1
|
Jiang C, Tan X, Jin J, Wang P. The Molecular Basis of Amino Acids Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501889. [PMID: 40411419 DOI: 10.1002/advs.202501889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/29/2025] [Indexed: 05/26/2025]
Abstract
Amino acids are organic compounds that serve as the building blocks of proteins and peptides. Additionally, they function as bioactive molecules that play important roles in metabolic regulation and signal transduction. The ability of cells to sense fluctuations in intracellular and extracellular amino acid levels is vital for effectively regulating protein synthesis and catabolism, maintaining homeostasis, adapting to diverse nutritional environments and influencing cell fate decision. In this review, the recent molecular insights into amino acids sensing are discussed, along with the different sensing mechanisms in distinct organisms.
Collapse
Affiliation(s)
- Cong Jiang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University Cancer Center, Tongji University, Shanghai, 200092, China
| | - Xiao Tan
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University Cancer Center, Tongji University, Shanghai, 200092, China
| | - Jiali Jin
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University Cancer Center, Tongji University, Shanghai, 200092, China
| | - Ping Wang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University Cancer Center, Tongji University, Shanghai, 200092, China
| |
Collapse
|
2
|
Blanco-Romero E, Durán D, Garrido-Sanz D, Redondo-Nieto M, Martín M, Rivilla R. Adaption of Pseudomonas ogarae F113 to the Rhizosphere Environment-The AmrZ-FleQ Hub. Microorganisms 2023; 11:microorganisms11041037. [PMID: 37110460 PMCID: PMC10146422 DOI: 10.3390/microorganisms11041037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Motility and biofilm formation are two crucial traits in the process of rhizosphere colonization by pseudomonads. The regulation of both traits requires a complex signaling network that is coordinated by the AmrZ-FleQ hub. In this review, we describe the role of this hub in the adaption to the rhizosphere. The study of the direct regulon of AmrZ and the phenotypic analyses of an amrZ mutant in Pseudomonas ogarae F113 has shown that this protein plays a crucial role in the regulation of several cellular functions, including motility, biofilm formation, iron homeostasis, and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) turnover, controlling the synthesis of extracellular matrix components. On the other hand, FleQ is the master regulator of flagellar synthesis in P. ogarae F113 and other pseudomonads, but its implication in the regulation of multiple traits related with environmental adaption has been shown. Genomic scale studies (ChIP-Seq and RNA-Seq) have shown that in P. ogarae F113, AmrZ and FleQ are general transcription factors that regulate multiple traits. It has also been shown that there is a common regulon shared by the two transcription factors. Moreover, these studies have shown that AmrZ and FleQ form a regulatory hub that inversely regulate traits such as motility, extracellular matrix component production, and iron homeostasis. The messenger molecule c-di-GMP plays an essential role in this hub since its production is regulated by AmrZ and it is sensed by FleQ and required for its regulatory role. This regulatory hub is functional both in culture and in the rhizosphere, indicating that the AmrZ-FleQ hub is a main player of P. ogarae F113 adaption to the rhizosphere environment.
Collapse
Affiliation(s)
- Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
3
|
Liu Y, Liu X, Dong X, Yin Z, Xie Z, Luo Y. Systematic Analysis of Lysine Acetylation Reveals Diverse Functions in Azorhizobium caulinodans Strain ORS571. Microbiol Spectr 2023; 11:e0353922. [PMID: 36475778 PMCID: PMC9927263 DOI: 10.1128/spectrum.03539-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
Protein acetylation can quickly modify the physiology of bacteria to respond to changes in environmental or nutritional conditions, but little information on these modifications is available in rhizobia. In this study, we report the lysine acetylome of Azorhizobium caulinodans strain ORS571, a model rhizobium isolated from stem nodules of the tropical legume Sesbania rostrata that is capable of fixing nitrogen in the free-living state and during symbiosis. Antibody enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were used to characterize the acetylome. There are 2,302 acetylation sites from 982 proteins, accounting for 20.8% of the total proteins. Analysis of the acetylated motifs showed the preferences for the amino acid residues around acetylated lysines. The response regulator CheY1, previously characterized to be involved in chemotaxis in strain ORS571, was identified as an acetylated protein, and a mutation of the acetylated site of CheY1 significantly impaired the strain's motility. In addition, a Zn+-dependent deacetylase (AZC_0414) was characterized, and the construction of a deletion mutant strain showed that it played a role in chemotaxis. Our study provides the first global analysis of lysine acetylation in ORS571, suggesting that acetylation plays a role in various physiological processes. In addition, we demonstrate its involvement in the chemotaxis process. The acetylome of ORS571 provides insights to investigate the regulation mechanism of rhizobial physiology. IMPORTANCE Acetylation is an important modification that regulates protein function and has been found to regulate physiological processes in various bacteria. The physiology of rhizobium A. caulinodans ORS571 is regulated by multiple mechanisms both when free living and in symbiosis with the host; however, the regulatory role of acetylation is not yet known. Here, we took an acetylome-wide approach to identify acetylated proteins in A. caulinodans ORS571 and performed clustering analyses. Acetylation of chemotaxis proteins was preliminarily investigated, and the upstream acetylation-regulating enzyme involved in chemotaxis was characterized. These findings provide new insights to explore the physiological mechanisms of rhizobia.
Collapse
Affiliation(s)
- Yanan Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xiaoyan Dong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zhiqiu Yin
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
4
|
Foster CA, Silversmith RE, Immormino RM, Vass LR, Kennedy EN, Pazy Y, Collins EJ, Bourret RB. Role of Position K+4 in the Phosphorylation and Dephosphorylation Reaction Kinetics of the CheY Response Regulator. Biochemistry 2021; 60:2130-2151. [PMID: 34167303 DOI: 10.1021/acs.biochem.1c00246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-component signaling is a primary method by which microorganisms interact with their environments. A kinase detects stimuli and modulates autophosphorylation activity. The signal propagates by phosphotransfer from the kinase to a response regulator, eliciting a response. Response regulators operate over a range of time scales, corresponding to their related biological processes. Response regulator active site chemistry is highly conserved, but certain variable residues can influence phosphorylation kinetics. An Ala-to-Pro substitution (K+4, residue 113) in the Escherichia coli response regulator CheY triggers a constitutively active phenotype; however, the A113P substitution is too far from the active site to directly affect phosphochemistry. To better understand the activating mechanism(s) of the substitution, we analyzed receiver domain sequences to characterize the evolutionary role of the K+4 position. Although most featured Pro, Leu, Ile, and Val residues, chemotaxis-related proteins exhibited atypical Ala, Gly, Asp, and Glu residues at K+4. Structural and in silico analyses revealed that CheY A113P adopted a partially active configuration. Biochemical data showed that A113P shifted CheY toward a more activated state, enhancing autophosphorylation. By characterizing CheY variants, we determined that this functionality was transmitted through a hydrophobic network bounded by the β5α5 loop and the α1 helix of CheY. This region also interacts with the phosphodonor CheAP1, suggesting that binding generates an activating perturbation similar to the A113P substitution. Atypical residues like Ala at the K+4 position likely serve two purposes. First, restricting autophosphorylation may minimize background noise generated by intracellular phosphodonors such as acetyl phosphate. Second, optimizing interactions with upstream partners may help prime the receiver domain for phosphorylation.
Collapse
Affiliation(s)
- Clay A Foster
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ruth E Silversmith
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Robert M Immormino
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Luke R Vass
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Emily N Kennedy
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yael Pazy
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Edward J Collins
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Robert B Bourret
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Trajtenberg F, Buschiazzo A. Protein Dynamics in Phosphoryl-Transfer Signaling Mediated by Two-Component Systems. Methods Mol Biol 2020; 2077:1-18. [PMID: 31707648 DOI: 10.1007/978-1-4939-9884-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ability to perceive the environment, an essential attribute in living organisms, is linked to the evolution of signaling proteins that recognize specific signals and execute predetermined responses. Such proteins constitute concerted systems that can be as simple as a unique protein, able to recognize a ligand and exert a phenotypic change, or extremely complex pathways engaging dozens of different proteins which act in coordination with feedback loops and signal modulation. To understand how cells sense their surroundings and mount specific adaptive responses, we need to decipher the molecular workings of signal recognition, internalization, transfer, and conversion into chemical changes inside the cell. Protein allostery and dynamics play a central role. Here, we review recent progress on the study of two-component systems, important signaling machineries of prokaryotes and lower eukaryotes. Such systems implicate a sensory histidine kinase and a separate response regulator protein. Both components exploit protein flexibility to effect specific conformational rearrangements, modulating protein-protein interactions, and ultimately transmitting information accurately. Recent work has revealed how histidine kinases switch between discrete functional states according to the presence or absence of the signal, shifting key amino acid positions that define their catalytic activity. In concert with the cognate response regulator's allosteric changes, the phosphoryl-transfer flow during the signaling process is exquisitely fine-tuned for proper specificity, efficiency and directionality.
