1
|
Nakamura Y, Moi ML, Shiina T, Shin-I T, Suzuki R. Idiotope-Driven T-Cell/B-Cell Collaboration-Based T-Cell Epitope Prediction Using B-Cell Receptor Repertoire Sequences in Infectious Diseases. Viruses 2023; 15:v15051186. [PMID: 37243272 DOI: 10.3390/v15051186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
T-cell recognition of antigen epitopes is a crucial step for the induction of adaptive immune responses, and the identification of such T-cell epitopes is, therefore, important for understanding diverse immune responses and controlling T-cell immunity. A number of bioinformatic tools exist that predict T-cell epitopes; however, many of these methods highly rely on evaluating conventional peptide presentation by major histocompatibility complex (MHC) molecules, but they ignore epitope sequences recognized by T-cell receptor (TCR). Immunogenic determinant idiotopes are present on the variable regions of immunoglobulin molecules expressed on and secreted by B-cells. In idiotope-driven T-cell/B-cell collaboration, B-cells present the idiotopes on MHC molecules for recognition by idiotope-specific T-cells. According to the idiotype network theory formulated by Niels Jerne, such idiotopes found on anti-idiotypic antibodies exhibit molecular mimicry of antigens. Here, by combining these concepts and defining the patterns of TCR-recognized epitope motifs (TREMs), we developed a T-cell epitope prediction method that identifies T-cell epitopes derived from antigen proteins by analyzing B-cell receptor (BCR) sequences. This method allowed us to identify T-cell epitopes that contain the same TREM patterns between BCR and viral antigen sequences in two different infectious diseases caused by dengue virus and SARS-CoV-2 infection. The identified epitopes were among the T-cell epitopes detected in previous studies, and T-cell stimulatory immunogenicity was confirmed. Thus, our data support this method as a powerful tool for the discovery of T-cell epitopes from BCR sequences.
Collapse
Affiliation(s)
| | - Meng Ling Moi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | | | - Ryuji Suzuki
- Repertoire Genesis Inc., Osaka 567-0085, Japan
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, National Hospital Organization Sagamihara National Hospital, Kanagawa 252-0392, Japan
| |
Collapse
|
2
|
Shukla AK, Misra S. Clinical implications of anti-idiotype antibodies in COVID-19. J Basic Clin Physiol Pharmacol 2022; 33:727-733. [PMID: 36279146 DOI: 10.1515/jbcpp-2022-0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Idiotype-based therapeutics have failed to deliver their promise, necessitating rethinking of the concept and its potential to develop a viable immunotherapy method. The idiotype based hypothesis is discussed in this paper in order to produce effective anti-idiotype vaccinations. Polyclonal anti-idiotype reagents have been shown to be more successful in animal models, and a better understanding of the immune response in humans supports the idea that polyclonal anti-idiotype vaccines will be more effective than monoclonal-based anti-idiotype vaccines. This innovative approach can be used to produce therapeutic antibodies in a Biotech-standard manner. The idiotype network has been tweaked in the lab to provide protection against a variety of microbiological diseases. Antibodies to image-idiotype antigens, both internal and non-internal, can elicit unique immune responses to antigens. The current outbreak of severe acute respiratory syndrome 2 (SARS-2) has presented a fantastic chance to use idiotype/anti-idiotype antibodies as a protective regimen, which might be used to treat COVID-19 patients. The development of various effective vaccinations has been crucial in the pandemic's management, but their effectiveness has been limited. In certain healthy people, the development of viral variations and vaccinations can be linked to rare off-target or hazardous effects, such as allergic responses, myocarditis and immune-mediated thrombosis and thrombocytopenia. Many of these occurrences are most likely immune-mediated. The current analysis reveals successful idiotype/anti-idiotype antibody uses in a variety of viral illnesses, emphazising their importance in the COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Saurav Misra
- Department of Pharmacology, Kalpana Chawla Government Medical College, Karnal, India
| |
Collapse
|
3
|
Sarango G, Richetta C, Pereira M, Kumari A, Ghosh M, Bertrand L, Pionneau C, Le Gall M, Grégoire S, Jeger‐Madiot R, Rosoy E, Subra F, Delelis O, Faure M, Esclatine A, Graff‐Dubois S, Stevanović S, Manoury B, Ramirez BC, Moris A. The Autophagy Receptor TAX1BP1 (T6BP) improves antigen presentation by MHC-II molecules. EMBO Rep 2022; 23:e55470. [PMID: 36215666 PMCID: PMC9724678 DOI: 10.15252/embr.202255470] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 12/12/2022] Open
Abstract
CD4+ T lymphocytes play a major role in the establishment and maintenance of immunity. They are activated by antigenic peptides derived from extracellular or newly synthesized (endogenous) proteins presented by the MHC-II molecules. The pathways leading to endogenous MHC-II presentation remain poorly characterized. We demonstrate here that the autophagy receptor, T6BP, influences both autophagy-dependent and -independent endogenous presentation of HIV- and HCMV-derived peptides. By studying the immunopeptidome of MHC-II molecules, we show that T6BP affects both the quantity and quality of peptides presented. T6BP silencing induces the mislocalization of the MHC-II-loading compartments and rapid degradation of the invariant chain (CD74) without altering the expression and internalization kinetics of MHC-II molecules. Defining the interactome of T6BP, we identify calnexin as a T6BP partner. We show that the calnexin cytosolic tail is required for this interaction. Remarkably, calnexin silencing replicates the functional consequences of T6BP silencing: decreased CD4+ T cell activation and exacerbated CD74 degradation. Altogether, we unravel T6BP as a key player of the MHC-II-restricted endogenous presentation pathway, and we propose one potential mechanism of action.
Collapse
Affiliation(s)
- Gabriela Sarango
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance,Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| | - Clémence Richetta
- Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance,LBPA, ENS‐Paris Saclay, CNRS UMR8113Université Paris SaclayGif‐sur‐YvetteFrance
| | - Mathias Pereira
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance,Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| | - Anita Kumari
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance,Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| | - Michael Ghosh
- Department of Immunology, Institute for Cell BiologyUniversity of TübingenTübingenGermany
| | - Lisa Bertrand
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance,Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| | - Cédric Pionneau
- Sorbonne UniversitéINSERM, UMS Production et Analyse de Données en Sciences de la vie et en Santé, PASS, Plateforme Post‐génomique de la Pitié SalpêtrièreParisFrance
| | - Morgane Le Gall
- 3P5 proteom'IC facilityUniversité de Paris, Institut Cochin, INSERM U1016, CNRS‐UMR 8104ParisFrance
| | - Sylvie Grégoire
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance,Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| | - Raphaël Jeger‐Madiot
- Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance,Present address:
Sorbonne Université, INSERM U959, Immunology‐Immunopathology‐Immunotherapy (i3)ParisFrance
| | - Elina Rosoy
- Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| | - Frédéric Subra
- LBPA, ENS‐Paris Saclay, CNRS UMR8113Université Paris SaclayGif‐sur‐YvetteFrance
| | - Olivier Delelis
- LBPA, ENS‐Paris Saclay, CNRS UMR8113Université Paris SaclayGif‐sur‐YvetteFrance
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonLyonFrance,Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Audrey Esclatine
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Stéphanie Graff‐Dubois
- Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance,Present address:
Sorbonne Université, INSERM U959, Immunology‐Immunopathology‐Immunotherapy (i3)ParisFrance
| | - Stefan Stevanović
- Department of Immunology, Institute for Cell BiologyUniversity of TübingenTübingenGermany
| | - Bénédicte Manoury
- Institut Necker Enfants Malades, INSERM U1151‐CNRS UMR 8253, Faculté de médecine NeckerUniversité de ParisParisFrance
| | - Bertha Cecilia Ramirez
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance,Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| | - Arnaud Moris
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance,Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| |
Collapse
|
4
|
Neoantigens – the next frontier in precision immunotherapy for B-cell lymphoproliferative disorders. Blood Rev 2022; 56:100969. [DOI: 10.1016/j.blre.2022.100969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/20/2022]
|
5
|
Naveed A, Naz D, Rahman SU. Idiotype/anti-idiotype antibodies: as a glorious savior in COVID-19 pandemics. TRANSLATIONAL MEDICINE COMMUNICATIONS 2021; 6:18. [PMID: 34458584 PMCID: PMC8380862 DOI: 10.1186/s41231-021-00097-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/26/2021] [Indexed: 06/01/2023]
Abstract
The idiotype network is experimentally modified to provide protective immunity against various microbial pathogens. Both internal and non-internal image-idiotype antibodies can trigger specific immune responses to antigens. The current outbreak of Severe Acute Respiratory Syndrome 2 (SARS-2) has provided a great opportunity to take advantage of idiotype / anti-idiotype antibodies as a protective regimen when no approved vaccine is available on earth. The current review identifies successful applications of idiotype/ anti-idiotype antibodies in various viral diseases and highlights their importance in COVID-19 pandemics. In the absence of vaccines and targeted therapies, polyclonal idiotype/ anti-idiotype antibodies against the viral structure may be a potential approach to the prevention and treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Ahsan Naveed
- Chonnam National University, Gwangju, South Korea
| | - Deeba Naz
- University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
6
|
CD4+ T-cell killing of multiple myeloma cells is mediated by resident bone marrow macrophages. Blood Adv 2021; 4:2595-2605. [PMID: 32544236 DOI: 10.1182/bloodadvances.2020001434] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/10/2020] [Indexed: 12/30/2022] Open
Abstract
CD4+ T cells may induce potent antitumor immune responses through interaction with antigen-presenting cells within the tumor microenvironment. Using a murine model of multiple myeloma, we demonstrated that adoptive transfer of idiotype-specific CD4+ T cells may elicit curative responses against established multifocal myeloma in bone marrow. This finding indicates that the myeloma bone marrow niche contains antigen-presenting cells that may be rendered tumoricidal. Given the complexity of the bone marrow microenvironment, the mechanistic basis of such immunotherapeutic responses is not known. Through a functional characterization of antitumor CD4+ T-cell responses within the bone marrow microenvironment, we found that killing of myeloma cells is orchestrated by a population of bone marrow-resident CD11b+F4/80+MHC-IIHigh macrophages that have taken up and present secreted myeloma protein. The present results demonstrate the potential of resident macrophages as powerful mediators of tumor killing within the bone marrow and provide a basis for novel therapeutic strategies against multiple myeloma and other malignancies that affect the bone marrow.
