1
|
Guo C, Li G, Liu Z, Sun L, Sun Y, Xu F, Zhang Y, Yang T, Li Z. Influence of Polyelectrolyte on DNA-RecA Nucleoprotein Filaments: Poly-L-Lysine Used as a Model. Chemphyschem 2009; 10:1624-9. [DOI: 10.1002/cphc.200800850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
2
|
A chemical compound that stimulates the human homologous recombination protein RAD51. Proc Natl Acad Sci U S A 2008; 105:15848-53. [PMID: 18840682 DOI: 10.1073/pnas.0808046105] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RAD51 and other members of the RecA family of strand exchange proteins assemble on ssDNA to form presynaptic filaments, which carry out the central steps of homologous recombination. A microplate-based assay was developed for high-throughput measurement of hRAD51 filament formation on ssDNA. With this method, a 10,000 compound library was screened, leading to the identification of a small molecule (RS-1) that enhances hRAD51 binding in a wide range of biochemical conditions. Salt titration experiments showed that RS-1 can enhance filament stability. Ultrastructural analysis of filaments formed on ssDNA showed that RS-1 can increase both protein-DNA complex lengths and the pitch of helical filament turns. RS-1 stimulated hRAD51-mediated homologous strand assimilation (D-loop) activity by at least 5- to 11-fold, depending on the condition. This D-loop stimulation occurred even in the presence of Ca(2+) or adenylyl-imidodiphosphate, indicating that the mechanism of stimulation was distinct from that conferred by Ca(2+) and/or inhibition of ATPase. No D-loop activity was observed in the absence of a nucleotide triphosphate cofactor, indicating that the compound does not substitute for this requirement. These results indicate that RS-1 enhances the homologous recombination activity of hRAD51 by promoting the formation of active presynaptic filaments. Cell survival assays in normal neonatal human dermal fibroblasts demonstrated that RS-1 promotes a dose-dependent resistance to the cross-linking chemotherapeutic drug cisplatin. Given that RAD51-dependent recombination is a major determinant of cisplatin resistance, RS-1 seems to function in vivo to stimulate homologous recombination repair proficiency. RS-1 has many potential applications in both research and medical settings.
Collapse
|
3
|
Okamoto F, Kajiya H, Toh K, Uchida S, Yoshikawa M, Sasaki S, Kido MA, Tanaka T, Okabe K. Intracellular ClC-3 chloride channels promote bone resorption in vitro through organelle acidification in mouse osteoclasts. Am J Physiol Cell Physiol 2008; 294:C693-701. [PMID: 18234851 DOI: 10.1152/ajpcell.00251.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ClC-7 Cl(-) channels expressed in osteoclasts are important for bone resorption since it has been shown that disruption of the ClCN7 gene in mice leads to severe osteopetrosis. We have previously reported that Cl(-) currents recorded from mouse osteoclasts resemble those of ClC-3 Cl(-) channels. The aim of the present study was to determine the expression of ClC-3 channels in mouse osteoclasts and their functional role during bone resorption. We detected transcripts for both ClC-7 and ClC-3 channels in mouse osteoclasts by RT-PCR. The expression of ClC-3 was confirmed by immunocytochemical staining. Mouse osteoclasts lacking ClC-3 Cl(-) channels (ClC-3(-/-) osteoclasts) derived from ClCN3 gene-deficient mice (ClC-3(-/-)) showed lower bone resorption activity compared with ClC-3+/+ osteoclasts derived from wild-type mice (ClC-3+/+). Treatment of ClC-3+/+ osteoclasts with small interfering RNA (siRNA) against ClC-3 also significantly reduced bone resorption activity. Electrophysiological properties of basal and hypotonicity-induced Cl(-) currents in ClC-3(-/-) osteoclasts did not differ significantly from those in ClC-3+/+ osteoclasts. Using immunocytochemistry, ClC-3 was colocalized with lysosome-associated membrane protein 2. Using pH-sensitive dyes, organelle acidification activity in ClC-3(-/-) osteoclasts was weaker than in ClC-3+/+ osteoclasts. Treatment of ClC-3+/+ osteoclasts with siRNA against ClC-3 also reduced the organelle acidification activity. In conclusion, ClC-3 Cl(-) channels are expressed in intracellular organelles of mouse osteoclasts and contribute to osteoclastic bone resorption in vitro through organelle acidification.