Collapse
Affiliation(s)
- Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Département de Microbiologie, Institut Pasteur, Paris, France.
| |
Collapse
|
6
|
Abstract
Prokaryotic organisms occupy the most diverse set of environments and conditions on our planet. Their ability to sense and respond to a broad range of external cues remain key research areas in modern microbiology, central to behaviors that underlie beneficial and pathogenic interactions of bacteria with multicellular organisms and within complex ecosystems. Advances in our understanding of the one- and two-component signal transduction systems that underlie these sensing pathways have been driven by advances in imaging the behavior of many individual bacterial cells, as well as visualizing individual proteins and protein arrays within living cells. Cryo-electron tomography continues to provide new insights into the structure and function of chemosensory receptors and flagellar motors, while advances in protein labeling and tracking are applied to understand information flow between receptor and motor. Sophisticated microfluidics allow simultaneous analysis of the behavior of thousands of individual cells, increasing our understanding of how variance between individuals is generated, regulated and employed to maximize fitness of a population. In vitro experiments have been complemented by the study of signal transduction and motility in complex in vivo models, allowing investigators to directly address the contribution of motility, chemotaxis and aggregation/adhesion on virulence during infection. Finally, systems biology approaches have demonstrated previously uncharted areas of protein space in which novel two-component signal transduction pathways can be designed and constructed de novo These exciting experimental advances were just some of the many novel findings presented at the 15th Bacterial Locomotion and Signal Transduction conference (BLAST XV) in January 2019.
Collapse
|
7
|
Lai RZ, Gosink KK, Parkinson JS. Signaling Consequences of Structural Lesions that Alter the Stability of Chemoreceptor Trimers of Dimers. J Mol Biol 2017; 429:823-835. [PMID: 28215934 DOI: 10.1016/j.jmb.2017.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 12/18/2022]
Abstract
Residues E402 and R404 of the Escherichia coli serine chemoreceptor, Tsr, appear to form a salt bridge that spans the interfaces between neighboring dimers in the Tsr trimer of dimers, a key structural component of receptor core signaling complexes. To assess their functional roles, we constructed full sets of single amino acid replacement mutants at E402 and R404 and characterized their signaling behaviors with a suite of in vivo assays. Our results indicate that the E402 and R404 residues of Tsr play their most critical signaling roles at their inner locations near the trimer axis where they likely participate in stabilizing the trimer-of-dimer packing and the kinase-ON state of core signaling complexes. Mutant receptors with a variety of side-chain replacements still accessed both the ON and OFF signaling states, suggesting that core signaling complexes produce kinase activity over a range of receptor conformations and dynamic motions. Similarly, the kinase-OFF state may not be a discrete conformation but rather a range of structures outside the range of those suitable for kinase activation. Consistent with this idea, some structural lesions at both E402 and R404 produced signaling behaviors that are not compatible with discrete two-state models of core complex signaling states. Those lesions might stabilize intermediate receptor conformations along the OFF-ON energy landscape. Amino acid replacements produced different constellations of signaling defects at each residue, indicating that they play distinct structure-function roles. R404, but not E402, was critical for high signal cooperativity in the receptor array.
Collapse
Affiliation(s)
- Run-Zhi Lai
- Biology Department, University of Utah, Salt Lake City, UT 84112, USA
| | - Khoosheh K Gosink
- Biology Department, University of Utah, Salt Lake City, UT 84112, USA
| | - John S Parkinson
- Biology Department, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
8
|
|
9
|
Grabowicz M, Silhavy TJ. Envelope Stress Responses: An Interconnected Safety Net. Trends Biochem Sci 2016; 42:232-242. [PMID: 27839654 DOI: 10.1016/j.tibs.2016.10.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022]
Abstract
The Escherichia coli cell envelope is a protective barrier at the frontline of interaction with the environment. Fidelity of envelope biogenesis must be monitored to establish and maintain a contiguous barrier. Indeed, the envelope must also be repaired and modified in response to environmental assaults. Envelope stress responses (ESRs) sense envelope damage or defects and alter the transcriptome to mitigate stress. Here, we review recent insights into the stress-sensing mechanisms of the σE and Cpx systems and the interaction of these ESRs. Small RNAs (sRNAs) are increasingly prominent regulators of the transcriptional response to stress. These fast-acting regulators also provide avenues for inter-ESR regulation that could be important when cells face multiple contemporaneous stresses, as is the case during infection.
Collapse
Affiliation(s)
- Marcin Grabowicz
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
10
|
Chantranupong L, Wolfson RL, Sabatini DM. Nutrient-sensing mechanisms across evolution. Cell 2015; 161:67-83. [PMID: 25815986 DOI: 10.1016/j.cell.2015.02.041] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 12/11/2022]
Abstract
For organisms to coordinate their growth and development with nutrient availability, they must be able to sense nutrient levels in their environment. Here, we review select nutrient-sensing mechanisms in a few diverse organisms. We discuss how these mechanisms reflect the nutrient requirements of specific species and how they have adapted to the emergence of multicellularity in eukaryotes.
Collapse
Affiliation(s)
- Lynne Chantranupong
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Rachel L Wolfson
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Huo L, Davis I, Chen L, Liu A. The power of two: arginine 51 and arginine 239* from a neighboring subunit are essential for catalysis in α-amino-β-carboxymuconate-epsilon-semialdehyde decarboxylase. J Biol Chem 2013; 288:30862-71. [PMID: 24019523 DOI: 10.1074/jbc.m113.496869] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although the crystal structure of α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase from Pseudomonas fluorescens was solved as a dimer, this enzyme is a mixture of monomer, dimer, and higher order structures in solution. In this work, we found that the dimeric state, not the monomeric state, is the functionally active form. Two conserved arginine residues are present in the active site: Arg-51 and an intruding Arg-239* from the neighboring subunit. In this study, they were each mutated to alanine and lysine, and all four mutants were catalytically inactive. The mutants were also incapable of accommodating pyridine-2,6-dicarboxylic acid, a competitive inhibitor of the native enzyme, suggesting that the two Arg residues are involved in substrate binding. It was also observed that the decarboxylase activity was partially recovered in a heterodimer hybridization experiment when inactive R51(A/K) and R239(A/K) mutants were mixed together. Of the 20 crystal structures obtained from mixing inactive R51A and R239A homodimers that diffracted to a resolution lower than 3.00 Å, two structures are clearly R51A/R239A heterodimers and belong to the C2 space group. They were refined to 1.80 and 2.00 Å resolutions, respectively. Four of the remaining crystals are apparently single mutants and belong to the P42212 space group. In the heterodimer structures, one active site is shown to contain dual mutation of Ala-51 and Ala-239*, whereas the other contains the native Arg-51 and Arg-239* residues, identical to the wild-type structure. Thus, these observations provide the foundation for a molecular mechanism by which the oligomerization state of α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase could regulate the enzyme activity.
Collapse
Affiliation(s)
- Lu Huo
- From the Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303
| | | | | | | |
Collapse
|
12
|
Lengeler J, Vogler A. Molecular mechanisms of bacterial chemotaxis towards PTS-carbohydrates. FEMS Microbiol Lett 2013. [DOI: 10.1111/j.1574-6968.1989.tb14103.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Abstract
This review focuses on the early years of molecular studies of bacterial chemotaxis and motility, beginning in the 1960s with Julius Adler's pioneering work. It describes key observations that established the field and made bacterial chemotaxis a paradigm for the molecular understanding of biological signaling. Consideration of those early years includes aspects of science seldom described in journals: the accidental findings, personal interactions, and scientific culture that often drive scientific progress.
Collapse
|
14
|
Abstract
After a childhood in Germany and being a youth in Grand Forks, North Dakota, I went to Harvard University, then to graduate school in biochemistry at the University of Wisconsin. Then to Washington University and Stanford University for postdoctoral training in biochemistry and genetics. Then at the University of Wisconsin, as a professor in the Department of Biochemistry and the Department of Genetics, I initiated research on bacterial chemotaxis. Here, I review this research by me and by many, many others up to the present moment. During the past few years, I have been studying chemotaxis and related behavior in animals, namely in Drosophila fruit flies, and some of these results are presented here. My current thinking is described.
