1
|
Qu S, Perlaky SE, Organ EL, Crawford D, Cavener DR. Mutations at the Ser50 residue of translation factor eIF-2alpha dominantly affect developmental rate, body weight, and viability of Drosophila melanogaster. Gene Expr 2018; 6:349-60. [PMID: 9495316 PMCID: PMC6148258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphorylation of the translation initiation factor eIF-2alpha downregulates protein synthesis by sequestering the guanylate exchange factor eIF-2B. The importance of this regulation has been demonstrated in the context of stress and virally induced repression of protein synthesis but has not been investigated relative to the control of protein synthesis during development. Transgenic Drosophila strains bearing aspartic acid or alanine substitutions at the presumed regulatory phosphorylation site (Ser50) of Drosophila eIF-2alpha were established. The expression of the eIF-2alpha mutant transgenes, under the transcriptional control of the hsp70 promoter, was induced at various times during development to assess the developmental and biochemical effects. Flies bearing the aspartic acid eIF-2alpha mutant (HD) transgene displayed a slow growth phenotype and small body size. Repeated induction of the HD transgene resulted in cessation of development. In contrast, flies bearing the alanine eIF-2alpha mutant (HA) displayed a fast growth phenotype and females were significantly larger than nontransgenic control sisters. The HD transgenic flies exhibit a relatively lower level of global protein synthesis than the HA transgenic flies, although the difference is statistically insignificant.
Collapse
Affiliation(s)
| | | | | | | | - Douglas R. Cavener
- Address correspondence to Douglas R. Cavener. Tel: (615) 322-3418; Fax: (615) 343-6707; E-mail:
| |
Collapse
|
2
|
Takahashi H, Kozhuharova A, Sharma H, Hirose M, Ohyama T, Fasolo F, Yamazaki T, Cotella D, Santoro C, Zucchelli S, Gustincich S, Carninci P. Identification of functional features of synthetic SINEUPs, antisense lncRNAs that specifically enhance protein translation. PLoS One 2018; 13:e0183229. [PMID: 29414979 PMCID: PMC5802440 DOI: 10.1371/journal.pone.0183229] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/01/2017] [Indexed: 12/26/2022] Open
Abstract
SINEUPs are antisense long noncoding RNAs, in which an embedded SINE B2 element UP-regulates translation of partially overlapping target sense mRNAs. SINEUPs contain two functional domains. First, the binding domain (BD) is located in the region antisense to the target, providing specific targeting to the overlapping mRNA. Second, the inverted SINE B2 represents the effector domain (ED) and enhances translation. To adapt SINEUP technology to a broader number of targets, we took advantage of a high-throughput, semi-automated imaging system to optimize synthetic SINEUP BD and ED design in HEK293T cell lines. Using SINEUP-GFP as a model SINEUP, we extensively screened variants of the BD to map features needed for optimal design. We found that most active SINEUPs overlap an AUG-Kozak sequence. Moreover, we report our screening of the inverted SINE B2 sequence to identify active sub-domains and map the length of the minimal active ED. Our synthetic SINEUP-GFP screening of both BDs and EDs constitutes a broad test with flexible applications to any target gene of interest.
Collapse
Affiliation(s)
- Hazuki Takahashi
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, Japan
| | - Ana Kozhuharova
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, Japan
| | - Harshita Sharma
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, Japan
| | - Masakazu Hirose
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, Japan
| | - Takako Ohyama
- RIKEN Center for Life Science Technologies, Division of Structural and Synthetic Biology, Yokohama, Kanagawa, Japan
| | - Francesca Fasolo
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Toshio Yamazaki
- RIKEN Center for Life Science Technologies, Division of Structural and Synthetic Biology, Yokohama, Kanagawa, Japan
| | - Diego Cotella
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Claudio Santoro
- Department of Health Sciences & IRCAD, Università del Piemonte Orientale, Novara, Italy
| | - Silvia Zucchelli
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Stefano Gustincich
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Piero Carninci
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, Japan
- TransSINE Technologies, Yokohama, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
3
|
Vachon VK, Conn GL. Adenovirus VA RNA: An essential pro-viral non-coding RNA. Virus Res 2015; 212:39-52. [PMID: 26116898 DOI: 10.1016/j.virusres.2015.06.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/25/2022]
Abstract
Adenovirus (AdV) 'virus-associated' RNAs (VA RNAs) are exceptionally abundant (up to 10(8)copies/cell), heterogeneous, non-coding RNA transcripts (∼ 150-200 nucleotides). The predominant species, VA RNAI, is best recognized for its essential function in relieving the cellular anti-viral blockade of protein synthesis through inhibition of the double-stranded RNA-activated protein kinase (PKR). More recent evidence has revealed that VA RNAs also interfere with several other host cell processes, in part by virtue of the high level to which they accumulate. Following transcription by cellular RNA polymerase III, VA RNAs saturate the nuclear export protein Exportin 5 (Exp5) and the cellular endoribonculease Dicer, interfering with pre-micro (mi)RNA export and miRNA biogenesis, respectively. Dicer-processed VA RNA fragments are incorporated into the RNA-induced silencing complex (RISC) as 'mivaRNAs', where they may specifically target cellular genes. VA RNAI also interacts with other innate immune proteins, including OAS1. While intact VA RNAI has the paradoxical effect of activating OAS1, a non-natural VA RNAI construct lacking the entire Terminal Stem has been reported to be a pseudoinhibitor of OAS1. Here, we show that a VA RNAI construct corresponding to an authentic product of Dicer processing similarly fails to activate OAS1 but also retains only a modest level of inhibitory activity against PKR in contrast to the non-natural deletion construct. These findings underscore the complexity of the arms race between virus and host, and highlight the need for further exploration of the impact of VA RNAI interactions with host defenses on the outcome of AdV infection beyond that of well-established PKR inhibition. Additional contributions of VA RNAI heterogeneity resulting from variations in transcription initiation and termination to each of these functions remain open questions that are discussed here.
