1
|
Morgan EL, Saleh AD, Cornelius S, Carlson SG, Toni T, Cheng H, Jeon J, Viswanathan R, Yang X, Silvin C, Clavijo PE, Sowers AL, Mitchell JB, Ormanoglu P, Lal Nag M, Martin SE, Chen Z, Van Waes C. Functional RNAi Screening Identifies G2/M and Kinetochore Components as Modulators of TNFα/NF-κB Prosurvival Signaling in Head and Neck Squamous Cell Carcinoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:2903-2918. [PMID: 39392349 PMCID: PMC11541648 DOI: 10.1158/2767-9764.crc-24-0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/14/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
SIGNIFICANCE Here, RNAi library screening reveals that multiple G2/M and kinetochore components, including TTK/monopolar spindle 1, modulate TNFα-induced NF-κB activation, cell survival, and genotoxicity, underscoring their potential importance as therapeutic targets in HNSCC.
Collapse
Affiliation(s)
- Ethan L. Morgan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Anthony D. Saleh
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Shaleeka Cornelius
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Sophie G. Carlson
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Tiffany Toni
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Hui Cheng
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Jun Jeon
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Ramya Viswanathan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Christopher Silvin
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Paul E. Clavijo
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Anastasia L. Sowers
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Pinar Ormanoglu
- RNAi Screening Facility, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Madhu Lal Nag
- RNAi Screening Facility, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Scott E. Martin
- RNAi Screening Facility, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
2
|
Wu Z, Yuan J, Li K, Wang X, Zhang Z, Hong M. The Induction of Drug Uptake Transporter Organic Anion Transporting Polypeptide 1A2 by Radiation Is Mediated by the Nonreceptor Tyrosine Kinase v-YES-1 Yamaguchi Sarcoma Viral Oncogene Homolog 1. Drug Metab Dispos 2024; 52:1244-1252. [PMID: 39214663 DOI: 10.1124/dmd.124.001755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Organic anion transporting polypeptides (OATP, gene symbol SLCO) are well-recognized key determinants for the absorption, distribution, and excretion of a wide spectrum of endogenous and exogenous compounds including many antineoplastic agents. It was therefore proposed as a potential drug target for cancer therapy. In our previous study, it was found that low-dose X-ray and carbon ion irradiation both upregulated the expression of OATP family member OATP1A2 and in turn, led to a more dramatic killing effect when cancer cells were cotreated with antitumor drugs such as methotrexate. In the present study, the underlying mechanism of the phenomenon was explored in breast cancer cell line MCF-7. It was found that the nonreceptor tyrosine kinase v-YES-1 Yamaguchi sarcoma viral oncogene homolog 1 (YES-1) was temporally coordinated with the change of OATP1A2 after irradiation. The overexpression of YES-1 significantly increased OATP1A2 both at the mRNA and protein level. The signal transducer and activator of transcription 3 (STAT3) pathway is likely the downstream target of YES-1 because phosphorylation and nuclear accumulation of STAT3 were both enhanced after overexpressing YES-1 in MCF-7 cells. Further investigation revealed that there are two possible binding sites of STAT3 localized at the upstream sequence of SLCO1A2, the encoding gene of OATP1A2. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis suggested that these two sites bound to STAT3 specifically and the overexpression of YES-1 significantly increased the association of the transcription factor with the putative binding sites. Finally, inhibition or knockdown of YES-1 attenuated the induction effect of radiation on the expression of OATP1A2. SIGNIFICANCE STATEMENT: The present study found that the effect of X-rays on v-YES-1 Yamaguchi sarcoma viral oncogene homolog 1 (YES-1) and organic anion transporting polypeptides (OATP)1A2 was temporally coordinated. YES-1 phosphorylates and increases the nuclear accumulation of signal transducer and activator of transcription 3, which in turn binds to the upstream regulatory sequences of SLCO1A2, the coding gene for OATP1A2. Hence, inhibitors of YES-1 may suppress the radiation induction effect on OATP1A2.
Collapse
Affiliation(s)
- Zicong Wu
- College of Life Sciences, South China Agricultural University, Guangzhou, China (Z.W., J.Y., K.L., X.W., Z.Z., M.H.); and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China(M.H.)
| | - Jiajian Yuan
- College of Life Sciences, South China Agricultural University, Guangzhou, China (Z.W., J.Y., K.L., X.W., Z.Z., M.H.); and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China(M.H.)
| | - Kui Li
- College of Life Sciences, South China Agricultural University, Guangzhou, China (Z.W., J.Y., K.L., X.W., Z.Z., M.H.); and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China(M.H.)
| | - Xuyang Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China (Z.W., J.Y., K.L., X.W., Z.Z., M.H.); and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China(M.H.)
| | - Ziqi Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, China (Z.W., J.Y., K.L., X.W., Z.Z., M.H.); and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China(M.H.)
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou, China (Z.W., J.Y., K.L., X.W., Z.Z., M.H.); and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China(M.H.)
| |
Collapse
|
3
|
Noël G, Bou-Gharios J, Burckel H. Tumor reirradiation: Issues, challenges and perspectives for radiobiology. Cancer Radiother 2024; 28:493-502. [PMID: 39327200 DOI: 10.1016/j.canrad.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024]
Abstract
The radiobiology of tumor reirradiation is poorly understood. It pertains to tumors and their sensitivity at the time of relapse, encompassing primary tumors, metastases, or secondary cancers developed in or proximal to previously irradiated tissues. The ability to control the pathology depends, in part, on understanding this sensitivity. To date, literature data remains limited regarding changes in the radiosensitivity of tissues after initial irradiation, and most proposals are based on conjecture. The response of healthy tissues at the site of irradiation raises concerns about radio-induced complications. Cumulative dose is likely a major factor in this risk, thus using equivalent dose calculations might help reduce the risk of complications. However, the correlation between mathematical equivalence formulas and clinical effects of radiobiological origin is weak, and the lack of knowledge of the alpha/beta (α/β) ratio of healthy tissues remains an obstacle to the extensive use of these formulas. However, tissues exposed to recovery dose may have a tolerance to irradiation much higher than assumed, thus further biological work remains to be developed. Also, the functionality of previously irradiated tissues could be useful in selecting the most suitable irradiation beams. Finally, research on the genomics of irradiated healthy tissues could improve the prediction of side effects and personalize radiotherapy.
Collapse
Affiliation(s)
- Georges Noël
- Radiotherapy Department, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, BP 23025, 67033 Strasbourg, France; Faculté de médecine, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France; Radiobiology Laboratory, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative Multimodal Imaging in Healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France.
| | - Jolie Bou-Gharios
- Radiobiology Laboratory, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative Multimodal Imaging in Healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France
| | - Hélène Burckel
- Radiobiology Laboratory, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative Multimodal Imaging in Healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France
| |
Collapse
|
4
|
Pham TN, Coupey J, Ivanova V, Thariat J, Valable S. Differential plasma cytokine variation following X-ray or proton brain irradiation using machine-learning approaches. Cancer Radiother 2024; 28:474-483. [PMID: 39307604 DOI: 10.1016/j.canrad.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/19/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE X-ray and proton irradiation have been reported to induce distinct modifications in cytokine expression in vitro and in vivo, suggesting a dissimilar inflammatory response between X-rays and protons. We aimed to investigate the differences in cytokine profiles early following fractionated brain irradiation with X-rays or protons and their relationship with leukocyte subpopulations in rodents. MATERIALS AND METHODS Our study utilized data from 80 tumor-free mice subjected to X-ray or proton brain irradiation in four fractions of 2.5Gy. Sixteen non-irradiated mice were used as the controls. Blood was collected 12h postirradiation to examine the profile of 13 cytokines. Correlation analysis, principal component analysis (PCA), and tree-based modeling were used to investigate the relationship between cytokine levels and leukocyte subpopulation variations following irradiation in the blood. RESULTS Regardless of the irradiation type, brain irradiation resulted in a notable elevation in the plasma levels of IFN-γ and MCP-1. The use of either X-ray or proton beam had differential effect on plasma cytokine levels following brain irradiation. Specifically, X-ray irradiation was associated with significantly increased plasma levels of IFN-β, IL-12p70, and IL-23, along with a decreased level of IL-1α, in comparison to proton irradiation. Correlation analysis revealed distinct cytokine regulatory patterns between X-ray and proton brain irradiation. PCA highlighted the association of MCP-1, IL-6, TNF-α, IL-17A, and IFN-γ with neutrophils, monocytes, and naïve T-cells following X-ray irradiation. TNF-α and IL-23 levels correlated with naïve CD4+-cells following proton irradiation. Tree-based models demonstrated that high TNF-α level resulted in an increase in naïve T-cells, neutrophils, and monocytes, whereas low IL-6 level was associated with decreases in these cell counts. CONCLUSION Our findings revealed distinct inflammatory responses induced by X-ray irradiation in contrast to proton brain irradiation, as demonstrated by the differential regulation of cytokines in the bloodstream. Moreover, the study highlighted the association between specific cytokine levels and various leukocyte subpopulations. Further investigation is essential to accurately determine the impact of proton and X-ray brain irradiation on the inflammatory response and the efficacy of radiotherapy treatment.
Collapse
Affiliation(s)
- Thao-Nguyen Pham
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, France; Laboratoire de physique corpusculaire, UMR6534 IN2P3/EnsiCaen, Caen, France
| | - Julie Coupey
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, France
| | - Viktoriia Ivanova
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, France
| | - Juliette Thariat
- Laboratoire de physique corpusculaire, UMR6534 IN2P3/EnsiCaen, Caen, France; Department of Radiation Oncology, Centre François-Baclesse, Caen, France.
| | - Samuel Valable
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, France.
| |
Collapse
|
5
|
Liao Z, Wang Y, Yang Y, Liu X, Yang X, Tian Y, Deng S, Hu Y, Meng J, Li J, Deng Y, Zhou Z, Wei W, Swift M, Wan C, Sun Y, Yang K. Targeting the Cascade Amplification of Macrophage Colony-stimulating Factor to Alleviate the Immunosuppressive Effects Following Radiotherapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0450. [PMID: 39165639 PMCID: PMC11334716 DOI: 10.34133/research.0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/21/2024] [Indexed: 08/22/2024]
Abstract
Radiotherapy (RT) serves as the primary treatment for solid tumors. Its potential to incite an immune response against tumors both locally and distally profoundly impacts clinical outcomes. However, RT may also promote the accumulation of immunosuppressive cytokines and immunosuppressive cells, greatly impeding the activation of antitumor immune responses and substantially limiting the effectiveness of RT. Therefore, regulating post-RT immunosuppression to steer the immune milieu toward heightened activation potentially enhances RT's therapeutic potential. Cytokines, potent orchestrators of diverse cellular responses, play a pivotal role in regulating this immunosuppressive response. Identifying and promptly neutralizing early released immunosuppressive cytokines are a crucial development in augmenting RT's immunomodulatory effects. To this end, we conducted a screen of immunosuppressive cytokines following RT and identified macrophage colony-stimulating factor (MCSF) as an early up-regulated and persistent immune suppressor. Single-cell sequencing revealed that the main source of up-regulated MCSF derived from tumor cells. Mechanistic exploration revealed that irradiation-dependent phosphorylation of the p65 protein facilitated its binding to the MCSF gene promoter, enhancing transcription. Knockdown and chemical inhibitor experiments conclusively demonstrated that suppressing tumor cell-derived MCSF amplifies RT's immune-activating effects, with optimal results achieved by early MCSF blockade after irradiation. Additionally, we validated that MCSF acted on macrophages, inducing the secretion of a large number of inhibitory cytokines. In summary, we propose a novel approach to enhance the immune activation effects of RT by blocking the MCSF-CSF1R signaling pathway early after irradiation.