Collapse
Affiliation(s)
- Julius Adler
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544, USA.
| |
Collapse
|
15
|
Alexandre G, Crosson S, Shimizu T, Msadek T. Bacterial moving and shaking: the 11th
blast
meeting. Mol Microbiol 2011; 81:8-22. [DOI: 10.1111/j.1365-2958.2011.07694.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Gladys Alexandre
- University of Tennessee, Department of Biochemistry, Cellular and Molecular Biology, 1414 W. Cumberland Avenue, Knoxville, TN 37966, USA
| | - Sean Crosson
- University of Chicago, Department of Biochemistry and Molecular Biology, 929 E. 57th Street, Chicago, IL 60637, USA
| | - Thomas Shimizu
- FOM Institute for Atomic and Molecular Physics, Science Park 104, Amsterdam, 1098 XG, The Netherlands
| | - Tarek Msadek
- Institut Pasteur, Biology of Gram‐Positive Pathogens, Department of Microbiology, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
- CNRS, URA 2172, F‐75015 Paris, France
| |
Collapse
|
16
|
Perry J, Koteva K, Wright G. Receptor domains of two-component signal transduction systems. MOLECULAR BIOSYSTEMS 2011; 7:1388-98. [PMID: 21347487 DOI: 10.1039/c0mb00329h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two-component signal transduction systems are found ubiquitously in prokaryotes, and in archaea, fungi, yeast and some plants, where they regulate physiologic and molecular processes at both transcriptional and post-transcriptional levels. Two-component systems sense changes in environmental conditions when a specific ligand binds to the receptor domain of the histidine kinase sensory component. The structures of many histidine kinase receptors are known, including those which sense extracellular and cytoplasmic signals. In this review, we discuss the basic architecture of two-component signalling circuits, including known system ligands, structure and function of both receptor and signalling domains, the chemistry of phosphotransfer, and cross-talk between different two-component pathways. Given the importance of these systems in regulating cellular responses, many biochemical techniques have been developed for their study and analysis. We therefore also review current methods used to study two-component signalling, including a new affinity-based proteomics approach used to study inducible resistance to the antibiotic vancomycin through the VanSR two-component signal transduction system.
Collapse
Affiliation(s)
- Julie Perry
- MG DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1200 Main St W, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
17
|
Mutational analysis of the transmembrane helix 2-HAMP domain connection in the Escherichia coli aspartate chemoreceptor tar. J Bacteriol 2010; 193:82-90. [PMID: 20870768 DOI: 10.1128/jb.00953-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmembrane helix 2 (TM2) of the Tar chemoreceptor undergoes an inward piston-like displacement of 1 to 3 Å upon binding aspartate. This signal is transmitted to the kinase-control module via the HAMP domain. Within Tar, the HAMP domain forms a parallel four-helix bundle consisting of a dimer of two amphipathic helices connected by a flexible linker. In the nuclear magnetic resonance structure of an archaeal HAMP domain, residues corresponding to the MLLT sequence between Arg-214 at the end of TM2 and Pro-219 of Tar are an N-terminal helical extension of AS1. We modified this region to test whether it behaves as a continuous helical connection between TM2 and HAMP. First, one to four Gly residues were inserted between Thr-218 and Pro-219. Second, the MLLT sequence was replaced with one to nine Gly residues. Third, the sequence was shortened or extended with residues compatible with helix formation. Cells expressing receptors in which the MLLT sequence was shortened to MLL or in which the MLLT sequence was replaced by four Gly residues performed good aspartate chemotaxis. Other mutant receptors supported diminished aspartate taxis. Most mutant receptors had biased signal outputs and/or abnormal patterns of adaptive methylation. We interpret these results to indicate that a strong, permanent helical connection between TM2 and the HAMP domain is not necessary for normal transmembrane signaling.
Collapse
|
18
|
Eaton AK, Stewart RC. Kinetics of ATP and TNP-ATP binding to the active site of CheA from Thermotoga maritima. Biochemistry 2010; 49:5799-809. [PMID: 20565117 DOI: 10.1021/bi100721b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanism of nucleotide binding to the active site of Thermotoga maritima CheA was investigated using stopped-flow fluorescence experiments that monitored binding of ATP and TNP-ATP to the catalytic domain (P4) of CheA that had been engineered to include a tryptophan residue as a fluorescent reporter group at the active site (P4(F487W)). Rapid decreases in protein intrinsic fluorescence and increases in TNP-ATP fluorescence were observed during binding reactions, and time courses were analyzed to define the kinetic mechanisms for ATP and TNP-ATP binding. This analysis indicated that binding of ATP(Mg(2+)) to P4(F487W) involves a single reversible step with a k(on) of 0.92 +/- 0.09 microM(-1) s(-1), a k(off) of 1.9 +/- 0.4 s(-1), and a K(d) of 1.5-2.1 microM (all values determined at 4 degrees C). Binding of TNP-ATP(Mg(2+)) to P4(F487W) involves a more complicated mechanism, requiring at least three sequential steps. Computer simulations and nonlinear regression analysis were used to estimate the rate constants of the forward and reverse reactions for each of the three steps in the reaction scheme [Formula: see text] Similar analysis indicated that an alternative reaction scheme, involving a rate-limiting conformational change in P4 prior to TNP-ATP binding, did an equally good job of accounting for all of the kinetics results:[Formula: see text] In both models, steps 2 and 3 have slow reversal rates that contribute to the high affinity of the active site for TNP-ATP (K(d) = 0.015 microM). These results highlight the dramatic effect of the TNP moieties on CheA-nucleotide interactions, and they provide the first detailed information about the kinetic mechanism underlying interaction of a protein histidine kinase with this tight-binding inhibitor.
Collapse
Affiliation(s)
- Anna K Eaton
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
19
|
Liarzi O, Barak R, Bronner V, Dines M, Sagi Y, Shainskaya A, Eisenbach M. Acetylation represses the binding of CheY to its target proteins. Mol Microbiol 2010; 76:932-43. [PMID: 20398208 DOI: 10.1111/j.1365-2958.2010.07148.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability of CheY, the response regulator of bacterial chemotaxis, to generate clockwise rotation is regulated by two covalent modifications - phosphorylation and acetylation. While the function and signal propagation of the former are widely understood, the mechanism and role of the latter are still obscure. To obtain information on the function of this acetylation, we non-enzymatically acetylated CheY to a level similar to that found in vivo, and examined its binding to its kinase CheA, its phosphatase CheZ and the switch protein FliM - its target at the flagellar switch complex. Acetylation repressed the binding to all three proteins. These results suggest that both phosphorylation and acetylation determine CheY's ability to bind to its target proteins, thus providing two levels of regulation, fast and slow respectively. The fast level is modulated by environmental signals (e.g. chemotactic and thermotactic stimuli). The slow one is regulated by the metabolic state of the cell and it determines, at each metabolic state, the fraction of CheY molecules that can participate in signalling.
Collapse
Affiliation(s)
- Orna Liarzi
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
20
|
Scharf BE. Summary of useful methods for two-component system research. Curr Opin Microbiol 2010; 13:246-52. [DOI: 10.1016/j.mib.2010.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/10/2010] [Accepted: 01/11/2010] [Indexed: 10/19/2022]
|
21
|
De N, Navarro MVAS, Wang Q, Krasteva PV, Sondermann H. Biophysical assays for protein interactions in the Wsp sensory system and biofilm formation. Methods Enzymol 2010; 471:161-84. [PMID: 20946848 DOI: 10.1016/s0076-6879(10)71010-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many signal transduction and regulatory events are mediated by a change in oligomeric state upon posttranslational modification or ligand binding. Hence, the characterization of proteins and protein complexes with respect to their size and shape is crucial for elucidating the molecular mechanisms that control their activities. Commonly used methods for the determination of molecular weights of biological polymers such as standard size-exclusion chromatography or analytical ultracentrifugation have been applied successfully but have some limitations. Static multiangle light scattering presents an attractive alternative approach for absolute molecular weight measurements in solution. We review the biophysical principles, advantages, and pitfalls of some popular methods for determining the quaternary structure of proteins, using the response regulator diguanylate cyclase WspR from Pseudomonas and FimX, a protein involved in Pseudomonas aeruginosa twitching motility, as examples.
Collapse
Affiliation(s)
- Nabanita De
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | | | | | | | | |
Collapse
|
22
|
Taylor BL, Watts KJ, Johnson MS. Oxygen and Redox Sensing by Two‐Component Systems That Regulate Behavioral Responses: Behavioral Assays and Structural Studies of Aer Using In Vivo Disulfide Cross‐Linking. Methods Enzymol 2007; 422:190-232. [PMID: 17628141 DOI: 10.1016/s0076-6879(06)22010-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A remarkable increase in the number of annotated aerotaxis (oxygen-seeking) and redox taxis sensors can be attributed to recent advances in bacterial genomics. However, in silico predictions should be supported by behavioral assays and genetic analyses that confirm an aerotaxis or redox taxis function. This chapter presents a collection of procedures that have been highly successful in characterizing aerotaxis and redox taxis in Escherichia coli. The methods are described in enough detail to enable investigators of other species to adapt the procedures for their use. A gas flow cell is used to quantitate the temporal responses of bacteria to a step increase or decrease in oxygen partial pressure or redox potential. Bacterial behavior in spatial gradients is analyzed using optically flat capillaries and soft agar plates (succinate agar or tryptone agar). We describe two approaches to estimate the preferred partial pressure of oxygen that attracts a bacterial species; this concentration is important for understanding microbial ecology. At the molecular level, we describe procedures used to determine the structure and topology of Aer, a membrane receptor for aerotaxis. Cysteine-scanning mutagenesis and in vivo disulfide cross-linking procedures utilize the oxidant Cu(II)-(1,10-phenanthroline)(3) and bifunctional sulfhydryl-reactive probes. Finally, we describe methods used to determine the boundaries of transmembrane segments of receptors such as Aer. These include 5-iodoacetamidofluorescein, 4-acetamido-4-disulfonic acid, disodium salt (AMS), and methoxy polyethylene glycol maleimide, a 5-kDa molecular mass probe that alters the mobility of Aer on SDS-PAGE.