Collapse
Affiliation(s)
- Fujio Okamoto
- Dept. of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Marshall KM, Matsumoto SS, Holden JA, Concepción GP, Tasdemir D, Ireland CM, Barrows LR. The anti-neoplastic and novel topoisomerase II-mediated cytotoxicity of neoamphimedine, a marine pyridoacridine. Biochem Pharmacol 2003; 66:447-58. [PMID: 12907244 DOI: 10.1016/s0006-2952(03)00209-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Topoisomerase IIalpha (top2) is a target of some of the most useful anticancer drugs. All clinically approved top2 drugs act to stabilize a drug-enzyme-DNA cleavable complex. Here we report the novel top2 activity of neoamphimedine, an isomer of the marine pyridoacridine amphimedine. Neoamphimedine was cytotoxic in yeast and mammalian cell lines. Neoamphimedine exhibited enhanced toxicity in top2 over-expressing yeast cells and was toxic in every mammalian cell line tested. However, neoamphimedine did not possess enhanced toxicity in a mammalian cell line sensitive to stabilized cleavable complexes. Therefore, we hypothesized that neoamphimedine is a top2-dependent drug, whose primary mechanism of action is not the stabilization of cleavable complexes. Top2-directed activity was determined in purified enzyme systems. Neoamphimedine-induced catenation of plasmid DNA only in the presence of active top2. This catenation correlated with the ability of neoamphimedine to aggregate DNA. Catenation was also observed using a filter-binding assay and transmission electron microscopy. Catenation was confirmed when only restriction enzyme digestion could resolve the catenated plasmid complex to monomer length plasmid DNA. Neoamphimedine also showed potent anti-neoplastic activity in human xenograft tumors in athymic mice. Neoamphimedine was as effective as etoposide in mice bearing KB tumors and as effective as 9-aminocamptothecin in mice bearing HCT-116 tumors. Amphimedine did not induce DNA aggregation or catenation in vitro, nor did it display any significant anti-neoplastic activity. These results suggest that neoamphimedine has a novel top2-mediated mechanism of cytotoxicity and anticancer potential.
Collapse
Affiliation(s)
- Kathryn M Marshall
- Department of Pharmacology and Toxicology, 30 S. 2000 E. Rm. 201, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Nath K, Sarosy JW, Hahn J, Di Como CJ. Effects of ethidium bromide and SYBR Green I on different polymerase chain reaction systems. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2000; 42:15-29. [PMID: 10647811 DOI: 10.1016/s0165-022x(99)00033-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In an in-gel polymerase chain reaction (PCR), the generation of a 1750-bp yeast DNA fragment was inhibited when yeast DNA gel-stabs or gel-slices stained with ethidium bromide (EtBr) or SYBR Green I were used. Similar inhibition occurred to a varying degree in the reamplification of PCR fragments in prokaryotic systems. Inclusion of the dyes in PCR resulted in an inhibition at about 10 microg/ml EtBr and at 10,000-20,000-fold dilution of SYBR Green I in all systems. The effect remained unchanged despite increasing the PCR cycles to 40. However, increasing the magnesium chloride concentration did reverse the inhibitory actions, although the PCR specificity was lost. In an unusual observation, we find that, at higher dye concentrations (50 microg/ml EtBr, or thousand fold dilution of SYBR Green I), the input yeast DNA electrophoretic profile is maintained following 25 PCR cycles (despite a denaturation temperature of 94 degrees C). It varied significantly in different DNA systems and was readily reversed by high Mg++ concentrations. It is concluded that, at low Mg++ concentrations, different PCR systems are inhibited to varying extents by intercalating dyes and, in some PCR systems, intercalating dyes at unusually high concentrations maintain input DNA electrophoretic profile.
Collapse
Affiliation(s)
- K Nath
- Long Island University, Department of Biology, Brookville, New York, NY 11548-1300, USA.
