1
|
Edinoff AN, Flanagan CJ, Roberts LT, Dies RM, Kataria S, Jackson ED, DeWitt AJ, Wenger DM, Cornett EM, Kaye AM, Kaye AD. Cebranopadol for the Treatment of Chronic Pain. Curr Pain Headache Rep 2023; 27:615-622. [PMID: 37556044 DOI: 10.1007/s11916-023-01148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2023] [Indexed: 08/10/2023]
Abstract
PURPOSE OF REVIEW Regardless of the etiology, if pain persists chronically, it can detrimentally impact multiple aspects of a patient's well-being. Both physical and psychological effects are significant in many chronic pain patients. In this regard, psychological consequences can alter a patient's quality of life, functionality, and social functioning. Opioids have been the long-established gold standard for acute pain treatment in settings such as the postoperative period. An alternative to opioids in pain management has been highly sought after. Through a non-selective mechanism, cebranopadol is a first-in-class oral drug which combines agonism of the mu and nociceptin opioid peptide (NOP) receptors to provide improved analgesia, while reducing the occurrence of many typically opioid side effects. This manuscript is a narrative review of the possible use of cebranopadol in pain management. RECENT FINDINGS In pre-clinical studies, cebranopadol was similar to morphine in its pain control efficacy. In a phase IIa trial, cebranopadol was superior to placebo in reducing pain. In a randomized clinical trial, cebranopadol was superior to morphine. Another study concluded that cebranopadol had a lower misuse potential when compared to hydromorphone. In summary, cebranopadol offers new opportunities in treating chronic moderate to severe pain, while also countering risks of addiction. Additional studies are warranted to further evaluate the safety and efficacy of cebranopadol. In this regard, cebranopadol could prove to be a promising alternative to current pain treatment options.
Collapse
Affiliation(s)
- Amber N Edinoff
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Fruit St, Boston, MA, 02114, USA.
- Louisiana Addiction Research Center, Shreveport, LA, 71103, USA.
| | - Chelsi J Flanagan
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX, 78235, USA
| | - Logan T Roberts
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| | - Ross M Dies
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| | - Saurabh Kataria
- Department of Neurology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| | - Eric D Jackson
- University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Audrey J DeWitt
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| | - Danielle M Wenger
- University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Elyse M Cornett
- Louisiana Addiction Research Center, Shreveport, LA, 71103, USA
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, 95211, USA
| | - Alan D Kaye
- Louisiana Addiction Research Center, Shreveport, LA, 71103, USA
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| |
Collapse
|
2
|
Cebranopadol as a Novel Promising Agent for the Treatment of Pain. Molecules 2022; 27:molecules27133987. [PMID: 35807228 PMCID: PMC9268744 DOI: 10.3390/molecules27133987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
Opioids are used to treat pain, but despite their effectiveness, they possess several side effects such as respiratory depression, tolerance and physical dependence. Cebranopadol has been evaluated as a solution to this problem. The compound acts on the mu opioid receptor and the nociceptin/orphanin receptor and these receptors co-activation can reduce opioid side-effects without compromising analgesia. In the present review, we have compiled information on the effects of cebranopadol, its pharmacokinetics, and clinical trials involving cebranopadol, to further explore its promise in pain management.
Collapse
|
3
|
CCK2 receptors in chronic pain. NEUROBIOLOGY OF PAIN 2022; 11:100092. [PMID: 35571964 PMCID: PMC9097710 DOI: 10.1016/j.ynpai.2022.100092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022]
Abstract
CCK2R is a historic target for pain management that has shown limited success. We review CCK2Rs and their role in peripheral and central circuits in chronic pain. We discuss the interactions between CCK2Rs and opioids. We highlight recent drug discovery efforts targeting CCK2R for chronic pain.
The cholecystokinin receptor system, specifically cholecystokinin 2 receptor (CCK2R) is a historic target for pain management that has shown limited success. However, new approaches to target CCK2R have incited fresh enthusiasm for this target. In this mini-review, we discuss what is known about CCK2R in peripheral and central circuits under naïve physiological conditions and under conditions of chronic pain, the interactions of CCK2Rs with opioids and briefly, recent efforts to develop new treatments targeting CCK2R for chronic pain.