Collapse
Affiliation(s)
- Barry L Taylor
- Division of Cellular Biology and Molecular Genetics, Loma Linda University, Loma Linda, California, USA
| | | | | |
Collapse
|
23
|
Li ZH, Dong K, Yuan JP, Hu BY, Liu JX, Zhao GP, Guo XK. Characterization of the cheY genes from Leptospira interrogans and their effects on the behavior of Escherichia coli. Biochem Biophys Res Commun 2006; 345:858-66. [PMID: 16701553 DOI: 10.1016/j.bbrc.2006.04.159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 04/11/2006] [Indexed: 11/25/2022]
Abstract
The motility and chemotaxis system are critical for the virulence of pathogenic leptospire, which enable them to penetrate host tissue barriers during infection. The completed genome sequence of a representative virulent serovar type strain (Lai) of Leptospira interrogans serogroups Icterohaemorrhagiae (L. interrogans strain Lai) suggested that there were multiple copies of putative chemotaxis homologues located at its large chromosome. In order to verify the function of these proteins, the putative cheY genes were cloned into pQE31 vector and then expressed, respectively, in wild-type Escherichia coli strain RP437 and cheY defective strain RP5232. The results showed that all the five cheYs could restore the swarming of RP5232 strain to some extend. Overexpression of CheYs in RP437 showed inhibited swarming of RP437. To investigate the mechanism of chemotaxis signaling in L. interrogans strain Lai, certain aspartates (Asp-53, Asp-61, Asp-70, Asp-62, and Asp-66 for L. interrogans strain Lai CheY1, CheY2, CheY3, CheY4, and CheY5, respectively) were mutated. Expression of these mutated cheYs manifested neither restoration of the swarming ability of RP5232 nor inhibition on swarming ability of RP437. Multiple amino acid sequence alignment predicted ternary structures and the result of mutation experiment suggested that these conserved aspartate residues of L. interrogans were analogous to that in E. coli CheY in function and structure. So, L. interrogans and E. coli may have similar mechanisms of activation of the chemotaxis phosphorelay pathway, but there are differences in their control by signal terminator.
Collapse
Affiliation(s)
- Zhen-Hong Li
- Department of Microbiology and Parasitology, 280 South Chongqing Road, Medical school, Shanghai Jiaotong University, Shanghai 200025, PR China
| | | | | | | | | | | | | |
Collapse
|
24
|
Jahreis K, Morrison TB, Garzón A, Parkinson JS. Chemotactic signaling by an Escherichia coli CheA mutant that lacks the binding domain for phosphoacceptor partners. J Bacteriol 2004; 186:2664-72. [PMID: 15090507 PMCID: PMC387806 DOI: 10.1128/jb.186.9.2664-2672.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CheA is a multidomain histidine kinase for chemotaxis in Escherichia coli. CheA autophosphorylates through interaction of its N-terminal phosphorylation site domain (P1) with its central dimerization (P3) and ATP-binding (P4) domains. This activity is modulated through the C-terminal P5 domain, which couples CheA to chemoreceptor control. CheA phosphoryl groups are donated to two response regulators, CheB and CheY, to control swimming behavior. The phosphorylated forms of CheB and CheY turn over rapidly, enabling receptor signaling complexes to elicit fast behavioral responses by regulating the production and transmission of phosphoryl groups from CheA. To promote rapid phosphotransfer reactions, CheA contains a phosphoacceptor-binding domain (P2) that serves to increase CheB and CheY concentrations in the vicinity of the adjacent P1 phosphodonor domain. To determine whether the P2 domain is crucial to CheA's signaling specificity, we constructed CheADeltaP2 deletion mutants and examined their signaling properties in vitro and in vivo. We found that CheADeltaP2 autophosphorylated and responded to receptor control normally but had reduced rates of phosphotransfer to CheB and CheY. This defect lowered the frequency of tumbling episodes during swimming and impaired chemotactic ability. However, expression of additional P1 domains in the CheADeltaP2 mutant raised tumbling frequency, presumably by buffering the irreversible loss of CheADeltaP2-generated phosphoryl groups from CheB and CheY, and greatly improved its chemotactic ability. These findings suggest that P2 is not crucial for CheA signaling specificity and that the principal determinants that favor appropriate phosphoacceptor partners, or exclude inappropriate ones, most likely reside in the P1 domain.
Collapse
Affiliation(s)
- Knut Jahreis
- Biology Department, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
25
|
Homma M, Shiomi D, Homma M, Kawagishi I. Attractant binding alters arrangement of chemoreceptor dimers within its cluster at a cell pole. Proc Natl Acad Sci U S A 2004; 101:3462-7. [PMID: 14993606 PMCID: PMC373484 DOI: 10.1073/pnas.0306660101] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many sensory systems involve multiple steps of signal amplification to produce a significant response. One such mechanism may be the clustering of transmembrane receptors. In bacterial chemotaxis, where a stoichiometric His-Asp phosphorelay from the kinase CheA to the response regulator CheY plays a central role, the chemoreceptors (methyl-accepting chemotaxis proteins) cluster together with CheA and the adaptor CheW, at a pole of a rod-shaped cell. This clustering led to a proposal that signal amplification occurs through an interaction between chemoreceptor homodimers. Here, by using in vivo disulfide crosslinking assays, we examined an interdimer interaction of the aspartate chemoreceptor (Tar). Two cysteine residues were introduced into Tar: one at the subunit interface and the other at the external surface of the dimer. Crosslinked dimers and higher oligomers (especially a deduced hexamer) were detected and their abundance depended on CheA and CheW. The ligand aspartate significantly reduced the amounts of higher oligomers but did not affect the polar localization of Tar-GFP. Thus, the binding of aspartate alters the rate of collisions between Tar dimers in assembled signaling complexes, most likely due to a change in the relative positions or trajectories of the dimers. These collisions could occur within a trimer-ofdimers predicted by crystallography, or between such trimers. These results are consistent with the proposal that the interaction of chemoreceptor dimers is involved in signal transduction.
Collapse
Affiliation(s)
- Motohiro Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | |
Collapse
|
26
|
Boukhvalova MS, Dahlquist FW, Stewart RC. CheW binding interactions with CheA and Tar. Importance for chemotaxis signaling in Escherichia coli. J Biol Chem 2002; 277:22251-9. [PMID: 11923283 DOI: 10.1074/jbc.m110908200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The initial signaling events underlying the chemotactic response of Escherichia coli to aspartic acid occur within a ternary complex that includes Tar (an aspartate receptor), CheA (a protein kinase), and CheW. Because CheW can bind to CheA and to Tar, it is thought to serve as an adapter protein in this complex. The functional importance of CheW binding interactions, however, has not been investigated. To better define the role of CheW and its binding interactions, we performed biochemical characterization of six mutant variants of CheW. We examined the ability of the purified mutant CheW proteins to bind to CheA and Tar, to promote formation of active ternary complexes, and to support chemotaxis in vivo. Our results indicate that mutations which eliminate CheW binding to Tar (V36M) or to CheA (G57D) result in a complete inability to form active ternary complexes in vitro and render the CheW protein incapable of mediating chemotaxis in vivo. The in vivo signaling pathway can, however, tolerate moderate changes in CheW-Tar and CheW-CheA affinities observed with several of the mutants (G133E, G41D, and 154ocr). One mutant (R62H) provided surprising results that may indicate a role for CheW in addition to binding CheA/receptors and promoting ternary complex formation.
