1
|
Bullows JE, Kanak A, Shedrick L, Kiessling C, Aklujkar M, Kostka J, Chin KJ. Anaerobic benzene oxidation in Geotalea daltonii involves activation by methylation and is regulated by the transition state regulator AbrB. Appl Environ Microbiol 2024; 90:e0085624. [PMID: 39287397 PMCID: PMC11497800 DOI: 10.1128/aem.00856-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
Benzene is a widespread groundwater contaminant that persists under anoxic conditions. The aim of this study was to more accurately investigate anaerobic microbial degradation pathways to predict benzene fate and transport. Preliminary genomic analysis of Geotalea daltonii strain FRC-32, isolated from contaminated groundwater, revealed the presence of putative aromatic-degrading genes. G. daltonii was subsequently shown to conserve energy for growth on benzene as the sole electron donor and fumarate or nitrate as the electron acceptor. The hbs gene, encoding for 3-hydroxybenzylsuccinate synthase (Hbs), a homolog of the radical-forming, toluene-activating benzylsuccinate synthase (Bss), was upregulated during benzene oxidation in G. daltonii, while the bss gene was upregulated during toluene oxidation. Addition of benzene to the G. daltonii whole-cell lysate resulted in toluene formation, indicating that methylation of benzene was occurring. Complementation of σ54- (deficient) E. coli transformed with the bss operon restored its ability to grow in the presence of toluene, revealing bss to be regulated by σ54. Binding sites for σ70 and the transition state regulator AbrB were identified in the promoter region of the σ54-encoding gene rpoN, and binding was confirmed. Induced expression of abrB during benzene and toluene degradation caused G. daltonii cultures to transition to the death phase. Our results suggested that G. daltonii can anaerobically oxidize benzene by methylation, which is regulated by σ54 and AbrB. Our findings further indicated that the benzene, toluene, and benzoate degradation pathways converge into a single metabolic pathway, representing a uniquely efficient approach to anaerobic aromatic degradation in G. daltonii. IMPORTANCE The contamination of anaerobic subsurface environments including groundwater with toxic aromatic hydrocarbons, specifically benzene, toluene, ethylbenzene, and xylene, has become a global issue. Subsurface groundwater is largely anoxic, and further study is needed to understand the natural attenuation of these compounds. This study elucidated a metabolic pathway utilized by the bacterium Geotalea daltonii capable of anaerobically degrading the recalcitrant molecule benzene using a unique activation mechanism involving methylation. The identification of aromatic-degrading genes and AbrB as a regulator of the anaerobic benzene and toluene degradation pathways provides insights into the mechanisms employed by G. daltonii to modulate metabolic pathways as necessary to thrive in anoxic contaminated groundwater. Our findings contribute to the understanding of novel anaerobic benzene degradation pathways that could potentially be harnessed to develop improved strategies for bioremediation of groundwater contaminants.
Collapse
Affiliation(s)
- James E. Bullows
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Alison Kanak
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Lawrence Shedrick
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | | | - Muktak Aklujkar
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Joel Kostka
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kuk-Jeong Chin
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Wang M, Zheng J, Sun S, Wu Z, Shao Y, Xiang J, Yin C, Sedjoah RCAA, Xin Z. An Integrated Pipeline and Overexpression of a Novel Efflux Transporter, YoeA, Significantly Increases Plipastatin Production in Bacillus subtilis. Foods 2024; 13:1785. [PMID: 38891014 PMCID: PMC11171584 DOI: 10.3390/foods13111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Plipastatin, an antimicrobial peptide produced by Bacillus subtilis, exhibits remarkable antimicrobial activity against a diverse range of pathogenic bacteria and fungi. However, the practical application of plipastatin has been significantly hampered by its low yield in wild Bacillus species. Here, the native promoters of both the plipastatin operon and the sfp gene in the mono-producing strain M-24 were replaced by the constitutive promoter P43, resulting in plipastatin titers being increased by 27% (607 mg/mL) and 50% (717 mg/mL), respectively. Overexpression of long chain fatty acid coenzyme A ligase (LCFA) increased the yield of plipastatin by 105% (980 mg/mL). A new efflux transporter, YoeA, was identified as a MATE (multidrug and toxic compound extrusion) family member, overexpression of yoeA enhanced plipastatin production to 1233 mg/mL, an increase of 157%, and knockout of yoeA decreased plipastatin production by 70%; in contrast, overexpression or knockout of yoeA in mono-producing surfactin and iturin engineered strains only slightly affected their production, demonstrating that YoeA acts as the major exporter for plipastatin. Co-overexpression of lcfA and yoeA improved plipastatin production to 1890 mg/mL, which was further elevated to 2060 mg/mL after abrB gene deletion. Lastly, the use of optimized culture medium achieved 2514 mg/mL plipastatin production, which was 5.26-fold higher than that of the initial strain. These results suggest that multiple strain engineering is an effective strategy for increasing lipopeptide production, and identification of the novel transport efflux protein YoeA provides new insights into the regulation and industrial application of plipastatin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.W.); (J.Z.); (S.S.); (Z.W.); (Y.S.); (J.X.); (C.Y.); (R.C.A.A.S.)
| |
Collapse
|
3
|
The Physiological Functions of AbrB on Sporulation, Biofilm Formation and Carbon Source Utilization in Clostridium tyrobutyricum. Bioengineering (Basel) 2022; 9:bioengineering9100575. [PMID: 36290543 PMCID: PMC9598496 DOI: 10.3390/bioengineering9100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
As a pleiotropic regulator, Antibiotic resistant protein B (AbrB) was reported to play important roles in various cellular processes in Bacilli and some Clostridia strains. In Clostridium tyrobutyricum, abrB (CTK_C 00640) was identified to encode AbrB by amino acid sequence alignment and functional domain prediction. The results of abrB deletion or overexpression in C. tyrobutyricum showed that AbrB not only exhibited the reported characteristics such as the negative regulation on sporulation, positive effects on biofilm formation and stress resistance but also exhibited new functions, especially the negative regulation of carbon metabolism. AbrB knockout strain (Ct/ΔabrB) could alleviate glucose-mediated carbon catabolite repression (CCR) and enhance the utilization of xylose compared with the parental strain, resulting in a higher butyrate titer (14.79 g/L vs. 7.91 g/L) and xylose utilization rate (0.19 g/L·h vs. 0.02 g/L·h) from the glucose and xylose mixture. This study confirmed the pleiotropic regulatory function of AbrB in C. tyrobutyricum, suggesting that Ct/ΔabrB was the potential candidate for butyrate production from abundant, renewable lignocellulosic biomass mainly composed of glucose and xylose.
Collapse
|
4
|
Insights in the Complex DegU, DegS, and Spo0A Regulation System of Paenibacillus polymyxa by CRISPR-Cas9-Based Targeted Point Mutations. Appl Environ Microbiol 2022; 88:e0016422. [PMID: 35588272 PMCID: PMC9195935 DOI: 10.1128/aem.00164-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite being unicellular organisms, bacteria undergo complex regulation mechanisms which coordinate different physiological traits. Among others, DegU, DegS, and Spo0A are the pleiotropic proteins which govern various cellular responses and behaviors. However, the functions and regulatory networks between these three proteins are rarely described in the highly interesting bacterium Paenibacillus polymyxa. In this study, we investigate the roles of DegU, DegS, and Spo0A by introduction of targeted point mutations facilitated by a CRISPR-Cas9-based system. In total, five different mutant strains were generated, the single mutants DegU Q218*, DegS L99F, and Spo0A A257V, the double mutant DegU Q218* DegS L99F, and the triple mutant DegU Q218* DegS L99F Spo0A A257V. Characterization of the wild-type and the engineered strains revealed differences in swarming behavior, conjugation efficiency, sporulation, and viscosity formation of the culture broth. In particular, the double mutant DegU Q218* DegS L99F showed a significant increase in conjugation efficiency as well as a stable exopolysaccharides formation. Furthermore, we highlight similarities and differences in the roles of DegU, DegS, and Spo0A between P. polymyxa and related species. Finally, this study provides novel insights into the complex regulatory system of P. polymyxa DSM 365. IMPORTANCE To date, only limited knowledge is available on how complex cellular behaviors are regulated in P. polymyxa. In this study, we investigate several regulatory proteins which play a role in governing different physiological traits. Precise targeted point mutations were introduced to their respective genes by employing a highly efficient CRISPR-Cas9-based system. Characterization of the strains revealed some similarities, but also differences, to the model bacterium Bacillus subtilis with regard to the regulation of cellular behaviors. Furthermore, we identified several strains which have superior performance over the wild-type. The applicability of the CRISPR-Cas9 system as a robust genome editing tool, in combination with the engineered strain with increased genetic accessibility, would boost further research in P. polymyxa and support its utilization for biotechnological applications. Overall, our study provides novel insights, which will be of importance in understanding how multiple cellular processes are regulated in Paenibacillus species.
Collapse
|
5
|
Islam T, Rabbee MF, Choi J, Baek KH. Biosynthesis, Molecular Regulation, and Application of Bacilysin Produced by Bacillus Species. Metabolites 2022; 12:397. [PMID: 35629901 PMCID: PMC9147277 DOI: 10.3390/metabo12050397] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Microbes produce a diverse range of secondary metabolites in response to various environmental factors and interspecies competition. This enables them to become superior in a particular environment. Bacilysin, a dipeptide antibiotic produced by Bacillus species, is active against a broad range of microorganisms. Because of its simple structure and excellent mode of action, i.e., through the inhibition of glucosamine 6-phosphate synthase, it has drawn the attention of researchers. In addition, it acts as a pleiotropic signaling molecule that affects different cellular activities. However, all Bacillus species are not capable of producing bacilysin. The biosynthesis of bacilysin by Bacillus species is not uniform throughout the population; specificity and heterogeneity at both the strain and species levels has been observed. This review discusses how bacilysin is biosynthesized by Bacillus species, the regulators of its biosynthesis, its importance in the host, and the abiotic factors affecting bacilysin production.