| | | | | | | |
Collapse
|
6
|
Zaitseva EM, Zaitsev EN, Kowalczykowski SC. The DNA binding properties of Saccharomyces cerevisiae Rad51 protein. J Biol Chem 1999; 274:2907-15. [PMID: 9915828 DOI: 10.1074/jbc.274.5.2907] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae Rad51 protein is the paradigm for eukaryotic ATP-dependent DNA strand exchange proteins. To explain some of the unique characteristics of DNA strand exchange promoted by Rad51 protein, when compared with its prokaryotic homologue the Escherichia coli RecA protein, we analyzed the DNA binding properties of the Rad51 protein. Rad51 protein binds both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in an ATP- and Mg2+-dependent manner, over a wide range of pH, with an apparent binding stoichiometry of approximately 1 protein monomer per 4 (+/-1) nucleotides or base pairs, respectively. Only dATP and adenosine 5'-gamma-(thiotriphosphate) (ATPgammaS) can substitute for ATP, but binding in the presence of ATPgammaS requires more than a 5-fold stoichiometric excess of protein. Without nucleotide cofactor, Rad51 protein binds both ssDNA and dsDNA but only at pH values lower than 6.8; in this case, the apparent binding stoichiometry covers the range of 1 protein monomer per 6-9 nucleotides or base pairs. Therefore, Rad51 protein displays two distinct modes of DNA binding. These binding modes are not inter-convertible; however, their initial selection is governed by ATP binding. On the basis of these DNA binding properties, we conclude that the main reason for the low efficiency of the DNA strand exchange promoted by Rad51 protein in vitro is its enhanced dsDNA-binding ability, which inhibits both the presynaptic and synaptic phases of the DNA strand exchange reaction as follows: during presynapsis, Rad51 protein interacts with and stabilizes secondary structures in ssDNA thereby inhibiting formation of a contiguous nucleoprotein filament; during synapsis, Rad51 protein inactivates the homologous dsDNA partner by directly binding to it.
Collapse
Affiliation(s)
- E M Zaitseva
- Division of Biological Sciences, Sections of Microbiology and of Molecular and Cell Biology, University of California, Davis, California 95616-8665, USA
| | | | | |
Collapse
|
7
|
Tuite E, Sehlstedt U, Hagmar P, Nordén B, Takahashi M. Effects of minor and major groove-binding drugs and intercalators on the DNA association of minor groove-binding proteins RecA and deoxyribonuclease I detected by flow linear dichroism. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:482-92. [PMID: 9030776 DOI: 10.1111/j.1432-1033.1997.0482a.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Linear and circular dichroic spectroscopies have been employed to investigate the effects of small DNA ligands on the interactions of two proteins which bind to the minor groove of DNA, viz. RecA protein from Escherichia coli and deoxyribonuclease I (bovine pancreas). Ligands representing three specific non-covalent binding modes were investigated: 4',6-diamidino-2-phenylindole and distamycin A (minor groove binders), methyl green (major groove binder), and methylene blue, ethidium bromide and ethidium dimer (intercalators). Linear dichroism was demonstrated to be an excellent detector, in real time, of DNA double-strand cleavage by deoxyribonuclease I. Ligands bound in all three modes interfered with the deoxyribonuclease I digestion of dsDNA, although the level of interference varied in a manner which could be related to the ligand binding site, the ligand charge appearing to be less important. In particular, the retardation of deoxyribonuclease I cleavage by the major groove binder methyl green demonstrates that accessibility to the minor groove can be affected by occupancy of the opposite groove. Binding of all three types of ligand also had marked effects on the interaction of RecA with dsDNA in the presence of non-hydrolyzable cofactor adenosine 5'-O-3-thiotriphosphate, decreasing the association rate to varying extents but with the strongest effects from ligands having some minor groove occupancy. Finally, each ligand was displaced from its DNA binding site upon completion of RecA association, again demonstrating that modification of either groove can affect the properties and behaviour of the other. The conclusions are discussed against the background of previous work on the use of small DNA ligands to probe DNA-protein interactions.
Collapse
Affiliation(s)
- E Tuite
- Department of Physical Chemistry, Chalmers University of Technology, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
8
|
Roca AI, Cox MM. RecA protein: structure, function, and role in recombinational DNA repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 56:129-223. [PMID: 9187054 DOI: 10.1016/s0079-6603(08)61005-3] [Citation(s) in RCA: 324] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A I Roca
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
9
|
Lee LF, Huang YJ, Chen CW. Two classes of ethidium-bromide-resistant mutants of Streptomyces lividans 66. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 4):1041-1047. [PMID: 8936330 DOI: 10.1099/00221287-142-4-1041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Five spontaneous mutants of Streptomyces lividans TK64 resistant to 5 or 15 microM ethidium bromide (EB) were isolated, and the corresponding mutations were mapped to two different chromosomal locations. Both types of mutations conferred unselected resistance to several basic dyes and norfloxacin. The strain with the low-level resistance exhibited wild-type levels of EB uptake and energy-dependent efflux, and the resistance mechanism is unclear. The highly resistant mutants, which additionally were resistant to phosphonium ions, had a reduced accumulation and an increased efflux of EB, reminiscent of a mammalian multidrug resistance efflux pump.