Collapse
Affiliation(s)
- Zhiyun Liao
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Yijun Wang
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Yuxin Yang
- Department of Biochemistry and Molecular Medicine,
University of Southern California, Los Angeles, CA 90089, USA
| | - Xixi Liu
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Xiao Yang
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Yu Tian
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Suke Deng
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Jingshu Meng
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Jie Li
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Yue Deng
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Zhiyuan Zhou
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Wenwen Wei
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Michelle Swift
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| |
Collapse
|
6
|
Romero Fernandez J, Cordoba Largo S, Benlloch Rodriguez R, Gil Haro B. The Effects of Gynecological Tumor Irradiation on the Immune System. Cancers (Basel) 2024; 16:2804. [PMID: 39199577 PMCID: PMC11352652 DOI: 10.3390/cancers16162804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Radiobiology has evolved from a mechanistic model based on DNA damage and response factors into a more complex model that includes effects on the immune system and the tumor microenvironment (TME). Irradiation has an immunomodulatory effect that can manifest as increased anti-tumor immunity or immunosuppression. Irradiation promotes an inflammatory microenvironment through the release of pro-inflammatory cytokines and endothelial damage, which recruit immune system cells to the irradiated area. Radiation-induced immunogenic cell death (ICD), characterized by the release of damage-associated molecular patterns (DAMPs) and tumor antigens, triggers an anti-tumor immune response of both innate and adaptive immunity. Anti-tumor immunity can manifest at a distance from the irradiated area, a phenomenon known as the abscopal effect (AE), which involves dendritic cells and CD8+ T cells. Irradiation also produces an immunosuppressive effect mediated by tumor-associated macrophages (TAMs) and regulatory T lymphocytes (Tregs), which counterbalances the immunostimulatory effect. In this work, we review the mechanisms involved in the radiation-induced immune response, which support the combined treatment of RT and immunotherapy, focusing, where possible, on gynecologic cancer.
Collapse
Affiliation(s)
- Jesus Romero Fernandez
- Radiation Oncology Department, Hospital Universitario Puerta de Hierro, C. Joaquín Rodrigo 1, 28222 Majadahonda, Spain; (S.C.L.); (R.B.R.); (B.G.H.)
| | | | | | | |
Collapse
|
7
|
Wang L, Lynch C, Pitroda SP, Piffkó A, Yang K, Huser AK, Liang HL, Weichselbaum RR. Radiotherapy and immunology. J Exp Med 2024; 221:e20232101. [PMID: 38771260 PMCID: PMC11110906 DOI: 10.1084/jem.20232101] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
The majority of cancer patients receive radiotherapy during the course of treatment, delivered with curative intent for local tumor control or as part of a multimodality regimen aimed at eliminating distant metastasis. A major focus of research has been DNA damage; however, in the past two decades, emphasis has shifted to the important role the immune system plays in radiotherapy-induced anti-tumor effects. Radiotherapy reprograms the tumor microenvironment, triggering DNA and RNA sensing cascades that activate innate immunity and ultimately enhance adaptive immunity. In opposition, radiotherapy also induces suppression of anti-tumor immunity, including recruitment of regulatory T cells, myeloid-derived suppressor cells, and suppressive macrophages. The balance of pro- and anti-tumor immunity is regulated in part by radiotherapy-induced chemokines and cytokines. Microbiota can also influence radiotherapy outcomes and is under clinical investigation. Blockade of the PD-1/PD-L1 axis and CTLA-4 has been extensively investigated in combination with radiotherapy; we include a review of clinical trials involving inhibition of these immune checkpoints and radiotherapy.
Collapse
Affiliation(s)
- Liangliang Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Connor Lynch
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Sean P. Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - András Piffkó
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Amy K. Huser
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Hua Laura Liang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Boopathi E, Den RB, Thangavel C. Innate Immune System in the Context of Radiation Therapy for Cancer. Cancers (Basel) 2023; 15:3972. [PMID: 37568788 PMCID: PMC10417569 DOI: 10.3390/cancers15153972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Radiation therapy (RT) remains an integral component of modern oncology care, with most cancer patients receiving radiation as a part of their treatment plan. The main goal of ionizing RT is to control the local tumor burden by inducing DNA damage and apoptosis within the tumor cells. The advancement in RT, including intensity-modulated RT (IMRT), stereotactic body RT (SBRT), image-guided RT, and proton therapy, have increased the efficacy of RT, equipping clinicians with techniques to ensure precise and safe administration of radiation doses to tumor cells. In this review, we present the technological advancement in various types of RT methods and highlight their clinical utility and associated limitations. This review provides insights into how RT modulates innate immune signaling and the key players involved in modulating innate immune responses, which have not been well documented earlier. Apoptosis of cancer cells following RT triggers immune systems that contribute to the eradication of tumors through innate and adoptive immunity. The innate immune system consists of various cell types, including macrophages, dendritic cells, and natural killer cells, which serve as key mediators of innate immunity in response to RT. This review will concentrate on the significance of the innate myeloid and lymphoid lineages in anti-tumorigenic processes triggered by RT. Furthermore, we will explore essential strategies to enhance RT efficacy. This review can serve as a platform for researchers to comprehend the clinical application and limitations of various RT methods and provides insights into how RT modulates innate immune signaling.
Collapse
Affiliation(s)
- Ettickan Boopathi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert B. Den
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Chellappagounder Thangavel
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
9
|
Hino C, Lee EW, Yang GY. Harnessing the abscopal effect for gastrointestinal malignancies in the era of immunotherapy. J Gastrointest Oncol 2023; 14:1613-1625. [PMID: 37435204 PMCID: PMC10331744 DOI: 10.21037/jgo-23-105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/23/2023] [Indexed: 07/13/2023] Open
Abstract
Gastrointestinal (GI) cancers are among the leading causes of cancer-related mortality and have traditionally been treated using a combination of surgical resection and chemoradiotherapy (CRT). While the introduction of immunotherapies over the last decade have dramatically changed the treatment landscape for some GI malignancies, including esophageal, gastric, and colorectal cancer, treatment resistance remains a major unaddressed obstacle for many patients. There has thus been emerging interest in determining the optimal treatment strategy for the delivery of immunotherapy in combination with traditional therapies. In this regard, a growing number of preclinical and clinical studies have suggested that combining radiation therapy (RT) with immunotherapy may work synergistically to improve treatment response through amplification of the abscopal effect. In this review, we discuss the rationale for RT in combination with immunotherapy. We further discuss how this knowledge may lead to a paradigm shift in the application of RT and highlight remaining issues pertaining to the delivery of combination therapy.
Collapse
Affiliation(s)
- Christopher Hino
- Department of Internal Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Edward W. Lee
- Department of Radiation Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Gary Y. Yang
- Department of Radiation Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
10
|
Lambing S, Tan YP, Vasileiadou P, Holdenrieder S, Müller P, Hagen C, Garbe S, Behrendt R, Schlee M, van den Boorn JG, Bartok E, Renn M, Hartmann G. RIG-I immunotherapy overcomes radioresistance in p53-positive malignant melanoma. J Mol Cell Biol 2023; 15:mjad001. [PMID: 36626927 PMCID: PMC10394996 DOI: 10.1093/jmcb/mjad001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 09/25/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Radiotherapy induces DNA damage, resulting in cell-cycle arrest and activation of cell-intrinsic death pathways. However, the radioresistance of some tumour entities such as malignant melanoma limits its clinical application. The innate immune sensing receptor retinoic acid-inducible gene I (RIG-I) is ubiquitously expressed and upon activation triggers an immunogenic form of cell death in a variety of tumour cell types including melanoma. To date, the potential of RIG-I ligands to overcome radioresistance of tumour cells has not been investigated. Here, we demonstrate that RIG-I activation enhanced the extent and immunogenicity of irradiation-induced tumour cell death in human and murine melanoma cells in vitro and improved survival in the murine B16 melanoma model in vivo. Transcriptome analysis pointed to a central role for p53, which was confirmed using p53-/- B16 cells. In vivo, the additional effect of RIG-I in combination with irradiation on tumour growth was absent in mice carrying p53-/- B16 tumours, while the antitumoural response to RIG-I stimulation alone was maintained. Our results identify p53 as a pivotal checkpoint that is triggered by RIG-I resulting in enhanced irradiation-induced tumour cell death. Thus, the combined administration of RIG-I ligands and radiotherapy is a promising approach to treating radioresistant tumours with a functional p53 pathway, such as melanoma.
Collapse
Affiliation(s)
- Silke Lambing
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn 53127, Germany
| | - Yu Pan Tan
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn 53127, Germany
| | - Paraskevi Vasileiadou
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn 53127, Germany
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn 53127, Germany
- Institute of Laboratory Medicine, German Heart Centre, Munich 80636, Germany
| | - Patrick Müller
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn 53127, Germany
| | - Christian Hagen
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn 53127, Germany
| | - Stephan Garbe
- Department of Radiation Oncology, University Hospital Bonn, Bonn 53127, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn 53127, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn 53127, Germany
| | - Jasper G van den Boorn
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn 53127, Germany
| | - Eva Bartok
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn 53127, Germany
- Unit of Experimental Immunology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, Bonn 53127, Germany
| | - Marcel Renn
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn 53127, Germany
- Mildred Scheel School of Oncology, Bonn, University Hospital Bonn, Medical Faculty, Bonn 53127, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn 53127, Germany
| |
Collapse
|
11
|
Eckstein J, Gogineni E, Sidiqi B, Lisser N, Parashar B. Effect of Immunotherapy and Stereotactic Body Radiation Therapy Sequencing on Local Control and Survival in Patients With Spine Metastases. Adv Radiat Oncol 2023; 8:101179. [PMID: 36896213 PMCID: PMC9991541 DOI: 10.1016/j.adro.2023.101179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
Purpose Stereotactic body radiation therapy (SBRT) is commonly used to treat spinal metastases in combination with immunotherapy (IT). The optimal sequencing of these modalities is unclear. This study aimed to investigate whether sequencing of IT and SBRT was associated with differences in local control (LC), overall survival (OS), and toxicity when treating spine metastases. Methods and Materials All patients at our institution who received spine SBRT from 2010 to 2019 with systemic therapy data available were reviewed retrospectively. The primary endpoint was LC. Secondary endpoints were toxicity (fracture and radiation myelitis) and OS. Kaplan-Meier analysis was used to determine whether IT sequencing (before versus after SBRT) and use of IT were associated with LC or OS. Results A total of 191 lesions in 128 patients met inclusion criteria with 50 (26%) lesions in 33 (26%) patients who received IT. Fourteen (11%) patients with 24 (13%) lesions received the first IT dose before SBRT, whereas 19 (15%) patients with 26 (14%) lesions received the first dose after SBRT. LC did not differ between lesions treated with IT before SBRT versus after SBRT (1 year 73% versus 81%, log rank = 0.275, P = .600). Fracture risk was not associated with IT timing (χ2 = 0.137, P = .934) or receipt of IT (χ2 = 0.508, P = .476), and no radiation myelitis events occurred. Median OS was 31.8 versus 6.6 months for the IT after SBRT versus IT before SBRT cohorts, respectively (log rank = 13.193, P < .001). On Cox univariate analysis and multivariate analysis, receipt of IT before SBRT and Karnofsky performance status <80 were associated with worse OS. IT treatment versus none was not associated with any difference in LC (log rank = 1.063, P = .303) or OS (log rank = 1.736, P = .188). Conclusions Sequencing of IT and SBRT was not associated with any difference in LC or toxicity, but delivering IT after SBRT versus before SBRT was associated with improved OS.