Collapse
Affiliation(s)
| | | | | | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (T.I.); (M.F.R.); (J.C.)
| |
Collapse
|
6
|
Teixeira GM, Mosela M, Nicoletto MLA, Ribeiro RA, Hungria M, Youssef K, Higashi AY, Mian S, Ferreira AS, Gonçalves LSA, Pereira UDP, de Oliveira AG. Genomic Insights Into the Antifungal Activity and Plant Growth-Promoting Ability in Bacillus velezensis CMRP 4490. Front Microbiol 2021; 11:618415. [PMID: 33519779 PMCID: PMC7844144 DOI: 10.3389/fmicb.2020.618415] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/16/2020] [Indexed: 11/15/2022] Open
Abstract
The main objective of this study was to evaluate Bacillus velezensis strain CMRP 4490 regarding its ability to inhibit soil-borne plant pathogens and to increase plant growth. The study included evaluation of in vitro antifungal control, sequencing the bacterial genome, mining genes responsible for the synthesis of secondary metabolites, root colonization ability, and greenhouse studies for the assessment of plant growth–promoting ability. The strain was obtained from soil samples in the north of Paraná in Brazil and was classified as a B. velezensis, which is considered a promising biological control agent. In vitro assay showed that B. velezensis CMRP 4490 presented antagonistic activity against Sclerotinia sclerotiorum, Macrophomina phaseolina, Botrytis cinerea, and Rhizoctonia solani with a mycelial growth inhibition of approximately 60%, without any significant difference among them. To well understand this strain and to validate its effect on growth-promoting rhizobacteria, it was decided to explore its genetic content through genome sequencing, in vitro, and greenhouse studies. The genome of CMRP 4490 was estimated at 3,996,396 bp with a GC content of 46.4% and presents 4,042 coding DNA sequences. Biosynthetic gene clusters related to the synthesis of molecules with antifungal activity were found in the genome. Genes linked to the regulation/formation of biofilms, motility, and important properties for rhizospheric colonization were also found in the genome. Application of CMRP 4490 as a coating film on soybean increased from 55.5 to 64% on germination rates when compared to the control; no differences were observed among treatments for the maize germination. The results indicated that B. velezensis CMRP 4490 could be a potential biocontrol agent with plant growth–promoting ability.
Collapse
Affiliation(s)
| | - Mirela Mosela
- Department of Microbiology, State University of Londrina, Londrina, Brazil
| | | | | | | | - Khamis Youssef
- Agricultural Research Center, Plant Pathology Research Institute, Giza, Egypt
| | | | - Silas Mian
- Department of Agronomy, State University of Londrina, Londrina, Brazil
| | | | | | | | - Admilton Gonçalves de Oliveira
- Department of Microbiology, State University of Londrina, Londrina, Brazil.,Laboratory of Electron Microscopy and Microanalysis, State University of Londrina, Londrina, Brazil
| |
Collapse
|
7
|
Multiple and Overlapping Functions of Quorum Sensing Proteins for Cell Specialization in Bacillus Species. J Bacteriol 2020; 202:JB.00721-19. [PMID: 32071096 DOI: 10.1128/jb.00721-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In bacterial populations, quorum sensing (QS) systems participate in the regulation of specialization processes and regulate collective behaviors that mediate interactions and allow survival of the species. In Gram-positive bacteria, QS systems of the RRNPP family (Rgg, Rap, NprR, PlcR, and PrgX) consist of intracellular receptors and their cognate signaling peptides. Two of these receptors, Rap and NprR, have regained attention in Bacillus subtilis and the Bacillus cereus group. Some Rap proteins, such as RapH and Rap60, are multifunctional and/or redundant in function, linking the specialization processes of sporulation and competence, as well as global expression changes in the transition phase in B. subtilis NprR, an evolutionary intermediate between Rap and RRNPP transcriptional activators, is a bifunctional regulator that modulates sporulation initiation and activates nutrient scavenging genes. In this review, we discuss how these receptors switch between functions and connect distinct signaling pathways. Based on structural evidence, we propose that RapH and Rap60 should be considered moonlighting proteins. Additionally, we analyze an evolutionary and ecological perspective to understand the multifunctionality and functional redundancy of these regulators in both Bacillus spp. and non-Bacillus Firmicutes Understanding the mechanistic, structural, ecological, and evolutionary basis for the multifunctionality and redundancy of these QS systems is a key step for achieving the development of innovative technologies for health and agriculture.
Collapse
|
8
|
Qian S, Sun J, Lu H, Lu F, Bie X, Lu Z. L-glutamine efficiently stimulates biosynthesis of bacillomycin D in Bacillus subtilis fmbJ. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Basu A, Xin F, Lim TK, Lin Q, Yang KL, He J. Quantitative proteome profiles help reveal efficient xylose utilization mechanisms in solventogenic Clostridium sp. strain BOH3. Biotechnol Bioeng 2017; 114:1959-1969. [PMID: 28475235 DOI: 10.1002/bit.26332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/13/2017] [Accepted: 05/01/2017] [Indexed: 11/09/2022]
Abstract
Development of sustainable biobutanol production platforms from lignocellulosic materials is impeded by inefficient five carbon sugar uptake by solventogenic bacteria. The recently isolated Clostridium sp. strain BOH3 is particularly advantaged in this regard as it serves as a model organism which can simultaneously utilize both glucose and xylose for high butanol (>15 g/L) production. Strain BOH3 was, therefore, investigated for its metabolic mechanisms for efficient five carbon sugar uptake using a quantitative proteomics based approach. The proteomics data show that proteins within the CAC1341-1349 operon play a pivotal role for efficient xylose uptake within the cells to produce butanol. Furthermore, up-regulation of key enzymes within the riboflavin synthesis pathway explained that xylose could induce higher riboflavin production capability of the bacteria (e.g., ∼80 mg/L from glucose vs. ∼120 mg/L from xylose). Overall results from the present experimental approach indicated that xylose-fed BOH3 cultures are subjected to high levels of redox stress which coupled with the solvent stress-trigger a sporulation response within the cells earlier than the glucose-fed cultures. The study lays the platform for metabolic engineering strategies in designing organisms for efficient butanol and other value-added chemicals such as riboflavin production. Biotechnol. Bioeng. 2017;114: 1959-1969. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anindya Basu
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Republic of Singapore.,School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Bhopal, M.P., India
| | - Fengxue Xin
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Republic of Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Republic of Singapore
| |
Collapse
|
10
|
McCarthy S, Johnson T, Pavlik BJ, Payne S, Schackwitz W, Martin J, Lipzen A, Keffeler E, Blum P. Expanding the Limits of Thermoacidophily in the Archaeon Sulfolobus solfataricus by Adaptive Evolution. Appl Environ Microbiol 2016; 82:857-67. [PMID: 26590281 PMCID: PMC4725277 DOI: 10.1128/aem.03225-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/15/2015] [Indexed: 11/20/2022] Open
Abstract
Extremely thermoacidophilic Crenarchaeota belonging to the order Sulfolobales flourish in hot acidic habitats that are strongly oxidizing. The pH extremes of these habitats, however, often exceed the acid tolerance of type species and strains. Here, adaptive laboratory evolution was used over a 3-year period to test whether such organisms harbor additional thermoacidophilic capacity. Three distinct cell lines derived from a single type species were subjected to high-temperature serial passage while culture acidity was gradually increased. A 178-fold increase in thermoacidophily was achieved after 29 increments of shifted culture pH resulting in growth at pH 0.8 and 80°C. These strains were named super-acid-resistant Crenarchaeota (SARC). Mathematical modeling using growth parameters predicted the limits of acid resistance, while genome resequencing and transcriptome resequencing were conducted for insight into mechanisms responsible for the evolved trait. Among the mutations that were detected, a set of eight nonsynonymous changes may explain the heritability of increased acid resistance despite an unexpected lack of transposition. Four multigene components of the SARC transcriptome implicated oxidative stress as a primary challenge accompanying growth at acid extremes. These components included accelerated membrane biogenesis, induction of the mer operon, and an increased capacity for the generation of energy and reductant.
Collapse
Affiliation(s)
- Samuel McCarthy
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Tyler Johnson
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Benjamin J Pavlik
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Sophie Payne
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Wendy Schackwitz
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - Joel Martin
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - Erica Keffeler
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Paul Blum
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
11
|
Jia K, Gao YH, Huang XQ, Guo RJ, Li SD. Rhizosphere Inhibition of Cucumber Fusarium Wilt by Different Surfactin- excreting Strains of Bacillus subtilis. THE PLANT PATHOLOGY JOURNAL 2015; 31:140-51. [PMID: 26060433 PMCID: PMC4453995 DOI: 10.5423/ppj.oa.10.2014.0113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 05/29/2023]
Abstract
Bacillus subtilis B006 strain effectively suppresses the cucumber fusarium wilt caused by Fusarium oxysporum f. sp. cucumerinum (Foc). The population dynamics of Foc, strain B006 and its surfactin over-producing mutant B841 and surfactin-deficient mutant B1020, in the rhizosphere were determined under greenhouse conditions to elucidate the importance of the lipopeptides excreted by these strains in suppressing Foc. Results showed that B. subtilis strain B006 effectively suppressed the disease in natural soil by 42.9%, five weeks after transplanting, whereas B841 and B1020 suppressed the disease by only 22.6% and 7.1%, respectively. Quantitative PCR assays showed that effective colonization of strain B006 in the rhizosphere suppressed Foc propagation by more than 10 times both in nursery substrate and in field-infected soil. Reduction of Foc population at the cucumber stems in a range of 0.96 log10 ng/g to 2.39 log10 ng/g was attained at the third and the fifth weeks of B006 treatment in nursery substrate. In field-infected soil, all three treatments with B. subtilis suppressed Foc infection, indicated by the reduction of Foc population at a range of 2.91 log10 ng/g to 3.36 log10 ng/g at the stem base, one week after transplanting. This study reveals that the suppression of fusarium wilt disease is affected by the effective colonization of the surfactin-producing B. subtilis strain in the rhizosphere. These results improved our understanding of the biocontrol mechanism of the B. subtilis strain B006 in the natural soil and facilitate its application as biocontrol agent in the field.