Collapse
|
4
|
Gibula-Tarlowska E, Kotlinska JH. Crosstalk between Opioid and Anti-Opioid Systems: An Overview and Its Possible Therapeutic Significance. Biomolecules 2020; 10:E1376. [PMID: 32998249 PMCID: PMC7599993 DOI: 10.3390/biom10101376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
Opioid peptides and receptors are broadly expressed throughout peripheral and central nervous systems and have been the subject of intense long-term investigations. Such studies indicate that some endogenous neuropeptides, called anti-opioids, participate in a homeostatic system that tends to reduce the effects of endogenous and exogenous opioids. Anti-opioid properties have been attributed to various peptides, including melanocyte inhibiting factor (MIF)-related peptides, cholecystokinin (CCK), nociceptin/orphanin FQ (N/OFQ), and neuropeptide FF (NPFF). These peptides counteract some of the acute effects of opioids, and therefore, they are involved in the development of opioid tolerance and addiction. In this work, the anti-opioid profile of endogenous peptides was described, mainly taking into account their inhibitory influence on opioid-induced effects. However, the anti-opioid peptides demonstrated complex properties and could show opioid-like as well as anti-opioid effects. The aim of this review is to detail the phenomenon of crosstalk taking place between opioid and anti-opioid systems at the in vivo pharmacological level and to propose a cellular and molecular basis for these interactions. A better knowledge of these mechanisms has potential therapeutic interest for the control of opioid functions, notably for alleviating pain and/or for the treatment of opioid abuse.
Collapse
Affiliation(s)
- Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-059 Lublin, Poland;
| | | |
Collapse
|
5
|
Lioe-Ting O, Xiao-Hong C, van Ree J, Ji-Sheng H. Potentiation of Electroacupuncture-Induced Analgesia by Cck-B Antagonist L-365, 260 in Wistar Rats but Not in Acoustically-Evoked Epileptic Rats. Acupunct Med 2018. [DOI: 10.1136/aim.10.2.47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cholecystokinin octapeptide (CCK-8) is a neuropeptide with potent anti-opioid activity, which can antagonize morphine analgesia at nanogram dosage through activation of the CCK-B receptor in the central nervous system (CNS) of the rat. In the present study the CCK-B antagonist L-365,260 was injected intracerebroventricularly (icv) to Wistar rats to see its effect on the analgesia induced by electroacupuncture (EA) stimulation. A marked potentiation of EA-induced analgesia was observed. This potentiation was more prominent when EA of higher frequency was used, showing a rank order of 100Hz > 15Hz = 2/15Hz ≫ 2Hz. In a strain of rat with acoustically-evoked epileptic seizures (P77PMC rats), an extraordinarily strong analgesic effect was observed when EA of 100Hz was used; an effect similar to that in Wistar rats pre-treated with L-365,260. However, icv injected L-365,260 did not potentiate the analgesic effect induced by EA of any frequency in P77PMC rats. The results suggest that high frequency EA is more likely to increase the release of CCK-8 in the CNS as compared to low frequency EA; and also that P77PMC rats may have a functional deficit of the central CCK system probably due to a reduced rate of release of CCK-8 in the CNS, following EA stimulation.
Collapse
Affiliation(s)
- Oei Lioe-Ting
- Rudolf Magnus Inst. for Pharmacology, Utrecht University, Netherlands
| | | | - Jan van Ree
- Rudolf Magnus Inst. for Pharmacology, Utrecht University, Netherlands
| | - Han Ji-Sheng
- Dept. of Physiology, Beijing Medical University, China
| |
Collapse
|
6
|
McCleane G. The cholecystokinin antagonist proglumide has an analgesic effect when used alone in human neuropathic pain: a case report. ACTA ACUST UNITED AC 2013. [DOI: 10.1163/156856903321196537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Noble F, Benturquia N, Crete D, Canestrelli C, Mas Nieto M, Wilson J, Roques BP. Relationship between vulnerability to reinforcing effects of morphine and activity of the endogenous cholecystokinin system in Lewis and Fischer rats. Addict Biol 2012; 17:528-38. [PMID: 21309946 DOI: 10.1111/j.1369-1600.2010.00283.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A great number of studies have shown the presence of physiological interactions between brain neurotransmitter systems in behavioural responses. This is the case for opioid, cholecystokinin (CCK) and dopamine systems. However, so far the role that the CCK system may play in vulnerability to consumption of drugs of abuse is not clear. This was investigated in this study using Lewis rats that are more sensitive to the reinforcing properties of drugs of abuse than Fischer rats. The extraneuronal CCK(8) levels and brain CCK(2) receptors were found higher in Fischer than in Lewis rats in the nucleus accumbens, one of the most important structures involved in drug consumption. Moreover, pharmacological modulation of the CCK system by administration of a selective CCK(2) agonist blocked, in the conditioned place preference, the reinforcing effects of morphine in Lewis rats, whereas a selective CCK(2) antagonist revealed reinforcing effects of the alkaloid in Fischer rats. These results obtained following systemic administrations of the CCK ligands were confirmed following microinjection into the nucleus accumbens. Thus, a low level of CCK efflux in the nucleus accumbens could be one of the many factors involved in drug reinforcing effects, whereas a high level of CCK efflux could attenuate it.