Collapse
|
7
|
Leone P, Solimando AG, Malerba E, Fasano R, Buonavoglia A, Pappagallo F, De Re V, Argentiero A, Silvestris N, Vacca A, Racanelli V. Actors on the Scene: Immune Cells in the Myeloma Niche. Front Oncol 2020; 10:599098. [PMID: 33194767 PMCID: PMC7658648 DOI: 10.3389/fonc.2020.599098] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Two mechanisms are involved in the immune escape of cancer cells: the immunoediting of tumor cells and the suppression of the immune system. Both processes have been revealed in multiple myeloma (MM). Complex interactions between tumor plasma cells and the bone marrow (BM) microenvironment contribute to generate an immunosuppressive milieu characterized by high concentration of immunosuppressive factors, loss of effective antigen presentation, effector cell dysfunction, and expansion of immunosuppressive cell populations, such as myeloid-derived suppressor cells, regulatory T cells and T cells expressing checkpoint molecules such as programmed cell death 1. Considering the great immunosuppressive impact of BM myeloma microenvironment, many strategies to overcome it and restore myeloma immunosurveillance have been elaborated. The most successful ones are combined approaches such as checkpoint inhibitors in combination with immunomodulatory drugs, anti-monoclonal antibodies, and proteasome inhibitors as well as chimeric antigen receptor (CAR) T cell therapy. How best to combine anti-MM therapies and what is the optimal timing to treat the patient are important questions to be addressed in future trials. Moreover, intratumor MM heterogeneity suggests the crucial importance of tailored therapies to identify patients who might benefit the most from immunotherapy, reaching deeper and more durable responses.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
- Department of Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Eleonora Malerba
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Rossella Fasano
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Alessio Buonavoglia
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Fabrizio Pappagallo
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Valli De Re
- Bio-Proteomics Facility, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Antonella Argentiero
- Department of Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Nicola Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
- Department of Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
8
|
Lu H, Betancur A, Chen M, Ter Meulen JH. Toll-Like Receptor 4 Expression on Lymphoma Cells Is Critical for Therapeutic Activity of Intratumoral Therapy With Synthetic TLR4 Agonist Glucopyranosyl Lipid A. Front Oncol 2020; 10:1438. [PMID: 32974162 PMCID: PMC7466407 DOI: 10.3389/fonc.2020.01438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/07/2020] [Indexed: 11/24/2022] Open
Abstract
Intratumoral (IT) injections of Glucopyranosyl lipid A (G100), a synthetic toll-like receptor 4 (TLR4) agonist formulated in a stable emulsion, resulted in T-cell inflammation of the tumor microenvironment (TME) and complete cure of 60% of mice with large established A20 lymphomas. Strong abscopal effects on un-injected lesions were observed in a bilateral tumor model and surviving mice resisted a secondary tumor challenge. Depletion of CD8 T-cells, but not CD4 or NK cells, abrogated the anti-tumor effect. Unexpectedly, TLR4 knock-out rendered A20 tumors completely non-responsive to G100. In vitro studies showed that GLA has direct effect on A20 cells, but not on A20 cells deficient for TLR4. As shown by genotyping and phenotyping analysis, G100 strongly activated antigen presentation functions in A20 cells in vitro and in vivo and induced their apoptosis in a dose dependent manner. Similarly, the TLR4 positive human mantle cell lymphoma line Mino showed in vitro activation with G100 that was blocked with an anti-TLR4 antibody. In the A20 model, direct activation of B-lymphoma cells with G100 is sufficient to induce protective CD8 T-cell responses and TLR4 expressing human B-cell lymphomas may be amenable to this therapy as well.
Collapse
Affiliation(s)
- Hailing Lu
- Immune Design Corp., Seattle, WA, United States
| | | | | | | |
Collapse
|
9
|
B cell receptor ligation induces display of V-region peptides on MHC class II molecules to T cells. Proc Natl Acad Sci U S A 2019; 116:25850-25859. [PMID: 31796587 PMCID: PMC6926052 DOI: 10.1073/pnas.1902836116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
B and T lymphocytes collaborate during immune responses to antigens. B cells use membrane-bound antibody as part of their antigen receptor while T cells use a different receptor that recognizes antigen fragments bound to MHC molecules. We show here that T cells can recognize the variable parts of the B cell receptor when these are presented on MHC molecules. A prerequisite for such receptor cross-talk is that the B cell receptor binds antigen. The cross-talk results in collaboration between B and T cells and production of antibodies directed against the antigen. The findings have implications for basic immune regulation. The results may also help us understand the mechanism behind the development of SLE-like autoimmune diseases and B cell lymphomas. The B cell receptors (BCRs) for antigen express variable (V) regions that are enormously diverse, thus serving as markers on individual B cells. V region-derived idiotypic (Id) peptides can be displayed as pId:MHCII complexes on B cells for recognition by CD4+ T cells. It is not known if naive B cells spontaneously display pId:MHCII in vivo or if BCR ligation is required for expression, thereby enabling collaboration between Id+ B cells and Id-specific T cells. Here, using a mouse model, we show that naive B cells do not express readily detectable levels of pId:MHCII. However, BCR ligation by Ag dramatically increases physical display of pId:MHCII, leading to activation of Id-specific CD4+ T cells, extrafollicular T–B cell collaboration and some germinal center formation, and production of Id+ IgG. Besides having implications for immune regulation, the results may explain how persistent activation of self-reactive B cells induces the development of autoimmune diseases and B cell lymphomas.
Collapse
|
10
|
Xu-Monette ZY, Li J, Xia Y, Crossley B, Bremel RD, Miao Y, Xiao M, Snyder T, Manyam GC, Tan X, Zhang H, Visco C, Tzankov A, Dybkaer K, Bhagat G, Tam W, You H, Hsi ED, van Krieken JH, Huh J, Ponzoni M, Ferreri AJM, Møller MB, Piris MA, Winter JN, Medeiros JT, Xu B, Li Y, Kirsch I, Young KH. Immunoglobulin somatic hypermutation has clinical impact in DLBCL and potential implications for immune checkpoint blockade and neoantigen-based immunotherapies. J Immunother Cancer 2019; 7:272. [PMID: 31640780 PMCID: PMC6806565 DOI: 10.1186/s40425-019-0730-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 09/04/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) harbors somatic hypermutation (SHM) in the immunoglobulin heavy chain and light chain variable region genes, IGHV and IGK/LV. Recent studies have revealed that IGV SHM creates neoantigens that activate T-cell responses against B-cell lymphoma. METHODS To determine the clinical relevance of IGV SHM in DLBCL treated with standard immunochemotherapy, we performed next-generation sequencing of the immunoglobulin variable regions and complementarity determining region 3 (CDR3) for 378 patients with de novo DLBCL. The prognostic effects of IGV SHM and ongoing SHM or intra-clonal heterogeneity were analyzed in the training (192 patients), validation (186 patients), and overall DLBCL cohorts. To gain mechanistic insight, we analyzed the predicted IG-derived neoantigens' immunogenicity potential, determined by the major histocompatibility complex-binding affinity and the frequency-of-occurrence of T cell-exposed motifs (TCEMs) in a TCEM repertoire derived from human proteome, microbiome, and pathogen databases. Furthermore, IGV SHM was correlated with molecular characteristics of DLBCL and PD-1/L1 expression in the tumor microenvironment assessed by fluorescent multiplex immunohistochemistry. RESULTS SHM was commonly found in IGHV and less frequently in IGK/LV. High levels of clonal IGHV SHM (SHMhigh) were associated with prolonged overall survival in DLBCL patients, particularly those without BCL2 or MYC translocation. In contrast, long heavy chain CDR3 length, the presence of IGHV ongoing SHM in DLBCL, and high clonal IGK/LV SHM in germinal center B-cell-like (GCB)-DLBCL were associated with poor prognosis. These prognostic effects were significant in both the training and validation sets. By prediction, the SHMhigh groups harbored more potentially immune-stimulatory neoantigens with high binding affinity and rare TCEMs. PD-1/L1 expression in CD8+ T cells was significantly lower in IGHV SHMhigh than in SHMlow patients with activated B-cell-like DLBCL, whereas PD-1 expression in CD4+ T cells and PD-L1 expression in natural killer cells were higher in IGK/LV SHMhigh than in SHMlow patients with GCB-DLBCL. PD-L1/L2 (9p24.1) amplification was associated with high IGHV SHM and ongoing SHM. CONCLUSIONS These results show for the first time that IGV SHMhigh and ongoing SHM have prognostic effects in DLBCL and potential implications for PD-1/PD-L1 blockade and neoantigen-based immunotherapies.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/therapeutic use
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Biomarkers, Tumor/antagonists & inhibitors
- Combined Modality Therapy
- Female
- Germ-Line Mutation
- Humans
- Immunotherapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/therapy
- Male
- Middle Aged
- Models, Biological
- Molecular Targeted Therapy
- Prognosis
- Programmed Cell Death 1 Ligand 2 Protein/antagonists & inhibitors
- Programmed Cell Death 1 Ligand 2 Protein/genetics
- Programmed Cell Death 1 Ligand 2 Protein/metabolism
- Somatic Hypermutation, Immunoglobulin
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Zijun Y Xu-Monette
- Hematopathology Division, Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianyong Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi Xia
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Yi Miao
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Xiao
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaohong Tan
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hongwei Zhang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alexandar Tzankov
- Institute of Pathology and Medical Genetics, University Hospital of Basel, Basel, Switzerland
| | | | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Wayne Tam
- Weill Medical College of Cornell University, New York, NY, USA
| | - Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | | | | | - Jooryung Huh
- Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | | | | | | | - Miguel A Piris
- Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Jane N Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jeffrey T Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Ken H Young
- Hematopathology Division, Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Duke University Medical Center, Duke Cancer Institute, Durham, NC, 27710, USA.
| |
Collapse
|
11
|
Høglund RA, Torsetnes SB, Lossius A, Bogen B, Homan EJ, Bremel R, Holmøy T. Human Cysteine Cathepsins Degrade Immunoglobulin G In Vitro in a Predictable Manner. Int J Mol Sci 2019; 20:ijms20194843. [PMID: 31569504 PMCID: PMC6801702 DOI: 10.3390/ijms20194843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
Cysteine cathepsins are critical components of the adaptive immune system involved in the generation of epitopes for presentation on human leukocyte antigen (HLA) molecules and have been implicated in degradation of autoantigens. Immunoglobulin variable regions with somatic mutations and random complementarity region 3 amino acid composition are inherently immunogenic. T cell reactivity towards immunoglobulin variable regions has been investigated in relation to specific diseases, as well as reactivity to therapeutic monoclonal antibodies. Yet, how the immunoglobulins, or the B cell receptors, are processed in endolysosomal compartments of professional antigen presenting cells has not been described in detail. Here we present in silico and in vitro experimental evidence suggesting that cysteine cathepsins S, L and B may have important roles in generating peptides fitting HLA class II molecules, capable of being presented to T cells, from monoclonal antibodies as well as from central nervous system proteins including a well described autoantigen. By combining neural net models with in vitro proteomics experiments, we further suggest how such degradation can be predicted, how it fits with available cellular models, and that it is immunoglobulin heavy chain variable family dependent. These findings are relevant for biotherapeutic drug design as well as to understand disease development. We also suggest how these tools can be improved, including improved machine learning methodology.
Collapse
Affiliation(s)
- Rune Alexander Høglund
- Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway.
- Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital and University of Oslo, 1478 Lørenskog, Norway.
- Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway.
| | - Silje Bøen Torsetnes
- Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway.
- Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital and University of Oslo, 1478 Lørenskog, Norway.
| | - Andreas Lossius
- Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway.
- Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital and University of Oslo, 1478 Lørenskog, Norway.
- Department of Immunology and Transfusion Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway.
| | - Bjarne Bogen
- Department of Immunology and Transfusion Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway.
| | | | | | - Trygve Holmøy
- Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway.
- Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway.
| |
Collapse
|
12
|
Bogen B, Fauskanger M, Haabeth OA, Tveita A. CD4 + T cells indirectly kill tumor cells via induction of cytotoxic macrophages in mouse models. Cancer Immunol Immunother 2019; 68:1865-1873. [PMID: 31448380 DOI: 10.1007/s00262-019-02374-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/01/2019] [Indexed: 02/04/2023]
Abstract
It is well recognized that CD4+ T cells may play an important role in immunosurveillance and immunotherapy against cancer. However, the details of how these cells recognize and eliminate the tumor cells remain incompletely understood. For the past 25 years, we have focused on how CD4+ T cells reject multiple myeloma cells in a murine model (MOPC315). In our experimental system, the secreted tumor-specific antigen is taken up by tumor-infiltrating macrophages that process it and present a neoepitope [a V region-derived idiotypic (Id) peptide] on MHC class II molecules to Th1 cells. Stimulated Th1 cells produce IFNγ, which activates macrophages in a manner that elicits an M1-like, tumoricidal phenotype. Through an inducible nitric oxide synthetase (iNOS)-dependent mechanism, the M1 macrophages secrete nitric oxide (NO) that diffuses into neighboring tumor cells. Inside the tumor cells, NO-derived reactive nitrogen species, including peroxynitrite, causes nitrosylation of proteins and triggers apoptosis by the intrinsic apoptotic pathway. This mode of indirect tumor recognition by CD4+ T cells operates independently of MHC class II expression on cancer cells. However, secretion of the tumor-specific antigen, and uptake and MHCII presentation on macrophages, is required for rejection. Similar mechanisms can also be observed in a B-lymphoma model and in the unrelated B16 melanoma model. Our findings reveal a novel mechanism by which CD4+ T cells kill tumor cells indirectly via induction of intratumoral cytotoxic macrophages. The data suggest that induction of M1 polarization of tumor-infiltrating macrophages, by CD4+ T cells or through other means, could serve as an immunotherapeutic strategy.
Collapse
Affiliation(s)
- Bjarne Bogen
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Immunology, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway.
- KG Jebsen Centre for Influenza Vaccine Research, Oslo, Norway.
| | - Marte Fauskanger
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole Audun Haabeth
- Department of Immunology, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway
| | - Anders Tveita
- Department of Immunology, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway
| |
Collapse
|
13
|
Khodadoust MS, Olsson N, Chen B, Sworder B, Shree T, Liu CL, Zhang L, Czerwinski DK, Davis MM, Levy R, Elias JE, Alizadeh AA. B-cell lymphomas present immunoglobulin neoantigens. Blood 2019; 133:878-881. [PMID: 30545830 PMCID: PMC6384186 DOI: 10.1182/blood-2018-06-845156] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | - Binbin Chen
- Division of Oncology, Department of Medicine
- Department of Genetics
| | | | | | | | | | | | - Mark M Davis
- Department of Microbiology and Immunology
- Howard Hughes Medical Institute
| | - Ronald Levy
- Division of Oncology, Department of Medicine
| | | | - Ash A Alizadeh
- Division of Oncology, Department of Medicine
- Center for Cancer Systems Biology, and
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
| |
Collapse
|
14
|
Andersen TK, Huszthy PC, Gopalakrishnan RP, Jacobsen JT, Fauskanger M, Tveita AA, Grødeland G, Bogen B. Enhanced germinal center reaction by targeting vaccine antigen to major histocompatibility complex class II molecules. NPJ Vaccines 2019; 4:9. [PMID: 30775000 PMCID: PMC6370881 DOI: 10.1038/s41541-019-0101-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/09/2019] [Indexed: 01/08/2023] Open
Abstract
Enhancing the germinal center (GC) reaction is a prime objective in vaccine development. Targeting of antigen to MHCII on APCs has previously been shown to increase antibody responses, but the underlying mechanism has been unclear. We have here investigated the GC reaction after targeting antigen to MHCII in (i) a defined model with T and B cells of known specificity using adjuvant-free vaccine proteins, and (ii) an infectious disease model using a DNA vaccine. MHCII-targeting enhanced presentation of peptide: MHCII on APCs, and increased the numbers of GC B cells, TFH, and plasma cells. Antibodies appeared earlier and levels were increased. BCR of GC B cells and serum antibodies had increased avidity for antigen. The improved responses required cross-linking of BCR and MHCII in either cis or trans. The enhanced GC reaction induced by MHCII-targeting of antigen has clear implications for design of more efficient subunit vaccines.
Collapse
Affiliation(s)
- Tor Kristian Andersen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, N-0027 Oslo, Norway
| | - Peter C. Huszthy
- Centre for Immune Regulation (CIR), University of Oslo, N-0027 Oslo, Norway
| | | | | | - Marte Fauskanger
- Centre for Immune Regulation (CIR), University of Oslo, N-0027 Oslo, Norway
| | - Anders A. Tveita
- Centre for Immune Regulation (CIR), University of Oslo, N-0027 Oslo, Norway
| | - Gunnveig Grødeland
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, N-0027 Oslo, Norway
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, N-0027 Oslo, Norway
- Centre for Immune Regulation (CIR), University of Oslo, N-0027 Oslo, Norway
- Department of Immunology, Oslo University Hospital, N-0424 Oslo, Norway
| |
Collapse
|
15
|
Polarity of CD4+ T cells towards the antigen presenting cell is regulated by the Lck adapter TSAd. Sci Rep 2018; 8:13319. [PMID: 30190583 PMCID: PMC6127336 DOI: 10.1038/s41598-018-31510-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/08/2018] [Indexed: 01/02/2023] Open
Abstract
Polarization of T cells towards the antigen presenting cell (APC) is critically important for appropriate activation and differentiation of the naïve T cell. Here we used imaging flow cytometry (IFC) and show that the activation induced Lck and Itk adapter T cell specific adapter protein (TSAd), encoded by SH2D2A, modulates polarization of T cells towards the APC. Upon exposure to APC presenting the cognate antigen Id, Sh2d2a−/− CD4+ T cells expressing Id-specific transgenic T cell receptor (TCR), displayed impaired polarization of F-actin and TCR to the immunological synapse (IS). Sh2d2a−/− T-cells that did polarize F-actin and TCR still displayed impaired polarization of PKCξ, PAR3 and the microtubule-organizing center (MTOC). In vitro differentiation of activated Sh2d2a−/− T cells was skewed towards an effector memory (Tem) rather than a central memory (Tcm) phenotype. A similar trend was observed for Id-specific TCR Sh2d2a−/− T cells stimulated with APC and cognate antigen. Taken together our data suggest that TSAd modulates differentiation of experienced T cells possibly through polarization of CD4+ T cells towards the APC.
Collapse
|
16
|
Homan EJ, Bremel RD. A Role for Epitope Networking in Immunomodulation by Helminths. Front Immunol 2018; 9:1763. [PMID: 30108588 PMCID: PMC6079203 DOI: 10.3389/fimmu.2018.01763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022] Open
Abstract
Helminth infections, by nematodes, trematodes, or cestodes, can lead to the modulation of host immune responses. This allows long-duration parasite infections and also impacts responses to co-infections. Surface, secreted, excreted, and shed proteins are thought to play a major role in modulation. A commonly reported feature of such immune modulation is the role of T regulatory (Treg) cells and IL-10. Efforts to identify helminth proteins, which cause immunomodulation, have identified candidates but not provided clarity as to a uniform mechanism driving modulation. In this study, we applied a bioinformatics systems approach, allowing us to analyze predicted T-cell epitopes of 17 helminth species and the responses to their surface proteins. In addition to major histocompatibility complex (MHC) binding, we analyzed amino acid motifs that would be recognized by T-cell receptors [T-cell-exposed motifs (TCEMs)]. All the helminth species examined have, within their surface proteins, peptides, which combine very common TCEMs with predicted high affinity binding to many human MHC alleles. This combination of features would result in large cognate T cell and a high probability of eliciting Treg responses. The TCEMs, which determine recognition by responding T-cell clones, are shared to a high degree between helminth species and with Plasmodium falciparum and Mycobacterium tuberculosis, both common co-infecting organisms. The implication of our observations is not only that Treg cells play a significant role in helminth-induced immune modulation but also that the epitope specificities of Treg responses are shared across species and genera of helminth. Hence, the immune response to a given helminth cannot be considered in isolation but rather forms part of an epitope ecosystem, or microenvironment, in which potentially immunosuppressive peptides in the helminth network via their common T-cell receptor recognition signals with T-cell epitopes in self proteins, microbiome, other helminths, and taxonomically unrelated pathogens. Such a systems approach provides a high-level view of the antigen-immune system signaling dynamics that may bias a host's immune response to helminth infections toward immune modulation. It may indicate how helminths have evolved to select for peptides that favor long-term parasite host coexistence.
Collapse
|
17
|
Haabeth OAW, Fauskanger M, Manzke M, Lundin KU, Corthay A, Bogen B, Tveita AA. CD4+ T-cell–Mediated Rejection of MHC Class II–Positive Tumor Cells Is Dependent on Antigen Secretion and Indirect Presentation on Host APCs. Cancer Res 2018; 78:4573-4585. [DOI: 10.1158/0008-5472.can-17-2426] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/16/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022]
|
18
|
Høglund RA, Lossius A, Johansen JN, Homan J, Benth JŠ, Robins H, Bogen B, Bremel RD, Holmøy T. In Silico Prediction Analysis of Idiotope-Driven T-B Cell Collaboration in Multiple Sclerosis. Front Immunol 2017; 8:1255. [PMID: 29038659 PMCID: PMC5630699 DOI: 10.3389/fimmu.2017.01255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/20/2017] [Indexed: 12/02/2022] Open
Abstract
Memory B cells acting as antigen-presenting cells are believed to be important in multiple sclerosis (MS), but the antigen they present remains unknown. We hypothesized that B cells may activate CD4+ T cells in the central nervous system of MS patients by presenting idiotopes from their own immunoglobulin variable regions on human leukocyte antigen (HLA) class II molecules. Here, we use bioinformatics prediction analysis of B cell immunoglobulin variable regions from 11 MS patients and 6 controls with other inflammatory neurological disorders (OINDs), to assess whether the prerequisites for such idiotope-driven T–B cell collaboration are present. Our findings indicate that idiotopes from the complementarity determining region (CDR) 3 of MS patients on average have high predicted affinities for disease associated HLA-DRB1*15:01 molecules and are predicted to be endosomally processed by cathepsin S and L in positions that allows such HLA binding to occur. Additionally, complementarity determining region 3 sequences from cerebrospinal fluid (CSF) B cells from MS patients contain on average more rare T cell-exposed motifs that could potentially escape tolerance and stimulate CD4+ T cells than CSF B cells from OIND patients. Many of these features were associated with preferential use of the IGHV4 gene family by CSF B cells from MS patients. This is the first study to combine high-throughput sequencing of patient immune repertoires with large-scale prediction analysis and provides key indicators for future in vitro and in vivo analyses.