Collapse
Affiliation(s)
- Ke Jia
- Key Laboratory of Pest Management in Crops of the Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081,
P. R. China
| | - Yu-Han Gao
- Key Laboratory of Pest Management in Crops of the Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081,
P. R. China
| | - Xiao-Qin Huang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066,
P. R. China
| | - Rong-Jun Guo
- Key Laboratory of Pest Management in Crops of the Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081,
P. R. China
| | - Shi-Dong Li
- Key Laboratory of Pest Management in Crops of the Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081,
P. R. China
| |
Collapse
|
12
|
Precursor Amino Acids Inhibit Polymyxin E Biosynthesis in Paenibacillus polymyxa, Probably by Affecting the Expression of Polymyxin E Biosynthesis-Associated Genes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:690830. [PMID: 26078961 PMCID: PMC4454717 DOI: 10.1155/2015/690830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 11/17/2022]
Abstract
Polymyxin E belongs to cationic polypeptide antibiotic bearing four types of direct precursor amino acids including L-2,4-diaminobutyric acid (L-Dab), L-Leu, D-Leu, and L-Thr. The objective of this study is to evaluate the effect of addition of precursor amino acids during fermentation on polymyxin E biosynthesis in Paenibacillus polymyxa. The results showed that, after 35 h fermentation, addition of direct precursor amino acids to certain concentration significantly inhibited polymyxin E production and affected the expression of genes involved in its biosynthesis. L-Dab repressed the expression of polymyxin synthetase genes pmxA and pmxE, as well as 2,4-diaminobutyrate aminotransferase gene ectB; both L-Leu and D-Leu repressed the pmxA expression. In addition, L-Thr affected the expression of not only pmxA, but also regulatory genes spo0A and abrB. As L-Dab precursor, L-Asp repressed the expression of ectB, pmxA, and pmxE. Moreover, it affected the expression of spo0A and abrB. In contrast, L-Phe, a nonprecursor amino acid, had no obvious effect on polymyxin E biosynthesis and those biosynthesis-related genes expression. Taken together, our data demonstrated that addition of precursor amino acids during fermentation will inhibit polymyxin E production probably by affecting the expression of its biosynthesis-related genes.
Collapse
|
13
|
Jutras BL, Chenail AM, Rowland CL, Carroll D, Miller MC, Bykowski T, Stevenson B. Eubacterial SpoVG homologs constitute a new family of site-specific DNA-binding proteins. PLoS One 2013; 8:e66683. [PMID: 23818957 PMCID: PMC3688583 DOI: 10.1371/journal.pone.0066683] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/09/2013] [Indexed: 01/06/2023] Open
Abstract
A site-specific DNA-binding protein was purified from Borrelia burgdorferi cytoplasmic extracts, and determined to be a member of the highly conserved SpoVG family. This is the first time a function has been attributed to any of these ubiquitous bacterial proteins. Further investigations into SpoVG orthologues indicated that the Staphylococcus aureus protein also binds DNA, but interacts preferentially with a distinct nucleic acid sequence. Site-directed mutagenesis and domain swapping between the S. aureus and B. burgdorferi proteins identified that a 6-residue stretch of the SpoVG α-helix contributes to DNA sequence specificity. Two additional, highly conserved amino acid residues on an adjacent β-sheet are essential for DNA-binding, apparently by contacts with the DNA phosphate backbone. Results of these studies thus identified a novel family of bacterial DNA-binding proteins, developed a model of SpoVG-DNA interactions, and provide direction for future functional studies on these wide-spread proteins.
Collapse
Affiliation(s)
- Brandon L. Jutras
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Alicia M. Chenail
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Christi L. Rowland
- Department of Agricultural Sciences, University of Kentucky College of Agriculture, Lexington, Kentucky, United States of America
| | - Dustin Carroll
- Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - M. Clarke Miller
- Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Tomasz Bykowski
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
14
|
cis-Acting elements that control expression of the master virulence regulatory gene atxA in Bacillus anthracis. J Bacteriol 2012; 194:4069-79. [PMID: 22636778 DOI: 10.1128/jb.00776-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Transcription of the Bacillus anthracis structural genes for the anthrax toxin proteins and biosynthetic operon for capsule is positively regulated by AtxA, a transcription regulator with unique properties. Consistent with the role of atxA in virulence factor expression, a B. anthracis atxA-null mutant is avirulent in a murine model for anthrax. In culture, multiple signals impact atxA transcript levels, and the timing and steady-state level of atxA expression are critical for optimal toxin and capsule synthesis. Despite the apparent complex control of atxA transcription, only one trans-acting protein, the transition state regulator AbrB, has been demonstrated to interact directly with the atxA promoter. Here we employ 5' and 3' deletion analysis and site-directed mutagenesis of the atxA control region to demonstrate that atxA transcription from the major start site P1 is dependent upon a consensus sequence for the housekeeping sigma factor SigA and an A+T-rich upstream element for RNA polymerase. We also show that an additional trans-acting protein(s) binds specifically to atxA promoter sequences located between -13 and +36 relative to P1 and negatively impacts transcription. Deletion of this region increases promoter activity up to 15-fold. Site-directed mutagenesis of a 9-bp palindromic sequence within the region prevents binding of the trans-acting protein(s), increasing promoter activity 7-fold and resulting in a corresponding increase in AtxA and anthrax toxin production. Notably, an atxA promoter mutant that produced elevated levels of AtxA and toxin proteins during culture was unaffected for virulence in a murine model for anthrax.
Collapse
|
15
|
Reder A, Albrecht D, Gerth U, Hecker M. Cross-talk between the general stress response and sporulation initiation inBacillus subtilis- the σBpromoter ofspo0Erepresents an AND-gate. Environ Microbiol 2012; 14:2741-56. [DOI: 10.1111/j.1462-2920.2012.02755.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Efficient production of polymyxin in the surrogate host Bacillus subtilis by introducing a foreign ectB gene and disrupting the abrB gene. Appl Environ Microbiol 2012; 78:4194-9. [PMID: 22467510 DOI: 10.1128/aem.07912-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In our previous study, Bacillus subtilis strain BSK3S, containing a polymyxin biosynthetic gene cluster from Paenibacillus polymyxa, could produce polymyxin only in the presence of exogenously added L-2,4-diaminobutyric acid (Dab). The dependence of polymyxin production on exogenous Dab was removed by introducing an ectB gene encoding the diaminobutyrate synthase of P. polymyxa into BSK3S (resulting in strain BSK4). We found, by observing the complete inhibition of polymyxin synthesis when the spo0A gene was knocked out (strain BSK4-0A), that Spo0A is indispensable for the production of polymyxin. Interestingly, the abrB-spo0A double-knockout mutant, BSK4-0A-rB, and the single abrB mutant, BSK4-rB, showed 1.7- and 2.3-fold increases, respectively, in polymyxin production over that of BSK4. These results coincided with the transcription levels of pmxA in the strains observed by quantitative real-time PCR (qRT-PCR). The AbrB protein was shown to bind directly to the upstream region of pmxA, indicating that AbrB directly inhibits the transcription of polymyxin biosynthetic genes. The BSK4-rB strain, producing high levels of polymyxin, will be useful for the development and production of novel polymyxin derivatives.
Collapse
|
17
|
Gómez FA, Cárdenas C, Henríquez V, Marshall SH. Characterization of a functional toxin-antitoxin module in the genome of the fish pathogen Piscirickettsia salmonis. FEMS Microbiol Lett 2011; 317:83-92. [PMID: 21241361 DOI: 10.1111/j.1574-6968.2011.02218.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This is the first report of a functional toxin-antitoxin (TA) locus in Piscirickettsia salmonis. The P. salmonis TA operon (ps-Tox-Antox) is an autonomous genetic unit containing two genes, a regulatory promoter site and an overlapping putative operator region. The ORFs consist of a toxic ps-Tox gene (P. salmonis toxin) and its upstream partner ps-Antox (P. salmonis antitoxin). The regulatory promoter site contains two inverted repeat motifs between the -10 and -35 regions, which may represent an overlapping operator site, known to mediate transcriptional auto-repression in most TA complexes. The Ps-Tox protein contains a PIN domain, normally found in prokaryote TA operons, especially those of the VapBC and ChpK families. The expression in Escherichia coli of the ps-Tox gene results in growth inhibition of the bacterial host confirming its toxicity, which is neutralized by coexpression of the ps-Antox gene. Additionally, ps-Tox is an endoribonuclease whose activity is inhibited by the antitoxin. The bioinformatic modelling of the two putative novel proteins from P. salmonis matches with their predicted functional activity and confirms that the active site of the Ps-Tox PIN domain is conserved.
Collapse
Affiliation(s)
- Fernando A Gómez
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | | | | |
Collapse
|
18
|
Zarrineh P, Fierro AC, Sánchez-Rodríguez A, De Moor B, Engelen K, Marchal K. COMODO: an adaptive coclustering strategy to identify conserved coexpression modules between organisms. Nucleic Acids Res 2010; 39:e41. [PMID: 21149270 PMCID: PMC3074154 DOI: 10.1093/nar/gkq1275] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Increasingly large-scale expression compendia for different species are becoming available. By exploiting the modularity of the coexpression network, these compendia can be used to identify biological processes for which the expression behavior is conserved over different species. However, comparing module networks across species is not trivial. The definition of a biologically meaningful module is not a fixed one and changing the distance threshold that defines the degree of coexpression gives rise to different modules. As a result when comparing modules across species, many different partially overlapping conserved module pairs across species exist and deciding which pair is most relevant is hard. Therefore, we developed a method referred to as conserved modules across organisms (COMODO) that uses an objective selection criterium to identify conserved expression modules between two species. The method uses as input microarray data and a gene homology map and provides as output pairs of conserved modules and searches for the pair of modules for which the number of sharing homologs is statistically most significant relative to the size of the linked modules. To demonstrate its principle, we applied COMODO to study coexpression conservation between the two well-studied bacteria Escherichia coli and Bacillus subtilis. COMODO is available at: http://homes.esat.kuleuven.be/∼kmarchal/Supplementary_Information_Zarrineh_2010/comodo/index.html.