Collapse
Affiliation(s)
- Florence Noble
- Université Paris Descartes, Faculté de Pharmacie, Neuropsychopharmacologie des addictions, France.
| | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Cholecystokinin receptors mediate tolerance to the analgesic effect of TENS in arthritic rats. Pain 2009; 148:84-93. [PMID: 19944533 DOI: 10.1016/j.pain.2009.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 09/25/2009] [Accepted: 10/15/2009] [Indexed: 11/21/2022]
Abstract
Transcutaneous electrical nerve stimulation (TENS) is a treatment for pain that involves placement of electrical stimulation through the skin for pain relief. Previous work from our laboratory shows that repeated application of TENS produces analgesic tolerance by the fourth day and a concomitant cross-tolerance at spinal opioid receptors. Prior pharmacological studies show that blockade of cholecystokinin (CCK) receptors systemically and spinally prevents the development of analgesic tolerance to repeated doses of opioid agonists. We therefore hypothesized that systemic and intrathecal blockade of CCK receptors would prevent the development of analgesic tolerance to TENS, and cross-tolerance at spinal opioid receptors. In animals with knee joint inflammation (3% kaolin/carrageenan), high (100Hz) or low frequency (4Hz) TENS was applied daily and the mechanical withdrawal thresholds of the muscle and paw were examined. We tested thresholds before and after inflammation, and before and after TENS. Animals treated systemically, prior to TENS, with the CCK antagonist, proglumide, did not develop tolerance to repeated application of TENS on the fourth day. Spinal blockade of CCK-A or CCK-B receptors blocked the development of tolerance to high and low frequency TENS, respectively. In the same animals we show that spinal blockade of CCK-A receptors prevents cross-tolerance at spinal delta-opioid receptors that normally occurs with high frequency TENS; and blockade of CCK-B receptors prevents cross-tolerance at spinal mu-opioid receptors that normally occurs with low frequency TENS. Thus, we conclude that blockade of CCK receptors prevents the development of analgesic tolerance to repeated application of TENS in a frequency-dependent manner.
Collapse
|
10
|
Weil ZM, Gatien Hotchkiss M, Nelson RJ. Photoperiod alters pain responsiveness via changes in pelage characteristics. CAN J ZOOL 2008. [DOI: 10.1139/z08-098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small mammals use day length to adjust morphology and physiology to anticipate seasonal changes in environmental conditions. The canonical photoperiod-mediated annual adaptation is seasonal breeding. However, increasing evidence suggests that day-length information can induce plasticity in the nervous system, and thus provoke behavioral plasticity that can aid in winter survival. We hypothesized that low temperatures and reduced food availability in the winter would necessitate the evolution of increased pain tolerance mediated by short day lengths. Siberian hamsters ( Phodopus sungorus (Pallas, 1773)) housed in short days regressed their reproductive tracts and molted to winter pelage. Short-day hamsters also displayed elevated latencies of nociceptive responses in the hot-plate test, suggesting reduced pain responsivity. Prior to assessing potential neuronal or neuroendocrine mediators of altered pain responses, however, we investigated the possibility that changes in fur characteristics mediated photoperiod differences in pain responsivity. Removal of fur with a depilatory cream eliminated photoperiod differences in pain responsivity. Taken together, these data indicate that day length regulates thermal pain responses via changes in fur properties; also, changes in pelage properties have both thermoregulatory and thermal insulatory properties.
