfF, necessary for the production of the unique autoinducer 'diffusible signalling factor' (DSF), and RpfC and RpfG, a two-component system necessary for the DSF-dependent production of extracellular pathogenicity factors and cellular dispersion. Yeast two-hybrid and direct in vitro assays were used to identify interactions involving the Rpf group of proteins. We show that RpfC, a protein consisting of N-terminal transmembrane, histidine kinase, response-regulator and C-terminal histidine phosphotransfer domains interacts with both RpfG, a protein consisting of an N-terminal response regulator domain and a C-terminal HD-GYP domain, and with RpfF. We also show that RpfC interacts with the only known homologue of 'conditioned medium factor', which is involved in quorum-sensing in Dictyostelium discoideum under conditions of nutritional stress. Furthermore, RpfCG is shown to interact with a second two-component system made up of NtrB and NtrC homologues. Finally we show that the recently characterized HD-GYP phosphodiesterase domain of RpfG interacts directly with diguanylate cyclase GGDEF domain-containing proteins coded by the Xanthomonas axonopodis pv. citri genome, which in other bacteria produce cyclic diGMP, an important second messenger involved in the regulation of complex bacterial processes including biofilm production, virulence and motility. These results demonstrate a direct physical linkage between quorum-sensing and cyclic diGMP signalling pathways in bacteria.
Collapse
Affiliation(s)
- Maxuel O Andrade
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CEP 05599-970 São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
47
|
Rhee SG, Chock PB, Stadtman ER. Regulation of Escherichia coli glutamine synthetase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 62:37-92. [PMID: 2567108 DOI: 10.1002/9780470123089.ch2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- S G Rhee
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892
| | | | | |
Collapse
|
48
|
De Carlo S, Chen B, Hoover TR, Kondrashkina E, Nogales E, Nixon BT. The structural basis for regulated assembly and function of the transcriptional activator NtrC. Genes Dev 2006; 20:1485-95. [PMID: 16751184 PMCID: PMC1475761 DOI: 10.1101/gad.1418306] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 04/04/2006] [Indexed: 11/25/2022]
Abstract
In two-component signal transduction, an input triggers phosphorylation of receiver domains that regulate the status of output modules. One such module is the AAA+ ATPase domain in bacterial enhancer-binding proteins that remodel the sigma(54) form of RNA polymerase. We report X-ray solution scattering and electron microscopy structures of the activated, full-length nitrogen-regulatory protein C (NtrC) showing a novel mechanism for regulation of AAA+ ATPase assembly via the juxtaposition of the receiver domains and ATPase ring. Accompanying the hydrolysis cycle that is required for transcriptional activation, we observed major order-disorder changes in the GAFTGA loops involved in sigma(54) binding, as well as in the DNA-binding domains.
Collapse
Affiliation(s)
- Sacha De Carlo
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
49
|
Poggio S, Osorio A, Dreyfus G, Camarena L. The flagellar hierarchy of Rhodobacter sphaeroides is controlled by the concerted action of two enhancer-binding proteins. Mol Microbiol 2006; 58:969-83. [PMID: 16262784 DOI: 10.1111/j.1365-2958.2005.04900.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The expression of the bacterial flagellar genes follows a hierarchical pattern. In Rhodobacter sphaeroides the flagellar genes encoding the hook and basal body proteins are expressed from sigma54-dependent promoters. This type of promoters is always regulated by transcriptional activators that belong to the family of the enhancer-binding proteins (EBPs). We searched for possible EBPs in the genome of R. sphaeroides and mutagenized two open reading frames (ORFs) (fleQ and fleT), which are in the vicinity of flagellar genes. The resulting mutants were non-motile and could only be complemented by the wild-type copy of the mutagenized gene. Transcriptional fusions showed that all the flagellar sigma54-dependent promoters with exception of fleTp, required both transcriptional activators for their expression. Interestingly, transcription of the fleT operon is only dependent on FleQ, and FleT has a negative effect. Both activators were capable of hydrolysing ATP, and were capable of promoting transcription from the flagellar promoters at some extent. Electrophoretic mobility shift assays suggest that only FleQ interacts with DNA whereas FleT improves binding of FleQ to DNA. A four-tiered flagellar transcriptional hierarchy and a regulatory mechanism based on the intracellular concentration of both activators and differential enhancer affinities are proposed.
Collapse
Affiliation(s)
- Sebastian Poggio
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 México D. F., México
| | | | | | | |
Collapse
|
50
|
Sroga GE, Dordick JS. Controlled hierarchical assembly of switchable DNA–multiprotein complexes. Biotechnol Bioeng 2006; 94:312-21. [PMID: 16523523 DOI: 10.1002/bit.20848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Directed, biologically-driven self-assembly has the potential to yield hybrid multicomponent architectures with applications ranging from sensors and diagnostics to catalysts and responsive materials. To enable these applications, it is critical to gain control over the precise orientation and geometry of biomolecules interacting with one-another and with surfaces. Such control has thus far been difficult to achieve in even the simplest biomolecular designs. We report a novel methodology for the design and synthesis of functional, oriented, and reversibly switchable hierarchical assemblies at the nanoscale using DNA-protein and protein-protein interactions. The biomolecular assembly relies on the highly selective recognition between transcription factors (TFs) and their cognate DNA motifs that serve as transcription factor binding sites (TFBSs) along with the calmodulin (CaM)-calmodulin binding peptide (CBP) interaction that is regulated by Ca2+. Through these two types of controllable interactions, we achieved the sequential and hierarchical self-assembly of multiprotein complexes complete with embedded fluorescence and catalytic capabilities, which may serve as a paradigm for multifunctional assemblies.
Collapse
Affiliation(s)
- Grazyna E Sroga
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA
| | | |
Collapse
|