Collapse
Affiliation(s)
- Peyman Zarrineh
- Department of Electrical Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
19
|
SigmaX is involved in controlling Bacillus subtilis biofilm architecture through the AbrB homologue Abh. J Bacteriol 2009; 191:6822-32. [PMID: 19767430 DOI: 10.1128/jb.00618-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A characteristic feature of biofilm formation is the production of a protective extracellular polymeric matrix. In the gram-positive bacterium Bacillus subtilis, the biofilm matrix is synthesized by the products of the epsABCDEFGHIJKLMNO operon (hereafter called the eps operon) and yqxM-sipW-tasA loci. Transcription from these operons is repressed by two key regulators, AbrB and SinR. Relief of inhibition is necessary to allow biofilm formation to proceed. Here we present data indicating that Abh, a sequence and structural homologue of AbrB, regulates biofilm architecture by B. subtilis when colony morphology and pellicle formation are assessed. Data indicating that abh expression is dependent on the environmental signals that stimulate the activity of the extracytoplasmic function sigma-factor sigma(X) are shown. We demonstrate that expression of slrR, the proposed activator of yqxM transcription, is positively controlled by Abh. Furthermore, Abh is shown to activate transcription from the promoter of the eps operon through its control of SlrR. These findings add to the increasingly complex transcriptional network that controls biofilm formation by B. subtilis.
Collapse
|
20
|
Demain AL. Microbial secondary metabolism: a new theoretical frontier for academia, a new opportunity for industry. CIBA FOUNDATION SYMPOSIUM 2007; 171:3-16; discussion 16-23. [PMID: 1302184 DOI: 10.1002/9780470514344.ch2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Microbial secondary metabolites are the low molecular mass products of secondary metabolism. They include antibiotics, pigments, toxins, effectors of ecological competition and symbiosis, pheromones, enzyme inhibitors, immunomodulating agents, receptor antagonists and agonists, pesticides, antitumour agents and growth promoters of animals and plants. They have a major effect on the health, nutrition and economics of our society. They have unusual structures and their formation is regulated by nutrients, growth rate, feedback control, enzyme inactivation and induction. Regulation is influenced by unique low molecular mass compounds, transfer RNA, sigma factors and gene products formed during post-exponential development. The synthases of secondary metabolism are often coded by clustered genes on chromosomal DNA and infrequently on plasmid DNA. The pathways of secondary metabolism are still not understood to a great degree and thus provide a new frontier for basic investigations of enzymology, control and differentiation. Cloning and expression of genes in industrial microorganisms offer new opportunities for strain improvement and discovery. Microbial metabolites have already established themselves as coccidiostats, immunosuppressants, antihelminthic agents, herbicides and cholesterol-reducing drugs. Great potential exists for the discovery of antiviral, antiparasitic, antitumour and pharmacological compounds and new agricultural products. The future for natural products is bright indeed.
Collapse
Affiliation(s)
- A L Demain
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| |
Collapse
|
21
|
Fico S, Mahillon J. TasA-tasB, a new putative toxin-antitoxin (TA) system from Bacillus thuringiensis pGI1 plasmid is a widely distributed composite mazE-doc TA system. BMC Genomics 2006; 7:259. [PMID: 17038198 PMCID: PMC1626090 DOI: 10.1186/1471-2164-7-259] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 10/13/2006] [Indexed: 12/03/2022] Open
Abstract
Background Post-segregational killing systems are present in a large variety of microorganisms. When found on plasmids, they are described as addiction systems that act to maintain the plasmid during the partitioning of the cell. The plasmid to be maintained through the generations harbours a group of two genes, one coding for a stable toxin and the other coding for an unstable antitoxin that inhibits the effects of the toxin. If, during cell division, the plasmid is lost, the toxin and antitoxin proteins present in the cytosol cease to be newly expressed. The level of unstable antitoxin protein then rapidly decreases, leaving the toxin free to act on the cellular target, leading to cell death. Consequently, only cells harbouring the plasmid can survive. Results The pGI1 plasmid of Bacillus thuringiensis H1.1 harbours a group of two genes, one showing similarities with the Doc toxin of the phd-doc toxin-antitoxin system, potentially coding for a toxin-antitoxin system. Attempts were made to clone this putative system in the Gram-negative host Escherichia coli. The putative antitoxin tasA was easily cloned in E. coli. However, although several combinations of DNA fragment were used in the cloning strategy, only clones containing a mutation in the toxin gene could be recovered, suggesting a toxic activity of TasB. An exhaustive search was carried out in order to index genes homologous to those of the putative tasA-tasB system among microorganisms. This study revealed the presence of this system in great number and in a large variety of microorganisms, either as tasA-tasB homologues or in association with toxins (or antitoxins) from other TA systems. Conclusion In this work, we showed that the pGI1 plasmid of B. thuringiensis H1.1 harbours genes resembling a toxin-antitoxin system, named tasA-tasB for thuringiensis addiction system. This system appeared to be functional but unregulated in E. coli. Bioinformatics studies showed that the tasAB system is present on plasmids or chromosomes of a large variety of microorganisms. Moreover, the association between TasA antitoxin with toxins other than TasB (and vice versa) revealed the composite and modular nature of bacterial TA systems.
Collapse
Affiliation(s)
- Sarah Fico
- Laboratoire de Microbiologie Alimentaire et Environnementale, Université catholique de Louvain, Croix du Sud, 2/12, B-1348 Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratoire de Microbiologie Alimentaire et Environnementale, Université catholique de Louvain, Croix du Sud, 2/12, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
22
|
Veening JW, Hamoen LW, Kuipers OP. Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis. Mol Microbiol 2005; 56:1481-94. [PMID: 15916600 DOI: 10.1111/j.1365-2958.2005.04659.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Summary Spore formation in the Gram-positive bacterium Bacillus subtilis is a last resort adaptive response to starvation. To initiate sporulation, the key regulator in this process, Spo0A, needs to be activated by the so-called phosphorelay. Within a sporulating culture of B. subtilis, some cells initiate this developmental program, while other cells do not. Therefore, initiation of sporulation appears to be a regulatory process with a bistable outcome. Using a single cell analytical approach, we show that the autostimulatory loop of spo0A is responsible for generating a bistable response resulting in phenotypic variation within the sporulating culture. It is demonstrated that the main function of RapA, a phosphorelay phosphatase, is to maintain the bistable sporulation gene expression. As rapA expression is quorum regulated, it follows that quorum sensing influences sporulation bistability. Deletion of spo0E, a phosphatase directly acting on Spo0A approximately P, resulted in abolishment of the bistable expression pattern. Artificial induction of a heterologous Rap phosphatase restored heterogeneity in a rapA or spo0E mutant. These results demonstrate that with external phosphatases, B. subtilis can use the phosphorelay as a tuner to modulate the bistable outcome of the sporulating culture. This shows that B. subtilis employs multiple pathways to maintain the bistable nature of a sporulating culture, stressing the physiological importance of this phenomenon.
Collapse
Affiliation(s)
- Jan-Willem Veening
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, the Netherlands
| | | | | |
Collapse
|
23
|
Scotcher MC, Rudolph FB, Bennett GN. Expression of abrB310 and SinR, and effects of decreased abrB310 expression on the transition from acidogenesis to solventogenesis, in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 2005; 71:1987-95. [PMID: 15812030 PMCID: PMC1082569 DOI: 10.1128/aem.71.4.1987-1995.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factors sinR and abrB are involved in the control of sporulation initiation in Bacillus subtilis. We identified a single homologue to sinR and three highly similar homologues to abrB, designated abrB310, abrB1941, and abrB3647, in Clostridium acetobutylicum ATCC 824. Using reporter vectors, we showed that the promoters of abrB1941 and abrB3647 were not active under the growth conditions tested. The abrB310 promoter was strongly active throughout growth and exhibited a transient elevation of expression at the onset of solventogenesis. Primer extension assays showed that two transcripts of abrB310 and a single, extremely weak transcript for sinR are expressed. Potential -35 and -10 consensus motifs are readily identifiable surrounding the transcription start sites of abrB310 and sinR, with a single putative 0A box present within the promoter of abrB310. In strains of C. acetobutylicum transformed with plasmids to elevate sinR expression or decrease sinR expression, no significant differences in growth or in acid or solvent production were observed compared to the control strains. In C. acetobutylicum strain 824(pAS310), which expressed an antisense RNA construct targeted against abrB310, the acids acetate and butyrate accumulated to approximately twice the normal concentration. This accumulation corresponded to a delay and decrease in acetone and butanol production. It was also found that sporulation in strain 824(pAS310) was delayed but that the morphology of sporulating cells and spores was normal. Based upon these observations, we propose that abrB310 may act as a regulator at the transition between acidogenic and solventogenic growth.
Collapse
Affiliation(s)
- Miles C Scotcher
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main St., Houston, TX 77005, USA
| | | | | |
Collapse
|
24
|
Veening JW, Smits WK, Hamoen LW, Jongbloed JDH, Kuipers OP. Visualization of differential gene expression by improved cyan fluorescent protein and yellow fluorescent protein production in Bacillus subtilis. Appl Environ Microbiol 2005; 70:6809-15. [PMID: 15528548 PMCID: PMC525234 DOI: 10.1128/aem.70.11.6809-6815.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distinguishable cyan and yellow fluorescent proteins (CFP and YFP) enable the simultaneous in vivo visualization of different promoter activities. Here, we report new cloning vectors for the construction of cfp and yfp fusions in Bacillus subtilis. By extending the N-terminal portions of previously described CFP and YFP variants, 20- to 70-fold-improved fluorescent-protein production was achieved. Probably, the addition of sequences encoding the first eight amino acids of the N-terminal part of ComGA of B. subtilis overcomes the slow translation initiation that is provoked by the eukaryotic codon bias present in the original cfp and yfp genes. Using these new vectors, we demonstrate that, within an isogenic population of sporulating B. subtilis cells, expression of the abrB and spoIIA genes is distinct in individual cells.