Collapse
Affiliation(s)
- Zachary M. Weil
- Departments of Psychology and Neuroscience, and Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210, USA
| | - Michelle Gatien Hotchkiss
- Departments of Psychology and Neuroscience, and Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210, USA
| | - Randy J. Nelson
- Departments of Psychology and Neuroscience, and Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Rasmussen K. Section Review—Central & Peripheral Nervous Systems: Therapeutic Potential of Cholecystokinin-B Antagonists. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.4.4.313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Benedetti F, Lanotte M, Lopiano L, Colloca L. When words are painful: Unraveling the mechanisms of the nocebo effect. Neuroscience 2007; 147:260-71. [PMID: 17379417 DOI: 10.1016/j.neuroscience.2007.02.020] [Citation(s) in RCA: 343] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 11/26/2022]
Abstract
The nocebo effect is a phenomenon that is opposite to the placebo effect, whereby expectation of a negative outcome may lead to the worsening of a symptom. Thus far, its study has been limited by ethical constraints, particularly in patients, as a nocebo procedure is per se stressful and anxiogenic. It basically consists in delivering verbal suggestions of negative outcomes so that the subject expects clinical worsening. Although some natural nocebo situations do exist, such as the impact of negative diagnoses upon the patient and the patient's distrust in a therapy, the neurobiological mechanisms have been understood in the experimental setting under strictly controlled conditions. As for the placebo counterpart, the study of pain has been fruitful in recent years to understand both the neuroanatomical and the neurochemical bases of the nocebo effect. Recent experimental evidence indicates that negative verbal suggestions induce anticipatory anxiety about the impending pain increase, and this verbally-induced anxiety triggers the activation of cholecystokinin (CCK) which, in turn, facilitates pain transmission. CCK-antagonists have been found to block this anxiety-induced hyperalgesia, thus opening up the possibility of new therapeutic strategies whenever pain has an important anxiety component. Other conditions, such as Parkinson's disease, although less studied, have been found to be affected by nocebo suggestions as well. All these findings underscore the important role of cognition in the therapeutic outcome, and suggest that nocebo and nocebo-related effects might represent a point of vulnerability both in the course of a disease and in the response to a therapy.
Collapse
Affiliation(s)
- F Benedetti
- Department of Neuroscience, University of Turin Medical School, Corso Raffaello 30, 10125 Turin, Italy.
| | | | | | | |
Collapse
|
13
|
Benedetti F, Amanzio M, Vighetti S, Asteggiano G. The biochemical and neuroendocrine bases of the hyperalgesic nocebo effect. J Neurosci 2006; 26:12014-22. [PMID: 17108175 PMCID: PMC6674855 DOI: 10.1523/jneurosci.2947-06.2006] [Citation(s) in RCA: 276] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite the increasing research on placebos in recent times, little is known about the nocebo effect, a phenomenon that is opposite to the placebo effect and whereby expectations of symptom worsening play a crucial role. By studying experimental ischemic arm pain in healthy volunteers and by using a neuropharmacological approach, we found that verbally induced nocebo hyperalgesia was associated to hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, as assessed by means of adrenocorticotropic hormone and cortisol plasma concentrations. Both nocebo hyperalgesia and HPA hyperactivity were antagonized by the benzodiazepine diazepam, suggesting that anxiety played a major role in these effects. The administration of the mixed cholecystokinin (CCK) type-A/B receptor antagonist proglumide blocked nocebo hyperalgesia completely but had no effect on HPA hyperactivity, which suggests a specific involvement of CCK in the hyperalgesic but not in the anxiety component of the nocebo effect. Importantly, both diazepam and proglumide did not show analgesic properties on basal pain, because they acted only on the nocebo-induced pain increase. These data indicate a close relationship between anxiety and nocebo hyperalgesia, in which the CCKergic systems play a key role in anxiety-induced hyperalgesia. These results, together with previous findings showing that placebo analgesia is mediated by endogenous opioids, suggest that the analgesic placebo/hyperalgesic nocebo phenomenon may involve the opposite activation of endogenous opioidergic and CCKergic systems.