Collapse
Affiliation(s)
- Jacob Eckstein
- Department of Radiation Medicine, Zucker School of Medicine, Hofstra, Northwell Health, New York, New York
| | - Emile Gogineni
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Baho Sidiqi
- Department of Radiation Medicine, Zucker School of Medicine, Hofstra, Northwell Health, New York, New York
| | - Noah Lisser
- Department of Radiation Medicine, Zucker School of Medicine, Hofstra, Northwell Health, New York, New York
| | - Bhupesh Parashar
- Department of Radiation Medicine, Zucker School of Medicine, Hofstra, Northwell Health, New York, New York
| |
Collapse
|
12
|
Morgan EL, Toni T, Viswanathan R, Robbins Y, Yang X, Cheng H, Gunti S, Huynh A, Sowers AL, Mitchell JB, Allen CT, Chen Z, Van Waes C. Inhibition of USP14 promotes TNFα-induced cell death in head and neck squamous cell carcinoma (HNSCC). Cell Death Differ 2023; 30:1382-1396. [PMID: 37055579 PMCID: PMC10154301 DOI: 10.1038/s41418-023-01144-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 04/15/2023] Open
Abstract
TNFα is a key mediator of immune, chemotherapy and radiotherapy-induced cytotoxicity, but several cancers, including head and neck squamous cell carcinomas (HNSCC), display resistance to TNFα due to activation of the canonical NFκB pro-survival pathway. However, direct targeting of this pathway is associated with significant toxicity; thus, it is vital to identify novel mechanism(s) contributing to NFκB activation and TNFα resistance in cancer cells. Here, we demonstrate that the expression of proteasome-associated deubiquitinase USP14 is significantly increased in HNSCC and correlates with worse progression free survival in Human Papillomavirus (HPV)- HNSCC. Inhibition or depletion of USP14 inhibited the proliferation and survival of HNSCC cells. Further, USP14 inhibition reduced both basal and TNFα-inducible NFκB activity, NFκB-dependent gene expression and the nuclear translocation of the NFκB subunit RELA. Mechanistically, USP14 bound to both RELA and IκBα and reduced IκBα K48-ubiquitination leading to the degradation of IκBα, a critical inhibitor of the canonical NFκB pathway. Furthermore, we demonstrated that b-AP15, an inhibitor of USP14 and UCHL5, sensitized HNSCC cells to TNFα-mediated cell death, as well as radiation-induced cell death in vitro. Finally, b-AP15 delayed tumor growth and enhanced survival, both as a monotherapy and in combination with radiation, in HNSCC tumor xenograft models in vivo, which could be significantly attenuated by TNFα depletion. These data offer new insights into the activation of NFκB signaling in HNSCC and demonstrate that small molecule inhibitors targeting the ubiquitin pathway warrant further investigation as a novel therapeutic avenue to sensitize these cancers to TNFα- and radiation-induced cytotoxicity.
Collapse
Affiliation(s)
- Ethan L Morgan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| | - Tiffany Toni
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- NIH Medical Research Scholars Program, Bethesda, MD, USA
| | - Ramya Viswanathan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Yvette Robbins
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Hui Cheng
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Sreenivasulu Gunti
- Sinonasal and Skull Base Tumor Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Angel Huynh
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Anastasia L Sowers
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clint T Allen
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
The Current and Future Promises of Combination Radiation and Immunotherapy for Genitourinary Cancers. Cancers (Basel) 2022; 15:cancers15010127. [PMID: 36612124 PMCID: PMC9818005 DOI: 10.3390/cancers15010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
As the indications for the use of immunotherapy in genitourinary malignancies expand, its role in combination with standard or conventional therapies has become the subject of contemporary studies. Radiotherapy has multiple immunomodulating effects on anti-tumor immune response, which highlights potential synergistic role with immunotherapy agents. We sought to review the body of published data studying the combination of immunotherapy and radiotherapy as well as the rationale for combination therapy. Trial information and primary articles were obtained using the following terms "immunotherapy", "radiotherapy", "prostate cancer", and "bladder cancer." All articles and trials were screened to ensure they included combination radiotherapy and immunotherapy. The effects of radiation on the immune system, including both immunogenic and immunosuppressive effects, have been reported. There is a potential for combinatorial or synergistic effects between radiation therapy and immunotherapy in treating bladder and prostate cancers. However, results from ongoing and future clinical trials are needed to best integrate immunotherapy into current standard of care treatments for GU cancers.
Collapse
|
14
|
A role for endothelial alpha-mannosidase MAN1C1 in radiation-induced immune cell recruitment. iScience 2022; 25:105482. [DOI: 10.1016/j.isci.2022.105482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/06/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022] Open
|
15
|
King L, Bernaitis N, Christie D, Chess-Williams R, Sellers D, McDermott C, Dare W, Anoopkumar-Dukie S. Drivers of Radioresistance in Prostate Cancer. J Clin Med 2022; 11:jcm11195637. [PMID: 36233505 PMCID: PMC9573022 DOI: 10.3390/jcm11195637] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is the second most commonly diagnosed cancer worldwide. Radiotherapy remains one of the first-line treatments in localised disease and may be used as monotherapy or in combination with other treatments such as androgen deprivation therapy or radical prostatectomy. Despite advancements in delivery methods and techniques, radiotherapy has been unable to totally overcome radioresistance resulting in treatment failure or recurrence of previously treated PCa. Various factors have been linked to the development of tumour radioresistance including abnormal tumour vasculature, oxygen depletion, glucose and energy deprivation, changes in gene expression and proteome alterations. Understanding the biological mechanisms behind radioresistance is essential in the development of therapies that are able to produce both initial and sustained response to radiotherapy. This review will investigate the different biological mechanisms utilised by PCa tumours to drive radioresistance.
Collapse
Affiliation(s)
- Liam King
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4215, Australia or
- Ramsay Pharmacy Group, Melbourne, VIC 3004, Australia
| | - Nijole Bernaitis
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4215, Australia or
| | - David Christie
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4215, Australia or
- GenesisCare, Gold Coast, QLD 4224, Australia
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, QLD 4229, Australia
| | - Russ Chess-Williams
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, QLD 4229, Australia
| | - Donna Sellers
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, QLD 4229, Australia
| | - Catherine McDermott
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, QLD 4229, Australia
| | - Wendy Dare
- Ramsay Pharmacy Group, Melbourne, VIC 3004, Australia
| | - Shailendra Anoopkumar-Dukie
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4215, Australia or
- Correspondence: ; Tel.: +61-(0)-7-5552-7725
| |
Collapse
|
16
|
Hu Z, Viswanathan R, Cheng H, Chen J, Yang X, Huynh A, Clavijo P, An Y, Robbins Y, Silvin C, Allen C, Ormanoglu P, Martin S, Cornelius S, Saleh A, Chen Z, Van Waes C, Morgan EL. Inhibiting WEE1 and IKK-RELA Crosstalk Overcomes TNFα Resistance in Head and Neck Cancers. Mol Cancer Res 2022; 20:867-882. [PMID: 35176168 PMCID: PMC9177594 DOI: 10.1158/1541-7786.mcr-21-0624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/20/2021] [Accepted: 02/10/2022] [Indexed: 12/27/2022]
Abstract
TNFα is a key mediator of immune and radiotherapy-induced cytotoxicity, but many cancers, including head and neck squamous cell carcinomas (HNSCC), display TNF resistance due to activation of the canonical IKK-NF-κB/RELA pro-survival pathway. However, toxicities associated with direct targeting of the canonical pathway point to the need to identify mechanism(s) contributing to TNFα resistance and synthetic lethal targets to overcome such resistance in cancer cells. Here, RNAi screening for modulators of TNFα-NF-κB reporter activity and cell survival unexpectedly implicated the WEE1 and CDC2 G2-M checkpoint kinases. The IKKα/β-RELA and WEE1-CDC2 signaling pathways are activated by TNFα and form a complex in cell lines derived from both human papillomavirus (-) and (+) subtypes of HNSCC. WEE1 inhibitor AZD1775 reduced IKK/RELA phosphorylation and the expression of NF-κB-dependent pro-survival proteins Cyclin D1 and BCL2. Combination of TNFα and AZD1775 enhanced caspase-mediated apoptosis in vitro, and combination treatment with radiotherapy and AZD1775 potentiated inhibition of HNSCC tumor xenograft growth in vivo, which could be significantly attenuated by TNFα depletion. These data offer new insight into the interplay between NF-κB signaling and WEE1-mediated regulation of the G2-M cell-cycle checkpoint in HNSCC. IMPLICATIONS Inhibiting WEE1 and IKK-RELA crosstalk could potentially enhance the effects of therapies mediated by TNFα with less systemic immune suppression and toxicity than observed with direct interruption of IKK-NF-κB/RELA signaling.
Collapse
Affiliation(s)
- Zhengbo Hu
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- Shaoguan First People’s Hospital, Affiliated Hospital of Southern Medical University, Shaoguan, Guangdong, China
| | - Ramya Viswanathan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Hui Cheng
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Jianghong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Angel Huynh
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Paul Clavijo
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Yi An
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Yvette Robbins
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Christopher Silvin
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Clint Allen
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Pinar Ormanoglu
- RNAi Screening Facility, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Scott Martin
- RNAi Screening Facility, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Shaleeka Cornelius
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Anthony Saleh
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- Contributed equally as senior authors
| | - Ethan L. Morgan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- Contributed equally as senior authors
| |
Collapse
|
17
|
Sun Y, Kinsela AS, Waite TD. Elucidation of alveolar macrophage cell response to coal dusts: Role of ferroptosis in pathogenesis of coal workers' pneumoconiosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153727. [PMID: 35149061 DOI: 10.1016/j.scitotenv.2022.153727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Causal factors underlying coal workers' pneumoconiosis (CWP) have been variously attributed to the presence of carbon, crystalline silica and reduced iron (Fe) minerals, especially pyrite and Fe/Si-amorphous compounds. The aim of this research was to assess the role of iron in CWP and, more specifically, the cytotoxicity of coal dusts with different elemental composition towards alveolar macrophages (AMs). Survival rate of AMs, alteration in the production of pro-inflammatory cytokine TNF-α, MDA (the lipid peroxidation product) and intracellular GSH were assessed using commercial assay kits. The quantitative interaction between iron and GSH was investigated by developing a numerical model. The presence of various reduced Fe minerals (viz. pyrite and siderite) in coal dusts exhibited a consistently acute adverse impact on the viability of AMs and enhanced the production of TNF-α. The presence of the clinically available Fe chelator deferiprone (DFP) and the cytosolic antioxidant glutathione (GSH) significantly increased the viability of AMs exposed to Fe bearing coal dusts, suggesting coal dusts containing reduced Fe minerals were likely contributors to the initial stages of AM cytotoxicity via a ferroptosis related pathway. Chemical kinetic modeling indicated that these results may be attributed to an enhanced consumption of GSH as a result of Fe redox cycling. FeIIGSH and GS• produced from the interaction between ferric Fe and GSH facilitated the production of O2•- which further oxidized GSH via a direct reaction between GSH and GS• or GSO•. These results suggest that coal dusts containing reduced Fe minerals and Fe compounds may elevate acute inflammation levels in AMs, indicating that crystalline silica may not be the only hazard of concern in mining environments.