Collapse
Affiliation(s)
- Virginia K Vachon
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; Microbiology and Molecular Genetics (MMG) Program, Graduate Division of Biological and Biomedical Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
4
|
Mittelstadt M, Frump A, Khuu T, Fowlkes V, Handy I, Patel CV, Patel RC. Interaction of human tRNA-dihydrouridine synthase-2 with interferon-induced protein kinase PKR. Nucleic Acids Res 2007; 36:998-1008. [PMID: 18096616 PMCID: PMC2241914 DOI: 10.1093/nar/gkm1129] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PKR is an interferon (IFN)-induced protein kinase, which is involved in regulation of antiviral innate immunity, stress signaling, cell proliferation and programmed cell death. Although a low amount of PKR is expressed ubiquitously in all cell types in the absence of IFNs, PKR expression is induced at transcriptional level by IFN. PKR's enzymatic activity is activated by its binding to one of its activators. Double-stranded (ds) RNA, protein activator PACT and heparin are the three known activators of PKR. Activation of PKR in cells leads to a general block in protein synthesis due to phosphorylation of eIF2α on serine 51 by PKR. PKR activation is regulated very tightly in mammalian cells and a prolonged activation of PKR leads to apoptosis. Thus, positive and negative regulation of PKR activation is important for cell viability and function. The studies presented here describe human dihydrouridine synthase-2 (hDUS2) as a novel regulator of PKR. We originally identified hDUS2 as a protein interacting with PACT in a yeast two-hybrid screen. Further characterization revealed that hDUS2 also interacts with PKR through its dsRNA binding/dimerization domain and inhibits its kinase activity. Our results suggest that hDUS2 may act as a novel inhibitor of PKR in cells.
Collapse
Affiliation(s)
- Megan Mittelstadt
- Department of Biological Sciences, University of South Carolina Columbia, SC 29208, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Langland JO, Cameron JM, Heck MC, Jancovich JK, Jacobs BL. Inhibition of PKR by RNA and DNA viruses. Virus Res 2006; 119:100-10. [PMID: 16704884 DOI: 10.1016/j.virusres.2005.10.014] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 09/28/2005] [Accepted: 10/20/2005] [Indexed: 11/28/2022]
Abstract
Interferons were the first of the anti-viral innate immune modulators to be characterized, initially characterized solely as anti-viral proteins [reviewed in Le Page, C., Genin, P., Baines, M.G., Hiscott, J., 2000. Inteferon activation and innate immunity. Rev. Immunogenet. 2, 374-386]. As we have progressed in our understanding of the interferons they have taken a more central role in our understanding of innate immunity and its interplay with the adaptive immune response. One of the key players in function of interferon is the interferon-inducible enzyme, protein kinase (PKR, activatable by RNA). The key role played by PKR in the innate response to virus infection is emphasized by the large number of viruses, DNA viruses as well as RNA viruses, whose hosts range from insects to humans, that code for PKR inhibitors. In this review we will first describe activation of PKR and then describe the myriad of ways that viruses inhibit function of PKR.
Collapse
Affiliation(s)
- Jeffrey O Langland
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401, USA
| | | | | | | | | |
Collapse
|
6
|
Aparicio O, Razquin N, Zaratiegui M, Narvaiza I, Fortes P. Adenovirus virus-associated RNA is processed to functional interfering RNAs involved in virus production. J Virol 2006; 80:1376-84. [PMID: 16415015 PMCID: PMC1346933 DOI: 10.1128/jvi.80.3.1376-1384.2006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Posttranscriptional gene silencing allows sequence-specific control of gene expression. Specificity is guaranteed by small antisense RNAs such as microRNAs (miRNAs) or small interfering RNAs (siRNAs). Functional miRNAs derive from longer double-stranded RNA (dsRNA) molecules that are cleaved to pre-miRNAs in the nucleus and are transported by exportin 5 (Exp 5) to the cytoplasm. Adenovirus-infected cells express virus-associated (VA) RNAs, which are dsRNA molecules similar in structure to pre-miRNAs. VA RNAs are also transported by Exp 5 to the cytoplasm, where they accumulate. Here we show that small RNAs derived from VA RNAs (svaRNAs), similar to miRNAs, can be found in adenovirus-infected cells. VA RNA processing to svaRNAs requires neither viral replication nor viral protein expression, as evidenced by the fact that svaRNA accumulation can be detected in cells transfected with VA sequences. svaRNAs are efficiently bound by Argonaute 2, the endonuclease of the RNA-induced silencing complex, and behave as functional siRNAs, in that they inhibit the expression of reporter genes with complementary sequences. Blocking svaRNA-mediated inhibition affects efficient adenovirus production, indicating that svaRNAs are required for virus viability. Thus, svaRNA-mediated silencing could represent a novel mechanism used by adenoviruses to control cellular or viral gene expression.
Collapse
Affiliation(s)
- Oscar Aparicio
- Division of Gene Therapy and Hepatology, CIMA, University of Navarra, Pio XII 55, 31008 Pamplona, Spain
| | | | | | | | | |
Collapse
|
7
|
Abstract
Cells reprogram gene expression in response to environmental changes by mobilizing transcriptional activators. The activator protein Gcn4 of the yeast Saccharomyces cerevisiae is regulated by an intricate translational control mechanism, which is the primary focus of this review, and also by the modulation of its stability in response to nutrient availability. Translation of GCN4 mRNA is derepressed in amino acid-deprived cells, leading to transcriptional induction of nearly all genes encoding amino acid biosynthetic enzymes. The trans-acting proteins that control GCN4 translation have general functions in the initiation of protein synthesis, or regulate the activities of initiation factors, so that the molecular events that induce GCN4 translation also reduce the rate of general protein synthesis. This dual regulatory response enables cells to limit their consumption of amino acids while diverting resources into amino acid biosynthesis in nutrient-poor environments. Remarkably, mammalian cells use the same strategy to downregulate protein synthesis while inducing transcriptional activators of stress-response genes under various stressful conditions, including amino acid starvation.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA.