Collapse
Affiliation(s)
- Marina S Boukhvalova
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
27
|
Bren A, Eisenbach M. Changing the direction of flagellar rotation in bacteria by modulating the ratio between the rotational states of the switch protein FliM. J Mol Biol 2001; 312:699-709. [PMID: 11575925 DOI: 10.1006/jmbi.2001.4992] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
One of the major questions in bacterial chemotaxis is how the switch, which controls the direction of flagellar rotation, functions. It is well established that binding of the signaling molecule CheY to the switch protein FliM shifts the rotation from the default direction, counterclockwise, to clockwise. How this shift is done is still a mystery. Our aim in this study was to determine the correlation between the fraction of FliM molecules in the clockwise state (i.e. occupied by CheY) and the probability of clockwise rotation. For this purpose we gradually expressed, from a plasmid, a clockwise FliM mutant protein in cells that express, from the chromosome, wild-type FliM but no chemotaxis proteins. We verified that plasmid-borne FliM exchanges chromosomal FliM in the switch. Surprisingly, a substantial clockwise probability was not obtained before the large majority of the FliM molecules in the switch were clockwise molecules. Thereafter, the rise in clockwise probability was very steep. These results suggest that an increase in the clockwise probability requires a high level of FliM occupancy by CheY approximately P. They further suggest that the steep increase in clockwise rotation upon increasing CheY levels, reported in several studies, is due, at least in part, to cooperativity of post-binding interactions within the switch. We also carried out the inverse experiment, in which wild-type FliM was gradually expressed in a background of a clockwise fliM mutant. In this case, the level of the clockwise mutant protein, required for establishing a certain clockwise probability, was lower than in the original experiment. If our system (in which the ratio between the rotational states of FliM in the switch is established by slow exchange) and the native system (in which the ratio is established by fast changes in FliM occupancy) are comparable, the results suggest that hysteresis is involved in the switch function. Such a situation might reflect a damping mechanism, which prevents a situation in which fluctuations in the phosphorylation level of CheY throw the switch from one direction of rotation to the other.
Collapse
Affiliation(s)
- A Bren
- Department of Biological Chemistry, The Weizmann Institute of Science,76100 Rehovot, Israel
| | | |
Collapse
|
28
|
Affiliation(s)
- P J Kennelly
- Department of Biochemistry-0308, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
29
|
|
30
|
Sourjik V, Berg HC. Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions. Mol Microbiol 2000; 37:740-51. [PMID: 10972797 DOI: 10.1046/j.1365-2958.2000.02044.x] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We prepared fusions of yellow fluorescent protein [the YFP variant of green fluorescent protein (GFP)] with the cytoplasmic chemotaxis proteins CheY, CheZ and CheA and the flagellar motor protein FliM, and studied their localization in wild-type and mutant cells of Escherichia coli. All but the CheA fusions were functional. The cytoplasmic proteins CheY, CheZ and CheA tended to cluster at the cell poles in a manner similar to that observed earlier for methyl-accepting chemotaxis proteins (MCPs), but only if MCPs were present. Co-localization of CheY and CheZ with MCPs was CheA dependent, and co-localization of CheA with MCPs was CheW dependent, as expected. Co-localization with MCPs was confirmed by immunofluorescence using an anti-MCP primary antibody. The motor protein FliM appeared as discrete spots on the sides of the cell. These were seen in wild-type cells and in a fliN mutant, but not in flhC or fliG mutants. Co-localization with flagellar structures was confirmed by immunofluorescence using an antihook primary antibody. Surprisingly, we did not observe co-localization of CheY with motors, even under conditions in which cells tumbled.
Collapse
Affiliation(s)
- V Sourjik
- Department of Molecular and Cellular Biology, The Biological Laboratories, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
31
|
Abstract
Signal transduction in microorganisms and plants is often mediated by His-Asp phosphorelay systems. Two conserved families of proteins are centrally involved: histidine protein kinases and phospho-aspartyl response regulators. The kinases generally function in association with sensory elements that regulate their activities in response to environmental signals. A sequence analysis with 348 histidine kinase domains reveals that this family consists of distinct subgroups. A comparative sequence analysis with 298 available receiver domain sequences of cognate response regulators demonstrates a significant correlation between kinase and regulator subfamilies. These findings suggest that different subclasses of His-Asp phosphorelay systems have evolved independently of one another.
Collapse
Affiliation(s)
- T W Grebe
- Department of Molecular Biology, Princeton University, NJ 08544, USA
| | | |
Collapse
|
32
|
Abstract
Many, if not most, bacterial species swim. The synthesis and operation of the flagellum, the most complex organelle of a bacterium, takes a significant percentage of cellular energy, particularly in the nutrient limited environments in which many motile species are found. It is obvious that motility accords cells a survival advantage over non-motile mutants under normal, poorly mixed conditions and is an important determinant in the development of many associations between bacteria and other organisms, whether as pathogens or symbionts and in colonization of niches and the development of biofilms. This survival advantage is the result of sensory control of swimming behaviour. Although too small to sense a gradient along the length of the cell, and unable to swim great distances because of buffetting by Brownian motion and the curvature resulting from a rotating flagellum, bacteria can bias their random swimming direction towards a more favourable environment. The favourable environment will vary from species to species and there is now evidence that in many species this can change depending on the current physiological growth state of the cell. In general, bacteria sense changes in a range of nutrients and toxins, compounds altering electron transport, acceptors or donors into the electron transport chain, pH, temperature and even the magnetic field of the Earth. The sensory signals are balanced, and may be balanced with other sensory pathways such as quorum sensing, to identify the optimum current environment. The central sensory pathway in this process is common to most bacteria and most effectors. The environmental change is sensed by a sensory protein. In most species examined this is a transmembrane protein, sensing the external environment, but there is increasing evidence for additional cytoplasmic receptors in many species. All receptors, whether sensing sugars, amino acids or oxygen, share a cytoplasmic signalling domain that controls the activity of a histidine protein kinase, CheA, via a linker protein, CheW. A reduction in an attractant generally leads to the increased autophosphorylation of CheA. CheA passes its phosphate to a small, single domain response regulator, CheY. CheY-P can interact with the flagellar motor to cause it to change rotational direction or stop. Signal termination either via a protein, CheZ, which increases the dephosphorylation rate of CheY-P or via a second CheY which acts as a phosphate sink, allows the cell to swim off again, usually in a new direction. In addition to signal termination the receptor must be reset, and this occurs via methylation of the receptor to return it to a non-signalling conformation. The way in which bacteria use these systems to move to optimum environments and the interaction of the different sensory pathways to produce species-specific behavioural response will be the subject of this review.
Collapse
Affiliation(s)
- J P Armitage
- Department of Biochemistry, University of Oxford, UK
| |
Collapse
|
33
|
Flanary PL, Allen RD, Dons L, Kathariou S. Insertional inactivation of theListeria monocytogenescheYA operon abolishes response to oxygen gradients and reduces the number of flagella. Can J Microbiol 1999. [DOI: 10.1139/w99-052] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nucleotide sequence of a region downstream of the Listeria monocytogenes flagellin gene, flaA, revealed two putative chemotaxis genes, cheY and cheA. These genes have been shown to be transcribed as a bicistronic unit. In this study Tn916ΔE mutagenesis was used to generate two mutants, PF10 and PF16, which contain transposon inserts in the promoter region of this operon. These mutants were motile in liquid, but had reduced flagellin expression and were unable to burrow or swarm on soft agar plates. Complementation of the single transposon-copy mutant PF16 with cloned cheY and cheA in trans partially restored microaerotaxis and swarming on soft agar. The complemented strain did not exhibit any increase in flagellin production. Both PF10 and PF16 appear deficient in their ability to attach to the mouse fibroblast cell line 3T3.Key words: Listeria, motility, flagella, chemotaxis.
Collapse
|
34
|
Turner L, Samuel AD, Stern AS, Berg HC. Temperature dependence of switching of the bacterial flagellar motor by the protein CheY(13DK106YW). Biophys J 1999; 77:597-603. [PMID: 10388784 PMCID: PMC1300356 DOI: 10.1016/s0006-3495(99)76916-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The behavior of the bacterium Escherichia coli is controlled by switching of the flagellar rotary motor between the two rotational states, clockwise (CW) and counterclockwise (CCW). The molecular mechanism for switching remains unknown, but binding of the response regulator CheY-P to the motor component FliM enhances CW rotation. This effect is mimicked by the unphosphorylated double mutant CheY13DK106YW (CheY**). To learn more about switching, we measured the fraction of time that a motor spends in the CW state (the CW bias) at different concentrations of CheY** and at different temperatures. From the CW bias, we computed the standard free energy change of switching. In the absence of CheY, this free energy change is a linear function of temperature (. Biophys. J. 71:2227-2233). In the presence of CheY**, it is nonlinear. However, the data can be fit by models in which binding of each molecule of CheY** shifts the difference in free energy between CW and CCW states by a fixed amount. The shift increases linearly from approximately 0.3kT per molecule at 5 degrees C to approximately 0.9kT at 25 degrees C, where k is Boltzmann's constant and T is 289 Kelvin (= 16 degrees C). The entropy and enthalpy contributions to this shift are about -0. 031kT/ degrees C and 0.10kT, respectively.