Collapse
Affiliation(s)
- Rune A Høglund
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andreas Lossius
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Faculty of Medicine, Department of Immunology and Transfusion Medicine, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jorunn N Johansen
- Faculty of Medicine, Department of Immunology and Transfusion Medicine, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jane Homan
- EigenBio LLC, Madison, WI, United States
| | - Jūratė Šaltytė Benth
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Health Services Research Unit, Akershus University Hospital, Lørenskog, Norway
| | - Harlan Robins
- Adaptive Biotechnologies, Seattle, WA, United States
| | - Bjarne Bogen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Faculty of Medicine, Department of Immunology and Transfusion Medicine, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway.,Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | | | - Trygve Holmøy
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Nijland M, Veenstra RN, Visser L, Xu C, Kushekhar K, van Imhoff GW, Kluin PM, van den Berg A, Diepstra A. HLA dependent immune escape mechanisms in B-cell lymphomas: Implications for immune checkpoint inhibitor therapy? Oncoimmunology 2017; 6:e1295202. [PMID: 28507804 PMCID: PMC5414870 DOI: 10.1080/2162402x.2017.1295202] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/31/2017] [Accepted: 02/08/2017] [Indexed: 02/09/2023] Open
Abstract
Antigen presentation by tumor cells in the context of Human Leukocyte Antigen (HLA) is generally considered to be a prerequisite for effective immune checkpoint inhibitor therapy. We evaluated cell surface HLA class I, HLA class II and cytoplasmic HLA-DM staining by immunohistochemistry (IHC) in 389 classical Hodgkin lymphomas (cHL), 22 nodular lymphocyte predominant Hodgkin lymphomas (NLPHL), 137 diffuse large B-cell lymphomas (DLBCL), 39 primary central nervous system lymphomas (PCNSL) and 19 testicular lymphomas. We describe a novel mechanism of immune escape in which loss of HLA-DM expression results in aberrant membranous invariant chain peptide (CLIP) expression in HLA class II cell surface positive lymphoma cells, preventing presentation of antigenic peptides. In HLA class II positive cases, HLA-DM expression was lost in 49% of cHL, 0% of NLPHL, 14% of DLBCL, 3% of PCNSL and 0% of testicular lymphomas. Considering HLA class I, HLA class II and HLA-DM together, 88% of cHL, 10% of NLPHL, 62% of DLBCL, 77% of PCNSL and 87% of testicular lymphoma cases had abnormal HLA expression patterns. In conclusion, an HLA expression pattern incompatible with normal antigen presentation is common in cHL, DLBCL, PCNSL and testicular lymphoma. Retention of CLIP in HLA class II caused by loss of HLA-DM is a novel immune escape mechanism, especially prevalent in cHL. Aberrant HLA expression should be taken into account when evaluating efficacy of checkpoint inhibitors in B-cell lymphomas.
Collapse
Affiliation(s)
- Marcel Nijland
- Department of Hematology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Rianne N Veenstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Chuanhui Xu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Kushi Kushekhar
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Gustaaf W van Imhoff
- Department of Hematology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Philip M Kluin
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| |
Collapse
|
20
|
Veerappan Ganesan AP, Eisenlohr LC. The elucidation of non-classical MHC class II antigen processing through the study of viral antigens. Curr Opin Virol 2017; 22:71-76. [PMID: 28081485 PMCID: PMC5346044 DOI: 10.1016/j.coviro.2016.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/22/2016] [Indexed: 11/22/2022]
Abstract
By convention, CD4+ T cells are activated predominantly by Major Histocompatibility Complex class II-bound peptides derived from extracellular (exogenous) antigens. It has been known for decades that alternative sources of antigen, particularly those synthesized within the antigen-presenting cell, can also supply peptides but the impact on TCD4+ responses, sometimes considerable, has only recently become appreciated. This review focuses on the contributions that studies of viral antigen have made to this shift in perspective, concluding with discussions of relevance to rational vaccine design, autoimmunity and cancer immunotherapy.
Collapse
Affiliation(s)
- Asha Purnima Veerappan Ganesan
- Department of Pathology and Laboratory Medicine at the Children's Hospital of Philadelphia Research Institute and the Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, United States
| | - Laurence C Eisenlohr
- Department of Pathology and Laboratory Medicine at the Children's Hospital of Philadelphia Research Institute and the Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
21
|
The immunotherapy era of myeloma: monoclonal antibodies, vaccines, and adoptive T-cell therapies. Blood 2016; 128:1679-87. [DOI: 10.1182/blood-2016-05-636357] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/17/2016] [Indexed: 01/06/2023] Open
Abstract
Abstract
The treatment of multiple myeloma has evolved significantly over the last decades from primarily alkylator-based chemotherapeutic agents with minimal efficacy to the introduction of more effective agents including immune modulators and proteasome inhibitors, which have changed the landscape of therapy for this disease. We are now entering a new era that will increasingly integrate immunotherapy into standard treatment. This review discusses the current immune-based strategies currently approved, as well as various immune approaches being actively investigated including monoclonal antibodies, checkpoint inhibitors, vaccines, and adoptive T-cell therapies.
Collapse
|
22
|
Lorvik KB, Hammarström C, Fauskanger M, Haabeth OAW, Zangani M, Haraldsen G, Bogen B, Corthay A. Adoptive Transfer of Tumor-Specific Th2 Cells Eradicates Tumors by Triggering an In Situ Inflammatory Immune Response. Cancer Res 2016; 76:6864-6876. [PMID: 27634753 DOI: 10.1158/0008-5472.can-16-1219] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/30/2016] [Accepted: 08/31/2016] [Indexed: 11/16/2022]
Abstract
Adoptive cell therapy (ACT) trials to date have focused on transfer of autologous tumor-specific cytotoxic CD8+ T cells; however, the potential of CD4+ T helper (Th) cells for ACT is gaining interest. While encouraging results have been reported with IFNγ-producing Th1 cells, tumor-specific Th2 cells have been largely neglected for ACT due to their reported tumor-promoting properties. In this study, we tested the efficacy of idiotype-specific Th2 cells for the treatment of mice with MHC class II-negative myeloma. Th2 ACT efficiently eradicated subcutaneous myeloma in an antigen-specific fashion. Transferred Th2 cells persisted in vivo and conferred long-lasting immunity. Cancer eradication mediated by tumor-specific Th2 cells did not require B cells, natural killer T cells, CD8+ T cells, or IFNγ. Th2 ACT was also curative against B-cell lymphoma. Upon transfer, Th2 cells induced a type II inflammation at the tumor site with massive infiltration of M2-type macrophages producing arginase. In vivo blockade of arginase strongly inhibited Th2 ACT, consistent with a key role of arginase and M2 macrophages in myeloma elimination by Th2 cells. These results illustrate that cancer eradication may be achieved by induction of a tumor-specific Th2 inflammatory immune response at the tumor site. Thus, ACT with tumor-specific Th2 cells may represent a highly efficient immunotherapy protocol against cancer. Cancer Res; 76(23); 6864-76. ©2016 AACR.
Collapse
Affiliation(s)
- Kristina Berg Lorvik
- Centre for Immune Regulation, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Clara Hammarström
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Marte Fauskanger
- Centre for Immune Regulation, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ole Audun Werner Haabeth
- Centre for Immune Regulation, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Michael Zangani
- Centre for Immune Regulation, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Guttorm Haraldsen
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Bjarne Bogen
- Centre for Immune Regulation, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K.G. Jebsen Centre for Influenza Vaccine Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Alexandre Corthay
- Centre for Immune Regulation, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| |
Collapse
|
23
|
Bremel RD, Homan EJ. Extensive T-Cell Epitope Repertoire Sharing among Human Proteome, Gastrointestinal Microbiome, and Pathogenic Bacteria: Implications for the Definition of Self. Front Immunol 2015; 6:538. [PMID: 26557118 PMCID: PMC4617169 DOI: 10.3389/fimmu.2015.00538] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022] Open
Abstract
T-cell receptor binding to MHC-bound peptides plays a key role in discrimination between self and non-self. Only a subset, typically a pentamer, of amino acids in a MHC-bound peptide form the motif exposed to the T-cell receptor. We categorize and compare the T-cell exposed amino acid motif repertoire of the total proteomes of two groups of bacteria, comprising pathogens and gastrointestinal microbiome organisms, with the human proteome and immunoglobulins. Given the maximum 205, or 3.2 million of such motifs that bind T-cell receptors, there is considerable overlap in motif usage. We show that the human proteome, exclusive of immunoglobulins, only comprises three quarters of the possible motifs, of which 65.3% are also present in both composite bacterial proteomes. Very few motifs are unique to the human proteome. Immunoglobulin variable regions carry a broad diversity of T-cell exposed motifs (TCEMs) that provides a stratified random sample of the motifs found in pathogens, microbiome, and the human proteome. Individual bacterial genera and species vary in the content of immunoglobulin and human proteome matched motifs that they carry. Mycobacteria and Burkholderia spp carry a particularly high content of such matched motifs. Some bacteria retain a unique motif signature and motif sharing pattern with the human proteome. The implication is that distinguishing self from non-self does not depend on individual TCEMs, but on a complex and dynamic overlay of signals wherein the same TCEM may play different roles in different organisms, and the frequency with which a particular TCEM appears influences its effect. The patterns observed provide clues to bacterial immune evasion and to strategies for intervention, including vaccine design. The breadth and distinct frequency patterns of the immunoglobulin-derived peptides suggest a role of immunoglobulins in maintaining a broadly responsive T-cell repertoire.
Collapse
|
24
|
Leung CSK. Endogenous Antigen Presentation of MHC Class II Epitopes through Non-Autophagic Pathways. Front Immunol 2015; 6:464. [PMID: 26441969 PMCID: PMC4563256 DOI: 10.3389/fimmu.2015.00464] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/25/2015] [Indexed: 12/30/2022] Open
Abstract
Antigenic peptides presented by major histocompatibility complex (MHC) class II molecules are generally derived from exogenous proteins acquired by antigen presenting cells. However, in some circumstances, MHC class II molecules can present intracellular proteins expressed within the antigen-presenting cells. There are several described pathways by which endogenous antigens are degraded and gain access to MHC class II molecules. These include autophagy and other non-autophagic pathways; the latter category includes the MHC class I-like pathways, heat shock protein 90-mediated pathways, and internalization from the plasma membrane. This review will summarize and discuss the non-autophagic pathways.
Collapse
Affiliation(s)
- Carol S K Leung
- Department of Haematology, University College London Cancer Institute, University College London , London , UK
| |
Collapse
|
25
|
Aas-Hanssen K, Thompson KM, Bogen B, Munthe LA. Systemic Lupus Erythematosus: Molecular Mimicry between Anti-dsDNA CDR3 Idiotype, Microbial and Self Peptides-As Antigens for Th Cells. Front Immunol 2015; 6:382. [PMID: 26284067 PMCID: PMC4517057 DOI: 10.3389/fimmu.2015.00382] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/13/2015] [Indexed: 11/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is marked by a T helper (Th) cell-dependent B cell hyperresponsiveness, with frequent germinal center reactions, and gammaglobulinemia. A feature of SLE is the finding of IgG autoantibodies specific for dsDNA. The specificity of the Th cells that drive the expansion of anti-dsDNA B cells is unresolved. However, anti-microbial, anti-histone, and anti-idiotype Th cell responses have been hypothesized to play a role. It has been entirely unclear if these seemingly disparate Th cell responses and hypotheses could be related or unified. Here, we describe that H chain CDR3 idiotypes from IgG+ B cells of lupus mice have sequence similarities with both microbial and self peptides. Matched sequences were more frequent within the mutated CDR3 repertoire and when sequences were derived from lupus mice with expanded anti-dsDNA B cells. Analyses of histone sequences showed that particular histone peptides were similar to VDJ junctions. Moreover, lupus mice had Th cell responses toward histone peptides similar to anti-dsDNA CDR3 sequences. The results suggest that Th cells in lupus may have multiple cross-reactive specificities linked to the IgVH CDR3 Id-peptide sequences as well as similar DNA-associated protein motifs.