Collapse
Affiliation(s)
- Yingying Sun
- School of Civil and Environmental Engineering, Water Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Andrew S Kinsela
- School of Civil and Environmental Engineering, Water Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- School of Civil and Environmental Engineering, Water Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
18
|
Baxevanis CN, Gritzapis AD, Voutsas IF, Batsaki P, Goulielmaki M, Adamaki M, Zoumpourlis V, Fortis SP. T-Cell Repertoire in Tumor Radiation: The Emerging Frontier as a Radiotherapy Biomarker. Cancers (Basel) 2022; 14:cancers14112674. [PMID: 35681654 PMCID: PMC9179913 DOI: 10.3390/cancers14112674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Radiotherapy constitutes an essential component of the treatment for malignant disease. Besides its direct effect on cancer cells, namely, DNA damage and cell death, ionizing irradiation also mediates indirect antitumor effects that are mostly mediated by the immune system. Investigations into the processes underlying the interaction between radiotherapy and the immune system have uncovered mechanisms that can be exploited to promote the antitumor efficacy of radiotherapy both locally in the irradiated primary tumor and also at distant lesions in non-irradiated tumors. Because of its capacity to stimulate antitumor immunity, radiotherapy is also applied in combination with immune-checkpoint-inhibition-based immunotherapy. This review discusses the important pathways that govern the synergistic interactions between ionizing radiation and antitumor immune reactivity. Unravelling these involved mechanisms is mandatory for the successful application of anticancer radiotherapy and immunotherapy. We also place emphasis on the need for biomarkers that will aid in the selection of patients most likely to benefit from such combined treatments. Abstract Radiotherapy (RT) is a therapeutic modality that aims to eliminate malignant cells through the induction of DNA damage in the irradiated tumor site. In addition to its cytotoxic properties, RT also induces mechanisms that result in the promotion of antitumor immunity both locally within the irradiation field but also at distant tumor lesions, a phenomenon that is known as the “abscopal” effect. Because the immune system is capable of sensing the effects of RT, several treatment protocols have been assessing the synergistic role of radiotherapy combined with immunotherapy, collectively referred to as radioimmunotherapy. Herein, we discuss mechanistic insights underlying RT-based immunomodulation, which also enhance our understanding of how RT regulates antitumor T-cell-mediated immunity. Such knowledge is essential for the discovery of predictive biomarkers and for the improvement of clinical trials investigating the efficacy of radio-immunotherapeutic modalities in cancer patients.
Collapse
Affiliation(s)
- Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (C.N.B.); (A.D.G.); (I.F.V.); (P.B.); (M.G.)
| | - Angelos D. Gritzapis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (C.N.B.); (A.D.G.); (I.F.V.); (P.B.); (M.G.)
| | - Ioannis F. Voutsas
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (C.N.B.); (A.D.G.); (I.F.V.); (P.B.); (M.G.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (C.N.B.); (A.D.G.); (I.F.V.); (P.B.); (M.G.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (C.N.B.); (A.D.G.); (I.F.V.); (P.B.); (M.G.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (M.A.); (V.Z.)
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (M.A.); (V.Z.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (C.N.B.); (A.D.G.); (I.F.V.); (P.B.); (M.G.)
- Correspondence: ; Tel.: +30-2106409462
| |
Collapse
|
19
|
Link B, Torres Crigna A, Hölzel M, Giordano FA, Golubnitschaja O. Abscopal Effects in Metastatic Cancer: Is a Predictive Approach Possible to Improve Individual Outcomes? J Clin Med 2021; 10:5124. [PMID: 34768644 PMCID: PMC8584726 DOI: 10.3390/jcm10215124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with metastatic cancers often require radiotherapy (RT) as a palliative therapy for cancer pain. RT can, however, also induce systemic antitumor effects outside of the irradiated field (abscopal effects) in various cancer entities. The occurrence of the abscopal effect is associated with a specific immunological activation in response to RT-induced cell death, which is mainly seen under concomitant immune checkpoint blockade. Even if the number of reported apscopal effects has increased since the introduction of immune checkpoint inhibition, its occurrence is still considered rare and unpredictable. The cases reported so far may nevertheless allow for identifying first biomarkers and clinical patterns. We here review biomarkers that may be helpful to predict the occurrence of abscopal effects and hence to optimize therapy for patients with metastatic cancers.
Collapse
Affiliation(s)
- Barbara Link
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (B.L.); (A.T.C.); (F.A.G.)
| | - Adriana Torres Crigna
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (B.L.); (A.T.C.); (F.A.G.)
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany;
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (B.L.); (A.T.C.); (F.A.G.)
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
20
|
Oweida A, Paquette B. Reconciling two opposing effects of radiation therapy: stimulation of cancer cell invasion and activation of anti-cancer immunity. Int J Radiat Biol 2021; 99:951-963. [PMID: 34264178 DOI: 10.1080/09553002.2021.1956005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE The damage caused by radiation therapy to cancerous and normal cells inevitably leads to changes in the secretome profile of pro and anti-inflammatory mediators. The inflammatory response depends on the dose of radiation and its fractionation, while the inherent radiosensitivity of each patient dictates the intensity and types of adverse reactions. This review will present an overview of two apparently opposite reactions that may occur after radiation treatment: induction of an antitumor immune response and a protumoral response. Emphasis is placed on the molecular and cellular mechanisms involved. CONCLUSIONS By understanding how radiation changes the balance between anti- and protumoral effects, these forces can be manipulated to optimize radiation oncology treatments.
Collapse
Affiliation(s)
- Ayman Oweida
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, Canada
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
21
|
Cerna D, Lim B, Adelabu Y, Yoo S, Carter D, Fahim A, Mitsuuchi Y, Teicher BA, Bernhard E, Coleman CN, Takebe N, Ahmed MM. SMAC Mimetic/IAP Inhibitor Birinapant Enhances Radiosensitivity of Glioblastoma Multiforme. Radiat Res 2021; 195:549-560. [PMID: 33826739 DOI: 10.1667/rade-20-00171.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/01/2021] [Indexed: 11/03/2022]
Abstract
Birinapant is a novel SMAC peptidomimetic molecule in clinical development. It suppresses the inhibitor of apoptosis proteins (IAPs) and promotes cytochrome-C/Apaf-1/caspase-9 activation to induce effective apoptosis. Because IAP inhibition has been shown to enhance the sensitivity of cancer cells to radiation, we investigated the role of birinapant in radiosensitization of glioblastoma cells in vitro and in vivo. Two glioblastoma cell lines, U-251 and U-87, were used to analyze radiosensitization in vitro with 7-AAD cell death/apoptosis and clonogenic assays. Subcutaneous flank (U-251 and U-87) and intracranial orthotopic (U-251) xenografts in nude mice were used to evaluate radiosensitization in vivo. TNF-α levels in media and serum were measured using electrochemiluminescence. Radiosensitization in vitro was more prominent for U-251 cells than for U-87 cells. In vivo, in both tumor models, significant tumor growth delay was observed with combination treatment compared to radiation alone. There was a survival benefit with combination treatment in the orthotopic U-251 model. TNF-α levels in media correlated directly with radiation dose in vitro. These findings show that birinapant can enhance the radiosensitivity of glioblastoma cell lines in cell-based assays and tumor models via radiation-induced TNF-α. Further study into the use of birinapant with radiation therapy is warranted.
Collapse
Affiliation(s)
- David Cerna
- Molecular Radiation Therapeutics Branch Support, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Yusuf Adelabu
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, Maryland 20850
| | - Stephen Yoo
- Molecular Radiation Therapeutics Branch, National Cancer Institute, Rockville, Maryland 20850
| | - Donna Carter
- Molecular Radiation Therapeutics Branch Support, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Ahmed Fahim
- Molecular Radiation Therapeutics Branch Support, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | | | - Beverly A Teicher
- Molecular Pharmacology Branch, National Cancer Institute, Rockville, Maryland 20850
| | - Eric Bernhard
- Radiotherapy Development Branch, National Cancer Institute, Rockville, Maryland 20850
| | - C Norman Coleman
- Radiation Research Program, National Cancer Institute, Rockville, Maryland 20850
| | - Naoko Takebe
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, Maryland 20850
| | - Mansoor M Ahmed
- Molecular Radiation Therapeutics Branch, National Cancer Institute, Rockville, Maryland 20850.,Radiotherapy Development Branch, National Cancer Institute, Rockville, Maryland 20850.,Radiation Research Program, National Cancer Institute, Rockville, Maryland 20850
| |
Collapse
|
22
|
Curti B, Crittenden M, Seung SK, Fountain CB, Payne R, Chang S, Fleser J, Phillips K, Malkasian I, Dobrunick LB, Urba WJ. Randomized phase II study of stereotactic body radiotherapy and interleukin-2 versus interleukin-2 in patients with metastatic melanoma. J Immunother Cancer 2021; 8:jitc-2020-000773. [PMID: 32467299 PMCID: PMC7259841 DOI: 10.1136/jitc-2020-000773] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 12/25/2022] Open
Abstract
Background A pilot study of stereotactic body radiation therapy (SBRT) followed by high-dose interleukin-2 (IL-2) showed a higher than anticipated objective response rate (ORR) among patients with metastatic melanoma (MM). We performed a prospective randomized study to determine if the ORR of SBRT + IL-2 was greater than IL-2 monotherapy in patients with advanced melanoma. Methods Patients with MM who had adequate physiological reserve for IL-2 and at least one site suitable for SBRT were eligible. There was a 1:1 randomization to SBRT + IL-2 or IL-2 monotherapy. Patients received one or two doses of SBRT (20 Gy per fraction) with the last dose administered 3 days before starting the first cycle of IL-2. IL-2 (600,000 IU per kg via intravenous bolus infusion) was given every 8 hours for a maximum of 14 doses with a second cycle after a 2-week rest. Responding patients received up to six IL-2 cycles. Patients assigned to IL-2 monotherapy who exhibited progression of melanoma after cycle 2 were allowed to crossover and receive SBRT and additional IL-2. Response Evaluation Criteria in Solid Tumors 1.1 criteria were applied to non-irradiated lesions for response assessment. Results 44 patients were included in the analysis. The ORR in the SBRT + IL-2 group was 54%: 21% complete response (CR), 33% partial response (PR), 21% stable disease (SD) and 25% progressive disease (PD). The ORR in patients receiving IL-2 monotherapy was 35%: 15% CR, 20% PR, 25% SD and 40% PD. Seven patients assigned to IL-2 subsequently received SBRT + IL-2. One CR and two PRs were observed in the crossover group. There was no difference in progression-free or overall survival (OS). At 5 years the OS was 26% in the SBRT + IL-2 group and 25% in the IL-2 monotherapy group. The disease control rate (DCR) was higher in the SBRT + IL-2 group (75% vs 60%, p=0.34). Conclusions SBRT + IL-2 induced more objective responses with a higher DCR compared to IL-2 monotherapy in MM. IL-2 monotherapy resulted in a significantly higher ORR than anticipated. Some patients in the crossover group also achieved objective responses. Trial registration number NCT01416831.