Collapse
Affiliation(s)
- Li-Fong Lee
- Institute of Biochemistry, National Yang-Ming University, Taipei 112, Taiwan
| | - Yi-Jiun Huang
- Institute of Microbiology & Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | - Carton W Chen
- Institute of Genetics, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
10
|
Ellouze C, Takahashi M, Wittung P, Mortensen K, Schnarr M, Nordén B. Evidence for elongation of the helical pitch of the RecA filament upon ATP and ADP binding using small-angle neutron scattering. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:579-83. [PMID: 7588804 DOI: 10.1111/j.1432-1033.1995.579_2.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Structural changes of the RecA filament upon binding of cofactors have been investigated by small-angle neutron scattering. Both ATP and ADP increased the helical pitch of the RecA homopolymer, which is observed to be 7 nm in the absence of any cofactor. The binding of ATP altered the pitch to 9 nm, whereas the binding of ADP only produced a pitch of 8.2 nm. The pitch determined for the RecA complex with the ATP analog adenosine 5'-[gamma-thio]triphosphate was similar to that found with ATP. Thus, at least three, somewhat different. RecA helical filamentous structures may form in solution. The binding of DNA to RecA did not alter the pitch significantly, indicating that the cofactor binding is the determining factor for the size of the helical pitch of the RecA filament. We also found that elongation of the helical pitch is a necessary, but not a sufficient condition, for the coprotease activity of RecA. The presence of acetate or glutamate ions is also required. The pitch of the ADP.RecA filament is in agreement with that found in the crystal structure. This correlation indicates that this structure corresponds to that of the ADP.RecA filament in solution, although this is not the species active in recombination.
Collapse
Affiliation(s)
- C Ellouze
- Groupe d'Etude Mutagénese et Cancérogénèse, Centre National de la Recherche Scientifique Unité 1342, Orsay, France
| | | | | | | | | | | |
Collapse
|
11
|
Takahashi M, Nordén B. The cofactor ATP in DNA-RecA complexes is not intercalated between DNA bases. J Mol Recognit 1994; 7:221-6. [PMID: 7880547 DOI: 10.1002/jmr.300070311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In an attempt to understand the role of ATP as a cofactor at the interaction of the RecA protein with DNA, we have studied the orientation geometries of the cofactor analogs adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) and guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) in RecA-DNA complexes using flow linear dichroism spectroscopy. Both cofactors promote the formation of RecA-DNA complexes of similar structure as judged from similar orientations of DNA bases. The DNA orientation was probed through the dichroism of the long-wavelength absorption of a DNA analog, poly(d epsilon A). In this way differences between the dichroic spectra of the ATP gamma S-RecA-DNA and GTP gamma S-RecA-DNA complexes, observed in the shorter-wavelength region, are related to orientation at variations of the cofactor chromophores. The results show that the guanine plane of GTP gamma S is oriented parallel with the principal axis of the complex in contrast to the more perpendicular orientation of the DNA bases. This observation directly excludes the possibility that the cofactor could be intercalated between the DNA bases. The orientation of the adenine base of ATP gamma S, which may be similar to that of guanine of GTP gamma S albeit not exactly the same, is also inconsistent with intercalation. The possibility that the cofactor bound to the protein could be intercalated in DNA had been speculated from the observation that some DNA intercalators can induce RecA binding to DNA in the absence of cofactor.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Takahashi
- Groupe d'Etude Mutagénèse et Cancérogénèse, URA 1342 CNRS, Université Paris Sud, Orsay, France
| | | |
Collapse
|
12
|
Griffith J, Makhov A, Santiago-Lara L, Setlow P. Electron microscopic studies of the interaction between a Bacillus subtilis alpha/beta-type small, acid-soluble spore protein with DNA: protein binding is cooperative, stiffens the DNA, and induces negative supercoiling. Proc Natl Acad Sci U S A 1994; 91:8224-8. [PMID: 8058784 PMCID: PMC44578 DOI: 10.1073/pnas.91.17.8224] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
DNA within spores of Bacillus subtilis is complexed with a group of alpha/beta-type small acid-soluble spore proteins (alpha/beta-type SASPs), which have almost identical primary sequences and DNA binding properties. Here electron microscopic and cyclization studies were carried out on alpha/beta-type SASP-DNA complexes. When an alpha/beta-type SASP was incubated with linear DNA, the protein bound cooperatively, forming a helical coating 6.6 +/- 0.4 nm wide with a 2.9 +/- 0.3 nm periodicity. alpha/beta-Type SASP binding to an 890-bp DNA was weakest at an (A+T)-rich region that was highly bent, but binding eliminated the bending. alpha/beta-Type SASP binding did not alter the rise per bp in DNA but greatly increased the DNA stiffness as measured by both electron microscopic and cyclization assays. Addition of alpha/beta-type SASPs to negatively supertwisted DNA led to protein binding without significant alteration of the plectonemically interwound appearance of the DNA. Addition of alpha/beta-type SASPs to relaxed or nicked circular DNA led to molecules that by electron microscopy appeared similar to supertwisted DNA. The introduction of negative supertwists in nicked circular DNA by alpha/beta-type SASPs was confirmed by ligation of these molecules followed by topoisomer analyses using agarose gel electrophoresis.