Collapse
Affiliation(s)
- Kristin Aas-Hanssen
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| | - Keith M Thompson
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| | - Bjarne Bogen
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo , Oslo , Norway ; KG Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| | - Ludvig A Munthe
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| |
Collapse
|
26
|
Bremel RD, Homan EJ. Frequency Patterns of T-Cell Exposed Amino Acid Motifs in Immunoglobulin Heavy Chain Peptides Presented by MHCs. Front Immunol 2014; 5:541. [PMID: 25389426 PMCID: PMC4211557 DOI: 10.3389/fimmu.2014.00541] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/12/2014] [Indexed: 01/17/2023] Open
Abstract
Immunoglobulins are highly diverse protein sequences that are processed and presented to T-cells by B-cells and other antigen presenting cells. We examined a large dataset of immunoglobulin heavy chain variable regions (IGHV) to assess the diversity of T-cell exposed motifs (TCEMs). TCEM comprise those amino acids in a MHC-bound peptide, which face outwards, surrounded by the MHC histotope, and which engage the T-cell receptor. Within IGHV there is a distinct pattern of predicted MHC class II binding and a very high frequency of re-use of the TCEMs. The re-use frequency indicates that only a limited number of different cognate T-cells are required to engage many different clonal B-cells. The amino acids in each outward-facing TCEM are intercalated with the amino acids of inward-facing MHC groove-exposed motifs (GEM). Different GEM may have differing, allele-specific, MHC binding affinities. The intercalation of TCEM and GEM in a peptide allows for a vast combinatorial repertoire of epitopes, each eliciting a different response. Outcome of T-cell receptor binding is determined by overall signal strength, which is a function of the number of responding T-cells and the duration of engagement. Hence, the frequency of TCEM re-use appears to be an important determinant of whether a T-cell response is stimulatory or suppressive. The frequency distribution of TCEMs implies that somatic hypermutation is followed by T-cell clonal expansion that develops along repeated pathways. The observations of TCEM and GEM derived from immunoglobulins suggest a relatively simple, yet powerful, mechanism to correlate T-cell polyspecificity, through re-use of TCEMs, with a very high degree of specificity achieved by combination with a diversity of GEMs. The frequency profile of TCEMs also points to an economical mechanism for maintaining T-cell memory, recall, and self-discrimination based on an endogenously generated profile of motifs.
Collapse
|
27
|
Aas-Hanssen K, Funderud A, Thompson KM, Bogen B, Munthe LA. Idiotype-specific Th cells support oligoclonal expansion of anti-dsDNA B cells in mice with lupus. THE JOURNAL OF IMMUNOLOGY 2014; 193:2691-8. [PMID: 25127856 DOI: 10.4049/jimmunol.1400640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is marked by a Th cell-dependent B cell hyperresponsiveness, with frequent germinal center reactions and hypergammaglobulinemia. The specificity of Th cells in lupus remains unclear, but B cell Ids have been suggested. A hallmark is the presence of anti-dsDNA, mutated IgG autoantibodies with a preponderance of arginines in CDR3 of the Ig variable H chain (IgVH). B cells can present V region-derived Id peptides on their MHC class II molecules to Id-specific Th cells. We show that Id-specific Th cells support the proliferation of anti-dsDNA Id(+) B cells in mice suffering from systemic autoimmune disease with SLE-like features. Mice developed marked clonal expansions of B cells; half of the IgVH sequences were clonally related. Anti-dsDNA B cells made up 40% of B cells in end-stage disease. The B cells expressed mutated IgVH with multiple arginines in CDR3. Hence, Id-driven T cell-B cell collaboration supported the production of classical anti-dsDNA Abs, recapitulating the characteristics of such Abs in SLE. The results support the concept that Id-specific Th cells may trigger the development of SLE and suggest that manipulation of the Id-specific T cell repertoire could play a role in treatment.
Collapse
Affiliation(s)
- Kristin Aas-Hanssen
- Centre for Immune Regulation, Department of Immunology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, 0424 Oslo, Norway; and
| | - Ane Funderud
- Centre for Immune Regulation, Department of Immunology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, 0424 Oslo, Norway; and
| | - Keith M Thompson
- Centre for Immune Regulation, Department of Immunology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, 0424 Oslo, Norway; and
| | - Bjarne Bogen
- Centre for Immune Regulation, Department of Immunology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, 0424 Oslo, Norway; and K.G. Jebsen Centre for Influenza Vaccine Research, Department of Immunology, Oslo University Hospital, University of Oslo, 0424 Oslo, Norway
| | - Ludvig A Munthe
- Centre for Immune Regulation, Department of Immunology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, 0424 Oslo, Norway; and
| |
Collapse
|
28
|
Haabeth OAW, Tveita AA, Fauskanger M, Schjesvold F, Lorvik KB, Hofgaard PO, Omholt H, Munthe LA, Dembic Z, Corthay A, Bogen B. How Do CD4(+) T Cells Detect and Eliminate Tumor Cells That Either Lack or Express MHC Class II Molecules? Front Immunol 2014; 5:174. [PMID: 24782871 PMCID: PMC3995058 DOI: 10.3389/fimmu.2014.00174] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/02/2014] [Indexed: 11/21/2022] Open
Abstract
CD4+ T cells contribute to tumor eradication, even in the absence of CD8+ T cells. Cytotoxic CD4+ T cells can directly kill MHC class II positive tumor cells. More surprisingly, CD4+ T cells can indirectly eliminate tumor cells that lack MHC class II expression. Here, we review the mechanisms of direct and indirect CD4+ T cell-mediated elimination of tumor cells. An emphasis is put on T cell receptor (TCR) transgenic models, where anti-tumor responses of naïve CD4+ T cells of defined specificity can be tracked. Some generalizations can tentatively be made. For both MHCIIPOS and MHCIINEG tumors, presentation of tumor-specific antigen by host antigen-presenting cells (APCs) appears to be required for CD4+ T cell priming. This has been extensively studied in a myeloma model (MOPC315), where host APCs in tumor-draining lymph nodes are primed with secreted tumor antigen. Upon antigen recognition, naïve CD4+ T cells differentiate into Th1 cells and migrate to the tumor. At the tumor site, the mechanisms for elimination of MHCIIPOS and MHCIINEG tumor cells differ. In a TCR-transgenic B16 melanoma model, MHCIIPOS melanoma cells are directly killed by cytotoxic CD4+ T cells in a perforin/granzyme B-dependent manner. By contrast, MHCIINEG myeloma cells are killed by IFN-γ stimulated M1-like macrophages. In summary, while the priming phase of CD4+ T cells appears similar for MHCIIPOS and MHCIINEG tumors, the killing mechanisms are different. Unresolved issues and directions for future research are addressed.
Collapse
Affiliation(s)
- Ole Audun Werner Haabeth
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Anders Aune Tveita
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Marte Fauskanger
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Fredrik Schjesvold
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Kristina Berg Lorvik
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Peter O Hofgaard
- KG Jebsen Centre for Research on Influenza Vaccines, Institute of Immunology, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Hilde Omholt
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Ludvig A Munthe
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Zlatko Dembic
- Faculty of Dentistry, Molecular Genetics Laboratory, Department of Oral Biology, University of Oslo , Oslo , Norway
| | - Alexandre Corthay
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital, University of Oslo , Oslo , Norway ; Department of Biosciences, University of Oslo , Oslo , Norway ; Tumor Immunology Group, Department of Pathology, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Bjarne Bogen
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital, University of Oslo , Oslo , Norway ; KG Jebsen Centre for Research on Influenza Vaccines, Institute of Immunology, Oslo University Hospital, University of Oslo , Oslo , Norway
| |
Collapse
|
29
|
Jacobsen J, Haabeth OAW, Tveita AA, Schjetne KW, Munthe LA, Bogen B. Naive idiotope-specific B and T cells collaborate efficiently in the absence of dendritic cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:4174-83. [PMID: 24706724 DOI: 10.4049/jimmunol.1302359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Anti-idiotope (anti-Id) Abs have a role in therapy against B cell lymphomas, as inhibitors of pathogenic autoantibodies, and as surrogate Ags for immunization. Despite these observations, the mechanism by which Id(+) Ig generates anti-Id Abs is essentially unknown. To address this issue, we generated a double knock-in mouse that expresses V regions of a somatically mutated anti-Id mAb with intermediate affinity (affinity constant [Ka] = 0.77 × 10(7) M(-1)) for the myeloma protein M315. The anti-Id mice have normal peripheral B cell populations, and allelic exclusion is efficient. Anti-Id B cells from BCR knock-in mice, together with Id-specific CD4(+) T cells from previously established TCR-transgenic mice, enabled us to study Id-specific T cell-B cell collaboration by dilution of transferred cells into syngeneic BALB/c recipients. We show that previously unstimulated (naive) Id-specific B and T cells collaborate efficiently in vivo, even at low frequencies and in the presence of low amounts of Id(+) Ig, resulting in germinal center formation, plasma cell development, and secretion of isotype-switched anti-Id Abs. We further demonstrate that Id-specific T cell-B cell collaboration occurs readily in the absence of adjuvant and is not dependent on Id-presentation by dendritic cells. The results underscore the potency of anti-Id B cells in MHC class II-restricted presentation of Id(+) Ig and suggest that Id-specific T cell-B cell collaboration is of physiological relevance.
Collapse
Affiliation(s)
- Johanne Jacobsen
- Centre for Immune Regulation, Oslo University Hospital, University of Oslo, N-0372 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
30
|
Miller MA, Ganesan APV, Eisenlohr LC. Toward a Network Model of MHC Class II-Restricted Antigen Processing. Front Immunol 2013; 4:464. [PMID: 24379819 PMCID: PMC3864185 DOI: 10.3389/fimmu.2013.00464] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/03/2013] [Indexed: 11/16/2022] Open
Abstract
The standard model of Major Histocompatibility Complex class II (MHCII)-restricted antigen processing depicts a straightforward, linear pathway: internalized antigens are converted into peptides that load in a chaperone dependent manner onto nascent MHCII in the late endosome, the complexes subsequently trafficking to the cell surface for recognition by CD4(+) T cells (TCD4+). Several variations on this theme, both moderate and radical, have come to light but these alternatives have remained peripheral, the conventional pathway generally presumed to be the primary driver of TCD4+ responses. Here we continue to press for the conceptual repositioning of these alternatives toward the center while proposing that MHCII processing be thought of less in terms of discrete pathways and more in terms of a network whose major and minor conduits are variable depending upon many factors, including the epitope, the nature of the antigen, the source of the antigen, and the identity of the antigen-presenting cell.