| |
Collapse
|
8
|
Fasciano S, Hutchins B, Handy I, Patel RC. Identification of the heparin-binding domains of the interferon-induced protein kinase, PKR. FEBS J 2005; 272:1425-39. [PMID: 15752359 PMCID: PMC3969814 DOI: 10.1111/j.1742-4658.2005.04575.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PKR is an interferon-induced serine-threonine protein kinase that plays an important role in the mediation of the antiviral and antiproliferative actions of interferons. PKR is present at low basal levels in cells and its expression is induced at the transcriptional level by interferons. PKR's kinase activity stays latent until it binds to its activator. In the case of virally infected cells, double-stranded (ds) RNA serves as PKR's activator. The dsRNA binds to PKR via two copies of an evolutionarily conserved motif, thus inducing a conformational change, unmasking the ATP-binding site and leading to autophosphorylation of PKR. Activated PKR then phosphorylates the alpha-subunit of the protein synthesis initiation factor 2 (eIF2alpha) thereby inducing a general block in the initiation of protein synthesis. In addition to dsRNA, polyanionic agents such as heparin can also activate PKR. In contrast to dsRNA-induced activation of PKR, heparin-dependent PKR activation has so far remained uncharacterized. In order to understand the mechanism of heparin-induced PKR activation, we have mapped the heparin-binding domains of PKR. Our results indicate that PKR has two heparin-binding domains that are nonoverlapping with its dsRNA-binding domains. Although both these domains can function independently of each other, they function cooperatively when present together. Point mutations created within these domains rendered PKR defective in heparin-binding, thereby confirming their essential role. In addition, these mutants were defective in kinase activity as determined by both in vitro and in vivo assays.
Collapse
Affiliation(s)
- Stephen Fasciano
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
9
|
Abstract
RNA polymerase (pol) III synthesizes a range of essential products, including tRNA, 5S rRNA and 7SL RNA, which are required for protein synthesis and trafficking. High rates of pol III transcription are necessary for cells to sustain growth. A wide range of transformed and tumour cell types have been shown to express elevated levels of pol III products. This review will summarize what is known about the mechanisms responsible for this deregulation. Some transforming agents have been shown to stimulate expression of the pol III-specific transcription factors TFIIIB or TFIIIC2. In addition, TFIIIB is bound and activated by several oncogenic proteins, including c-Myc. Conversely, TFIIIB interacts in healthy cells with the tumour suppressors RB and p53. Indeed, the ability to limit pol III transcription through TFIIIB may contribute to their growth-suppression capacities. The function of p53 and/or RB is compromised in most if not all transformed cells; the resultant derepression of TFIIIB may provide an almost universal route to deregulate pol III transcription in cancers. In addition to effects on protein synthesis and growth, there is a precedent for a pol III product having oncogenic activity.
Collapse
Affiliation(s)
- Robert J White
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Davidson Building, Glasgow G12 8QQ, UK.
| |
Collapse
|
10
|
Gupta V, Huang X, Patel RC. The carboxy-terminal, M3 motifs of PACT and TRBP have opposite effects on PKR activity. Virology 2003; 315:283-91. [PMID: 14585331 DOI: 10.1016/s0042-6822(03)00589-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PKR is an interferon(IFN)-induced, serine-threonine protein kinase, which plays a crucial role in IFN's antiviral and antiproliferative actions. The three known activators of PKR are dsRNA, heparin, and PACT. PACT activates PKR by direct protein-protein interaction in response to cellular stress. The human TAR (trans-activating region)-binding protein (TRBP), which is very homologous to PACT, also interacts with PKR, leading to an inhibition of PKR activity. Since these two highly homologous proteins have opposite effects on PKR, we examined if they interact with PKR differently by assaying their interaction with various point mutants of PKR. Our results indicate that TRBP and PACT interact with PKR through the same residues, and no differences were identified in these two interactions. Domain swap experiments between PACT and TRBP indicated that the inhibitory effects of TRBP on PKR activity are mediated through its carboxy-terminal residues, which contain TRBP's third dsRNA-binding motif.
Collapse
Affiliation(s)
- Vishal Gupta
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA
| | | | | |
Collapse
|
11
|
Huang X, Hutchins B, Patel RC. The C-terminal, third conserved motif of the protein activator PACT plays an essential role in the activation of double-stranded-RNA-dependent protein kinase (PKR). Biochem J 2002; 366:175-86. [PMID: 11985496 PMCID: PMC1222748 DOI: 10.1042/bj20020204] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2002] [Revised: 04/16/2002] [Accepted: 05/02/2002] [Indexed: 11/17/2022]
Abstract
One of the key mediators of the antiviral and antiproliferative actions of interferon is double-stranded-RNA-dependent protein kinase (PKR). PKR activity is also involved in the regulation of cell proliferation, apoptosis and signal transduction. We have recently identified PACT, a novel protein activator of PKR, as an important modulator of PKR activity in cells in the absence of viral infection. PACT heterodimerizes with PKR and activates it by direct protein-protein interactions. Endogenous PACT acts as an activator of PKR in response to diverse stress signals, such as serum starvation and peroxide or arsenite treatment, and is therefore a novel, stress-modulated physiological activator of PKR. In this study, we have characterized the functional domains of PACT that are required for PKR activation. Our results have shown that, unlike the N-terminal conserved domains 1 and 2, the third conserved domain of PACT is dispensable for its binding of double-stranded RNA and inter action with PKR. However, a deletion of domain 3 results in a loss of PKR activation ability, in spite of a normal interaction with PKR, thereby indicating that domain 3 plays an essential role in PKR activation. Purified recombinant domain 3 could also activate PKR efficiently in vitro. Our results indicate that, although dispensable for PACT's high-affinity interaction with PKR, the third motif is essential for PKR activation. In addition, domain 3 and eukaryotic initiation factor 2alpha both interact with PKR through the same region within PKR, which we have mapped to lie between amino acid residues 318 and 551.
Collapse
Affiliation(s)
- Xu Huang
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, U.S.A
| | | | | |
Collapse
|
12
|
Clemens MJ. Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 27:57-89. [PMID: 11575161 DOI: 10.1007/978-3-662-09889-9_3] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alpha subunit of polypeptide chain initiation factor eIF2 can be phosphorylated by a number of related protein kinases which are activated in response to cellular stresses. Physiological conditions which result in eIF2 alpha phosphorylation include virus infection, heat shock, iron deficiency, nutrient deprivation, changes in intracellular calcium, accumulation of unfolded or denatured proteins and the induction of apoptosis. Phosphorylated eIF2 acts as a dominant inhibitor of the guanine nucleotide exchange factor eIF2B and prevents the recycling of eIF2 between successive rounds of protein synthesis. Extensive phosphorylation of eIF2 alpha and strong inhibition of eIF2B activity can result in the downregulation of the overall rate of protein synthesis; less marked changes may lead to alterations in the selective translation of alternative open reading frames in polycistronic mRNAs, as demonstrated in yeast. These mechanisms can provide a signal transduction pathway linking eukaryotic cellular stress responses to alterations in the control of gene expression at the translational level.