Collapse
Affiliation(s)
- Fabrizio Benedetti
- Department of Neuroscience, University of Turin Medical School, 10125 Turin, Italy.
| | | | | | | |
Collapse
|
14
|
Landry M, Bouali-Benazzouz R, André C, Shi TJS, Léger C, Nagy F, Hökfelt T. Galanin receptor 1 is expressed in a subpopulation of glutamatergic interneurons in the dorsal horn of the rat spinal cord. J Comp Neurol 2006; 499:391-403. [PMID: 16998907 DOI: 10.1002/cne.21109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The 29/30 amino acid neuropeptide galanin has been implicated in pain processing at the spinal level and local dorsal horn neurons expressing the Gal(1) receptor may play a critical role. In order to determine the transmitter identity of these neurons, we used immunohistochemistry and antibodies against the Gal(1) receptor and the three vesicular glutamate transporters (VGLUTs), as well as in situ hybridization, to explore a possible glutamatergic phenotype. Gal(1) protein, which could not be demonstrated in Gal(1) knockout mice, colocalized with VGLUT2 protein, but not with glutamate decarboxylase, in many nerve endings in lamina II. Moreover, Gal(1) and VGLUT2 transcripts were often found in the same cell bodies in laminae I-IV. Gal(1)-protein and galanin-peptide showed an overlapping distribution but were not colocalized. Gal(1) staining did not appear to be affected by dorsal rhizotomy. Taken together, these findings provide strong evidence that Gal(1) is a heteroreceptor expressed on excitatory glutamatergic dorsal horn interneurons. Activation of such Gal(1) receptors may thus decrease the inhibitory tone in the superficial dorsal horn, and possibly cause antinociception.
Collapse
Affiliation(s)
- Marc Landry
- Inserm E 0358, Institut Francois Magendie, University of Bordeaux 2, F-33077 Bordeaux, France.
| | | | | | | | | | | | | |
Collapse
|
15
|
Ma KT, Si JQ, Zhang ZQ, Zhao L, Fan P, Jin JL, Li XZ, Zhu L. Modulatory effect of CCK-8S on GABA-induced depolarization from rat dorsal root ganglion. Brain Res 2006; 1121:66-75. [PMID: 17055464 DOI: 10.1016/j.brainres.2006.08.094] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Revised: 07/30/2006] [Accepted: 08/25/2006] [Indexed: 11/25/2022]
Abstract
CCK is a brain-gut peptide that is abundantly distributed in both gastrointestinal tract and mammalian brain. The sulfated octapeptide fragment of cholecystokinin (CCK-8S) has been shown to be involved in numerous physiological functions such as behavior, anxiety, learning/memory processes and neuropathic pain. CCK-8S is one of the strongest endogenous anti-opioid substances and suppresses opioid peptides-mediated 'pre-synaptic inhibition' of gamma-aminobutyric acid (GABA) release. Here we provide evidence that CCK-8S modulates GABA-evoked membrane depolarization in rat dorsal root ganglion (DRG) neurons using intracellular recording technique. Bath application CCK-8S-induced membrane depolarization in most of the rat DRG neurons. The depolarization was blocked by prolumide but not LY225910. Pretreatment with CCK-8S suppressed the GABA-evoked depolarization in a concentration-dependent manner. The CCK-8S inhibition was also time-dependent and reached the peak at about 2 min. The inhibitory effect of CCK-8S was strongly suppressed by pre-incubation of CCK-B receptor antagonist LY225910, phospholipase C inhibitor U73122, protein kinase C inhibitor chelerythrine and calcium chelator BAPTA-AM, respectively. The protein kinase A inhibitor H-89 did not affect CCK-8S effect. The results suggest that CCK-8S inhibits GABA-A receptor function by activation of CCK-B receptor followed by activation of intracellular PLC-Ca(2+)-PKC cascade. Thus, CCK-8S might enhance nociceptive information transmission through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in modulation of primary sensory information (especially pain).