Collapse
Affiliation(s)
- Michael A. Miller
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Asha Purnima V. Ganesan
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Laurence C. Eisenlohr
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
31
|
Utsunomiya-Tate N, Nakanishi M, Arata Y, Sugiyama H, Vera-Antola ME, Fujio H, Sakato N. Recognition of the Self Idiotype by T Cells: Induction of a Rapid Increase in Cytoplasmic Free Calcium in T Cells Recognizing a Variable L Chain Determinant. Microbiol Immunol 2013; 36:407-18. [PMID: 1357532 DOI: 10.1111/j.1348-0421.1992.tb02039.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To investigate the initial stages of recognition of the self idiotype (Id) by T cells, we examined the early increase in cytoplasmic free calcium ([Ca2+]i) occurring in murine CD4+ T cells specific for a model Id, Id315, following their interaction with the Id. The changes in [Ca2+]i were monitored with stopped-flow fluorometry by loading T cells with fura 2, a Ca(2+)-binding fluorescent dye. An increase of [Ca2+]i in the Id-specific T cell line was dependent on the presence of both antigen-presenting cells (APC) and Id315. When T cells were mixed with APC pulsed with M315 for 90 min at 37 C, a significant increase in T cell [Ca2+]i was observed within one second. A pronounced elevation in [Ca2+]i was also observed in T cells after their interaction with APC which had been pulsed for 90 min with VL-315 Id-containing proteins (such as VL-315, L315, Fv-315 or Fab'-315 fragments). In contrast, pulsing APC for 5 min with the VL fragment produced little or no change in the [Ca2+]i. These results suggest that VL must be further processed by APC before it can be recognized by T cells. Indeed, a synthetic VL region peptide (positions 91-108, designated as P18) produced an elevation in T cell [Ca2+]i when mixed with APC without pulsing.
Collapse
Affiliation(s)
- N Utsunomiya-Tate
- Division of Physical Chemistry, Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Detanico T, St Clair JB, Aviszus K, Kirchenbaum G, Guo W, Wysocki LJ. Somatic mutagenesis in autoimmunity. Autoimmunity 2013; 46:102-14. [PMID: 23249093 DOI: 10.3109/08916934.2012.757597] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Our laboratory investigates systemic autoimmune disease in the context of mouse models of systemic lupus erythematosus (SLE). SLE is associated with high titers of serum autoantibodies of the IgG class that are predominantly directed against nuclear antigens, with pathological manifestations that are considered by many to be characteristic of an immune-complex mediated disease. In this review, we focus on the known and potential roles of somatic mutagenesis in SLE. We will argue that anti-nuclear antibodies (ANA) arise predominantly from nonautoreactive B cells that are transformed into autoreactive cells by the process of somatic hypermutation (SHM), which is normally associated with affinity maturation during the germinal center reaction. We will also discuss the role of SHM in creating antigenic peptides in the V region of the B cell receptor (BCR) and its potential to open an avenue of unregulated T cell help to autoreactive B cells. Finally, we will end this review with new experimental evidence suggesting that spontaneous somatic mutagenesis of genes that regulate B cell survival and activation is a rate-limiting causative factor in the development of ANA.
Collapse
Affiliation(s)
- Thiago Detanico
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
33
|
Fredriksen AB, Sandlie I, Bogen B. Targeted DNA vaccines for enhanced induction of idiotype-specific B and T cells. Front Oncol 2012; 2:154. [PMID: 23115759 PMCID: PMC3483591 DOI: 10.3389/fonc.2012.00154] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/15/2012] [Indexed: 12/03/2022] Open
Abstract
Background: Idiotypes (Id) are antigenic determinants localized in variable (V) regions of Ig. Id-specific T and B cells (antibodies) play a role in immunotherapy of Id+ tumors. However, vaccine strategies that enhance Id-specific responses are needed. Methods: Id+ single-chain fragment variable (scFv) from multiple myelomas and B cell lymphomas were prepared in a fusion format that bivalently target surface molecules on antigen-presenting cells (APC). APC-specific targeting units were either scFv from APC-specific mAb (anti-MHC II, anti-CD40) or chemokines (MIP-1α, RANTES). Homodimeric Id-vaccines were injected intramuscularly or intradermally as plasmids in mice, combined with electroporation. Results: (i) Transfected cells secreted plasmid-encoded Id+ fusion proteins to extracellular fluid followed by binding of vaccine molecules to APC. (ii) Targeted vaccine molecules increased Id-specific B and T cell responses. (iii) Bivalency and xenogeneic sequences both contributed to enhanced responses. (iv) Targeted Id DNA vaccines induced tumor resistance against challenges with Id+ tumors. (v) Human MIP-1α targeting units enhanced Id-specific responses in mice, due to a cross reaction with murine chemokine receptors. Thus, targeted vaccines designed for humans can be quality tested in mice. (vi) Human Id+ scFv from four multiple myeloma patients were inserted into the vaccine format and were successfully tested in mice. (vii) Human MIP-1α vaccine proteins enhanced human T cell responses in vitro. (viii) A hypothetical model for how the APC-targeted vaccine molecules enhance Id-specific T and B cells is presented. Conclusion: Targeted DNA Id-vaccines show promising results in preclinical studies, paving the way for testing in patients.
Collapse
Affiliation(s)
- Agnete B Fredriksen
- Centre for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital Oslo, Norway
| | | | | |
Collapse
|
34
|
Berge T, Grønningsæter IHB, Lorvik KB, Abrahamsen G, Granum S, Sundvold-Gjerstad V, Corthay A, Bogen B, Spurkland A. SH2D2A modulates T cell mediated protection to a B cell derived tumor in transgenic mice. PLoS One 2012; 7:e48239. [PMID: 23144743 PMCID: PMC3483153 DOI: 10.1371/journal.pone.0048239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 09/21/2012] [Indexed: 12/20/2022] Open
Abstract
Background T cell specific adapter protein (TSAd), encoded by the SH2D2A gene, modulates signaling downstream of the T cell receptor (TCR). Young, unchallenged SH2D2A-deficient C57BL/6 mice exhibit a relatively normal immune phenotype. To address whether SH2D2A regulates physiologic immune responses, SH2D2A-deficient TCR-transgenic BALB/c mice were generated. The transgenic TCR recognizes a myeloma-derived idiotypic (Id) peptide in the context of the major histocompatibility complex (MHC) class II molecule I-Ed, and confers T cell mediated resistance to transplanted multiple myeloma development in vivo. Principal Findings The immune phenotype of SH2D2A-deficient C57BL/6 and BALB/c mice did not reveal major differences compared to the corresponding wild type mice. When challenged with myeloma cells, Id-specific TCR-transgenic BALB/c mice lacking SH2D2A displayed increased resistance towards tumor development. Tumor free TCR-transgenic SH2D2A-deficient mice had higher numbers of Id-specific single positive CD4+ thymocytes compared to TCR-transgenic wild-type mice. Conclusion Our results suggest a modulatory role for SH2D2A in T cell mediated immune surveillance of cancer. However, it remains to be established whether its effect is T-cell intrinsic. Further studies are required to determine whether targeting SH2D2A function in T cells may be a potential adjuvant in cancer immunotherapy.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Flow Cytometry
- Histocompatibility Antigens Class II/immunology
- Lymphocyte Count
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Multiple Myeloma/genetics
- Multiple Myeloma/immunology
- Multiple Myeloma/pathology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thymocytes/immunology
- Thymocytes/metabolism
Collapse
Affiliation(s)
- Tone Berge
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Eisenlohr LC, Luckashenak N, Apcher S, Miller MA, Sinnathamby G. Beyond the classical: influenza virus and the elucidation of alternative MHC class II-restricted antigen processing pathways. Immunol Res 2012; 51:237-48. [PMID: 22101673 DOI: 10.1007/s12026-011-8257-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
CD4+ T cells (T(CD4+)) are activated by peptides, generally 13-17 amino acids in length, presented at the cell surface in combination with highly polymorphic MHC class II molecules. According to the classical model, these peptides are generated by endosomal digestion of internalized antigen and loaded onto MHC class II molecules in the late endosome. Historically, this "exogenous" pathway has been defined through the extensive use of purified proteins. However, the relatively recent use of clinically relevant antigens, those of influenza virus in our case, has revealed several additional pathways of peptide production, including some that are truly "endogenous", entailing synthesis of the protein within the infected cell. Indeed, some peptides appear to be created only via endogenous processing. The cell biology that underlies these alternative pathways remains poorly understood as do their relative contributions to defence against infectious agents and cancer, and the triggering of autoimmune diseases.
Collapse
Affiliation(s)
- Laurence C Eisenlohr
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | | | | | |
Collapse
|
36
|
Hampe CS. Protective role of anti-idiotypic antibodies in autoimmunity--lessons for type 1 diabetes. Autoimmunity 2012; 45:320-31. [PMID: 22288464 DOI: 10.3109/08916934.2012.659299] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Circulating autoantibodies to beta cell antigens are present in the majority of patients with Type 1 diabetes. These autoantibodies can be detected before and at time of clinical diagnosis of disease. Although the role of autoantibodies in the pathogenesis of the disease is debated, their presence indicates a dysregulation of the humoral immune response. Mechanisms regulating autoantibodies in Type 1 diabetes are not well understood. In contrast, in other autoimmune diseases there is acceptance that autoantibodies are regulated not only by antigen but also by other antibodies that bind to the antigen-binding site of these autoantibodies (anti-idiotypic antibodies). The proposed purpose of this network is to maintain an equilibrium between autoantibodies and their anti-idiotypic antibodies, preventing autoimmunity, while allowing a robust response to exogenous antigen. Anti-idiotypic antibodies regulate both autoantibody binding and their levels by a) neutralizing autoantibodies, and b) inhibiting the secretion of autoantibodies. Because it has been proposed that the B lymphocytes that produce autoantibodies function as autoantigen presenting cells, inhibiting their binding to autoantigen by anti-idiotypic antibodies may prevent development of autoimmune disease. This hypothesis is supported by the presence of anti-idiotypic antibodies in healthy individuals and in patients in remission from autoimmune diseases, and by the lack of anti-idiotypic antibodies during active disease. We recently reported the presence of autoantibodies to glutamate decarboxylase in the majority of healthy individuals, where their binding to autoantigen is prevented by anti-idiotypic antibodies. These anti-idiotypic antibodies are absent at clinical diagnosis of Type 1 diabetes, revealing the presence of autoantibodies. Type 1 diabetes (T1D) is an autoimmune disease characterized by the dysfunction and destruction of insulin-producing beta cells by autoreactive T cells. Although much progress has been made towards understanding the respective roles of effector and regulatory T cells in this beta cell destruction, the development of autoantibodies to beta cell proteins is widely considered simply a by-product of the autoimmune destruction of the beta cells, rather than having an active role in the pathogenesis. This view is starting to change based on increasing recognition that autoantibodies can have defined roles in other autoimmune diseases, and the emergence of new data on their role in T1D. This exploration of the role of autoantibodies in autoimmune disease has been spurred, in part, by increasing recognition that development of autoimmune diseases is influenced by regulatory antibodies (anti-idiotypic antibodies) directed against the unique binding site of autoantibodies. This review provides an overview of the development and function of these anti-idiotypic antibodies, and present evidence supporting their role in the development of autoimmune diseases. Finally, we conclude this review with a model of the events that may cause loss of anti-idiotypic antibodies and the implications for the development of T1D.