Collapse
Affiliation(s)
- J Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill 27599-7295
| | | | | | | |
Collapse
|
13
|
Volodin AA, Smirnova HA, Bocharova TN. Efficient interaction of recA protein with fluorescent dye-labeled oligonucleotides. FEBS Lett 1994; 349:65-8. [PMID: 8045304 DOI: 10.1016/0014-5793(94)00640-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Some fluorescein derivatives attached to the 5'-end of oligonucleotides stimulate recA protein-oligonucleotide binding. The complex formation at near stoichiometric DNA/protein ratios is demonstrated for 18-bases-long oligonucleotides. The complexes with dye-labeled oligonucleotides are shown to be active in the reaction of homologous strand exchange. The strand exchange reaction in the presence of adenosine-5'-O-(3-thiotriphosphate) proceeds with the formation of a stable complex of recA protein with the double stranded oligonucleotide, which is a product of the strand exchange. The displaced single-stranded oligonucleotide is shown to be bound weakly.
Collapse
Affiliation(s)
- A A Volodin
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow
| | | | | |
Collapse
|
14
|
Abstract
The application of linear and circular dichroism (LD and CD) in nucleic acid research is illustrated by recent results aimed at answering specific structural problems in the interaction of DNA with molecules of biological importance. We first consider the circumstances under which ligands, such as DAPI (4',6-diamidino-2-phenylindole), change their preferred binding mode in the minor groove to major groove binding or intercalation. As an extension of this problem we refer to the switch between groove binding and intercalation of structurally similar ligands such as ellipticines and trigonal ruthenium complexes. We also explore the use of LD and CD in the determination of the structure of the complex formed between the polynucleotide poly(dA) and the novel 'peptide nucleic acid', consisting of nucleic acid bases joined by a polyamide homomorphous with the deoxyribose-phosphate backbone of DNA. Finally, the structure and interaction of the recombination enzyme RecA with DNA is discussed, in particular the influence of the presence of intercalators, groove binders or covalent DNA adducts.
Collapse
Affiliation(s)
- B Nordén
- Department of Physical Chemistry, Chalmers University of Technology, Gothenburg, Sweden
| | | |
Collapse
|
15
|
Kim S, Nordén B, Takahashi M. Role of DNA intercalators in the binding of RecA to double-stranded DNA. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82404-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Kumar K, Muniyappa K. Use of structure-directed DNA ligands to probe the binding of recA protein to narrow and wide grooves of DNA and on its ability to promote homologous pairing. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35838-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Niederhoffer EC, Fee JA. Novel effect of aromatic compounds on the iron-dependent expression of the Escherichia coli K12 manganese superoxide dismutase (sodA) gene. BIOLOGY OF METALS 1990; 3:237-41. [PMID: 2127370 DOI: 10.1007/bf01140586] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In Escherichia coli, the superoxide dismutase genes (sodA and sodB) sense the availability of Fe through the action of the fur locus [E. C. Niederhoffer, C. M. Naranjo, K. L. Bradley, J. A. Fee (1990) Control of Escherichia coli superoxide dismutases (sodA and sodB) genes by the ferric uptake regulation (fur) locus, J. Bacteriol. 172, 1930-1938]. Previous work from other laboratories has shown that a variety of metal chelators and of redox-active aromatic compounds can dramatically induce expression of sodA. Here we show that non-redox-active, non-metal-chelating aromatic compounds also enhance expression of a chromosomal sodA gene fusion and that these effects are strongly modulated by the Fur phenotype (Fur +/-) and by the availability of iron in the culture medium. The compounds studied were ethidium bromide, hemin, 2,2'-bipyridine, 1,10-phenantroline, 4,7-phenantroline, rhodamine B1, rhodamine 6G, and, for comparison to previous studies, Paraquat.
Collapse
Affiliation(s)
- E C Niederhoffer
- Stable Isotope Resource, Los Alamos National Laboratory, NM 87545
| | | |
Collapse
|