Collapse
Affiliation(s)
- M J Clemens
- Department of Biochemistry and Immunology, St George's Hospital Medical School, University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
13
|
Krishnamoorthy T, Pavitt GD, Zhang F, Dever TE, Hinnebusch AG. Tight binding of the phosphorylated alpha subunit of initiation factor 2 (eIF2alpha) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Mol Cell Biol 2001; 21:5018-30. [PMID: 11438658 PMCID: PMC87228 DOI: 10.1128/mcb.21.15.5018-5030.2001] [Citation(s) in RCA: 257] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation initiation factor 2 (eIF2) is a heterotrimeric protein that transfers methionyl-initiator tRNA(Met) to the small ribosomal subunit in a ternary complex with GTP. The eIF2 phosphorylated on serine 51 of its alpha subunit [eIF2(alphaP)] acts as competitive inhibitor of its guanine nucleotide exchange factor, eIF2B, impairing formation of the ternary complex and thereby inhibiting translation initiation. eIF2B is comprised of catalytic and regulatory subcomplexes harboring independent eIF2 binding sites; however, it was unknown whether the alpha subunit of eIF2 directly contacts any eIF2B subunits or whether this interaction is modulated by phosphorylation. We found that recombinant eIF2alpha (glutathione S-transferase [GST]-SUI2) bound to the eIF2B regulatory subcomplex in vitro, in a manner stimulated by Ser-51 phosphorylation. Genetic data suggest that this direct interaction also occurred in vivo, allowing overexpressed SUI2 to compete with eIF2(alphaP) holoprotein for binding to the eIF2B regulatory subcomplex. Mutations in SUI2 and in the eIF2B regulatory subunit GCD7 that eliminated inhibition of eIF2B by eIF2(alphaP) also impaired binding of phosphorylated GST-SUI2 to the eIF2B regulatory subunits. These findings provide strong evidence that tight binding of phosphorylated SUI2 to the eIF2B regulatory subcomplex is crucial for the inhibition of eIF2B and attendant downregulation of protein synthesis exerted by eIF2(alphaP). We propose that this regulatory interaction prevents association of the eIF2B catalytic subcomplex with the beta and gamma subunits of eIF2 in the manner required for GDP-GTP exchange.
Collapse
Affiliation(s)
- T Krishnamoorthy
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
14
|
Kedersha NL, Gupta M, Li W, Miller I, Anderson P. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 1999; 147:1431-42. [PMID: 10613902 PMCID: PMC2174242 DOI: 10.1083/jcb.147.7.1431] [Citation(s) in RCA: 1003] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/1999] [Accepted: 11/16/1999] [Indexed: 12/20/2022] Open
Abstract
In response to environmental stress, the related RNA-binding proteins TIA-1 and TIAR colocalize with poly(A)(+) RNA at cytoplasmic foci that resemble the stress granules (SGs) that harbor untranslated mRNAs in heat shocked plant cells (Nover et al. 1989; Nover et al. 1983; Scharf et al. 1998). The accumulation of untranslated mRNA at SGs is reversible in cells that recover from a sublethal stress, but irreversible in cells subjected to a lethal stress. We have found that the assembly of TIA-1/R(+) SGs is initiated by the phosphorylation of eIF-2alpha. A phosphomimetic eIF-2alpha mutant (S51D) induces the assembly of SGs, whereas a nonphosphorylatable eIF-2alpha mutant (S51A) prevents the assembly of SGs. The ability of a TIA-1 mutant lacking its RNA-binding domains to function as a transdominant inhibitor of SG formation suggests that this RNA-binding protein acts downstream of the phosphorylation of eIF-2alpha to promote the sequestration of untranslated mRNAs at SGs. The assembly and disassembly of SGs could regulate the duration of stress- induced translational arrest in cells recovering from environmental stress.
Collapse
Affiliation(s)
- Nancy L. Kedersha
- Division of Rheumatology and Immunology, Brigham and Women's Hospital, Smith Building, Boston, Massachusetts 02115
| | - Mita Gupta
- Division of Rheumatology and Immunology, Brigham and Women's Hospital, Smith Building, Boston, Massachusetts 02115
| | - Wei Li
- Division of Rheumatology and Immunology, Brigham and Women's Hospital, Smith Building, Boston, Massachusetts 02115
| | - Ira Miller
- Division of Rheumatology and Immunology, Brigham and Women's Hospital, Smith Building, Boston, Massachusetts 02115
| | - Paul Anderson
- Division of Rheumatology and Immunology, Brigham and Women's Hospital, Smith Building, Boston, Massachusetts 02115
| |
Collapse
|
15
|
Abstract
The mechanisms whereby ribosomes engage a messenger RNA and select the start site for translation differ between prokaryotes and eukaryotes. Initiation sites in polycistronic prokaryotic mRNAs are usually selected via base pairing with ribosomal RNA. That straightforward mechanism is made complicated and interesting by cis- and trans-acting elements employed to regulate translation. Initiation sites in eukaryotic mRNAs are reached via a scanning mechanism which predicts that translation should start at the AUG codon nearest the 5' end of the mRNA. Interest has focused on mechanisms that occasionally allow escape from this first-AUG rule. With natural mRNAs, three escape mechanisms - context-dependent leaky scanning, reinitiation, and possibly direct internal initiation - allow access to AUG codons which, although not first, are still close to the 5' end of the mRNA. This constraint on the initiation step of translation in eukaryotes dictates the location of transcriptional promoters and may have contributed to the evolution of splicing.The binding of Met-tRNA to ribosomes is mediated by a GTP-binding protein in both prokaryotes and eukaryotes, but the more complex structure of the eukaryotic factor (eIF-2) and its association with other proteins underlie some aspects of initiation unique to eukaryotes. Modulation of GTP hydrolysis by eIF-2 is important during the scanning phase of initiation, while modulating the release of GDP from eIF-2 is a key mechanism for regulating translation in eukaryotes. Our understanding of how some other protein factors participate in the initiation phase of translation is in flux. Genetic tests suggest that some proteins conventionally counted as eukaryotic initiation factors may not be required for translation, while other tests have uncovered interesting new candidates. Some popular ideas about the initiation pathway are predicated on static interactions between isolated factors and mRNA. The need for functional testing of these complexes is discussed. Interspersed with these theoretical topics are some practical points concerning the interpretation of cDNA sequences and the use of in vitro translation systems. Some human diseases resulting from defects in the initiation step of translation are also discussed.