Collapse
Affiliation(s)
- Brendan Curti
- Providence Cancer Institute, Earle A Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon, USA
| | - Marka Crittenden
- Providence Cancer Institute, Earle A Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon, USA.,Division of Radiation Oncology, The Oregon Clinic, Portland, Oregon, USA
| | - Steven K Seung
- Division of Radiation Oncology, The Oregon Clinic, Portland, Oregon, USA
| | | | - Roxanne Payne
- Providence Cancer Institute, Providence Portland Medical Center, Portland, Oregon, USA
| | - ShuChing Chang
- Medical Data Research Center, Providence St Joseph Health, Portland, Oregon, USA
| | - Jessica Fleser
- Providence Cancer Institute, Providence Portland Medical Center, Portland, Oregon, USA
| | - Kimberly Phillips
- Providence Cancer Institute, Providence Portland Medical Center, Portland, Oregon, USA
| | - Ian Malkasian
- Providence Cancer Institute, Providence Portland Medical Center, Portland, Oregon, USA
| | - Lyn B Dobrunick
- Providence Cancer Institute, Providence Portland Medical Center, Portland, Oregon, USA
| | - Walter J Urba
- Providence Cancer Institute, Earle A Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon, USA
| |
Collapse
|
23
|
Fang T, Xiao J, Zhang Y, Hu H, Zhu Y, Cheng Y. Combined with interventional therapy, immunotherapy can create a new outlook for tumor treatment. Quant Imaging Med Surg 2021; 11:2837-2860. [PMID: 34079746 PMCID: PMC8107298 DOI: 10.21037/qims-20-173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Recent progress in immunotherapy provides hope of a complete cure to cancer patients. However, recent studies have reported that only a limited number of cancer patients with a specific immune status, known as "cold tumor", can benefit from a single immune agent. Although the combination of immune agents with different mechanisms can partially increase the low response rate and improve efficacy, it can also result in more side effects. Therefore, discovering therapies that can improve tumors' response rate to immunotherapy without increasing toxicity for patients is urgently needed. Tumor interventional therapy is promising. It mainly includes transcatheter arterial chemoembolization, ablation, radioactive particle internal irradiation, and photodynamic interventional therapy based on a luminal stent. Interventional therapy can directly kill tumor cells by targeted drug delivery in situ, thus reducing drug dosage and systemic toxicity like cytokine release syndrome. More importantly, interventional therapy can regulate the immune system through numerous mechanisms, making it a suitable choice for immunotherapy to combine with. In this review, we provide a brief description of immunotherapies (and their side effects) on tumors of different immune types and preliminarily elaborate on interventional therapy mechanisms to improve immune efficacy. We also discuss the progress and challenges of the combination of interventional therapy and immunotherapy.
Collapse
Affiliation(s)
- Tonglei Fang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Junyuan Xiao
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yiran Zhang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Haiyan Hu
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yueqi Zhu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yingsheng Cheng
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
24
|
Abstract
The DNA damage response (DDR) fulfils essential roles to preserve genome integrity. Targeting the DDR in tumors has had remarkable success over the last decade, exemplified by the licensing of PARP inhibitors for cancer therapy. Recent studies suggest that the application of DDR inhibitors impacts on cellular innate and adaptive immune responses, wherein key DNA repair factors have roles in limiting chronic inflammatory signaling. Antitumor immunity plays an emerging part in cancer therapy, and extensive efforts have led to the development of immune checkpoint inhibitors overcoming immune suppressive signals in tumors. Here, we review the current understanding of the molecular mechanisms underlying DNA damage-triggered immune responses, including cytosolic DNA sensing via the cGAS/STING pathway. We highlight the implications of DDR components for therapeutic outcomes of immune checkpoint inhibitors or their use as biomarkers. Finally, we discuss the rationale for novel combinations of DDR inhibitors with antagonists of immune checkpoints and current hindrances limiting their broader therapeutic applications.
Collapse
Affiliation(s)
- Domenic Pilger
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Leonard W Seymour
- Department of Oncology, University of Oxford, Oxford, Oxford OX3 7DQ, United Kingdom
| | - Stephen P Jackson
- Wellcome Trust/Cancer Research UK Gurdon Institute, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| |
Collapse
|
25
|
Chinnapaka S, Yang KS, Samadi Y, Epperly MW, Hou W, Greenberger JS, Ejaz A, Rubin JP. Allogeneic adipose-derived stem cells mitigate acute radiation syndrome by the rescue of damaged bone marrow cells from apoptosis. Stem Cells Transl Med 2021; 10:1095-1114. [PMID: 33724714 PMCID: PMC8235137 DOI: 10.1002/sctm.20-0455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Acute radiation syndrome (ARS) is the radiation toxicity that can affect the hematopoietic, gastrointestinal, and nervous systems upon accidental radiation exposure within a short time. Currently, there are no effective and safe approaches to treat mass population exposure to ARS. Our study aimed to evaluate the therapeutic potential of allogeneic adipose‐derived stem cells (ASCs) for total body irradiation (TBI)‐induced ARS and understand the underlying mitigation mechanism. We employed 9.25 Gy TBI dose to C57BL/6 mice and studied the effect of allogeneic ASCs on mice survival and regeneration of the hematopoietic system. Our results indicate that intraperitoneal‐injected ASCs migrated to the bone marrow, rescued hematopoiesis, and improved the survival of irradiated mice. Our transwell coculture results confirmed the migration of ASCs to irradiated bone marrow and rescue hematopoietic activity. Furthermore, contact coculture of ASCs improved the survival and hematopoiesis of irradiated bone marrow in vitro. Irradiation results in DNA damage, upregulation of inflammatory signals, and apoptosis in bone marrow cells, while coculture with ASCs reduces apoptosis via activation of DNA repair and the antioxidation system. Upon exposure to irradiated bone marrow cells, ASCs secrete prosurvival and hematopoietic factors, such as GM‐CSF, MIP1α, MIP1β, LIX, KC, 1P‐10, Rantes, IL‐17, MCSF, TNFα, Eotaxin, and IP‐10, which reduces oxidative stress and rescues damaged bone marrow cells from apoptosis. Our findings suggest that allogeneic ASCs therapy is effective in mitigating TBI‐induced ARS in mice and may be beneficial for clinical adaptation to treat TBI‐induced toxicities. Further studies will help to advocate the scale‐up and adaptation of allogeneic ASCs as the radiation countermeasure.
Collapse
Affiliation(s)
- Somaiah Chinnapaka
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine S Yang
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yasamin Samadi
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Wen Hou
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Asim Ejaz
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
26
|
Desai R, Coxon AT, Dunn GP. Therapeutic applications of the cancer immunoediting hypothesis. Semin Cancer Biol 2021; 78:63-77. [PMID: 33711414 DOI: 10.1016/j.semcancer.2021.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Since the late 19th century, the immune system has increasingly garnered interest as a novel avenue for cancer therapy, particularly given scientific breakthroughs in recent decades delineating the fundamental role of the immune system in tumorigenesis. The immunoediting hypothesis has articulated this role, describing three phases of the tumor-immune system interaction: Elimination, Equilibrium, and Escape wherein tumors progress from active immunologic surveillance and destruction through dynamic immunologic stasis to unfettered growth. The primary goals of immunotherapy are to restrict and revert progression through these phases, thereby improving the immune system's ability to control tumor growth. In this review, we detail the development and foundation of the cancer immunoediting hypothesis and apply this hypothesis to the dynamic immunotherapy field that includes checkpoint blockade, vaccine therapy, and adoptive cell transfer.
Collapse
Affiliation(s)
- Rupen Desai
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew T Coxon
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Gavin P Dunn
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
27
|
Modi C, Berim L, Isserow L, Malhotra J, Patel M, Langenfeld J, Aisner J, Almeldin D, Jabbour SK. Combining radiation therapy and immunotherapy for lung cancers: a narrative review. ACTA ACUST UNITED AC 2021; 5. [PMID: 33521559 PMCID: PMC7842553 DOI: 10.21037/shc-20-66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lung cancer remains the leading cause of cancer morbidity and mortality worldwide among both men and women. While surgical resection remains the standard of care for early stage NSCLC, chemoradiation has been a mainstay of treatment for locally advanced non-small-cell lung cancer (LA-NSCLC) patients for decades. Consolidation immunotherapy has improved survival in this subset of patients after conventional chemoradiation, and has emerged as the new standard. The synergy between immunotherapy and radiation, as well as ongoing research on the effects of radiation on the immune system, allows for the exploration of new avenues in the treatment of LA-NSCLC. In addition to the use of durvalumab as consolidative systemic therapy after concurrent chemoradiotherapy for Stage III NSCLC, other combination regimens have been shown to be effective in various disease stages in preclinical and clinical studies. These regimens include CTLA-4 and PD/PDL-1 checkpoint inhibitors combined with radiation treatment. While these combined regimens have demonstrated efficacy, they are not without toxicity, and require additional evaluation when combined with radiation. In this review, we have summarized the immunostimulatory and immunosuppressive effects of radiation therapy. We also evaluate the current evidence and ongoing research supporting the combination of radiotherapy and immunotherapy across early to LA-NSCLC.
Collapse
Affiliation(s)
- Chirag Modi
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Lyudmyla Berim
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Lauren Isserow
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Jyoti Malhotra
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Malini Patel
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - John Langenfeld
- Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Joseph Aisner
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Doaa Almeldin
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
28
|
Role of nano-sensitizers in radiation therapy of metastatic tumors. Cancer Treat Res Commun 2021; 26:100303. [PMID: 33454575 DOI: 10.1016/j.ctarc.2021.100303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Cancer metastasis remains the major cause of global cancer deaths. Radiation therapy remains one of the golden standards for cancer treatment. Nanomedicine based strategies have been designed and developed in order to improve the clinical outcomes of cancer therapy and diagnosis at molecular levels. Over the years, several researchers have shown their interest in using radiosensitizers made of high Z elements. Metal-based nanosystems also play a dual role by enhancing the synergistic effect of cell killing via various biological immune responses. This review summarizes the role of Nano-sensitizers in boosting radiation (ionizing/non-ionizing radiations) induced biological responses in treatment of metastatic cancer models.
Collapse
|
29
|
Krisnawan VE, Stanley JA, Schwarz JK, DeNardo DG. Tumor Microenvironment as a Regulator of Radiation Therapy: New Insights into Stromal-Mediated Radioresistance. Cancers (Basel) 2020; 12:cancers12102916. [PMID: 33050580 PMCID: PMC7600316 DOI: 10.3390/cancers12102916] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Cancer is multifaceted and consists of more than just a collection of mutated cells. These cancerous cells reside along with other non-mutated cells in an extracellular matrix which together make up the tumor microenvironment or tumor stroma. The composition of the tumor microenvironment plays an integral role in cancer initiation, progression, and response to treatments. In this review, we discuss how the tumor microenvironment regulates the response and resistance to radiation therapy and what targeted agents have been used to combat stromal-mediated radiation resistance. Abstract A tumor is a complex “organ” composed of malignant cancer cells harboring genetic aberrations surrounded by a stroma comprised of non-malignant cells and an extracellular matrix. Considerable evidence has demonstrated that components of the genetically “normal” tumor stroma contribute to tumor progression and resistance to a wide array of treatment modalities, including radiotherapy. Cancer-associated fibroblasts can promote radioresistance through their secreted factors, contact-mediated signaling, downstream pro-survival signaling pathways, immunomodulatory effects, and cancer stem cell-generating role. The extracellular matrix can govern radiation responsiveness by influencing oxygen availability and controlling the stability and bioavailability of growth factors and cytokines. Immune status regarding the presence of pro- and anti-tumor immune cells can regulate how tumors respond to radiation therapy. Furthermore, stromal cells including endothelial cells and adipocytes can modulate radiosensitivity through their roles in angiogenesis and vasculogenesis, and their secreted adipokines, respectively. Thus, to successfully eradicate cancers, it is important to consider how tumor stroma components interact with and regulate the response to radiation. Detailed knowledge of these interactions will help build a preclinical rationale to support the use of stromal-targeting agents in combination with radiotherapy to increase radiosensitivity.