Collapse
Affiliation(s)
- Jan-Willem Veening
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Hamon MA, Stanley NR, Britton RA, Grossman AD, Lazazzera BA. Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis. Mol Microbiol 2004; 52:847-60. [PMID: 15101989 PMCID: PMC1409746 DOI: 10.1111/j.1365-2958.2004.04023.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacillus subtilis is a ubiquitous soil bacterium that forms biofilms in a process that is negatively controlled by the transcription factor AbrB. To identify the AbrB-regulated genes required for biofilm formation by B. subtilis, genome-wide expression profiling studies of biofilms formed by spo0A abrB and sigH abrB mutant strains were performed. These data, in concert with previously published DNA microarray analysis of spo0A and sigH mutant strains, led to the identification of 39 operons that appear to be repressed by AbrB. Eight of these operons had previously been shown to be repressed by AbrB, and we confirmed AbrB repression for a further six operons by reverse transcription-PCR. The AbrB-repressed genes identified in this study are involved in processes known to be regulated by AbrB, such as extracellular degradative enzyme production and amino acid metabolism, and processes not previously known to be regulated by AbrB, such as membrane bioenergetics and cell wall functions. To determine whether any of these AbrB-regulated genes had a role in biofilm formation, we tested 23 mutants, each with a disruption in a different AbrB-regulated operon, for the ability to form biofilms. Two mutants had a greater than twofold defect in biofilm formation. A yoaW mutant exhibited a biofilm structure with reduced depth, and a sipW mutant exhibited only surface-attached cells and did not form a mature biofilm. YoaW is a putative secreted protein, and SipW is a signal peptidase. This is the first evidence that secreted proteins have a role in biofilm formation by Bacillus subtilis.
Collapse
Affiliation(s)
- Mélanie A. Hamon
- Department of Microbiology, Immunology and Molecular Genetics University of California Los Angeles 1602 Molecular Sciences Building 405 Hilgard Avenue Los Angeles, CA 90095, USA
| | - Nicola R. Stanley
- Department of Microbiology, Immunology and Molecular Genetics University of California Los Angeles 1602 Molecular Sciences Building 405 Hilgard Avenue Los Angeles, CA 90095, USA
| | - Robert A. Britton
- Department of Biology Massachusetts Institute of Technology Cambridge, MA 02139, USA
| | - Alan. D. Grossman
- Department of Biology Massachusetts Institute of Technology Cambridge, MA 02139, USA
| | - Beth A. Lazazzera
- Department of Microbiology, Immunology and Molecular Genetics University of California Los Angeles 1602 Molecular Sciences Building 405 Hilgard Avenue Los Angeles, CA 90095, USA
- *For correspondence. E-mail; Tel (+1) 310 794 4804; Fax (+1) 310 206 5231
| |
Collapse
|
26
|
Ogura M, Matsuzawa A, Yoshikawa H, Tanaka T. Bacillus subtilis SalA (YbaL) negatively regulates expression of scoC, which encodes the repressor for the alkaline exoprotease gene, aprE. J Bacteriol 2004; 186:3056-64. [PMID: 15126467 PMCID: PMC400612 DOI: 10.1128/jb.186.10.3056-3064.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the course of screening for exoprotease-deficient mutants among Bacillus subtilis gene disruptants, a strain showing such a phenotype was identified. The locus responsible for this phenotype was the previously unknown gene ybaL, which we renamed salA. The predicted gene product encoded by salA belongs to the Mrp family, which is widely conserved among archaea, prokaryotes, and eukaryotes. Disruption of salA resulted in a decrease in the expression of a lacZ fusion of the aprE gene encoding the major extracellular alkaline protease. The decrease was recovered by the cloned salA gene on a plasmid, demonstrating that the gene is involved in aprE expression. Determination of the cis-acting region of SalA on the upstream region of aprE, together with epistatic analyses with scoC, abrB, and spo0A mutations that also affect aprE expression, suggested that salA deficiency affects aprE-lacZ expression through the negative regulator ScoC. Northern and reverse transcription-PCR analyses revealed enhanced levels of scoC transcripts in the salA mutant cells in the transition and early stationary phases. Concomitant with these observations, larger amounts of the ScoC protein were detected in the mutant cells by Western analysis. From these results we conclude that SalA negatively regulates scoC expression. It was also found that the expression of a salA-lacZ fusion was increased by salA deficiency, suggesting that salA is autoregulated.
Collapse
Affiliation(s)
- Mitsuo Ogura
- Department of Marine Science, School of Marine Science and Technology, Tokai University, Shizuoka 424-8610, Japan
| | | | | | | |
Collapse
|
27
|
Ogura M, Shimane K, Asai K, Ogasawara N, Tanaka T. Binding of response regulator DegU to the aprE promoter is inhibited by RapG, which is counteracted by extracellular PhrG in Bacillus subtilis. Mol Microbiol 2003; 49:1685-97. [PMID: 12950930 DOI: 10.1046/j.1365-2958.2003.03665.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We screened the putative rap-phr (response regulator aspartyl-phosphate phosphatase-phosphatase regulator) systems identified in the Bacillus subtilis genome for a rap gene that affects aprE (alkaline protease gene) expression by using a multicopy plasmid. We found that rapG was involved in the regulation of aprE, which belongs to the regulon of DegU, the response regulator of the DegS-DegU two-component system. Disruption of rapG and phrG resulted in enhancement and reduction of aprE-lacZ expression, respectively, suggesting that PhrG inhibits RapG activity. Addition of 1-30 nM of a synthetic pentapeptide (PhrG; NH2-EKMIG-COOH) to the phrG disruptant completely rescued aprE-lacZ expression, indicating that the PhrG peptide is indeed involved in aprE-lacZ expression. Surprisingly, either introduction of multicopy phrG or addition of the PhrG peptide at high concentrations (100-300 nM) to the phrG cells decreased aprE-lacZ expression. These results are reminiscent of the previous observation that at higher concentrations the PhrC peptide inhibits srfA-lacZ expression directed by ComA, the regulator of the ComP-ComA two-component system. Because the Rap proteins belong to a family of aspartyl protein phosphatases, we tried to investigate the possible influence of RapG on dephosphorylation of DegU-P (phosphorylated DegU) in vitro. RapG, however, did not affect dephosphorylation of DegU-P under the adopted experimental conditions. Therefore, we hypothesized that RapG might inhibit the binding activity of DegU to the target promoters. We analysed the interaction of DegU and RapG using the aprE promoter and another target, a comK promoter. Gel shift analysis revealed that RapG served as the inhibitor of DegU binding to the promoter regions of aprE and comK and that this inhibition was counteracted by the PhrG peptide.
Collapse
Affiliation(s)
- Mitsuo Ogura
- Department of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan.
| | | | | | | | | |
Collapse
|
28
|
Hamoen LW, Kausche D, Marahiel MA, van Sinderen D, Venema G, Serror P. The Bacillus subtilis transition state regulator AbrB binds to the -35 promoter region of comK. FEMS Microbiol Lett 2003; 218:299-304. [PMID: 12586407 DOI: 10.1111/j.1574-6968.2003.tb11532.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Genetic competence is a differentiation process initiated by Bacillus subtilis as a result of nutritional deprivation, and is controlled by a complex signal transduction cascade. The promoter of comK, encoding the competence transcription factor, is regulated by at least four different transcription factors: Rok, CodY, DegU and ComK itself. Genetic data have shown that comK expression is influenced by the transition state regulator AbrB as well. In this paper we show that AbrB binds specifically to the comK promoter and covers the RNA polymerase binding site, making it the fifth transcription factor regulating the activity of the comK promoter.
Collapse
Affiliation(s)
- Leendert W Hamoen
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands.
| | | | | | | | | | | |
Collapse
|
29
|
Benson LM, Vaughn JL, Strauch MA, Bobay BG, Thompson R, Naylor S, Cavanagh J. Macromolecular assembly of the transition state regulator AbrB in its unbound and complexed states probed by microelectrospray ionization mass spectrometry. Anal Biochem 2002; 306:222-7. [PMID: 12123659 DOI: 10.1006/abio.2002.5704] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Bacillus subtilis global transition-state regulator AbrB specifically recognizes over 60 different DNA regulatory regions of genes expressed during cellular response to suboptimal environments. Most interestingly the DNA regions recognized by AbrB share no obvious consensus base sequence. To more clearly understand the functional aspects of AbrB activity, microelectrospray ionization mass spectrometry has been employed to resolve the macromolecular assembly of unbound and DNA-bound AbrB. Analysis of the N-terminal DNA binding domain of AbrB (AbrBN53, residues 1-53) demonstrates that AbrBN53 is a stable dimer, showing no apparent exchange with a monomeric form as a function of pH, ionic strength, solvent, or protein concentration. AbrBN53 demonstrates a capacity for DNA binding, underscoring the role of the N-terminal domain in both DNA recognition and dimerization. Full-length AbrB is shown to exist as a homotetramer. An investigation of the binding of AbrBN53 and AbrB to the natural DNA target element sinIR shows that AbrBN53 binds as a dimer and AbrB binds as a tetramer. This study represents the first detailed characterization of the stoichiometry of a transition-state regulator binding to one of its target promoters.
Collapse
Affiliation(s)
- Linda M Benson
- Biomedical Mass Spectrometry & Functional Proteomics Facility, Mayo Clinic/Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Qian Q, Lee CY, Helmann JD, Strauch MA. AbrB is a regulator of the sigma(W) regulon in Bacillus subtilis. FEMS Microbiol Lett 2002; 211:219-23. [PMID: 12076816 DOI: 10.1111/j.1574-6968.2002.tb11228.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The Bacillus subtilis global regulator AbrB was found to negatively control expression of sigW and genes of the sigma(W) regulon. AbrB bound to DNA regions in the autoregulatory sigW promoter and to some, but not all, of the other sigma(W)-dependent promoters in B. subtilis. Defects in antibiotic resistance properties caused by spo0A mutations are at least partially correlated with AbrB repression of the sigma(W) regulon.