Collapse
Affiliation(s)
- M Kozak
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| |
Collapse
|
16
|
Abstract
PKR, a latent protein kinase, mediates the antiviral actions of interferon. It is also involved in cellular signal transduction, apoptosis, growth regulation and differentiation. Although in virus-infected cells, viral double-stranded (ds) RNA can serve as a PKR activator, cellular activators have remained obscure. Here, we report the cloning of PACT, a cellular protein activator of PKR. PACT heterodimerized with PKR and activated it in vitro in the absence of dsRNA. In mammalian cells, overexpression of PACT caused PKR activation and, in yeast, co-expression of PACT enhanced the anti-growth effect of PKR. Thus, PACT has the hallmarks of a direct activator of PKR.
Collapse
Affiliation(s)
- R C Patel
- Department of Molecular Biology, The Lerner Research Institute, The Cleveland Clinic Foundation, OH 44195, USA
| | | |
Collapse
|
17
|
Jacobs BL, Langland JO. Reovirus sigma 3 protein: dsRNA binding and inhibition of RNA-activated protein kinase. Curr Top Microbiol Immunol 1998; 233:185-96. [PMID: 9599927 DOI: 10.1007/978-3-642-72092-5_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- B L Jacobs
- Department of Microbiology, Arizona State University, Tempe 85287-2701, USA
| | | |
Collapse
|
18
|
Abstract
Reovirus induces IFN, and reovirus is sensitive to the antiviral actions of IFN. The characteristics of the IFN-inducing capacity of reovirus, and the antiviral actions of IFN exerted against reovirus, are dependent upon the specific combination of reovirus strain, host cell line, and IFN type. Responses, both IFN induction and IFN action, differ quantitatively if not qualitatively and are dependent upon the virus, cell, and IFN combination. Stable natural dsRNA, identified as the form of nucleic acid that constitutes the reovirus genome, is centrally involved in the function of at least three IFN-induced enzymes. Protein phosphorylation by PKR, RNA editing by the ADAR adenosine deaminase, and RNA degradation by the 2',5'-oligoA pathway all involve dsRNA either as an effector or as a substrate. Considerable evidence implicates PKR as a particularly important contributor to the IFN-induced antiviral state displayed at the level of the single virus-infected cell, where the translation of viral mRNA is often observed to be inhibited following treatment with IFN-alpha/beta. In the whole animal infected with reovirus, elevated cellular immune responses mediated by enhanced expression of MHC class I and class II antigens induced by IFN-alpha/beta or IFN-gamma may contribute significantly to the overall antiviral response.
Collapse
Affiliation(s)
- C E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara 93106-9610, USA.
| |
Collapse
|
19
|
Chu WM, Ballard R, Carpick BW, Williams BR, Schmid CW. Potential Alu function: regulation of the activity of double-stranded RNA-activated kinase PKR. Mol Cell Biol 1998; 18:58-68. [PMID: 9418853 PMCID: PMC121451 DOI: 10.1128/mcb.18.1.58] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/1997] [Accepted: 10/13/1997] [Indexed: 02/05/2023] Open
Abstract
Cell stress, viral infection, and translational inhibition increase the abundance of human Alu RNA, suggesting that the level of these transcripts is sensitive to the translational state of the cell. To determine whether Alu RNA functions in translational homeostasis, we investigated its role in the regulation of double-stranded RNA-activated kinase PKR. We found that overexpression of Alu RNA by cotransient transfection increased the expression of a reporter construct, which is consistent with an inhibitory effect on PKR. Alu RNA formed stable, discrete complexes with PKR in vitro, bound PKR in vivo, and antagonized PKR activation both in vitro and in vivo. Alu RNAs produced by either overexpression or exposure of cells to heat shock bound PKR, whereas transiently overexpressed Alu RNA antagonized virus-induced activation of PKR in vivo. Cycloheximide treatment of cells decreased PKR activity, coincident with an increase in Alu RNA. These observations suggest that the increased levels of Alu RNAs caused by cellular exposure to different stresses regulate protein synthesis by antagonizing PKR activation. This provides a functional role for mammalian short interspersed elements, prototypical junk DNA.
Collapse
Affiliation(s)
- W M Chu
- Department of Chemistry, University of California, Davis 95616, USA
| | | | | | | | | |
Collapse
|
20
|
Kalvakolanu DV, Borden EC. An overview of the interferon system: signal transduction and mechanisms of action. Cancer Invest 1996; 14:25-53. [PMID: 8597888 DOI: 10.3109/07357909609018435] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- D V Kalvakolanu
- Department of Microbology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
21
|
Srivastava SP, Davies MV, Kaufman RJ. Calcium depletion from the endoplasmic reticulum activates the double-stranded RNA-dependent protein kinase (PKR) to inhibit protein synthesis. J Biol Chem 1995; 270:16619-24. [PMID: 7622470 DOI: 10.1074/jbc.270.28.16619] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Calcium depletion from the endoplasmic reticulum inhibits protein synthesis and correlates with increased phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) by a mechanism that does not require ongoing protein synthesis. To elucidate whether protein synthesis inhibition requires eIF-2 alpha phosphorylation and whether eIF-2 alpha phosphorylation is mediated by the double-stranded RNA-dependent protein kinase (PKR), we studied protein synthesis in response to calcium depletion mediated by calcium ionophore A23187 in cell lines overexpressing wild-type eIF-2 alpha, a mutant eIF-2 alpha (S51A) that is resistant to phosphorylation, or a dominant negative mutant PKR (K296P in catalytic subdomain II). Expression of either mutant eIF-2 alpha or mutant PKR partially protected NIH3T3 cells from inhibition of protein synthesis upon A23187 treatment. In contrast, overexpression of wild-type PKR increased sensitivity to protein synthesis inhibition mediated by A23187 treatment. In a COS-1 monkey cell transient transfection system, increased eIF-2 alpha phosphorylation in response to A23187 treatment was inhibited by expression of the dominant negative PKR mutant. Overexpression of the PKR regulatory RNA binding domain, independent of the PKR catalytic domain, was sufficient to inhibit increased phosphorylation of eIF-2 alpha upon A23187 treatment. In addition, overexpression of the HIV TAR RNA binding protein also inhibited eIF-2 alpha phosphorylation upon A23187 treatment. Taken together, our data show that calcium depletion activates PKR to phosphorylate eIF-2 alpha, and this activation is likely mediated through the PKR RNA binding domain.