Collapse
Affiliation(s)
- Varintra E. Krisnawan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer A. Stanley
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; (J.A.S.); (J.K.S.)
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julie K. Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; (J.A.S.); (J.K.S.)
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David G. DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Correspondence:
| |
Collapse
|
30
|
Ochoa de Olza M, Bourhis J, Irving M, Coukos G, Herrera FG. High versus low dose irradiation for tumor immune reprogramming. Curr Opin Biotechnol 2020; 65:268-283. [PMID: 32882511 DOI: 10.1016/j.copbio.2020.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
Local administration of ionizing radiation to tumors can promote anticancer immune responses that lead to the abscopal regression of distant metastases, especially in patients receiving systemic immune-checkpoint inhibitors. Growing preclinical evidence indicates that high-dose irradiation administered locally to destroy malignant lesions, can promote the release of danger-associated molecular patterns that lead to the recruitment of immune cells, thus inducing a systemic response against tumor antigens that protects against local disease relapse and also mediates distant antineoplastic effects. An accumulating body of preclinical evidence supports also the implementation of low-dose irradiation to induce tumor immune reprogramming. Here, we provide the rationale for a clinical research agenda to refine future clinical practice based on innovative combinations of radiation-immunotherapy.
Collapse
Affiliation(s)
- Maria Ochoa de Olza
- Department of Oncology, Lausanne University Hospital, and University of Lausanne, Lausanne, Switzerland
| | - Jean Bourhis
- Radiation Oncology Service, Lausanne University Hospital, and University of Lausanne, Lausanne, Switzerland; Department of Oncology, Lausanne University Hospital, and University of Lausanne, Lausanne, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Department of Oncology, Lausanne University Hospital, and University of Lausanne, Lausanne, Switzerland
| | - Fernanda G Herrera
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Radiation Oncology Service, Lausanne University Hospital, and University of Lausanne, Lausanne, Switzerland; Department of Oncology, Lausanne University Hospital, and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
31
|
Cao Y, Li W, Wang Z, Pang H. Potential and unsolved problems of anti-PD-1/PD-L1 therapy combined with radiotherapy. TUMORI JOURNAL 2020; 107:282-291. [PMID: 32734832 DOI: 10.1177/0300891620940382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor immunotherapy has become one of the main treatments for tumors. Inhibition of the pathways involving programmed cell death receptor 1 (PD-1) and its ligand (PD-L1) has gained favor in anticancer therapy, and can effectively prolong the survival of patients with cancer; however, numerous patients have PD-1/PD-L1 inhibitor primary resistance. The efficacy of anti-PD-1/PD-L1 therapy is related to the host tumor microenvironment. Radiation therapy can promote the body's antitumor immunity, change the tumor microenvironment, and synergize with anti-PD-1/PD-L1 treatment. Preclinical and clinical trials have shown that PD-1/PD-L1 inhibitor combined with radiotherapy has a significant effect. We review the synergistic antitumor mechanism and clinical trials of radiotherapy combined with anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Yiyi Cao
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenbo Li
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - ZhengJie Wang
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Pang
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Philippou Y, Sjoberg H, Lamb AD, Camilleri P, Bryant RJ. Harnessing the potential of multimodal radiotherapy in prostate cancer. Nat Rev Urol 2020; 17:321-338. [PMID: 32358562 DOI: 10.1038/s41585-020-0310-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
Radiotherapy in combination with androgen deprivation therapy (ADT) is a standard treatment option for men with localized and locally advanced prostate cancer. However, emerging clinical evidence suggests that radiotherapy can be incorporated into multimodality therapy regimens beyond ADT, in combinations that include chemotherapy, radiosensitizing agents, immunotherapy and surgery for the treatment of men with localized and locally advanced prostate cancer, and those with oligometastatic disease, in whom the low metastatic burden in particular might be treatable with these combinations. This multimodal approach is increasingly recognized as offering considerable clinical benefit, such as increased antitumour effects and improved survival. Thus, radiotherapy is becoming a key component of multimodal therapy for many stages of prostate cancer, particularly oligometastatic disease.
Collapse
Affiliation(s)
- Yiannis Philippou
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Headington, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK
| | - Hanna Sjoberg
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK
| | - Alastair D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK
| | - Philip Camilleri
- Oxford Department of Clinical Oncology, Churchill Hospital Cancer Centre, Oxford University Hospitals NHS Foundation Trust, Headington, Oxford, UK
| | - Richard J Bryant
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Headington, Oxford, UK.
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK.
| |
Collapse
|
33
|
Tubin S, Yan W, Mourad WF, Fossati P, Khan MK. The future of radiation-induced abscopal response: beyond conventional radiotherapy approaches. Future Oncol 2020; 16:1137-1151. [PMID: 32338046 DOI: 10.2217/fon-2020-0063] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advances in the immunological pharmaceuticals, such as checkpoint inhibitors and agonists, have positive implications for the future of the radiotherapy abscopal response. A once rare phenomenon, whereby distant nonirradiated tumor sites regressed after radiotherapy alone, may become more common when combined with the immune modulating agents. Radiotherapy can increase neoantigen expression, increased tumor PD-L1 expression, increase MHC class I expression, reverse exhausted CD8 T cells and increase tumor-infiltrating tumors within the tumor microenvironment. These changes in the tumor and the tumor microenvironment after radiotherapy could potentiate responses to anti-CTL-4, anti-PD-L1/PD-1 and other immunotherapy agents. Thus, advances in checkpoint inhibitors have increased interest in re-evaluation of the role of conventional radiotherapy approaches on the immune system. We reviewed newer nonconventional approaches such as SBRT-PATHY, GRID, FLASH, carbon ion and proton therapy and their role in eliciting immune responses. We believe that combining these novel radiation methods may enhance the outcome with the newly US FDA approved immune modulating agents.
Collapse
Affiliation(s)
- Slavisa Tubin
- MedAustron Center for Ion Therapy and Research, Marie Curie Strasse 5, A-2700 Wiener Neustadt, Austria
| | - Weisi Yan
- Department of Radiation Oncology, Thomas Jefferson University, 11th St, Philadelphia, PA 19107, USA
| | - Waleed F Mourad
- Department of Radiation Medicine, Markey Cancer Center, University of Kentucky, Medical Center, MN 150 - Lexington, KY 40536-0298, USA
| | - Piero Fossati
- MedAustron Center for Ion Therapy and Research, Marie Curie Strasse 5, A-2700 Wiener Neustadt, Austria
| | - Mohammad K Khan
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365-C Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
34
|
Mercogliano MF, Bruni S, Elizalde PV, Schillaci R. Tumor Necrosis Factor α Blockade: An Opportunity to Tackle Breast Cancer. Front Oncol 2020; 10:584. [PMID: 32391269 PMCID: PMC7189060 DOI: 10.3389/fonc.2020.00584] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and the principal cause of mortality by malignancy in women and represents a main problem for public health worldwide. Tumor necrosis factor α (TNFα) is a pro-inflammatory cytokine whose expression is increased in a variety of cancers. In particular, in breast cancer it correlates with augmented tumor cell proliferation, higher malignancy grade, increased occurrence of metastasis and general poor prognosis for the patient. These characteristics highlight TNFα as an attractive therapeutic target, and consequently, the study of soluble and transmembrane TNFα effects and its receptors in breast cancer is an area of active research. In this review we summarize the recent findings on TNFα participation in luminal, HER2-positive and triple negative breast cancer progression and metastasis. Also, we describe TNFα role in immune response against tumors and in chemotherapy, hormone therapy, HER2-targeted therapy and anti-immune checkpoint therapy resistance in breast cancer. Furthermore, we discuss the use of TNFα blocking strategies as potential therapies and their clinical relevance for breast cancer. These TNFα blocking agents have long been used in the clinical setting to treat inflammatory and autoimmune diseases. TNFα blockade can be achieved by monoclonal antibodies (such as infliximab, adalimumab, etc.), fusion proteins (etanercept) and dominant negative proteins (INB03). Here we address the different effects of each compound and also analyze the use of potential biomarkers in the selection of patients who would benefit from a combination of TNFα blocking agents with HER2-targeted treatments to prevent or overcome therapy resistance in breast cancer.
Collapse
Affiliation(s)
- María Florencia Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Sofía Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Patricia V Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
35
|
Zhao XY, Wang XY, Wei QY, Xu YM, Lau ATY. Potency and Selectivity of SMAC/DIABLO Mimetics in Solid Tumor Therapy. Cells 2020; 9:cells9041012. [PMID: 32325691 PMCID: PMC7226512 DOI: 10.3390/cells9041012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 02/05/2023] Open
Abstract
Aiming to promote cancer cell apoptosis is a mainstream strategy of cancer therapy. The second mitochondria-derived activator of caspase (SMAC)/direct inhibitor of apoptosis protein (IAP)-binding protein with low pI (DIABLO) protein is an essential and endogenous antagonist of inhibitor of apoptosis proteins (IAPs). SMAC mimetics (SMs) are a series of synthetically chemical compounds. Via database analysis and literature searching, we summarize the potential mechanisms of endogenous SMAC inefficiency, degradation, mutation, releasing blockage, and depression. We review the development of SMs, as well as preclinical and clinical outcomes of SMs in solid tumor treatment, and we analyze their strengths, weaknesses, opportunities, and threats from our point of view. We also highlight several questions in need of further investigation.
Collapse
Affiliation(s)
| | | | | | - Yan-Ming Xu
- Correspondence: (Y.-M.X.); (A.T.Y.L.); Tel.: +86-754-8890-0437 (Y.-M.X.); +86-754-8853-0052 (A.T.Y.L.)
| | - Andy T. Y. Lau
- Correspondence: (Y.-M.X.); (A.T.Y.L.); Tel.: +86-754-8890-0437 (Y.-M.X.); +86-754-8853-0052 (A.T.Y.L.)
| |
Collapse
|
36
|
Pereira PMR, Edwards KJ, Mandleywala K, Carter LM, Escorcia FE, Campesato LF, Cornejo M, Abma L, Mohsen AA, Iacobuzio-Donahue CA, Merghoub T, Lewis JS. iNOS Regulates the Therapeutic Response of Pancreatic Cancer Cells to Radiotherapy. Cancer Res 2020; 80:1681-1692. [PMID: 32086240 PMCID: PMC7165066 DOI: 10.1158/0008-5472.can-19-2991] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/30/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to radiotherapy, chemotherapy, or a combination of these modalities, and surgery remains the only curative intervention for localized disease. Although cancer-associated fibroblasts (CAF) are abundant in PDAC tumors, the effects of radiotherapy on CAFs and the response of PDAC cells to radiotherapy are unknown. Using patient samples and orthotopic PDAC biological models, we showed that radiotherapy increased inducible nitric oxide synthase (iNOS) in the tumor tissues. Mechanistic in vitro studies showed that, although undetectable in radiotherapy-activated tumor cells, iNOS expression and nitric oxide (NO) secretion were significantly increased in CAFs secretome following radiotherapy. Culture of PDAC cells with conditioned media from radiotherapy-activated CAFs increased iNOS/NO signaling in tumor cells through NF-κB, which, in turn, elevated the release of inflammatory cytokines by the tumor cells. Increased NO after radiotherapy in PDAC contributed to an acidic microenvironment that was detectable using the radiolabeled pH (low) insertion peptide (pHLIP). In murine orthotopic PDAC models, pancreatic tumor growth was delayed when iNOS inhibition was combined with radiotherapy. These data show the important role that iNOS/NO signaling plays in the effectiveness of radiotherapy to treat PDAC tumors. SIGNIFICANCE: A radiolabeled pH-targeted peptide can be used as a PET imaging tool to assess therapy response within PDAC and blocking iNOS/NO signaling may improve radiotherapy outcomes.