Collapse
Affiliation(s)
- Qiang Qian
- Department of Oral and Craniofacial Biological Sciences, Dental School, University of Maryland, 666 W. Baltimore St., Room 4-C-30, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
31
|
Dixon LG, Seredick S, Richer M, Spiegelman GB. Developmental gene expression in Bacillus subtilis crsA47 mutants reveals glucose-activated control of the gene for the minor sigma factor sigma(H). J Bacteriol 2001; 183:4814-22. [PMID: 11466285 PMCID: PMC99536 DOI: 10.1128/jb.183.16.4814-4822.2001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of excess glucose in growth media prevents normal sporulation of Bacillus subtilis. The crsA47 mutation, located in the gene for the vegetative phase sigma factor (sigma(A)) results in a glucose-resistant sporulation phenotype. As part of a study of the mechanisms whereby the mutation in sigma(A) overcomes glucose repression of sporulation, we examined the expression of genes involved in sporulation initiation in the crsA47 background. The crsA47 mutation had a significant impact on a variety of genes. Changes to stage II gene expression could be linked to alterations in the expression of the sinI and sinR genes. In addition, there was a dramatic increase in the expression of genes dependent on the minor sigma factor sigma(H). This latter change was paralleled by the pattern of spo0H gene transcription in cells with the crsA47 mutation. In vitro analysis of RNA polymerase containing sigma(A47) indicated that it did not have unusually high affinity for the spo0H gene promoter. The in vivo pattern of spo0H expression is not predicted by the known regulatory constraints on spo0H and suggests novel regulation mechanisms that are revealed in the crsA47 background.
Collapse
Affiliation(s)
- L G Dixon
- Departments of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
32
|
Xu K, Strauch MA. DNA-binding activity of amino-terminal domains of the Bacillus subtilis AbrB protein. J Bacteriol 2001; 183:4094-8. [PMID: 11395475 PMCID: PMC95294 DOI: 10.1128/jb.183.13.4094-4098.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two truncated variants of AbrB, comprising either its first 53 (AbrBN53) or first 55 (AbrBN55) amino acid residues, were constructed and purified. Noncovalently linked homodimers of the truncated variants exhibited very weak DNA-binding activity. Cross-linking AbrBN55 dimers into tetramers and higher-order multimers (via disulfide bonding between penultimate cysteine residues) resulted in proteins having DNA-binding affinity comparable to and DNA-binding specificity identical to those of intact, wild-type AbrB. These results indicate that the DNA recognition and specificity determinants of AbrB binding lie solely within its N-terminal amino acid sequence.
Collapse
Affiliation(s)
- K Xu
- Division of Cellular Biology, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
33
|
Grandvalet C, Gominet M, Lereclus D. Identification of genes involved in the activation of the Bacillus thuringiensis inhA metalloprotease gene at the onset of sporulation. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1805-1813. [PMID: 11429458 DOI: 10.1099/00221287-147-7-1805] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The immune inhibitor A (InhA) metalloprotease from Bacillus thuringiensis specifically cleaves antibacterial proteins produced by the insect host, suggesting that it may contribute to the overall virulence of B. thuringiensis. The transcriptional regulation of the inhA gene in both B. thuringiensis and Bacillus subtilis was investigated. Using a transcriptional inhA'-lacZ fusion, it was shown that inhA expression is activated at the onset of sporulation. However, the transcriptional start site of inhA is similar to sigma(A)-dependent promoters, and deletion of the sporulation-specific sigma factors sigma(F) or sigma(E) had no effect on inhA expression in B. subtilis. The DNA region upstream from inhA contains two genes encoding polypeptides similar to the SinI and SinR regulators of B. subtilis. SinR is a DNA-binding protein regulating gene expression and SinI inhibits SinR activity. Overexpression of the sin genes affects the expression of the inhA'-lacZ transcriptional fusion in B. thuringiensis: early induction of inhA expression was observed when sinI was overexpressed, whereas inhA expression was reduced in a strain overexpressing sinR, suggesting that inhA transcription is repressed, directly or indirectly, by SinR. inhA transcription was greatly reduced in B. thuringiensis and B. subtilis spo0A mutants. Analysis of the inhA'-lacZ expression in abrB and abrB-spo0A mutants of B. subtilis indicates that the Spo0A-dependent regulation of inhA expression depends on AbrB, which is known to regulate expression of transition state and sporulation genes in B. subtilis.
Collapse
Affiliation(s)
- Cosette Grandvalet
- Unité de Biochimie Microbienne, Centre National de la Recherche Scientifique URA 2172, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Myriam Gominet
- Unité de Biochimie Microbienne, Centre National de la Recherche Scientifique URA 2172, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Didier Lereclus
- Station de Recherche de Lutte Biologique, Institut National de la Recherche Agronomique, La Minière, 78285 Guyancourt, France2
- Unité de Biochimie Microbienne, Centre National de la Recherche Scientifique URA 2172, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| |
Collapse
|
34
|
Cheggour A, Fanuel L, Duez C, Joris B, Bouillenne F, Devreese B, Van Driessche G, Van Beeumen J, Frère JM, Goffin C. The dppA gene of Bacillus subtilis encodes a new D-aminopeptidase. Mol Microbiol 2000; 38:504-13. [PMID: 11069674 DOI: 10.1046/j.1365-2958.2000.02117.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Different strains of Bacillus were screened for their ability to hydrolyse D-alanyl-p-nitroanilide. Activity was detected in Bacillus pumilus, Bacillus brevis, Bacillus licheniformis 749I and Bacillus subtilis 168. The last strain was the best producer and was selected for the production and purification of the enzyme. The determination of the N-terminal sequence identified the enzyme as the product of the dppA gene (previously named dciAA) belonging to the dipeptide ABC transport (dpp) operon expressed early during sporulation. Open reading frames (ORFs) encoding putative related proteins were found in the genomes of a variety of Archaea and both sporulating and non-sporulating bacteria. The enzyme behaves as a D-aminopeptidase and represents the prototype of a new peptidase family. Among the tested substrates, the highest activities were found with D-Ala-D-Ala and D-Ala-Gly-Gly. The active enzyme behaves as an octamer of identical 30 kDa subunits. It exhibits a broad pH optimum, extending between pH 9 and 11. It is reversibly inhibited in the presence of Zn2+ chelators, and the sequence comparisons highlight the conservation of potential Zn-binding residues. As it has been shown by others that null mutations in the dpp operon do not inhibit spore formation, the physiological role of DppA is probably an adaptation to nutrient deficiency.
Collapse
Affiliation(s)
- A Cheggour
- Centre for Protein Engineering, University of Liège, Institut de Chimie B6, Sart Tilman, 4000 Liège, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Klein W, Winkelmann D, Hahn M, Weber T, Marahiel MA. Molecular characterization of the transition state regulator AbrB from Bacillus stearothermophilus. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1493:82-90. [PMID: 10978510 DOI: 10.1016/s0167-4781(00)00171-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Bacillus subtilis transition state regulator AbrB(su) is a DNA-binding protein that acts on several genes either as activator, repressor, or preventer. However, among genes under its control, neither common binding sites could be identified nor could the structural features of this broad and specific interaction be elucidated. Attempts to elucidate these interesting features by crystallizing AbrB(su) have failed so far. Therefore, to solve this problem, we focused in this work on identifying an AbrB(su) homologue from Bacillus stearothermophilus. Using a novel method, the entire abrB(st) gene of B. stearothermophilus was cloned and sequenced. The gene encodes a 95 amino acid protein that shows 77% identity and 85% similarity to the mesophilic B. subtilis protein. A calmodulin binding peptide-tagged fusion of the thermophilic gene was constructed for overexpression and efficient affinity column purification of the AbrB(st) protein. The purified protein showed, after removal of the tag, an oligomerization behavior through hexamer formation that is essential for its DNA binding activity.
Collapse
Affiliation(s)
- W Klein
- Philipps Universität Marburg, Biochemie-FB Chemie, Hans-Meerwein-Strasse, D-35032, Marburg, Germany
| | | | | | | | | |
Collapse
|
36
|
Zheng G, Yan LZ, Vederas JC, Zuber P. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. J Bacteriol 1999; 181:7346-55. [PMID: 10572140 PMCID: PMC103699 DOI: 10.1128/jb.181.23.7346-7355.1999] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis JH642 and a wild strain of B. subtilis called 22a both produce an antilisterial peptide that can be purified by anion-exchange and gel filtration chromatography. Amino acid analysis confirmed that the substance was the cyclic bacteriocin subtilosin. A mutant defective in production of the substance was isolated from a plasmid gene disruption library. The plasmid insertion conferring the antilisterial-peptide-negative phenotype was located in a seven-gene operon (alb, for antilisterial bacteriocin) residing immediately downstream from the sbo gene, which encodes the precursor of subtilosin. An insertion mutation in the sbo gene also conferred loss of antilisterial activity. Comparison of the presubtilosin and mature subtilosin sequences suggested that certain residues undergo unusual posttranslational modifications unlike those occurring during the synthesis of class I (lantibiotic) or some class II bacteriocins. The putative products of the genes of the operon identified show similarities to peptidases and transport proteins that may function in processing and export. Two alb gene products resemble proteins that function in pyrroloquinoline quinone biosynthesis. The use of lacZ-alb and lacZ-sbo gene fusions, along with primer extension analysis, revealed that the sbo-alb genes are transcribed from a major promoter, residing upstream of sbo, that is very likely utilized by the sigma(A) form of RNA polymerase. The sbo and alb genes are negatively regulated by the global transition state regulator AbrB and are also under positive autoregulation that is not mediated by the subtilosin peptide but instead requires one or more of the alb gene products.