Collapse
Affiliation(s)
- S P Srivastava
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor 48105, USA
| | | | | |
Collapse
|
22
|
Chapter 18 Estivation: Mechanisms and control of metabolic suppression. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1873-0140(06)80044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
Expression of mutant eukaryotic initiation factor 2 alpha subunit (eIF-2 alpha) reduces inhibition of guanine nucleotide exchange activity of eIF-2B mediated by eIF-2 alpha phosphorylation. Mol Cell Biol 1994. [PMID: 8007958 DOI: 10.1128/mcb.14.7.4546] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inhibition of protein synthesis that occurs upon phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) at serine 51 correlates with reduced guanine nucleotide exchange activity of eIF-2B in vivo and inhibition of eIF-2B activity in vitro, although it is not known if phosphorylation is the cause of the reduced eIF-2B activity in vivo. To characterize the importance of eIF-2 alpha phosphorylation in the regulation of eIF-2B activity, we studied the overexpression of mutant eIF-2 alpha subunits in which serine 48 or 51 was replaced by an alanine (48A or 51A mutant). Previous studies demonstrated that the 51A mutant was resistant to phosphorylation, whereas the 48A mutant was a substrate for phosphorylation. Additionally, expression of either mutant partially protected Chinese hamster ovary (CHO) cells from the inhibition of protein synthesis in response to heat shock treatment (P. Murtha-Riel, M. V. Davies, J. B. Scherer, S. Y. Choi, J. W. B. Hershey, and R. J. Kaufman, J. Biol. Chem. 268:12946-12951, 1993). In this study, we show that eIF-2B activity was inhibited in parental CHO cell extracts upon addition of purified reticulocyte heme-regulated inhibitor (HRI), an eIF-2 alpha kinase that phosphorylates Ser-51. Preincubation with purified HRI also reduced the eIF-2B activity in extracts from cells overexpressing wild-type eIF-2 alpha. In contrast, the eIF-2B activity was not readily inhibited in extracts from cells overexpressing either the eIF-2 alpha 48A or 51A mutant. In addition, eIF-2B activity was decreased in extracts prepared from heat-shocked cells overexpressing wild-type eIF-2 alpha, whereas the decrease in eIF-2B activity was less in heat-shocked cells overexpressing either mutant 48A or mutant 51A. While the phosphorylation at serine 51 in eIF-2 alpha impairs the eIF-2B activity, we propose that serine 48 acts to maintain a high affinity between phosphorylated eIF-2 alpha and eIF-2B, thereby inactivating eIF-2B activity. These findings support the hypothesis that phosphorylation of eIF-2 alpha inhibits protein synthesis directly through reducing eIF-2B activity and emphasize the importance of both serine 48 and serine 51 in the interaction with eIF-2B and regulation of eIF-2B activity.
Collapse
|
24
|
Ramaiah KV, Davies MV, Chen JJ, Kaufman RJ. Expression of mutant eukaryotic initiation factor 2 alpha subunit (eIF-2 alpha) reduces inhibition of guanine nucleotide exchange activity of eIF-2B mediated by eIF-2 alpha phosphorylation. Mol Cell Biol 1994; 14:4546-53. [PMID: 8007958 PMCID: PMC358826 DOI: 10.1128/mcb.14.7.4546-4553.1994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The inhibition of protein synthesis that occurs upon phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) at serine 51 correlates with reduced guanine nucleotide exchange activity of eIF-2B in vivo and inhibition of eIF-2B activity in vitro, although it is not known if phosphorylation is the cause of the reduced eIF-2B activity in vivo. To characterize the importance of eIF-2 alpha phosphorylation in the regulation of eIF-2B activity, we studied the overexpression of mutant eIF-2 alpha subunits in which serine 48 or 51 was replaced by an alanine (48A or 51A mutant). Previous studies demonstrated that the 51A mutant was resistant to phosphorylation, whereas the 48A mutant was a substrate for phosphorylation. Additionally, expression of either mutant partially protected Chinese hamster ovary (CHO) cells from the inhibition of protein synthesis in response to heat shock treatment (P. Murtha-Riel, M. V. Davies, J. B. Scherer, S. Y. Choi, J. W. B. Hershey, and R. J. Kaufman, J. Biol. Chem. 268:12946-12951, 1993). In this study, we show that eIF-2B activity was inhibited in parental CHO cell extracts upon addition of purified reticulocyte heme-regulated inhibitor (HRI), an eIF-2 alpha kinase that phosphorylates Ser-51. Preincubation with purified HRI also reduced the eIF-2B activity in extracts from cells overexpressing wild-type eIF-2 alpha. In contrast, the eIF-2B activity was not readily inhibited in extracts from cells overexpressing either the eIF-2 alpha 48A or 51A mutant. In addition, eIF-2B activity was decreased in extracts prepared from heat-shocked cells overexpressing wild-type eIF-2 alpha, whereas the decrease in eIF-2B activity was less in heat-shocked cells overexpressing either mutant 48A or mutant 51A. While the phosphorylation at serine 51 in eIF-2 alpha impairs the eIF-2B activity, we propose that serine 48 acts to maintain a high affinity between phosphorylated eIF-2 alpha and eIF-2B, thereby inactivating eIF-2B activity. These findings support the hypothesis that phosphorylation of eIF-2 alpha inhibits protein synthesis directly through reducing eIF-2B activity and emphasize the importance of both serine 48 and serine 51 in the interaction with eIF-2B and regulation of eIF-2B activity.