Collapse
Affiliation(s)
- Patricia M R Pereira
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kimberly J Edwards
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Komal Mandleywala
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Freddy E Escorcia
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Luis Felipe Campesato
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mike Cornejo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lolkje Abma
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Abu-Akeel Mohsen
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christine A Iacobuzio-Donahue
- The David M. Rubenstein Center for Pancreatic Cancer Research, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
37
|
The Reduced Oligomerization of MAVS Mediated by ROS Enhances the Cellular Radioresistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2167129. [PMID: 32190169 PMCID: PMC7073501 DOI: 10.1155/2020/2167129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/19/2020] [Accepted: 02/13/2020] [Indexed: 12/30/2022]
Abstract
Although the mitochondrial antiviral signaling protein (MAVS), located in the mitochondrial outmembrane, is believed to be a signaling adaptor with antiviral feature firstly, it has been shown that suppression of MAVS enhanced radioresistance. The mechanisms underlying this radioresistance remain unclear. Our current study demonstrated that knockdown of MAVS alleviated the radiation-induced mitochondrial dysfunction (mitochondrial membrane potential disruption and ATP production), downregulated the expressions of proapoptotic proteins, and reduced the generation of ROS in cells after irradiation. Furthermore, inhibition of mitochondrial ROS by the mitochondria-targeted antioxidant MitoQ reduced amounts of oligomerized MAVS after irradiation compared with the control group and also prevented the incidence of MN and increased the survival fraction of normal A549 cells after irradiation. To our knowledge, it is the first report to indicate that MAVS, an innate immune signaling molecule, is involved in radiation response via its oligomerization mediated by radiation-induced ROS, which may be a potential target for the precise radiotherapy or radioprotection.
Collapse
|
38
|
Corrao G, Marvaso G, Ferrara R, Lo Russo G, Gugliandolo SG, Piperno G, Spaggiari L, De Marinis F, Orecchia R, Garassino MC, Jereczek-Fossa BA. Stereotatic radiotherapy in metastatic non-small cell lung cancer: Combining immunotherapy and radiotherapy with a focus on liver metastases. Lung Cancer 2020; 142:70-79. [PMID: 32120227 DOI: 10.1016/j.lungcan.2020.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/17/2020] [Accepted: 02/22/2020] [Indexed: 01/19/2023]
Abstract
Presence of liver metastases correlates with worse survival and response to any treatments. This may be due to the microenvironment of liver which leads tumor to escape from Immune System. Stereotactic Body Radiation Therapy may help to sensitize Immune System and to improve the immunotherapy effect. Interest is being directed toward combining Immune-Checkpoint Inhibitors with radiotherapy to improve response to immunotherapy. However, the mechanisms by which radiation induces anti-tumor T-cells remain unclear. Preclinical studies founded radiotherapy enhances antitumor immune responses, increasing tumor antigen release, and inducing T-cell infiltration. Radiotherapy is under investigation for its ability to enhance responses to immunotherapy. Nevertheless, how to optimally deliver combination therapy regarding dose-fractionation and timing of radiotherapy is unknown. The aim of this review is to explore the role of Stereotactic Body Radiation Therapy in metastatic non-small cell lung cancer, focusing on patients with liver metastases, and the possible immunological implications combining immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- Giulia Corrao
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Giulia Marvaso
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.
| | - Roberto Ferrara
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - Giuseppe Lo Russo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - Simone Giovanni Gugliandolo
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Gaia Piperno
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Lorenzo Spaggiari
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy; Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Filippo De Marinis
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Orecchia
- Scientific Direction, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marina Chiara Garassino
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| |
Collapse
|
39
|
Future Therapeutic Directions for Smac-Mimetics. Cells 2020; 9:cells9020406. [PMID: 32053868 PMCID: PMC7072318 DOI: 10.3390/cells9020406] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
It is well accepted that the ability of cancer cells to circumvent the cell death program that untransformed cells are subject to helps promote tumor growth. Strategies designed to reinstate the cell death program in cancer cells have therefore been investigated for decades. Overexpression of members of the Inhibitor of APoptosis (IAP) protein family is one possible mechanism hindering the death of cancer cells. To promote cell death, drugs that mimic natural IAP antagonists, such as second mitochondria-derived activator of caspases (Smac/DIABLO) were developed. Smac-Mimetics (SMs) have entered clinical trials for hematological and solid cancers, unfortunately with variable and limited results so far. This review explores the use of SMs for the treatment of cancer, their potential to synergize with up-coming treatments and, finally, discusses the challenges and optimism facing this strategy.
Collapse
|
40
|
Ye W, Gunti S, Allen CT, Hong Y, Clavijo PE, Van Waes C, Schmitt NC. ASTX660, an antagonist of cIAP1/2 and XIAP, increases antigen processing machinery and can enhance radiation-induced immunogenic cell death in preclinical models of head and neck cancer. Oncoimmunology 2020; 9:1710398. [PMID: 32002309 PMCID: PMC6959437 DOI: 10.1080/2162402x.2019.1710398] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022] Open
Abstract
Inhibitor of apoptosis protein (IAP) antagonists have shown activity in preclinical models of head and neck squamous cell carcinoma (HNSCC), and work across several cancer types has demonstrated diverse immune stimulatory effects including enhancement of T cell, NK cell, and dendritic cell function. However, tumor-cell-intrinsic mechanisms for this immune upregulation have been largely unexplored. In this study, we show that ASTX660, an antagonist of cIAP1/2 and XIAP, induces expression of immunogenic cell death (ICD) markers in sensitive HNSCC cell lines in vitro. Experiments in syngeneic mouse models of HNSCC showed that ASTX660 can also enhance radiation-induced ICD in vivo. On a functional level, ASTX660 also enhanced killing of multiple murine cell lines by cytotoxic tumor-infiltrating lymphocytes, and when combined with XRT, stimulated clonal expansion of antigen-specific T lymphocytes and expression of MHC class I on the surface of tumor cells. Flow cytometry experiments in several human HNSCC cell lines showed that MHC class I (HLA-A,B,C) was reliably upregulated in response to ASTX660 + TNFα, while increases in other antigen processing machinery (APM) components were variable among different cell lines. These findings suggest that ASTX660 may enhance anti-tumor immunity both by promoting ICD and by enhancing antigen processing and presentation.
Collapse
Affiliation(s)
- Wenda Ye
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.,Cleveland Clinic, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.,Medical Research Scholars Program, National Institutes of Health, Bethesda, MD, USA
| | - Sreenivasulu Gunti
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Clint T Allen
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.,Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Youji Hong
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Paul E Clavijo
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Carter Van Waes
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Nicole C Schmitt
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.,Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
41
|
Colbert LE, Jhingran A. Immunotherapy and Radiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1244:205-213. [DOI: 10.1007/978-3-030-41008-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Nolan MW, Kelsey KL, Enomoto M, Ru H, Gieger TL, Lascelles BDX. Pet Dogs with Subclinical Acute Radiodermatitis Experience Widespread Somatosensory Sensitization. Radiat Res 2019; 193:241-248. [PMID: 31877255 DOI: 10.1667/rr15468.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation-induced dermatitis (RID) is a common and painful complication of radiotherapy. When severe, radiation-associated pain (RAP) can reduce the efficacy of radiotherapy by limiting the radiation dose given, and/or necessitating breaks in treatment. Current RAP mitigation strategies are of limited efficacy. Our long-term goal is to develop a comparative oncology model, in which novel analgesic interventions for RAP can be evaluated. The aim of this study was to validate quantitative end points indicative of RAP in pet dogs with subclinical and low-grade RID. Extremity soft tissue sarcomas were treated with post-operative irradiation (54 Gy in 18 fractions). Visual toxicity scores, questionnaire-based pain instruments and objective algometry [mechanical quantitative sensory testing (mQST)], were evaluated regularly. Breed-matched control populations were also evaluated to address the effect of potential confounders. Skin biopsies from within the irradiated field were collected at baseline and after 24 Gy irradiation, for analysis of pain-related genes using the nanoString nCounter platform. Relative to control populations, mechanical thresholds decreased in irradiated test subjects as the total radiation dose increased, with the most pronounced effect at the irradiated site. This was accompanied by increased mRNA expression of GFRα3, TNFα, TRPV2 and TRPV4. In a separate set of dogs with moderate-to-severe RID, serum concentrations of artemin (the ligand for GFRα3) were elevated relative to controls (P = 0.015). Progressive reduction in mechanical thresholds, both locally and remotely, indicates widespread somatosensory sensitization during radiation treatment. mQST in pet dogs undergoing radiation treatment represents an innovative tool for preclinical evaluation of novel analgesics.
Collapse
Affiliation(s)
- Michael W Nolan
- Departments of Clinical Sciences.,Departments of Comparative Medicine Institute.,Departments of Translational Research in Pain, Comparative Pain Research and Education Centre, North Carolina State University, Raleigh, North Carolina 27607
| | | | | | - Hongyu Ru
- Departments of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27607
| | - Tracy L Gieger
- Departments of Clinical Sciences.,Departments of Comparative Medicine Institute
| | - B Duncan X Lascelles
- Departments of Clinical Sciences.,Departments of Comparative Medicine Institute.,Departments of Translational Research in Pain, Comparative Pain Research and Education Centre, North Carolina State University, Raleigh, North Carolina 27607
| |
Collapse
|
43
|
Concurrent Radiosurgery and Immune Checkpoint Inhibition: Improving Regional Intracranial Control for Patients With Metastatic Melanoma. Am J Clin Oncol 2019; 42:253-257. [PMID: 30557166 DOI: 10.1097/coc.0000000000000509] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The anti-CTLA-4 and antiprogrammed cell death-1 (PD-1) therapies have significantly improved survival of patients with metastatic melanoma. However, there is limited data regarding the interaction between immunotherapy (IT) and stereotactic radiosurgery (SRS) in patients with brain metastasis, particularly how combination therapy may affect toxicity and intracranial tumor control. METHODS We retrospectively reviewed 26 patients with metastatic melanoma who received immune check point inhibitors and SRS for brain metastasis from 2011 to 2017. We evaluated lesions receiving SRS concurrently (within 30 days) and sequentially with IT. Overall survival (OS), local control (LC), and regional progression free survival (RPFS) were determined. RESULTS In total, 26 patients and 90 lesions were treated using pembrolizumab, nivolumab and/or ipilimumab, sequentially, or concurrently with SRS. Median follow-up was 18.9 months (range, 4.9 to 62.3 mo). Median overall survival was 26.1 months. There were 3 local failures, but no significant difference between the 2 groups. Following concurrent SRS and immunotherapy, patients had a significantly longer period of intracranial progression free survival than those treated with nonconcurrent therapy, 19 months versus 3.4 months (P<0.0001). No grade 4-5 toxicities were observed. CONCLUSIONS Patients with melanoma metastatic to brain treated with SRS and immune checkpoint inhibitors had favorable median survival of 26.1 months compared with historical controls. Patients receiving immunotherapy within 30 days of SRS had significantly improved regional intracranial progression free survival compared with patients receiving sequential therapy. Our findings suggest synergy between checkpoint inhibitor immunotherapy and radiosurgery. Further studies are needed to confirm these findings.