Collapse
Affiliation(s)
- L Turner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
35
|
Yeh KC, Lagarias JC. Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc Natl Acad Sci U S A 1998; 95:13976-81. [PMID: 9811911 PMCID: PMC24997 DOI: 10.1073/pnas.95.23.13976] [Citation(s) in RCA: 325] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/1998] [Accepted: 08/27/1998] [Indexed: 11/18/2022] Open
Abstract
The discovery of cyanobacterial phytochrome histidine kinases, together with the evidence that phytochromes from higher plants display protein kinase activity, bind ATP analogs, and possess C-terminal domains similar to bacterial histidine kinases, has fueled the controversial hypothesis that the eukaryotic phytochrome family of photoreceptors are light-regulated enzymes. Here we demonstrate that purified recombinant phytochromes from a higher plant and a green alga exhibit serine/threonine kinase activity similar to that of phytochrome isolated from dark grown seedlings. Phosphorylation of recombinant oat phytochrome is a light- and chromophore-regulated intramolecular process. Based on comparative protein sequence alignments and biochemical cross-talk experiments with the response regulator substrate of the cyanobacterial phytochrome Cph1, we propose that eukaryotic phytochromes are histidine kinase paralogs with serine/threonine specificity whose enzymatic activity diverged from that of a prokaryotic ancestor after duplication of the transmitter module.
Collapse
Affiliation(s)
- K C Yeh
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
36
|
Shukla D, Zhu XY, Matsumura P. Flagellar motor-switch binding face of CheY and the biochemical basis of suppression by CheY mutants that compensate for motor-switch defects in Escherichia coli. J Biol Chem 1998; 273:23993-9. [PMID: 9727015 DOI: 10.1074/jbc.273.37.23993] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CheY is a response regulator protein of Escherichia coli that interacts with the flagellar motor-switch complex to modulate flagellar rotation during chemotaxis. The switch complex is composed of three proteins, FliG, FliM, and FliN. Recent biochemical data suggest a direct interaction of CheY with FliM. In order to determine the FliM binding face of CheY, we isolated dominant suppressors of fliM mutations in cheY with limited allele specificity. The protein products of suppressor cheY alleles were purified and assayed for FliM binding. Six out of nine CheY mutants were defective in FliM binding. Suppressor amino acid substitutions were mapped on the crystal structure of CheY showing clustering of reduced binding mutations on a solvent-accessible face of CheY, thus revealing a FliM binding face of CheY. To examine the basis of genetic suppression, we cloned, purified, and tested FliM mutants for CheY binding. Like the wild-type FliM, the mutants were also defective in binding to various CheY suppressor mutants. This was not expected if CheY suppressors were compensatory conformational suppressors. Furthermore, a comparison of flagellar rotation patterns indicated that the cheY suppressors had readjusted the clockwise bias of the fliM strains. However, a chemotaxis assay revealed that the readjustment of the clockwise bias was not sufficient to make cells chemotactic. Although the suppressors did not restore chemotaxis, they did increase swarming on motility plates by a process called "pseudotaxis." Therefore, our genetic selection scheme generated suppressors of pseudotaxis or switch bias adjustment. The binding results suggest that the mechanism for this adjustment is the reduction in binding affinity of activated CheY. Therefore, these suppressors identified the switch-binding surface of CheY by loss-of-function defects rather than gain-of-function compensatory conformational changes.
Collapse
Affiliation(s)
- D Shukla
- Department of Microbiology and Immunology, the University of Illinois, Chicago, Illinois 60612-7344, USA
| | | | | |
Collapse
|
37
|
Garrity LF, Schiel SL, Merrill R, Reizer J, Saier MH, Ordal GW. Unique regulation of carbohydrate chemotaxis in Bacillus subtilis by the phosphoenolpyruvate-dependent phosphotransferase system and the methyl-accepting chemotaxis protein McpC. J Bacteriol 1998; 180:4475-80. [PMID: 9721285 PMCID: PMC107457 DOI: 10.1128/jb.180.17.4475-4480.1998] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphoenolpyruvate-dependent phosphotransferase system (PTS) plays a major role in the ability of Escherichia coli to migrate toward PTS carbohydrates. The present study establishes that chemotaxis toward PTS substrates in Bacillus subtilis is mediated by the PTS as well as by a methyl-accepting chemotaxis protein (MCP). As for E. coli, a B. subtilis ptsH null mutant is severely deficient in chemotaxis toward most PTS carbohydrates. Tethering analysis revealed that this mutant does respond normally to the stepwise addition of a PTS substrate (positive stimulus) but fails to respond normally to the stepwise removal of such a substrate (negative stimulus). An mcpC null mutant showed no response to the stepwise addition or removal of D-glucose or D-mannitol, both of which are PTS substrates. Therefore, in contrast to E. coli PTS carbohydrate chemotaxis, B. subtilis PTS carbohydrate chemotaxis is mediated by both MCPs and the PTS; the response to positive stimulus is primarily McpC mediated, while the duration or magnitude of the response to negative PTS carbohydrate stimulus is greatly influenced by components of the PTS and McpC. In the case of the PTS substrate D-glucose, the response to negative stimulus is also partially mediated by McpA. Finally, we show that B. subtilis EnzymeI-P has the ability to inhibit B. subtilis CheA autophosphorylation in vitro. We hypothesize that chemotaxis in the spatial gradient of the capillary assay may result from a combination of a transient increase in the intracellular concentration of EnzymeI-P and a decrease in the concentration of carbohydrate-associated McpC as the cell moves down the carbohydrate concentration gradient. Both events appear to contribute to inhibition of CheA activity that increases the tendency of the bacteria to tumble. In the case of D-glucose, a decrease in D-glucose-associated McpA may also contribute to the inhibition of CheA. This bias on the otherwise random walk allows net migration, or chemotaxis, to occur.
Collapse
Affiliation(s)
- L F Garrity
- Department of Biochemistry, Colleges of Medicine and of Liberal Arts and Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
38
|
Delgado M, Toledo H, Jerez CA. Molecular cloning, sequencing, and expression of a chemoreceptor gene from Leptospirillum ferrooxidans. Appl Environ Microbiol 1998; 64:2380-5. [PMID: 9647803 PMCID: PMC106399 DOI: 10.1128/aem.64.7.2380-2385.1998] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We have cloned and sequenced a 2,262-bp chromosomal DNA fragment from the chemolithoautotrophic acidophilic bacterium Leptospirillum ferrooxidans. This DNA contained an open reading frame for a 577-amino-acid protein showing several characteristics of the bacterial chemoreceptors and, therefore, we named this gene lcrI for Leptospirillum chemotaxis receptor I. This is the first sequence reported for a gene from L. ferrooxidans encoding a protein. The lcrI gene showed both sigma 28-like and sigma 70-like putative promoters. The LcrI deduced protein contained two hydrophobic regions most likely corresponding to the two transmembrane regions present in all of the methyl-accepting chemotaxis proteins (MCPs) which make them fold with both periplasmic and cytoplasmic domains. We have proposed a cytoplasmic domain for LcrI, which also contains the highly conserved domain (HCD region), present in all of the chemotactic receptors, and two probable methylation sites. The in vitro expression of a DNA plasmid containing the 2,262-bp fragment showed the synthesis of a 58-kDa protein which was immunoprecipitated by antibodies against the Tar protein (an MCP from Escherichia coli), confirming some degree of antigenic conservation. In addition, this 58-kDa protein was expressed in E. coli, being associated with its cytoplasmic membrane fraction. It was not possible to determine a chemotactic receptor function for LcrI expressed in E. coli. This was most likely due to the fact that the periplasmic pH of E. coli, which differs by 3 to 4 pH units from that of acidophilic chemolithotrophs, does not allow the right conformation for the LcrI periplasmic domain.
Collapse
Affiliation(s)
- M Delgado
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
39
|
Bren A, Eisenbach M. The N terminus of the flagellar switch protein, FliM, is the binding domain for the chemotactic response regulator, CheY. J Mol Biol 1998; 278:507-14. [PMID: 9600834 DOI: 10.1006/jmbi.1998.1730] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A key event in signal transduction during chemotaxis of Salmonella typhimurium and related bacterial species is the interaction between the phosphorylated form of the response regulator CheY (CheY approximately P) and the switch of the flagellar motor, located at its base. The consequence of this interaction is a shift in the direction of flagellar rotation from the default, counterclockwise, to clockwise. The docking site of CheY approximately P at the switch is the protein FliM. The purpose of this study was to identify the CheY-binding domain of FliM. We cloned 17 fliM mutants, each defective in switching and having a point mutation at a different location, and then overexpressed and purified their products. The CheY-binding ability of each of the FliM mutant proteins was determined by chemical crosslinking. All the mutant proteins with an amino acid substitution at the N terminus, FliM6LI, FliM7SY and FliM10EG, bound CheY approximately P to a much lesser extent than did wild-type FliM. CheY approximately P-binding of the other mutant proteins was similar to wild-type FliM. To investigate whether the FliM domain that includes these three mutations is indeed the CheY-binding domain, we synthesized a peptide composed of the first 16 amino acid residues of FliM, including a highly conserved region of FliM (residues 6 to 15). The peptide bound CheY and, to a larger extent, CheY approximately P. It also competed with full-length FliM on CheY approximately P. These results indicate that the CheY-binding domain of FliM is located at the N terminus, within residues 1 to 16, and suggest that FliM monomers can form a complete site for CheY binding.