Collapse
Affiliation(s)
- Ke-Tao Ma
- The Fundamental Medical School of Wuhan University, Hubei 430071, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ruiz-Gayo M, Durieux C, Fournié-Zaluski MC, Roques BP. Stimulation of δ-Opioid Receptors Reduces the In Vivo Binding of the Cholecystokinin (CCK)-B-Selective Agonist [3H]pBC 264: Evidence for a Physiological Regulation of CCKergic Systems by Endogenous Enkephalins. J Neurochem 2006; 59:1805-11. [PMID: 1357099 DOI: 10.1111/j.1471-4159.1992.tb11013.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cholecystokinin (CCK) and enkephalins appear to be colocalized in several brain structures, and a physiological interaction between these peptides has been suggested by a large number of pharmacological studies. In this work we have shown, by in vivo binding experiments, that the endogenous enkephalins, protected from degrading enzymes by mixed inhibitors such as kelatorphan and N-[(R,S)-2-benzyl-3-[(S)-2-amino-4-methylthiobutyldithio]-1-oxo pro pyl]- L-phenylalanine benzyl ester (RB 101), a systemically active prodrug, modulate CCK release in mouse brain, leading to an overall increase in the extracellular levels of CCK. This was quantified by measuring the effects of both inhibitors on the in vivo binding of [3H]propionyl-Tyr(SO3H)-gNle-mGly-Trp-(N-Me)Nle-Asp-Phe-NH2 ([3H]pBC 264), a selective and highly potent CCK-B agonist. Thus, intracerebroventricular injection of kelatorphan produced a dose-dependent inhibition of the in vivo binding of [3H]pBC 264 with a maximal effect (40%) at 50 nmol. A similar response was observed after intravenous injection of RB 101 (40 mg/kg). The specific binding of [3H]pBC 264 was also inhibited (25%) by intravenous injection of the selective delta-opioid agonist H-Tyr-D-Cys(StBu)-Gly-Phe-Leu-Thr(OtBu)-OH (BUBUC; 2 mg/kg) but not by the mu-agonist H-Tyr-D-Ala-Gly-(N-Me)Phe-Gly-ol (5 mg/kg), suggesting a preferential involvement of delta-opioid receptors in the modulation of CCK release. This was confirmed by using the selective delta-opioid antagonist naltrindole, which prevented the inhibitory effects of BUBUC and of enkephalin-degrading enzyme inhibitors on [3H]pBC 264 binding.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Ruiz-Gayo
- Département de Chimie Organique, INSERM U. 266, CNRS UA 1500, Paris, France
| | | | | | | |
Collapse
|
17
|
Abstract
The pharmacological treatment of neuropathic pain relies, to a large extent, on drugs belonging to a small number of defined classes. Opioids, tricyclic antidepressants, antiepileptic drugs and membrane stabilisers form the current basis of treatment. Varying levels of evidence support the use of individual members of these classes and overall show no indication that one class of drug, or individual drug has universal effectiveness. More refined knowledge of the modes of action of these agents used to treat neuropathic pain should lead to a more logical approach to the management of this difficult series of conditions. A number of drugs currently licensed for a different indication have recently had an analgesic effect in neuropathic pain attributed to them. In addition, a number of novel compounds are undergoing investigation and provide hope of dicovering more efficacious treatment options in the future.
Collapse
Affiliation(s)
- Gary McCleane
- Rampark Pain Centre, 2 Rampark, Dromore Road, Lurgan, BT66 7JH, N. Ireland, UK.
| |
Collapse
|
18
|
Pritchard MC, Raphy J, Singh L. Structure-based design in drug discovery - the application of a peptoid drug design strategy for the development of non-peptide neuropeptide receptor ligands. Expert Opin Investig Drugs 2005; 6:349-65. [PMID: 15989604 DOI: 10.1517/13543784.6.4.349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Over the last decade the increasing availability of metabolically- stable non-peptide antagonists targeted at neuropeptide receptors has led directly to a more thorough understanding of the role of neuropeptides in mammalian physiology. By far the majority of these non-peptide neuropeptide receptor antagonists thus far disclosed have been developed from leads identified from broad screening of company compound files or natural product collections, and may thus bear little obvious structural resemblance to the endogenous peptide ligand. This review will focus on an alternative structure-based approach to non-peptide neuropeptide receptor ligand design, referred to as the 'peptoid' drug design strategy, in which an appreciation of the structure of the neuropeptide is the key to the success of this approach. The development and current clinical progress of peptoid cholecystokinin and tachykinin receptor ligands that have thus far resulted from this process will be highlighted and used to exemplify the importance of this novel approach.