Collapse
Affiliation(s)
- Christiane S Hampe
- Department of Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
37
|
Detanico T, Heiser R, Aviszus K, Bonorino CB, Wysocki LJ. Self-tolerance checkpoints in CD4 T cells specific for a peptide derived from the B cell antigen receptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:82-91. [PMID: 21622865 PMCID: PMC3124280 DOI: 10.4049/jimmunol.1002287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Linked recognition of Ag by B and T lymphocytes is ensured in part by a state of tolerance acquired by CD4 T cells to germline-encoded sequences within the B cell Ag receptor (BCR). We sought to determine how such tolerance is attained when a peptide from the BCR variable (V) region is expressed by small numbers of B cells as it is in the physiological state. Mixed bone marrow (BM) chimeras were generated using donor BM from mice with B cells that expressed a transgene (Tg)-encoded κ L chain and BM from TCR Tg mice in which the CD4 T cells (CA30) were specific for a Vκ peptide encoded by the κTg. In chimeras where few B cells express the κTg, many CA30 cells were deleted in the thymus. However, a substantial fraction survived to the CD4 single-positive stage. Among single-positive CA30 thymocytes, few reached maturity and migrated to the periphery. Maturation was strongly associated with, and likely promoted by, expression of an endogenous TCR α-chain. CD4(+) CA30 cells that reached peripheral lymphoid tissues were Ag-experienced and anergic, and some developed into regulatory cells. These findings reveal several checkpoints and mechanisms that enforce a state of self-tolerance in developing T cells specific for BCR V region sequences, thus ensuring that T cell help to B cells occurs through linked recognition of foreign Ag.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Histocompatibility Antigens Class II/biosynthesis
- Histocompatibility Antigens Class II/genetics
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/immunology
- Immunoglobulin kappa-Chains/biosynthesis
- Immunoglobulin kappa-Chains/genetics
- Mice
- Mice, Inbred A
- Mice, Inbred C57BL
- Mice, Transgenic
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Radiation Chimera
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Self Tolerance/genetics
- Self Tolerance/immunology
Collapse
Affiliation(s)
- Thiago Detanico
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, School of Medicine, Denver CO 80206
- Faculdade de Biociencias, Instituto de Pesquisas Biomedicas, PUCRS, Porto Alegre, RS, Brazil
| | - Ryan Heiser
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, School of Medicine, Denver CO 80206
| | - Katja Aviszus
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, School of Medicine, Denver CO 80206
| | - Cristina B Bonorino
- Faculdade de Biociencias, Instituto de Pesquisas Biomedicas, PUCRS, Porto Alegre, RS, Brazil
| | - Lawrence J Wysocki
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, School of Medicine, Denver CO 80206
| |
Collapse
|
38
|
Heiser RA, Snyder CM, St Clair J, Wysocki LJ. Aborted germinal center reactions and B cell memory by follicular T cells specific for a B cell receptor V region peptide. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:212-21. [PMID: 21622866 PMCID: PMC3133611 DOI: 10.4049/jimmunol.1002328] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A fundamental problem in immunoregulation is how CD4(+) T cells react to immunogenic peptides derived from the V region of the BCR that are created by somatic mechanisms, presented in MHC II, and amplified to abundance by B cell clonal expansion during immunity. BCR neo Ags open a potentially dangerous avenue of T cell help in violation of the principle of linked Ag recognition. To analyze this issue, we developed a murine adoptive transfer model using paired donor B cells and CD4 T cells specific for a BCR-derived peptide. BCR peptide-specific T cells aborted ongoing germinal center reactions and impeded the secondary immune response. Instead, they induced the B cells to differentiate into short-lived extrafollicular plasmablasts that secreted modest quantities of Ig. These results uncover an immunoregulatory process that restricts the memory pathway to B cells that communicate with CD4 T cells via exogenous foreign Ag.
Collapse
Affiliation(s)
- Ryan A Heiser
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, School of Medicine, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
39
|
Lunde E, Løset GÅ, Bogen B, Sandlie I. Stabilizing mutations increase secretion of functional soluble TCR-Ig fusion proteins. BMC Biotechnol 2010; 10:61. [PMID: 20735812 PMCID: PMC2936418 DOI: 10.1186/1472-6750-10-61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 08/24/2010] [Indexed: 12/02/2022] Open
Abstract
Background Whereas T cell receptors (TCRs) detect peptide/major histocompatibility complexes (pMHCs) with exquisite specificity, there are challenges regarding their expression and use as soluble detection molecules due to molecular instability. We have investigated strategies for the production of TCR-immunoglobulin (Ig) fusion proteins. Two different TCRs that are characteristic of a mouse model for idiotype (Id) dependent immune regulation were engineered. They are structurally unrelated with different variable (V), diversity (D) and joining (J) segments, but each share one V gene segment, either Vα or Vβ, with the well characterized murine TCR, 2C. Results Several TCR-Ig formats were assessed. In one, the TCR V domains were fused to Ig constant (C) regions. In others, the complete extracellular part of the TCR was fused either to a complete Ig or an Ig Fc region. All molecules were initially poorly secreted from eukaryotic cells, but replacement of unfavourable amino acids in the V regions improved secretion, as did the introduction of a disulfide bridge between the TCR C domains and the removal of an unpaired cysteine. A screening strategy for selection of mutations that stabilize the actual fusion molecules was developed and used successfully. Molecules that included the complete heterodimeric TCR, with a stabilizing disulfide bridge, were correctly folded as they bound TCR-specific antibodies (Abs) and detected pMHC on cells after specific peptide loading. Conclusions We show that fully functional TCR-Ig fusion proteins can be made in good yields following stabilizing engineering of TCR V and C region genes. This is important since TCR-Ig fusions will be important probes for the presence of specific pMHCs in vitro and in vivo. In the absence of further affinity maturation, the reagents will be very useful for the detection of kinetic stability of complexes of peptide and MHC.
Collapse
Affiliation(s)
- Elin Lunde
- Department of Molecular Biosciences, Centre for Immune Regulation, University of Oslo, Oslo 0316, Norway
| | | | | | | |
Collapse
|
40
|
The cellular mechanism by which complementary Id+ and anti-Id antibodies communicate: T cells integrated into idiotypic regulation. Immunol Cell Biol 2010; 88:515-22. [PMID: 20066000 DOI: 10.1038/icb.2009.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The V region antigenic determinants (idiotopes (Ids)) of antibodies (Abs) have been suggested to be involved in regulating the immune system. Certain diseases such as diabetes mellitus have recently been associated with a disequilibrium between Id(+) and anti-Id Abs. However, it is unknown how Abs carrying complementary idiotypes (that is, Id(+) and anti-Id Abs) regulate each other at the level of B and T cells. In this study, we show that B lymphoma cells genetically equipped with anti-Id BCR V regions receive a signal when exposed to Id(+)Ig. Moreover, they become x 10(4) more efficient at presenting exogenous Id(+) Ab to CD4(+) T cells in vitro. Activated Id-specific T cells in turn regulated the Id-specific B lymphoma cells. Similar results were obtained in vivo in a surrogate model in which an Id-peptide was incorporated genetically into the C-region of a recombinant Ab that targeted IgD on B cells. The findings suggest that conventional T-B collaboration can explain communication between complementary Id(+) and anti-Id Ab at the cellular level. A model is suggested that integrates present and previous data on B-cell regulation by Id-specific T cells.
Collapse
|
41
|
Bogen B, Ruffini P. Review: to what extent are T cells tolerant to immunoglobulin variable regions? Scand J Immunol 2009; 70:526-30. [PMID: 19906193 DOI: 10.1111/j.1365-3083.2009.02340.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the last 25 years it has become increasingly clear that short peptides derived from Ig V-regions are displayed on MHC class II molecules. Recognition of such idiotypic(Id)-peptide/MHC class II complexes by Id-specific CD4(+) T cells plays a role in (1) Id-driven T-B collaboration, (2) immunosurveillance of B cell cancers and (3) Id-vaccination. A crucial question is then: to what extent are T cells tolerized to Ig V-region sequences? Or rephrased: how large is the T-cell repertoire for Ig V-region sequences presented by MHC class II molecules? We argue that T cells are to a large extent tolerant to germline-encoded V-region sequences but that there is a T-cell repertoire for rare Id-sequences that arise as a consequence of somatic hyper mutation or N-region diversity. Moreover, when otherwise rare Id-sequences increase in concentration, T-cell tolerance is induced (Fig. 1). For these reasons, T cells that recognize rare Id-peptides, arising as a consequence of somatic genetic events unique to each B cell, may play a special importance in Id-driven T-B collaboration, immunosurveillance of B-cell malignancies, and Id-vaccination.
Collapse
Affiliation(s)
- B Bogen
- Centre for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| | | |
Collapse
|
42
|
The idiotype connection: linking infection and multiple sclerosis. Trends Immunol 2009; 31:56-62. [PMID: 19962346 DOI: 10.1016/j.it.2009.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/05/2009] [Accepted: 11/11/2009] [Indexed: 12/17/2022]
Abstract
B cells present idiotopes (Id) from their B cell receptor to Id-specific CD4(+) T cells. Chronic Id-driven T-B cell collaboration can cause autoimmune disease in mice. We propose that Id-driven T-B cell collaboration mediates the development of multiple sclerosis by perpetuating immune responses initiated against infectious agents. During germinal centre reactions, B cells express a multitude of mutated Ids. While most mutations lead to decreased affinity and deletion of the B cell, some B cells could be rescued by Id-specific T cells. Such Id-connected T-B cell pairs might initiate inflammatory foci in the central nervous system. This model may explain the intrathecal synthesis of low-avidity IgG against viruses, and the synthesis of oligoclonal IgG with unknown specificity in multiple sclerosis.
Collapse
|
43
|
Abstract
It has been demonstrated that the immunodominant V3 loop of HIV-1 gp120 and its flanking regions bear sequence and structural homology to the framework and complementarity-determining regions of human immunoglobulins. It has been proposed that the Ig-like domain of gp120 might encode idiotypes and in this way permit HIV-1 entry into the immune regulatory network. This notion is strongly supported by results demonstrating that the anti-V3 loop and anti-Ig antibodies of healthy individuals share complementary structure and that V3 reactive antibodies are present in HIV-negative sera. This might be the mechanism by which HIV induces immunological abnormalities, and it should be taken into consideration in AIDS vaccine development.