Collapse
Affiliation(s)
- K V Ramaiah
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
25
|
Clemens MJ. Regulation of eukaryotic protein synthesis by protein kinases that phosphorylate initiation factor eIF-2. Mol Biol Rep 1994; 19:201-10. [PMID: 7969108 DOI: 10.1007/bf00986962] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M J Clemens
- Department of Cellular and Molecular Sciences, St George's Hospital Medical School, London, UK
| |
Collapse
|
26
|
Affiliation(s)
- N Fujii
- Department of Microbiology, Sapporo Medical College, Hokkaido, Japan
| |
Collapse
|
27
|
|
28
|
Gunnery S, Green SR, Mathews MB. Tat-responsive region RNA of human immunodeficiency virus type 1 stimulates protein synthesis in vivo and in vitro: relationship between structure and function. Proc Natl Acad Sci U S A 1993; 89:11557-61. [PMID: 1360669 PMCID: PMC50591 DOI: 10.1073/pnas.89.23.11557] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Tat-responsive region (TAR) sequence is present at the 5' end of human immunodeficiency virus 1 mRNAs and as a cytoplasmic form of 58-66 nucleotides. TAR RNA blocks the activation and autophosphorylation of the double-stranded RNA-activated protein kinase in vitro. We show here that TAR RNA also prevents the double-stranded RNA-mediated inhibition of translation in a cell-free system. Mutagenic and structural analyses of TAR RNA indicate that a stem of at least 14 base pairs is required for this activity, whereas the loop and bulge required for transactivation by Tat are dispensable. Truncation of the RNA to 68 nucleotides results in the loss of translational rescue ability, suggesting that the short cytoplasmic TAR RNA produced by viral transcription in vivo may not have the capability to suppress activation of the kinase. However, because longer TAR transcripts stimulate expression in a transient assay in vivo, the TAR structure at the 5' end of viral mRNAs could still exert this function in cis.
Collapse
Affiliation(s)
- S Gunnery
- Cold Spring Harbor Laboratory, NY 11724
| | | | | |
Collapse
|
29
|
Chang HW, Watson JC, Jacobs BL. The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc Natl Acad Sci U S A 1992; 89:4825-9. [PMID: 1350676 PMCID: PMC49180 DOI: 10.1073/pnas.89.11.4825] [Citation(s) in RCA: 377] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A vaccinia virus-encoded double-stranded RNA-binding protein, p25, has been previously implicated in inhibition of the interferon-induced, double-stranded RNA-activated protein kinase. In this study, we have identified the vaccinia viral gene (WR strain) that encodes p25. Amino acid sequence analysis of a chymotryptic fragment of p25 revealed a close match to the vaccinia virus (Copenhagen strain) E3L gene. The WR strain E3L gene was cloned and expressed either in COS-1 cells or in rabbit reticulocyte lysates in vitro. A M(r) 25,000 polypeptide that could bind to poly(rI).poly(rC)-agarose and that reacted with p25-specific antiserum was produced in each case. In addition, COS cells expressing E3L gene products inhibited activation of the double-stranded RNA-activated protein kinase in extracts from interferon-treated cells. Removal of E3L-encoded products by adsorption with anti-p25 antiserum resulted in loss of kinase inhibitory activity. These results demonstrate that the vaccinia virus E3L gene encodes p25 and that the products of the E3L gene have kinase inhibitory activity. Comparison of the deduced amino acid sequence of the E3L gene products with the protein sequence data base revealed a region closely related to the human interferon-induced, double-stranded RNA-activated protein kinase.
Collapse
Affiliation(s)
- H W Chang
- Department of Microbiology, Arizona State University, Tempe 85287-2701
| | | | | |
Collapse
|
30
|
Abstract
This review presents a description of the numerous eukaryotic protein synthesis factors and their apparent sequential utilization in the processes of initiation, elongation, and termination. Additionally, the rare use of reinitiation and internal initiation is discussed, although little is known biochemically about these processes. Subsequently, control of translation is addressed in two different settings. The first is the global control of translation, which is effected by protein phosphorylation. The second is a series of specific mRNAs for which there is a direct and unique regulation of the synthesis of the gene product under study. Other examples of translational control are cited but not discussed, because the general mechanism for the regulation is unknown. Finally, as is often seen in an active area of investigation, there are several observations that cannot be readily accommodated by the general model presented in the first part of the review. Alternate explanations and various lines of experimentation are proposed to resolve these apparent contradictions.
Collapse
Affiliation(s)
- W C Merrick
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
31
|
Davies MV, Elroy-Stein O, Jagus R, Moss B, Kaufman RJ. The vaccinia virus K3L gene product potentiates translation by inhibiting double-stranded-RNA-activated protein kinase and phosphorylation of the alpha subunit of eukaryotic initiation factor 2. J Virol 1992; 66:1943-50. [PMID: 1347793 PMCID: PMC288982 DOI: 10.1128/jvi.66.4.1943-1950.1992] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interferon resistance of vaccinia virus is mediated by specific inhibition of phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) by the double-stranded-RNA-activated (DAI) protein kinase. Vaccinia virus encodes a homolog of eIF-2 alpha, K3L, the deletion of which renders the virus sensitive to interferon treatment. We have studied the mechanism by which this protein product elicits interferon resistance in a transient DNA transfection system designed to evaluate regulators of eIF-2 alpha phosphorylation. In this system, translation of a reporter gene mRNA is inefficient because of eIF-2 phosphorylation mediated by the DAI protein kinase. Cotransfection of the K3L gene enhances translation of the reporter mRNA in this system. The K3L protein inhibits eIF-2 alpha phosphorylation and DAI kinase activation, apparently without being phosphorylated itself. Inhibition of protein synthesis, elicited by expression of a mutant Ser-51----Asp eIF-2 alpha designed to mimic a phosphorylated serine, is not relieved by the presence of K3L, suggesting that K3L cannot bypass a block imposed by eIF-2 alpha phosphorylation. The results suggest that K3L acts as a decoy of eIF-2 alpha to inhibit DAI kinase autophosphorylation and activation. Another vaccinia virus gene product, K1L, which is required for growth of vaccinia virus on human cells, does not enhance translation in this assay.