Collapse
|
44
|
Herrera FG, Irving M, Kandalaft LE, Coukos G. Rational combinations of immunotherapy with radiotherapy in ovarian cancer. Lancet Oncol 2019; 20:e417-e433. [DOI: 10.1016/s1470-2045(19)30401-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
|
45
|
Xiao R, An Y, Ye W, Derakhshan A, Cheng H, Yang X, Allen C, Chen Z, Schmitt NC, Van Waes C. Dual Antagonist of cIAP/XIAP ASTX660 Sensitizes HPV - and HPV + Head and Neck Cancers to TNFα, TRAIL, and Radiation Therapy. Clin Cancer Res 2019; 25:6463-6474. [PMID: 31266830 DOI: 10.1158/1078-0432.ccr-18-3802] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/24/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Human papillomavirus-negative (HPV-) head and neck squamous cell carcinomas (HNSCC) harbor frequent genomic amplification of Fas-associated death domain, with or without concurrent amplification of Baculovirus inhibitor of apoptosis repeat containing (BIRC2/3) genes encoding cellular inhibitor of apoptosis proteins 1/2 (cIAP1/2). Antagonists targeting cIAP1 have been reported to enhance sensitivity of HPV-, but not HPV+ tumors, to TNF family death ligands (TNF and TRAIL) and radiation.Experimental Design: We tested a novel dual cIAP/XIAP antagonist ASTX660 in HPV+ and HPV- cell lines in combination with death ligands TNFα and TRAIL, and in preclinical xenograft models with radiation, an inducer of death ligands. The dependence of activity on TNF was examined by antibody depletion. RESULTS ASTX660 sensitized subsets of HPV- and HPV+ HNSCC cell lines to TNFα and TRAIL. These antitumor effects of ASTX660 are the result of both apoptosis and/or necroptosis among HPV- cells, and primarily by apoptosis (caspase 3 and caspase 8 cleavage) in HPV+ cells. ASTX660 enhanced restoration of protein expression and inhibitory activity of proapoptotic tumor suppressor TP53 in HPV+ HNSCC. Furthermore, ASTX660 combined with radiotherapy, an inducer of death ligands, significantly delayed growth of both HPV- and HPV+ human tumor xenografts, an effect attenuated by anti-TNFα pretreatment blockade. CONCLUSIONS IAP1/XIAP antagonist, ASTX660, sensitizes HPV+ HNSCC to TNFα via a mechanism involving restoration of TP53. These findings serve to motivate further studies of dual cIAP/XIAP antagonists and future clinical trials combining these antagonists with radiotherapy to treat both HPV+ and HPV- HNSCC.
Collapse
Affiliation(s)
- Roy Xiao
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio.,Medical Research Scholars Program, NIH, Bethesda, Maryland.,Tumor Biology Section, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Yi An
- Tumor Biology Section, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Wenda Ye
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio.,Medical Research Scholars Program, NIH, Bethesda, Maryland.,Tumor Biology Section, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Adeeb Derakhshan
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio.,Medical Research Scholars Program, NIH, Bethesda, Maryland.,Tumor Biology Section, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Hui Cheng
- Tumor Biology Section, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Xinping Yang
- Tumor Biology Section, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Clint Allen
- Office of the Clinical Director, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland.,Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Zhong Chen
- Tumor Biology Section, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Nicole C Schmitt
- Office of the Clinical Director, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland.,Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Carter Van Waes
- Tumor Biology Section, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland.
| |
Collapse
|
46
|
Boustani J, Grapin M, Laurent PA, Apetoh L, Mirjolet C. The 6th R of Radiobiology: Reactivation of Anti-Tumor Immune Response. Cancers (Basel) 2019; 11:E860. [PMID: 31226866 PMCID: PMC6627091 DOI: 10.3390/cancers11060860] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Historically, the 4Rs and then the 5Rs of radiobiology explained the effect of radiation therapy (RT) fractionation on the treatment efficacy. These 5Rs are: Repair, Redistribution, Reoxygenation, Repopulation and, more recently, intrinsic Radiosensitivity. Advances in radiobiology have demonstrated that RT is able to modify the tumor micro environment (TME) and to induce a local and systemic (abscopal effect) immune response. Conversely, RT is able to increase some immunosuppressive barriers, which can lead to tumor radioresistance. Fractionation and dose can affect the immunomodulatory properties of RT. Here, we review how fractionation, dose and timing shape the RT-induced anti-tumor immune response and the therapeutic effect of RT. We discuss how immunomodulators targeting immune checkpoint inhibitors and the cGAS/STING (cyclic GMP-AMP Synthase/Stimulator of Interferon Genes) pathway can be successfully combined with RT. We then review current trials evaluating the RT/Immunotherapy combination efficacy and suggest new innovative associations of RT with immunotherapies currently used in clinic or in development with strategic schedule administration (fractionation, dose, and timing) to reverse immune-related radioresistance. Overall, our work will present the existing evidence supporting the claim that the reactivation of the anti-tumor immune response can be regarded as the 6th R of Radiobiology.
Collapse
Affiliation(s)
- Jihane Boustani
- Department of Radiation Oncology, Unicancer-Georges-Francois Leclerc Cancer Center, Dijon, France.
| | - Mathieu Grapin
- Department of Radiation Oncology, Unicancer-Georges-Francois Leclerc Cancer Center, Dijon, France.
| | - Pierre-Antoine Laurent
- Department of Radiation Oncology, Unicancer-Georges-Francois Leclerc Cancer Center, Dijon, France.
| | | | - Céline Mirjolet
- Department of Radiation Oncology, Unicancer-Georges-Francois Leclerc Cancer Center, Dijon, France.
- INSERM, U1231 Dijon, France.
| |
Collapse
|
47
|
Jones JW, Alloush J, Sellamuthu R, Chua HL, MacVittie TJ, Orschell CM, Kane MA. Effect of Sex on Biomarker Response in a Mouse Model of the Hematopoietic Acute Radiation Syndrome. HEALTH PHYSICS 2019; 116:484-502. [PMID: 30681425 PMCID: PMC6384137 DOI: 10.1097/hp.0000000000000961] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sex is an important confounding variable in biomarker development that must be incorporated into biomarker discovery and validation. Additionally, understanding of sex as a biological variable is essential for effective translation of biomarkers in animal models to human populations. Toward these ends, we conducted high-throughput targeted metabolomics using liquid chromatography tandem mass spectrometry and multiplexed immunoassay analyses using a Luminex-based system in both male and female mice in a model of total-body irradiation at a radiation dose consistent with the hematopoietic acute radiation syndrome. Metabolomic and immunoassay analyses identified metabolites and cytokines that were significantly different in plasma from naive and irradiated C57BL/6 mice consisting of equal numbers of female and male mice at 3 d after 8.0 or 8.72 Gy, an approximate LD60-70/30 dose of total-body irradiation. An additional number of metabolites and cytokines had sex-specific responses after radiation. Analyses of sham-irradiated mice illustrate the presence of stress-related changes in several cytokines due simply to undergoing the irradiation procedure, absent actual radiation exposure. Basal differences in metabolite levels between female and male were also identified as well as time-dependent changes in cytokines up to 9 d postexposure. These studies provide data toward defining the influence of sex on plasma-based biomarker candidates in a well-defined mouse model of acute radiation syndrome.
Collapse
Affiliation(s)
- Jace W. Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jenna Alloush
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | | | - Hui Lin Chua
- Indiana University School of Medicine, Indianapolis, IN
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | | | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| |
Collapse
|
48
|
Dar TB, Henson RM, Shiao SL. Targeting Innate Immunity to Enhance the Efficacy of Radiation Therapy. Front Immunol 2019; 9:3077. [PMID: 30692991 PMCID: PMC6339921 DOI: 10.3389/fimmu.2018.03077] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023] Open
Abstract
Radiation continues to play a major role in the treatment of almost every cancer type. Traditional radiation studies focused on its ability to damage DNA, but recent evidence has demonstrated that a key mechanism driving the efficacy of radiation in vivo is the immune response triggered in irradiated tissue. Innate immune cells including macrophages, dendritic cells, and natural killer cells are key mediators of the radiation-induced immune response. They regulate the sensing of radiation-mediated damage and subsequent radiation-induced inflammation. Given the importance of innate immune cells as determinants of the post-radiation anti-tumor immune response, much research has been devoted to identify ways to both enhance the innate immune response and prevent their ability to suppress ongoing immune responses. In this review, we will discuss how the innate immune system shapes anti-tumor immunity following radiation and highlight key strategies directed at the innate immune response to enhance the efficacy of radiation.
Collapse
Affiliation(s)
- Tahir B Dar
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Regina M Henson
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Stephen L Shiao
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
49
|
BRCA2 deficiency instigates cGAS-mediated inflammatory signaling and confers sensitivity to tumor necrosis factor-alpha-mediated cytotoxicity. Nat Commun 2019; 10:100. [PMID: 30626869 PMCID: PMC6327059 DOI: 10.1038/s41467-018-07927-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/03/2018] [Indexed: 11/29/2022] Open
Abstract
Loss of BRCA2 affects genome stability and is deleterious for cellular survival. Using a genome-wide genetic screen in near-haploid KBM-7 cells, we show that tumor necrosis factor-alpha (TNFα) signaling is a determinant of cell survival upon BRCA2 inactivation. Specifically, inactivation of the TNF receptor (TNFR1) or its downstream effector SAM68 rescues cell death induced by BRCA2 inactivation. BRCA2 inactivation leads to pro-inflammatory cytokine production, including TNFα, and increases sensitivity to TNFα. Enhanced TNFα sensitivity is not restricted to BRCA2 inactivation, as BRCA1 or FANCD2 inactivation, or hydroxyurea treatment also sensitizes cells to TNFα. Mechanistically, BRCA2 inactivation leads to cGAS-positive micronuclei and results in a cell-intrinsic interferon response, as assessed by quantitative mass-spectrometry and gene expression profiling, and requires ASK1 and JNK signaling. Combined, our data reveals that micronuclei induced by loss of BRCA2 instigate a cGAS/STING-mediated interferon response, which encompasses re-wired TNFα signaling and enhances TNFα sensitivity. The loss of homologous recombination (HR) genes such as BRCA1 and BRCA2 is deleterious to the survival of normal cells, yet it is tolerated in cancer cells. Here the authors identify TNFα signaling as a determinant of viability in BRCA2- inactivated cancer cells.
Collapse
|
50
|
Wang SJ, Haffty B. Radiotherapy as a New Player in Immuno-Oncology. Cancers (Basel) 2018; 10:cancers10120515. [PMID: 30558196 PMCID: PMC6315809 DOI: 10.3390/cancers10120515] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022] Open
Abstract
Recent development in radiation biology has revealed potent immunogenic properties of radiotherapy in cancer treatments. However, antitumor immune effects of radiotherapy are limited by the concomitant induction of radiation-dependent immunosuppressive effects. In the growing era of immunotherapy, combining radiotherapy with immunomodulating agents has demonstrated enhancement of radiation-induced antitumor immune activation that correlated with improved treatment outcomes. Yet, how to optimally deliver combination therapy regarding dose-fractionation and timing of radiotherapy is largely unknown. Future prospective testing to fine-tune this promising combination of radiotherapy and immunotherapy is warranted.
Collapse
Affiliation(s)
- Shang-Jui Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, 195 Little Albany St., New Brunswick, NJ 08901, USA.
| | - Bruce Haffty
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, 195 Little Albany St., New Brunswick, NJ 08901, USA.
| |
Collapse
|