Collapse
Affiliation(s)
- G Zheng
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton, Oregon 97006-8921, USA
| | | | | | | |
Collapse
|
37
|
Liu J, Cosby WM, Zuber P. Role of lon and ClpX in the post-translational regulation of a sigma subunit of RNA polymerase required for cellular differentiation in Bacillus subtilis. Mol Microbiol 1999; 33:415-28. [PMID: 10411757 DOI: 10.1046/j.1365-2958.1999.01489.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RNA polymerase sigma subunit, sigmaH (Spo0H) of Bacillus subtilis, is essential for the transcription of genes that function in sporulation and genetic competence. Although spo0H is transcriptionally regulated by the key regulatory device that controls sporulation initiation, the Spo0 phosphorelay, there is considerable evidence implicating a mechanism of post-translational control that governs the activity and concentration of sigmaH. Post-translational control of spo0H is responsible for the reduced expression of genes requiring sigmaH under conditions of low environmental pH. It is also responsible for heightened sigmaH activity upon relief of acid stress and during nutritional depletion. In this study, the ATP-dependent proteases LonA and B and the regulatory ATPase ClpX were found to function in the post-translational control of sigmaH. Mutations in lonA and lonB result in elevated sigmaH protein concentrations in low-pH cultures. However, this is not sufficient to increase sigmaH-dependent transcription. Activation of sigmaH-dependent transcription upon raising medium pH and in cells undergoing sporulation requires clpX, as shown by measuring the expression of lacZ fusions that require sigmaH for transcription and by complementation of a clpX null mutation. A hypothesis is presented that low environmental pH results in the Lon-dependent degradation of sigmaH, but the activity of sigmaH in sporulating cells and in cultures at neutral pH is stimulated by a ClpX-dependent mechanism in response to nutritional stress.
Collapse
Affiliation(s)
- J Liu
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland, OR 97291-1000, USA
| | | | | |
Collapse
|
38
|
Drzewiecki K, Eymann C, Mittenhuber G, Hecker M. The yvyD gene of Bacillus subtilis is under dual control of sigmaB and sigmaH. J Bacteriol 1998; 180:6674-80. [PMID: 9852014 PMCID: PMC107773 DOI: 10.1128/jb.180.24.6674-6680.1998] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During a search by computer-aided inspection of two-dimensional (2D) protein gels for sigmaB-dependent general stress proteins exhibiting atypical induction profiles, a protein initially called Hst23 was identified as a product of the yvyD gene of Bacillus subtilis. In addition to the typical sigmaB-dependent, stress- and starvation-inducible pattern, yvyD is also induced in response to amino acid depletion. By primer extension of RNA isolated from the wild-type strain and appropriate mutants carrying mutations in the sigB and/or spo0H gene, two promoters were mapped upstream of the yvyD gene. The sigmaB-dependent promoter drives expression of yvyD under stress conditions and after glucose starvation, whereas a sigmaH-dependent promoter is responsible for yvyD transcription following amino acid limitation. Analysis of Northern blots revealed that yvyD is transcribed monocistronically and confirmed the conclusions drawn from the primer extension experiments. The analysis of the protein synthesis pattern in amino acid-starved wild-type and relA mutant cells showed that the YvyD protein is not synthesized in the relA mutant background. It was concluded that the stringent response plays a role in the activation of sigmaH. The yvyD gene product is homologous to a protein which might modify the activity of sigma54 in gram-negative bacteria. The expression of a sigmaL-dependent (sigmaL is the equivalent of sigma54 in B. subtilis) levD-lacZ fusion is upregulated twofold in a yvyD mutant. This indicates that the yvyD gene product, being a member of both the sigmaB and sigmaH regulons, might negatively regulate the activity of the sigmaL regulon. We conclude that (i) systematic, computer-aided analysis of 2D protein gels is appropriate for the identification of genes regulated by multiple transcription factors and that (ii) YvyD might form a junction between the sigmaB and sigmaH regulons on one side and the sigmaL regulon on the other.
Collapse
Affiliation(s)
- K Drzewiecki
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, D-17487 Greifswald, Germany
| | | | | | | |
Collapse
|
39
|
Pedersen LB, Murray T, Popham DL, Setlow P. Characterization of dacC, which encodes a new low-molecular-weight penicillin-binding protein in Bacillus subtilis. J Bacteriol 1998; 180:4967-73. [PMID: 9733705 PMCID: PMC107527 DOI: 10.1128/jb.180.18.4967-4973.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pbp gene (renamed dacC), identified by the Bacillus subtilis genome sequencing project, encodes a putative 491-residue protein with sequence homology to low-molecular-weight penicillin-binding proteins. Use of a transcriptional dacC-lacZ fusion revealed that dacC expression (i) is initiated at the end of stationary phase; (ii) depends strongly on transcription factor sigmaH; and (iii) appears to be initiated from a promoter located immediately upstream of yoxA, a gene of unknown function located upstream of dacC on the B. subtilis chromosome. A B. subtilis dacC insertional mutant grew and sporulated identically to wild-type cells, and dacC and wild-type spores had the same heat resistance, cortex structure, and germination and outgrowth kinetics. Expression of dacC in Escherichia coli showed that this gene encodes an approximately 59-kDa membrane-associated penicillin-binding protein which is highly toxic when overexpressed.
Collapse
Affiliation(s)
- L B Pedersen
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | | | | | |
Collapse
|
40
|
Hosoya Y, Okamoto S, Muramatsu H, Ochi K. Acquisition of certain streptomycin-resistant (str) mutations enhances antibiotic production in bacteria. Antimicrob Agents Chemother 1998; 42:2041-7. [PMID: 9687404 PMCID: PMC105730 DOI: 10.1128/aac.42.8.2041] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/1998] [Accepted: 06/09/1998] [Indexed: 02/08/2023] Open
Abstract
Physiological differentiation (including antibiotic production) in microorganisms usually starts when cells encounter adverse environmental conditions and is frequently accompanied by an increase in the accumulation of intracellular ppGpp. We have found that the acquisition of certain streptomycin-resistant (str) mutations enables cells to overproduce antibiotics, demonstrating an increase in productivity 5- to 50-fold greater than that of wild-type strains. The frequency of such antibiotic-overproducing strains among the str mutants was shown to range from 3 to 46%, as examined with several strains of the genera Streptomyces, Bacillus, and Pseudomonas. Analysis of str mutants from Bacillus subtilis Marburg 168 revealed that a point mutation occurred within the rpsL gene, which encodes the ribosomal protein S12, changing Lys-56 (corresponding to Lys-43 in Escherichia coli) to Asn, Arg, Thr, or Gln. Antibiotic productivity increased in a hierarchical manner depending upon which amino acid residue replaced Lys at this position. The strA1 mutation, a genetic marker frequently used for mapping, had no effect on antibiotic productivity even though it was found to result in an amino acid alteration of Lys-56 to Ile. Gene replacement experiments with the str alleles demonstrated unambiguously that the str mutation is responsible for the antibiotic overproductivity observed. These results offer a rational approach for improving the production of antibiotic (secondary metabolism) from microorganisms.
Collapse
Affiliation(s)
- Y Hosoya
- National Food Research Institute, Fujisawa Pharmaceutical Co., Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
41
|
Strauch MA. Delineation of AbrB-binding sites on the Bacillus subtilis spo0H, kinB, ftsAZ, and pbpE promoters and use of a derived homology to identify a previously unsuspected binding site in the bsuB1 methylase promote. J Bacteriol 1995; 177:6999-7002. [PMID: 7592498 PMCID: PMC177573 DOI: 10.1128/jb.177.23.6999-7002.1995] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
DNase I footprinting experiments showed that AbrB binds to the regulatory regions of the spo0H, kinB, ftsAZ, and pbpE genes. A conserved motif was found in these and other AbrB-binding sites. A search for Bacillus subtilis DNA sequences containing this motif led to the prediction that AbrB would bind to the promoter controlling the bsuB1 methylase gene. DNase I footprinting experiments confirmed this prediction.
Collapse
Affiliation(s)
- M A Strauch
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
42
|
Mandic-Mulec I, Doukhan L, Smith I. The Bacillus subtilis SinR protein is a repressor of the key sporulation gene spo0A. J Bacteriol 1995; 177:4619-27. [PMID: 7642487 PMCID: PMC177225 DOI: 10.1128/jb.177.16.4619-4627.1995] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
SinR is a pleiotropic DNA binding protein that is essential for the late-growth processes of competence and motility in Bacillus subtilis and is also a repressor of others, e.g., sporulation and subtilisin synthesis. In this report, we show that SinR, in addition to being an inhibitor of sporulation stage II gene expression, is a repressor of the key early sporulation gene spo0A. The sporulation-specific rise in spo0A expression at time zero is absent in a SinR-overproducing strain and is much higher than normal in strains with a disrupted sinR gene. This effect is direct, since SinR binds specifically to spo0A in vitro, in a region overlapping the -10 region of the sporulation-specific Ps promoter that is recognized by E-sigma H polymerase. Methyl interference and site-directed mutagenesis studies have identified guanine residues that are important for SinR recognition of this DNA sequence. Finally, we present evidence that SinR controls sporulation through several independent genes, i.e., sp0A, spoIIA, and possibly spoIIG and spoIIE.
Collapse
Affiliation(s)
- I Mandic-Mulec
- Public Health Research Institute, New York, New York 10016, USA
| | | | | |
Collapse
|
43
|
Hicks KA, Grossman AD. Characterization of csh203::Tn917lac, a mutation in Bacillus subtilis that makes the sporulation sigma factor sigma-H essential for normal vegetative growth. J Bacteriol 1995; 177:3736-42. [PMID: 7601838 PMCID: PMC177090 DOI: 10.1128/jb.177.13.3736-3742.1995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
spo0H encodes a sigma factor, sigma-H, of RNA polymerase that is required for sporulation in Bacillus subtilis. Null mutations in spo0H block the initiation of sporulation but have no obvious effect on vegetative growth. We have characterized an insertion mutation, csh203::Tn917lac, that makes spo0H essential for normal growth. In otherwise wild-type cells, the csh203::Tn917lac insertion mutation has no obvious effect on cell growth, viability, or sporulation. However, in combination with a mutation in spo0H, the csh203 mutation causes a defect in vegetative growth. The csh203::Tn917lac insertion mutation was found to be located within orf23, the first gene of the rpoD (sigma-A) operon. The transposon insertion separates the major vegetative promoters P1 and P2 from the coding regions of two essential genes, dnaG (encoding DNA primase) and rpoD (encoding the major sigma factor, sigma-A) and leaves these genes under the control of minor promoters, including P4, a promoter controlled by sigma-H. The chs203 insertion mutation caused a 2- to 10-fold increase in expression of promoters recognized by RNA polymerase containing sigma-H. The increased expression of genes controlled by sigma-H in the csh203 single mutant, as well as the growth defect of the csh203 spo0H double mutant, was due to effects on rpoD and not to a defect in orf23 or dnaG.