Collapse
Affiliation(s)
- M V Davies
- Genetics Institute, Cambridge, Massachusetts 02140-2387
| | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- C G Proud
- Department of Biochemistry, School of Medical Sciences, University of Bristol, England
| |
Collapse
|
33
|
Stimulation of protein synthesis in COS cells transfected with variants of the alpha-subunit of initiation factor eIF-2. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48491-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Affiliation(s)
- M B Mathews
- Cold Spring Harbor Laboratory, New York 11724
| | | |
Collapse
|
35
|
Ghadge GD, Swaminathan S, Katze MG, Thimmapaya B. Binding of the adenovirus VAI RNA to the interferon-induced 68-kDa protein kinase correlates with function. Proc Natl Acad Sci U S A 1991; 88:7140-4. [PMID: 1714589 PMCID: PMC52249 DOI: 10.1073/pnas.88.16.7140] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In human cells infected with adenovirus, the virus-associated RNA VAI blocks the activation of the interferon-induced double-stranded-RNA-dependent 68-kDa protein kinase (p68) and maintains normal levels of protein synthesis at late times after infection. VAI antagonizes the kinase activity by binding to p68. The structure of VAI consists of two long, base-paired stems connected by a complex short stem-loop structure. Previous work using a series of adenovirus mutants showed that the structural determinants of the VAI RNA that are essential for function reside in the central complex short stem-loop structure and adjacent base-paired regions (functional domain); the long duplex regions were found to be dispensable for function. To determine whether binding of VAI to p68 correlates with function and whether the structural determinants that are essential for function are also essential for binding, we studied the interaction of wild-type and several mutant VAI RNAs with p68 in whole cells. The p68-VAI complexes from mutant- and wild-type-infected cells were immunoprecipitated by an anti-p68 monoclonal antibody. The mutant RNAs that functioned efficiently in the cells bound to p68 efficiently in the cells, whereas functionally impaired mutants failed to bind to p68, indicating that the binding of the VAI RNA to p68 correlates well with function. In vitro binding assays with immunopurified p68 confirmed these observations. Secondary-structure analysis of several mutant VAI RNAs suggests that the binding does not depend on the long duplex regions but requires all the elements of the functional domain. We propose that the functional domain and the p68-binding domain of the VAI RNA are identical.
Collapse
Affiliation(s)
- G D Ghadge
- Microbiology and Immunology Department and Cancer Center, Northwestern University Medical School, Chicago, IL 60611
| | | | | | | |
Collapse
|
36
|
|
37
|
Enhancement of expression of exogenous genes by 2-aminopurine. Regulation at the post-transcriptional level. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(17)35254-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
Gunnery S, Rice AP, Robertson HD, Mathews MB. Tat-responsive region RNA of human immunodeficiency virus 1 can prevent activation of the double-stranded-RNA-activated protein kinase. Proc Natl Acad Sci U S A 1990; 87:8687-91. [PMID: 2247437 PMCID: PMC55024 DOI: 10.1073/pnas.87.22.8687] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transcription from the human immunodeficiency virus type 1 promoter gives rise to short cytoplasmic transcripts of approximately 60 nucleotides as well as to longer mRNAs. These RNAs contain the Tat-responsive region sequence, which is capable of assuming a stem-loop structure and has been implicated in the regulation of both transcription and translation. It has been reported that Tat-responsive region RNA inhibits translation in vitro through activation of an interferon-induced protein kinase, the double-stranded-RNA-activated inhibitor, which phosphorylates eukaryotic initiation factor 2. We show that the activation property is due to double-stranded RNA that often contaminates RNA synthesized in vitro using bacteriophage RNA polymerases. After purification, high concentrations of Tat-responsive region RNA inhibit the activation of double-stranded RNA-activated inhibitor, suggesting that it may serve to protect human immunodeficiency virus type 1 infection from a cellular defense mechanism.
Collapse
Affiliation(s)
- S Gunnery
- Cold Spring Harbor Laboratory, NY 11724
| | | | | | | |
Collapse
|
39
|
Abstract
Protein synthesis in mammalian cells can be regulated through phosphorylation/dephosphorylation of the alpha subunit of initiation factor 2, eIF-2. Two specific kinases have been identified that apparently phosphorylate the same site(s). Controversy exists as to whether serine-48 is a phosphorylation site in addition to serine-51. A recent publication is discussed that, in this author's view, answers the question of the phosphorylation sites. It is suggested that phosphorylation proceeds sequentially with serine-51 being the first and serine-48 the second phosphorylation site. Phosphorylation of both sites is required for inhibition of protein synthesis.
Collapse
Affiliation(s)
- G Kramer
- Department of Chemistry, University of Texas, Austin 78712
| |
Collapse
|
40
|
Duncan RF. Protein synthesis initiation factor modifications during viral infections: implications for translational control. Electrophoresis 1990; 11:219-27. [PMID: 2188834 DOI: 10.1002/elps.1150110305] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Infection of tissue culture cells with certain viruses results in the shutoff of host cell protein synthesis. We have examined virally infected cell lysates using two-dimensional gel electrophoresis and immunoblotting to ascertain whether initiation factor protein modifications are correlated with translational repression. Moderate increases in eukaryotic initiation factor (eIF)-2 alpha phosphorylation are detected in reovirus- and adenovirus-infected cells, as reported previously (Samuel et al., 1984; O'Malley et al., 1989). Neither vesicular stomatitis virus, vaccinia virus, frog virus III, rhinovirus, nor encephalomyocarditis virus caused significantly increased 2 alpha phosphorylation. There were no reproducible, significant changes in eIF-4A, eIF-4B, or eIF-2 beta in cells infected by any of these viruses. The cleavage of eIF-4F subunit p220, such as has been previously demonstrated to occur in poliovirus (Etchison et al., 1982) and rhinovirus (Etchison and Fout, 1985), was not detected in any of the other virus infections analyzed.
Collapse
Affiliation(s)
- R F Duncan
- School of Pharmacy, University of Southern California, Los Angeles 90033
| |
Collapse
|
41
|
|