Collapse
Affiliation(s)
- M C Pritchard
- Parke-Davis Neuroscience Research Centre, Cambridge University Forvie Site, Robinson Way, Cambridge, CB2 2QB, UK
| | | | | |
Collapse
|
19
|
Xie JY, Herman DS, Stiller CO, Gardell LR, Ossipov MH, Lai J, Porreca F, Vanderah TW. Cholecystokinin in the rostral ventromedial medulla mediates opioid-induced hyperalgesia and antinociceptive tolerance. J Neurosci 2005; 25:409-16. [PMID: 15647484 PMCID: PMC6725495 DOI: 10.1523/jneurosci.4054-04.2005] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 11/18/2004] [Accepted: 11/19/2004] [Indexed: 12/13/2022] Open
Abstract
Opioid-induced hyperalgesia is characterized by hypersensitivity to innocuous or noxious stimuli during sustained opiate administration. Microinjection of lidocaine into the rostral ventromedial medulla (RVM), or dorsolateral funiculus (DLF) lesion, abolishes opioid-induced hyperalgesia, suggesting the importance of descending pain facilitation mechanisms. Here, we investigate the possibility that cholecystokinin (CCK), a pronociceptive peptide, may drive such descending facilitation from the RVM during continuous opioid administration. In opioid-naive rats, CCK in the RVM produced acute tactile and thermal hypersensitivity that was antagonized by the CCK2 receptor antagonist L365,260 or by DLF lesion. CCK in the RVM also acutely displaced the spinal morphine antinociceptive dose-response curve to the right. Continuous systemic morphine elicited sustained tactile and thermal hypersensitivity within 3 d. Such hypersensitivity was reversed in a time-dependent manner by L365,260 in the RVM, and blockade of CCK2 receptors in the RVM also blocked the rightward displacement of the spinal morphine antinociceptive dose-response curve. Microdialysis studies in rats receiving continuous morphine showed an approximately fivefold increase in the basal levels of CCK in the RVM when compared with controls. These data suggest that activation of CCK2 receptors in the RVM promotes mechanical and thermal hypersensitivity and antinociceptive tolerance to morphine. Enhanced, endogenous CCK activity in the RVM during sustained morphine exposure may diminish spinal morphine antinociceptive potency by activating descending pain facilitatory mechanisms to exacerbate spinal nociceptive sensitivity. Prevention of opioid-dose escalation in chronic pain states by CCK receptor antagonism represents a potentially important strategy to limit unintended enhanced clinical pain and analgesic tolerance
Collapse
Affiliation(s)
- Jennifer Y Xie
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hua XY, Hayes CS, Hofer A, Fitzsimmons B, Kilk K, Langel U, Bartfai T, Yaksh TL. Galanin acts at GalR1 receptors in spinal antinociception: synergy with morphine and AP-5. J Pharmacol Exp Ther 2004; 308:574-82. [PMID: 14610237 DOI: 10.1124/jpet.103.058289] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neuropeptide galanin (Gal) and its receptors (GalR1, GalR2, and GalR3) are expressed in spinal cord. We have characterized the pharmacology of the antinociceptive effects of intrathecally (i.t.) administered galanin and its analogs in the formalin test in rats, using an automated flinch detection system. Intrathecal injection of rat galanin (Gal(1-29)) or human galanin (Gal(1-30)) produced a dose-dependent inhibition of formalin-evoked flinching in phase 2, but not in phase 1. Relative potency of galanin homologs is Gal(1-29) >or= Gal(1-30) > galanin-like peptide(1-24) >or= Gal(2-11) = Gal (3-29) (an inactive analog). Galanin(1-29) and Gal(1-30) are both high-affinity agonists to GalR1/R2, whereas Gal(2-11) is a GalR2 receptor agonist. Our data suggest that i.t. galanin-produced antinociception is mediated by activation of GalR1 receptors. When comparing antinociceptive effects of i.t. Gal(1-29) to morphine and to 2-amino-5-phosphonopentanoic acid (AP-5, an N-methyl-d-aspartate antagonist), Gal(1-29) is of intermediate potency between these two analgesic agents based on the ED(50) values. An isobolographic analysis showed synergy between Gal(1-29) and morphine and between Gal(1-29) and AP-5 on the second phase. Fixed ratio dose combinations of morphine and Gal(1-29), or AP-5 and Gal(1-29) produced significantly greater antinociception than predicted from simple additivity. In summary, the present findings reveal that 1) spinal galanin produces a reliable inhibition of formalin-induced facilitated nociceptive processing, an effect possibly mediated by GalR1 receptors; and 2) galanin potentiates i.t. morphine and AP-5-induced antinociception.