Collapse
Affiliation(s)
- K A Hicks
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
44
|
Hahn J, Roggiani M, Dubnau D. The major role of Spo0A in genetic competence is to downregulate abrB, an essential competence gene. J Bacteriol 1995; 177:3601-5. [PMID: 7768874 PMCID: PMC177070 DOI: 10.1128/jb.177.12.3601-3605.1995] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We show that the major role for Spo0A in the development of genetic competence is to downregulate expression of abrB. AbrB is both a negative regulator and a positive regulator of competence. The negative effects are exerted at multiple points in competence regulation. A regulatory mechanism that is independent of mecA and abrB operates on comK expression.
Collapse
Affiliation(s)
- J Hahn
- Public Health Research Institute, New York, New York 10016, USA
| | | | | |
Collapse
|
45
|
Ireton K, Jin S, Grossman AD, Sonenshein AL. Krebs cycle function is required for activation of the Spo0A transcription factor in Bacillus subtilis. Proc Natl Acad Sci U S A 1995; 92:2845-9. [PMID: 7708735 PMCID: PMC42315 DOI: 10.1073/pnas.92.7.2845] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Expression of genes early during sporulation in Bacillus subtilis requires the activity of the transcription factor encoded by spo0A. The active, phosphorylated form of Spo0A is produced through the action of a multicomponent pathway, the phosphorelay. A mutant defective in the first three enzymes of the Krebs citric acid cycle was unable to express early sporulation genes, apparently because of a failure to activate the phosphorelay. Cells that produce an altered Spo0A protein that can be phosphorylated by an alternative pathway were not dependent on Krebs cycle function for early sporulation gene expression. These findings suggest that Krebs cycle enzymes transmit a signal to activate the phosphorelay and that B. subtilis monitors its metabolic potential before committing itself to spore formation.
Collapse
Affiliation(s)
- K Ireton
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|
46
|
Abstract
The specificity of DNA-dependent RNA polymerase for target promotes is largely due to the replaceable sigma subunit that it carries. Multiple sigma proteins, each conferring a unique promoter preference on RNA polymerase, are likely to be present in all bacteria; however, their abundance and diversity have been best characterized in Bacillus subtilis, the bacterium in which multiple sigma factors were first discovered. The 10 sigma factors thus far identified in B. subtilis directly contribute to the bacterium's ability to control gene expression. These proteins are not merely necessary for the expression of those operons whose promoters they recognize; in many instances, their appearance within the cell is sufficient to activate these operons. This review describes the discovery of each of the known B. subtilis sigma factors, their characteristics, the regulons they direct, and the complex restrictions placed on their synthesis and activities. These controls include the anticipated transcriptional regulation that modulates the expression of the sigma factor structural genes but, in the case of several of the B. subtilis sigma factors, go beyond this, adding novel posttranslational restraints on sigma factor activity. Two of the sigma factors (sigma E and sigma K) are, for example, synthesized as inactive precursor proteins. Their activities are kept in check by "pro-protein" sequences which are cleaved from the precursor molecules in response to intercellular cues. Other sigma factors (sigma B, sigma F, and sigma G) are inhibited by "anti-sigma factor" proteins that sequester them into complexes which block their ability to form RNA polymerase holoenzymes. The anti-sigma factors are, in turn, opposed by additional proteins which participate in the sigma factors' release. The devices used to control sigma factor activity in B, subtilis may prove to be as widespread as multiple sigma factors themselves, providing ways of coupling sigma factor activation to environmental or physiological signals that cannot be readily joined to other regulatory mechanisms.
Collapse
Affiliation(s)
- W G Haldenwang
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| |
Collapse
|
47
|
LeDeaux JR, Grossman AD. Isolation and characterization of kinC, a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis. J Bacteriol 1995; 177:166-75. [PMID: 8002614 PMCID: PMC176569 DOI: 10.1128/jb.177.1.166-175.1995] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Phosphorylation of the transcription factor encoded by spo0A is required for the initiation of sporulation in Bacillus subtilis. Production and accumulation of Spo0A-P is controlled by histidine protein kinases and the spo0 gene products. To identify additional genes that might be involved in the initiation of sporulation and production of Spo0A-P, we isolated genes which when present on a multicopy plasmid could suppress the sporulation defect of a spo0K mutant. kinC was one gene isolated in this way. A multicopy plasmid containing kinC completely or partially suppressed the sporulation defect caused by mutations in spo0K, kinA, spo0F, and spo0B, indicating that at least when overexpressed, KinC is capable of stimulating phosphorylation of Spo0A independently of the normal phosphorylation pathway. The predicted product of kinC is 428 amino acids long and is most similar to KinA and KinB, the histidine protein kinases involved in the initiation of sporulation. In otherwise wild-type strains, kinC null mutations caused little or no defect in sporulation under the conditions tested. However, in the absence of a functional phosphorelay (spo0F or spo0B), KinC appears to be the kinase responsible for phosphorylation of the sof-1 and rvtA11 forms of Spo0A.
Collapse
Affiliation(s)
- J R LeDeaux
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
48
|
van Sinderen D, Venema G. comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis. J Bacteriol 1994; 176:5762-70. [PMID: 8083168 PMCID: PMC196780 DOI: 10.1128/jb.176.18.5762-5770.1994] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The comK gene is a regulatory transcription unit which is essential for the development of genetic competence in Bacillus subtilis. The transcription of comK is under strict nutritional and growth phase-dependent control and has been shown to depend on the gene products of comA and srfA. In this report, we show that expression of comK is dependent on its own gene product as well as on the gene products of all other tested regulatory genes known to be involved in competence development (abrB, comA, comP, degU, sin, spo0A, spo0H, spo0K, and srfA). A mecA mutation is able to suppress the competence deficiency of mutations in any of these regulatory loci except for mutations in spo0A and, as we show here, in comK. Furthermore, we show that the presence of comK on a multiple copy plasmid leads to derepression of comK expression, causing an almost constitutive expression of competence in minimal medium as well as permitting competence development in complex medium. We infer from these results that the signals which trigger competence development, after having been received and processed by the various components of the competence signal transduction pathway, all converge at the level of comK expression. As soon as derepression of comK expression occurs, the positive autoregulation rapidly results in accumulation of the comK gene product, which subsequently induces competence.
Collapse
Affiliation(s)
- D van Sinderen
- Department of Genetics, University of Groningen, Haren, The Netherlands
| | | |
Collapse
|
49
|
Gocht M, Marahiel MA. Analysis of core sequences in the D-Phe activating domain of the multifunctional peptide synthetase TycA by site-directed mutagenesis. J Bacteriol 1994; 176:2654-62. [PMID: 8169215 PMCID: PMC205405 DOI: 10.1128/jb.176.9.2654-2662.1994] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The D-phenylalanine-activating enzyme tyrocidine synthetase I (TycA) from Bacillus brevis ATCC 8185 was overexpressed in Escherichia coli, purified to homogeneity, and assayed for ATP-PPi exchange and covalent binding of phenylalanine by the thiotemplate mechanism. Amino acid exchanges in four different cores of TycA created by site-directed mutagenesis revealed the amino acid residues involved in aminoacyladenylate formation and in covalent thioester formation. Mutations in the putative ATP-binding site SGTTGKPKG caused a decreased phenylalanine-dependent ATP-PPi exchange activity to 10% of the wild-type level for a Lys-186-to-Arg substitution and an almost complete loss of activity (< 1%) for a Lys-186-to-Thr exchange. Alteration of Asp-401 to Asn in the ATPase motif TGDL of TycA decreased the phenylalanine-dependent ATP-PPi exchange activity to 75% of wild type, while an Asp-401-to-Ser mutation decreased the activity to 10% of the wild-type level. Replacement of Ser-562 in the putative thioester-binding motif LGGDSI to Ala or Gly caused a reduction in trichloroacetic acid-precipitable TycA-[14C]phenylalanine complex to one-third of the wild-type level. However, no cleavable [14C]phenylalanine could be detected after treatment with performic acid, indicating that the resulting mutant was unable to form thioester with phenylalanine. In E. coli, TycA was labeled with beta-[3H]alanine, a precursor of 4'-phosphopantetheine, indicating that TycA is modified with a beta-alanine-containing cofactor.
Collapse
Affiliation(s)
- M Gocht
- Fachbereich Chemie/Biochemie, Philipps-Universität Marburg, Germany
| | | |
Collapse
|
50
|
Frisby D, Zuber P. Mutations in pts cause catabolite-resistant sporulation and altered regulation of spo0H in Bacillus subtilis. J Bacteriol 1994; 176:2587-95. [PMID: 8169206 PMCID: PMC205396 DOI: 10.1128/jb.176.9.2587-2595.1994] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A mutation in Bacillus subtilis, ggr-31, that relieves glucose-glutamine-dependent control of a spoVG-lacZ translational fusion was isolated and was subsequently found to confer a pleiotropic phenotype. Mutants cultured in glucose- and glutamine-rich media exhibited a Crs- (catabolite-resistant sporulation) phenotype; enhanced expression of the spo0H gene, encoding sigma H, as evidenced by immunoblot analysis with anti-sigma H antiserum; and derepression of srfA, an operon involved in surfactin biosynthesis and competence development. In addition, ggr-31 mutants exhibited a significant increase in generation time when they were cultured in minimal glucose medium. The mutant phenotype was restored to the wild type by Campbell integration of a plasmid containing part of the ptsG (encoding the enzyme II/III glucose permease) gene, indicating that the mutation probably resides within ptsG and adversely affects glucose uptake. A deletion mutation within ptsI exhibited a phenotype similar to that of ggr-31.
Collapse
Affiliation(s)
- D Frisby
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130-3932
| | | |
Collapse
|