Collapse
Affiliation(s)
- A Bren
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | |
Collapse
|
40
|
Schuster M, Abouhamad WN, Silversmith RE, Bourret RB. Chemotactic response regulator mutant CheY95IV exhibits enhanced binding to the flagellar switch and phosphorylation-dependent constitutive signalling. Mol Microbiol 1998; 27:1065-75. [PMID: 9535095 DOI: 10.1046/j.1365-2958.1998.00756.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CheY, a response regulator protein in bacterial chemotaxis, mediates swimming behaviour through interaction with the flagellar switch protein, FliM. In its active, phosphorylated state, CheY binds to the motor switch complex and induces a change from counterclockwise (CCW) to clockwise (CW) flagellar rotation. The conformation of a conserved aromatic residue, tyrosine 106, has been proposed to play an important role in this signalling process. Here, we show that an isoleucine to valine substitution in CheY at position 95--in close proximity to residue 106--results in an extremely CW, hyperactive phenotype that is dependent on phosphorylation. Further biochemical characterization of this mutant protein revealed phosphorylation and dephosphorylation rates that were indistinguishable from those of wild-type CheY. CheY95IV, however, exhibited an increased binding affinity to FliM. Taken together, these results show for the first time a correlation between enhanced switch binding and constitutive signalling in bacterial chemotaxis. Considering present structural information, we also propose possible models for the role of residue 95 in the mechanism of CheY signal transduction.
Collapse
Affiliation(s)
- M Schuster
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill 27599-7290, USA
| | | | | | | |
Collapse
|
41
|
Zhu X, Volz K, Matsumura P. The CheZ-binding surface of CheY overlaps the CheA- and FliM-binding surfaces. J Biol Chem 1997; 272:23758-64. [PMID: 9295320 DOI: 10.1074/jbc.272.38.23758] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CheY, the response regulator of bacterial chemotaxis, plays a pivotal role in signal transduction in bacterial chemotaxis and interacts with at least three proteins: CheA, FliM, and CheZ. CheA receives signals from chemoreceptors and then transfers the signal to CheY by a phosphotransfer reaction. Phosphorylated CheY binds to FliM, one of the switch proteins, resulting in a change in flagellar rotation from counterclockwise to clockwise. Phosphorylated CheY is dephosphorylated by its intrinsic autophosphatase activity and by CheZ. The CheA- and FliM-binding surfaces of CheY have been well studied, but characterization of the CheZ-binding surface of CheY is incomplete. We have analyzed the effect of CheZ on the dephosphorylation rates of 14 mutants of CheY. Nine mutant CheY proteins showed more resistance to CheZ phosphatase activity than did wild-type CheY. These nine mutant CheY proteins could be divided into two groups: one with altered CheZ binding and the other with normal CheZ binding. The mutations causing reduced CheZ binding altered residues on the same surface of CheY, a region consisting of the beta5-alpha5 loop, the alpha1-helix, and part of the alpha5-helix. Mutations rendering CheY resistant to CheZ, isolated by Sanna et al. (Sanna, M. G., Swanson, R. V., Bourret, R. B., and Simon, M. I. (1995) Mol. Microbiol. 15, 1069-1079), were also found to affect this surface. The mutations in the CheY protein that affect CheZ activity but not CheZ binding are located in the beta4-alpha4 loop, which appears to be involved in the catalytic activity of CheZ. Finally, our results indicate that the CheY surfaces that bind CheA, FliM, and CheZ overlap, but are not completely identical.
Collapse
Affiliation(s)
- X Zhu
- Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
42
|
Garrity LF, Ordal GW. Activation of the CheA kinase by asparagine in Bacillus subtilis chemotaxis. MICROBIOLOGY (READING, ENGLAND) 1997; 143:2945-2951. [PMID: 12094812 DOI: 10.1099/00221287-143-9-2945] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Past experiments have shown that CheA and CheY are required to generate smooth swimming signals in Bacillus subtilis chemotaxis. This study, as anticipated from in vivo experiments, demonstrates in vitro that an attractant-bound chemoreceptor leads to an increase in CheA activity, which in turn leads to an increase in the CheY-P pool that ultimately causes a behavioural change in the bacteria. Asparagine has been found to increase the rate of CheY-P formation in the presence of McpB-containing membranes, CheA, and an excess of CheY. This asparagine effect requires the presence of both CheA and McpB, the latter of which has been shown to be the sole receptor for this attractant. Utilizing membranes from a number of B. subtilis null mutant strains, insight has also been gained into the potential roles of a number of unique chemotaxis proteins in the regulation of CheA activity in the presence and absence of this attractant.
Collapse
Affiliation(s)
- Liam F Garrity
- Department of Biochemistry, Colleges of Medicine and Liberal Arts and Sciences, University of Illinois, Urbana, IL 61801, USA
| | - George W Ordal
- Department of Biochemistry, Colleges of Medicine and Liberal Arts and Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
43
|
Gupte G, Woodward C, Stout V. Isolation and characterization of rcsB mutations that affect colanic acid capsule synthesis in Escherichia coli K-12. J Bacteriol 1997; 179:4328-35. [PMID: 9209051 PMCID: PMC179257 DOI: 10.1128/jb.179.13.4328-4335.1997] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Regulation of colanic acid polysaccharide capsule synthesis in Escherichia coli requires the proteins RcsC and RcsB, in addition to several other proteins. By sequence similarity, these two proteins appear to be members of the two-component sensor-effector regulatory family found in bacteria. The present study characterizes the functional domains of RcsB. We have isolated mutations in rcsB that are able to suppress an rcsC "up" mutation (i.e., leading to increase in cps transcription) that normally results in constitutive expression of the capsule. In addition, constitutive capsule mutations in rcsB have been isolated. From the characterization of the mutants and by analogy to the three-dimensional structure of CheY, we have begun to define different domains of RcsB and to assign functions to them. A few of the constitutive capsule mutations were localized in an acidic pocket that has been proposed to play a crucial role in phosphorylation of RcsB. As seen in other two-component systems, an aspartate-to-glutamate substitution at the presumed site of phosphorylation of RcsB resulted in constitutive capsule expression. Lastly, several of our rcsB mutants were found to be allele specific (rcsC137 specific) for rcsC, suggesting a physical as well as functional interaction between RcsC and RcsB proteins.
Collapse
Affiliation(s)
- G Gupte
- Department of Microbiology and Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe 85287-2701, USA
| | | | | |
Collapse
|
44
|
Zhu X, Rebello J, Matsumura P, Volz K. Crystal structures of CheY mutants Y106W and T87I/Y106W. CheY activation correlates with movement of residue 106. J Biol Chem 1997; 272:5000-6. [PMID: 9030562 DOI: 10.1074/jbc.272.8.5000] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Position 106 in CheY is highly conserved as an aromatic residue in the response regulator superfamily. In the structure of the wild-type, apo-CheY, Tyr106 is a rotamer whose electron density is observed in both the inside and the outside positions. In the structure of the T87I mutant of CheY, the threonine to isoleucine change at position 87 causes the side chain of Tyr106 to be exclusively restricted to the outside position. In this report we demonstrate that the T87I mutation causes cells to be smooth swimming and non-chemotactic. We also show that another CheY mutant, Y106W, causes cells to be more tumbly than wild-type CheY, and impairs chemotaxis. In the structure of Y106W, the side chain of Trp106 stays exclusively in the inside position. Furthermore, a T87I/Y106W double mutant, which confers the same phenotype as T87I, restricts the side chain of Trp106 to the outside position. The results from these behavioral and structural studies indicate that the rotameric nature of the Tyr106 residue is involved in activation of the CheY molecule. Specifically, CheY's signaling ability correlates with the conformational heterogeneity of the Tyr106 side chain. Our data also suggest that these mutations affect the signal at an event subsequent to phosphorylation.