Collapse
Affiliation(s)
- Radmila Metlas
- Diapharm Ltd., St. Peterport, Guernsey, Channel Islands, UK
| | | |
Collapse
|
44
|
Nishida T, Hudecek M, Kostic A, Bleakley M, Warren EH, Maloney D, Storb R, Riddell SR. Development of tumor-reactive T cells after nonmyeloablative allogeneic hematopoietic stem cell transplant for chronic lymphocytic leukemia. Clin Cancer Res 2009; 15:4759-68. [PMID: 19567591 PMCID: PMC2785487 DOI: 10.1158/1078-0432.ccr-09-0199] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Allogeneic nonmyeloablative hematopoietic stem cell transplant (NM-HSCT) can result in durable remission of chronic lymphocytic leukemia (CLL). It is thought that the efficacy of NM-HSCT is mediated by recognition of tumor cells by T cells in the donor stem cell graft. We evaluated the development of CTLs specific for CLL after NM-HSCT to determine if their presence correlated with antitumor efficacy. EXPERIMENTAL DESIGN Peripheral blood mononuclear cells obtained from 12 transplant recipients at intervals after NM-HSCT were stimulated in vitro with CLL cells. Polyclonal T-cell lines and CD8(+) T-cell clones were derived from these cultures and evaluated for lysis of donor and recipient target cells including CLL. The presence and specificity of responses was correlated with clinical outcomes. RESULTS Eight of the 12 patients achieved remission or a major antitumor response and all 8 developed CD8(+) and CD4(+) T cells specific for antigens expressed by CLL. A clonal analysis of the CD8(+) T-cell response identified T cells specific for multiple minor histocompatibility (H) antigens expressed on CLL in six of the responding patients. A significant fraction of the CD8(+) T-cell response in some patients was also directed against nonshared tumor-specific antigens. By contrast, CLL-reactive T cells were not detected in the four patients who had persistent CLL after NM-HSCT, despite the development of graft-versus-host disease. CONCLUSIONS The development of a diverse T-cell response specific for minor H and tumor-associated antigens expressed by CLL predicts an effective graft-versus-leukemia response after NM-HSCT.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD40 Antigens/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- Clone Cells/cytology
- Clone Cells/immunology
- Cytotoxicity, Immunologic/immunology
- Female
- Flow Cytometry
- Graft vs Host Disease/immunology
- Hematopoietic Stem Cell Transplantation/methods
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/immunology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/surgery
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/immunology
- Male
- Mice
- Middle Aged
- Minor Histocompatibility Antigens/immunology
- Myeloablative Agonists/pharmacology
- NIH 3T3 Cells
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Transplantation, Homologous
- Treatment Outcome
- Vidarabine/analogs & derivatives
- Vidarabine/pharmacology
Collapse
Affiliation(s)
- Tetsuya Nishida
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael Hudecek
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ana Kostic
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Edus H. Warren
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - David Maloney
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rainer Storb
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stanley R. Riddell
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
45
|
Zangani M, Carlsen H, Kielland A, Os A, Hauglin H, Blomhoff R, Munthe LA, Bogen B. Tracking early autoimmune disease by bioluminescent imaging of NF-kappaB activation reveals pathology in multiple organ systems. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1358-67. [PMID: 19286564 DOI: 10.2353/ajpath.2009.080700] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It is desirable to have an early and sensitive detection marker of autoimmune disease in intact animals. Nuclear factor (NF)-kappaB is a transcription factor that is associated with inflammatory responses and immune disorders. Previously, we demonstrated that so-called idiotypic-driven T-B cell collaboration in mice doubly transgenic for paired immunoglobulin and T cell receptor transgenes resulted in a systemic autoimmune disease with systemic lupus erythematosus-like features. Here, we investigated NF-kappaB activation by including an NF-kappaB-responsive luciferase reporter transgene in this animal model. Triply transgenic mice developed bioluminescence signals from diseased organs before onset of clinical symptoms and autoantibody production, and light emissions correlated with disease progression. Signals were obtained from secondary lymphoid organs, inflamed intestines, skin lesions, and arthritic joints. Moreover, bioluminescence imaging and immunohistochemistry demonstrated that a minority of mice suffered from an autoimmune disease of the small intestine, in which light emissions correlated with antibodies against tissue transglutaminase and gliadin. Detection of luciferase by immunohistochemistry revealed NF-kappaB activation in collaborating B and T cells, as well as in macrophages. These results demonstrate that bioluminescent in vivo imaging of NF-kappaB activation can be used for early and sensitive detection of autoimmune disease in an experimental mouse model, offering new possibilities for the evaluation of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Michael Zangani
- Centre for Immune Regulation, Institute of Immunology, University of Oslo and Rikshospitalet Medical Centre, N0027 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Macroautophagy is a catabolic process for the lysosomal turnover of cell organelles and protein aggregates. Lysosomal degradation products are displayed by major histocompatibility class II molecules to CD4(+) T cells in the steady state for tolerance induction and during infections to mount adaptive immune responses. It has recently been shown that macroautophagy substrates can also give rise to MHC class II ligands. We review here the breadth of antigens that may utilize this pathway and the possible implications of this alternate route to MHC class II antigen presentation for immunity and tolerance. Based on this discussion, it is apparent that the regulation of macroautophagy may be beneficial in various disease settings in order to enhance adaptive immune responses or to reduce autoimmunity.
Collapse
|
47
|
Yang J, Bautz DJ, Lionaki S, Hogan SL, Chin H, Tisch RM, Schmitz JL, Pressler BM, Jennette JC, Falk RJ, Preston GA. ANCA patients have T cells responsive to complementary PR-3 antigen. Kidney Int 2008; 74:1159-69. [PMID: 18596726 PMCID: PMC2754720 DOI: 10.1038/ki.2008.309] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Some patients with proteinase 3 specific anti-neutrophil cytoplasmic autoantibodies (PR3-ANCA) also have antibodies that react to complementary-PR3 (cPR3), a protein encoded by the antisense RNA of the PR3 gene. To study whether patients with anti-cPR3 antibodies have cPR3-responsive memory T cells we selected conditions that allowed cultivation of memory cells but not naïve cells. About half of the patients were found to have CD4+TH1 memory cells responsive to the cPR3(138-169)-peptide; while only a third of the patients had HI-PR3 protein responsive T cells. A significant number of T cells from patients responded to cPR3(138-169) peptide and to HI-PR3 protein by proliferation and/or secretion of IFN-gamma, compared to healthy controls while there was no response to scrambled peptide. Cells responsive to cPR3(138-169)-peptide were not detected in MPO-ANCA patients suggesting that this response is specific. The HLADRB1(*) 15 allele was significantly overrepresented in our patient group and is predicted to bind cPR3(138-169) peptide with high affinity. Regression analysis showed a significant likelihood that anti-cPR3 antibodies and cPR3-specific T cells coexist in individuals, consistent with an immunological history of encounter with a PR3-complementary protein. We suggest that the presence of cells reacting to potential complementary protein pairs might provide an alternative mechanism for auto-immune diseases.
Collapse
Affiliation(s)
- Jiajin Yang
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David J. Bautz
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sofia Lionaki
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Nephrology and Transplantation Department, Laikon Hospital, Athens, Greece
| | - Susan L. Hogan
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hyunsook Chin
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Roland M. Tisch
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - John L. Schmitz
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Barrak M. Pressler
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, Indiana, USA
| | - J. Charles Jennette
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ronald J. Falk
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Gloria A. Preston
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
48
|
Serafini P, Mgebroff S, Noonan K, Borrello I. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 2008; 68:5439-49. [PMID: 18593947 PMCID: PMC2887390 DOI: 10.1158/0008-5472.can-07-6621] [Citation(s) in RCA: 539] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor-induced T-cell tolerance is a major mechanism that facilitates tumor progression and limits the efficacy of immune therapeutic interventions. Regulatory T cells (Treg) play a central role in the induction of tolerance to tumor antigens, yet the precise mechanisms regulating its induction in vivo remain to be elucidated. Using the A20 B-cell lymphoma model, here we identify myeloid-derived suppressor cells (MDSC) as the tolerogenic antigen presenting cells capable of antigen uptake and presentation to tumor-specific Tregs. MDSC-mediated Treg induction requires arginase but is transforming growth factor-beta independent. In vitro and in vivo inhibition of MDSC function, respectively, with NOHA or sildenafil abrogates Treg proliferation and tumor-induced tolerance in antigen-specific T cells. These findings establish a role for MDSCs in antigen-specific tolerance induction through preferential antigen uptake mediating the recruitment and expansion of Tregs. Furthermore, therapeutic interventions, such as in vivo phosphodiesterase 5-inhibition, which effectively abrogate the immunosuppressive role of MDSCs and reduce Treg numbers, may play a critical role in delaying and/or reversing tolerance induction.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/metabolism
- CD11b Antigen/metabolism
- Cell Proliferation
- Cells, Cultured
- Disease Progression
- Genes, T-Cell Receptor
- Immune Tolerance/physiology
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Myeloid Cells/metabolism
- Myeloid Cells/physiology
- Phosphodiesterase Inhibitors/pharmacology
- Piperazines/pharmacology
- Purines/pharmacology
- Receptors, Cell Surface/metabolism
- Sildenafil Citrate
- Sulfones/pharmacology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/physiology
- Tumor Escape/immunology
Collapse
Affiliation(s)
- Paolo Serafini
- Department of Microbiology & Immunology, Dodson Interdisciplinary Immunotherapy Institute, University of Miami, School of Medicine, Miami, FL, 33136
| | - Stephanie Mgebroff
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
| | - Kimberly Noonan
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
| | - Ivan Borrello
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
| |
Collapse
|
49
|
Arima T, Shimojo N, Yamaguchi KI, Tomiita M, Kohn LD, Kohno Y. Enhancement of experimental Graves' disease by intranasal administration of a T cell epitope of the thyrotropin receptor. Clin Immunol 2008; 127:7-13. [PMID: 18234558 DOI: 10.1016/j.clim.2007.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 10/30/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
We previously showed that immunization of mice with murine fibroblasts transfected with the thyrotropin receptor (TSHR) and a murine major histocompatibility complex (MHC) class II molecule induces immune thyroid disease with the humoral and histological features of human Graves' disease in about 20% of mice. In this model, based on the proliferative response of T cells from hyperthyroid mice to a panel of overlapping TSHR peptides, we now demonstrate that TSHR 121-140 peptide contains an immunodominant T cell epitope. Supporting this conclusion, spleen cells from mice immunized with TSHR 121-140 peptide showed a strong proliferative response to fibroblasts transfected with the TSHR and a murine I-A(k) molecule, but not either alone. Also, intranasal administration of 100 mug of TSHR 121-140 peptide led to suppressed proliferative response of lymph node cells to the peptide. Interestingly, however, administration of this peptide enhanced, rather than suppressed, the frequency and severity of Graves' disease induced by the immunization of the fibroblasts transfected with the TSHR and a murine I-A(k) molecule. Spleen cells from hyperthyroid mice that were pretreated with intranasal peptide tended to produce lesser amounts of IL-4, IL-10 and IFN-gamma than those from normothyroid control mice. Although precise mechanisms of this enhancement remain to be determined, the results suggest that attempts to treat Graves' disease by intranasal administration of an immunodominant TSHR T cell epitope may aggravate, not prevent, the disease.
Collapse
Affiliation(s)
- Takayasu Arima
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba 260-8670, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Activation and expansion of T helper (Th) cells followed by regulation of activation are essential to the generation of immune responses while limiting concomitant autoreactivity. In order to characterize T cells reactive towards myeloma-derived monoclonal immunoglobulin (mIg), an autologous coculture assay for single-cell analysis of mIg-responding cells was developed. When cultured with dendritic cells loaded with mIg, CD4(+) Th cells from patients with progressing multiple myeloma (MM) showed a proliferative MHC class II-dependent response. CD8(+) T-cell reactivity and Th1 activation were consistently low or absent, and Th2 and regulatory cytokines were expressed. The presence of such non-Th1 CD4(+) T cells in peripheral blood was independent of treatment status, while the frequencies of responding cells varied between patients and reached the same order of magnitude as those measured for tetanus toxoid-specific Th memory cells. Furthermore, investigations of T-cell subpopulations indicated a possible regulatory role on the mIg responsiveness mediated by suppressive CD25(high)FOXP3(+)CD4(+) T cells. It is proposed from the present results that a predominant in vivo activation of non-Th1 mIg-reactive CD4(+) T cells constitute an Ig-dependent autoregulatory mechanism in human MM, with possible tumor growth supporting or permissive effects.
Collapse
|