Collapse
Affiliation(s)
- X Zhu
- Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
45
|
Ellefson DD, Weber U, Wolfe AJ. Genetic analysis of the catalytic domain of the chemotaxis-associated histidine kinase CheA. J Bacteriol 1997; 179:825-30. [PMID: 9006039 PMCID: PMC178766 DOI: 10.1128/jb.179.3.825-830.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli cells express two forms of CheA, the histidine kinase associated with chemotaxis. The long form, CheA(L), plays a critical role in chemotactic signal transduction by phosphorylating two chemotaxis-associated response regulators, CheY and CheB. CheA(L) first autophosphorylates amino acid His-48 before its phosphoryl group is transferred to these response regulators. The short form, CheA(S), lacks the amino-terminal 97 amino acids of CheA(L) and therefore does not possess the site of phosphorylation. The centrally located transmitter domain of both forms of CheA contains four regions, called N, G1, F, and G2, highly conserved among histidine kinases of the family of two-component signal transduction systems. On the basis of sequence similarity to highly conserved regions of certain eukaryotic kinases, the G1 and G2 regions are purported to be involved in the binding and hydrolysis of ATP. We report here that alleles mutated in the G1, G2, or F region synthesize CheA variants that cannot autophosphorylate in vitro and which cannot support chemotaxis in vivo. We also show that in vitro, the nonphosphorylatable CheA(S) protein mediates transphosphorylation of a CheA(L) variant defective in both G1 and G2. In contrast, CheA(L) variants defective for either G1 or G2 mediate transphosphorylation of each other poorly, if at all. These results are consistent with a mechanism by which the G1 and G2 regions of one protomer of a CheA dimer form a unit that mediates transphosphorylation of the other protomer within that dimer.
Collapse
Affiliation(s)
- D D Ellefson
- Department of Microbiology and Immunology, Stritch College of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | | | |
Collapse
|
46
|
Falke JJ, Bass RB, Butler SL, Chervitz SA, Danielson MA. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol 1997; 13:457-512. [PMID: 9442881 PMCID: PMC2899694 DOI: 10.1146/annurev.cellbio.13.1.457] [Citation(s) in RCA: 394] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The chemosensory pathway of bacterial chemotaxis has become a paradigm for the two-component superfamily of receptor-regulated phosphorylation pathways. This simple pathway illustrates many of the fundamental principles and unanswered questions in the field of signaling biology. A molecular description of pathway function has progressed rapidly because it is accessible to diverse structural, biochemical, and genetic approaches. As a result, structures are emerging for most of the pathway elements, biochemical studies are elucidating the mechanisms of key signaling events, and genetic methods are revealing the intermolecular interactions that transmit information between components. Recent advances include (a) the first molecular picture of a conformational transmembrane signal in a cell surface receptor, (b) four new structures of kinase domains and adaptation enzymes, and (c) significant new insights into the mechanisms of receptor-mediated kinase regulation, receptor adaptation, and the phospho-activation of signaling proteins. Overall, the chemosensory pathway and the propulsion system it regulates provide an ideal system in which to probe molecular principles underlying complex cellular signaling and behavior.
Collapse
Affiliation(s)
- J J Falke
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215, USA.
| | | | | | | | | |
Collapse
|
47
|
Uhl MA, Miller JF. Central role of the BvgS receiver as a phosphorylated intermediate in a complex two-component phosphorelay. J Biol Chem 1996; 271:33176-80. [PMID: 8969172 DOI: 10.1074/jbc.271.52.33176] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two-component systems use phosphorylation reactions to regulate stimulus/response pathways. In Bordetella pertussis, a human respiratory pathogen, the infectious cycle of the organism is controlled by the BvgAS two-component system. BvgS has similarities to sensor and response regulator components and is an autophosphorylating kinase that phosphorylates BvgA. BvgA, a response regulator, is a DNA-binding protein that activates virulence gene transcription. Three phosphorylated BvgS domains, the transmitter, receiver, and C terminus, are essential for signal transduction. We now demonstrate that the BvgS transmitter is sufficient for autophosphorylation but is unable to phosphorylate the C terminus or BvgA. The BvgS receiver regulates several phenotypes: dephosphorylation of both the BvgS transmitter and C terminus as well as transfer of a phosphoryl group from the transmitter to the C terminus. Our results indicate that BvgAS signal transduction initiates with autophosphorylation of the transmitter followed by phosphotransfer to the receiver. The phosphorylated receiver can donate to the C terminus or to water. The phosphorylated C terminus is then able to transfer the phosphoryl group to BvgA.
Collapse
Affiliation(s)
- M A Uhl
- Department of Microbiology and Immunology, School of Medicine, UCLA, Los Angeles, California 90024, USA
| | | |
Collapse
|
48
|
Garzón A, Parkinson JS. Chemotactic signaling by the P1 phosphorylation domain liberated from the CheA histidine kinase of Escherichia coli. J Bacteriol 1996; 178:6752-8. [PMID: 8955292 PMCID: PMC178571 DOI: 10.1128/jb.178.23.6752-6758.1996] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
CheA is a histidine kinase central to the signal transduction pathway for chemotaxis in Escherichia coli. CheA autophosphorylates at His-48, with ATP as the phosphodonor, and then donates its phosphoryl groups to two aspartate autokinases, CheY and CheB. Phospho-CheY controls the flagellar motors, whereas phospho-CheB participates in sensory adaptation. Polypeptides encompassing the N-terminal P1 domain of CheA can be transphosphorylated in vitro by the CheA catalytic domain and yet have no deleterious effect on chemotactic ability when expressed at high levels in wild-type cells. To find out why, we examined the effects of a purified P1 fragment, CheA[1-149], on CheA-related signaling activities in vitro and devised in vivo assays for those same activities. Although readily phosphorylated by CheA[260-537], the CheA catalytic domain, CheA[1-149], was a poor substrate for transphosphorylation by full-length CheA molecules, implying that the resident P1 domain monopolizes the CheA catalytic center. CheA-H48Q, a nonphosphorylatable mutant, failed to transphosphorylate CheA[1-149], suggesting that phosphorylation of the P1 domain in cis may alleviate the exclusion effect. In agreement with these findings, a 40-fold excess of CheA[1-149] fragments did not impair the CheA autophosphorylation reaction. CheA[1-149] did acquire phosphoryl groups via reversible phosphotransfer reactions with CheB and CheY molecules. An H48Q mutant of CheA[1-149] could not participate in these reactions, indicating that His-48 is probably the substrate site. The low level of efficiency of these phosphotransfer reactions and the inability of CheA[1-149] to interfere with CheA autophosphorylation most likely account for the failure of liberated P1 domains to jam chemotactic signaling in wild-type cells. However, an excess of CheA[1-149] fragments was able to support chemotactic signaling by P1-deficient cheA mutants, demonstrating that CheA[1-149] fragments have both transphosphorylation and phosphotransfer capability in vivo.
Collapse
Affiliation(s)
- A Garzón
- Biology Department, University of Utah, Salt Lake City 84112, USA
| | | |
Collapse
|
49
|
Sanna MG, Simon MI. In vivo and in vitro characterization of Escherichia coli protein CheZ gain- and loss-of-function mutants. J Bacteriol 1996; 178:6275-80. [PMID: 8892829 PMCID: PMC178500 DOI: 10.1128/jb.178.21.6275-6280.1996] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacterial chemotaxis results from the ability of flagellated bacteria to control the frequency of switching between smooth-swimming and tumbling episodes in response to changes in concentration of extracellular substances. High levels of phosphorylated CheY protein are the intracellular signal for inducing the tumbling mode of swimming. The CheZ protein has been shown to control the level of phosphorylated CheY by regulating its rate of dephosphorylation. To identify functional domains in the CheZ protein, we made mutants by random mutagenesis of the cheZ gene and constructed a series of deletions. The map position and the in vivo and in vitro activity of the resulting gain- or loss-of-function mutant proteins define separate functional domains of the CheZ protein.
Collapse
Affiliation(s)
- M G Sanna
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
50
|
Abstract
Chemotaxis signaling proteins normally control the direction of rotation of the flagellar motor of Escherichia coli. In their absence, a wild-type motor spins exclusively counterclockwise. Although the signaling pathway is well defined, relatively little is known about switching, the mechanism that enables the motor to change direction. We found that switching occurs in the absence of signaling proteins when cells are cooled to temperatures below about 10 degrees C. The forward rate constant (for counterclockwise to clockwise, CCW to CW, switching) increases and the reverse rate constant (for CW to CCW switching) decreases as the temperature is lowered. At about -2 degrees C, most motors spin exclusively CW. At temperatures for which reversals are frequent enough to generate a sizable data set, both CCW and CW interval distributions appear to be exponential. From the rate constants we computed equilibrium constants and standard free energy changes, and from the temperature dependence of the standard free energy changes we determined standard enthalpy and entropy changes. Using transition-state theory, we also calculated the activation free energy, enthalpy, and entropy. We conclude that the CW state is preferred at very low temperatures and that it is relatively more highly bonded and restricted than the CCW state.
Collapse
Affiliation(s)
- L Turner
- Rowland Institute for Science, Cambridge, Massachusetts 02142, USA.
| | | | | |
Collapse
|