Collapse
Affiliation(s)
- Xiao-Ying Hua
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92103-0818, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Karl T, Pabst R, von Hörsten S. Behavioral phenotyping of mice in pharmacological and toxicological research. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2003; 55:69-83. [PMID: 12940631 DOI: 10.1078/0940-2993-00301] [Citation(s) in RCA: 243] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The evaluation of behavioral effects is an important component for the in vivo screening of drugs or potentially toxic compounds in mice. Ideally, such screening should be composed of monitoring general health, sensory functions, and motor abilities, right before specific behavioral domains are tested. A rational strategy in the design and procedure of testing as well as an effective composition of different well-established and reproducible behavioral tests can minimize the risk of false positive and false negative results in drug screening. In the present review we describe such basic considerations in planning experiments, selecting strains of mice, and propose groups of behavioral tasks suitable for a reliable detection of differences in specific behavioral domains in mice. Screening of general health and neurophysiologic functions (reflexes, sensory abilities) and motor function (pole test, wire hang test, beam walking, rotarod, accelerod, and footprint) as well as specific hypothesis-guided testing in the behavioral domains of learning and memory (water maze, radial maze, conditioned fear, and avoidance tasks), emotionality (open field, hole board, elevated plus maze, and object exploration), nociception (tail flick, hot plate), psychiatric-like conditions (porsolt swim test, acoustic startle response, and prepulse inhibition), and aggression (isolation-induced aggression, spontaneous aggression, and territorial aggression) are described in further detail. This review is designed to describe a general approach, which increases reliability of behavioral screening. Furthermore, it provides an overview on a selection of specific procedures suitable for but not limited to behavioral screening in pharmacology and toxicology.
Collapse
Affiliation(s)
- Tim Karl
- Department of Functional and Applied Anatomy, Medical School of Hannover, Hannover, Germany
| | | | | |
Collapse
|
22
|
Iversen L. CCK Antagonist Potentiation of Opioid Analgesia. Pain 2003. [DOI: 10.1201/9780203911259.ch37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
McCleane GJ. A randomised, double blind, placebo controlled crossover study of the cholecystokinin 2 antagonist L-365,260 as an adjunct to strong opioids in chronic human neuropathic pain. Neurosci Lett 2003; 338:151-4. [PMID: 12566175 DOI: 10.1016/s0304-3940(02)01388-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to establish if the cholecystokinin (CCK) 2 antagonist L-365,260 augments the analgesic effect of morphine in human subjects with chronic neuropathic pain. This is a randomised, double blind, placebo controlled study of 40 adult subjects taking morphine for neuropathic pain. Each received placebo, L-365,260 30 mg and L-365,260 120 mg in three divided doses daily separated by a washout period in random order. Pain, activity, sedation, sleep and side effects were recorded along with 12 lead ECGs, renal and liver function tests and full blood pictures. L-365,260 failed to augment the analgesic effect of morphine at any of the dose levels used. Side effects were minor. There were no changes in ECGs and biochemical indices were unaltered with its use. The CCK 2 antagonist L-365,260 does not augment the analgesic effect of morphine in subjects with chronic neuropathic pain. L-365,260 was well tolerated and side effects from its use were minor.
Collapse
Affiliation(s)
- Gary J McCleane
- Rampark Pain Centre, 2 Rampark, Dromore Road, BT66 7JH, N. Ireland, Lurgan, UK.
| |
Collapse
|
24
|
Wiesenfeld-Hallin Z, Xu XJ, Hökfelt T. The role of spinal cholecystokinin in chronic pain states. PHARMACOLOGY & TOXICOLOGY 2002; 91:398-403. [PMID: 12688385 DOI: 10.1034/j.1600-0773.2002.910619.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It is well established that cholecystokinin (CCK) reduces the antinociceptive effect of opioids. The level of CCK and CCK receptors, as well as CKK release, exhibits considerable plasticity after nerve injury and inflammation, conditions known to be associated with chronic pain. Such altered CCK release coupled in some situation with changes in CCK receptor levels may underlie the clinical phenomenon of varying opioid sensitivity in different clinical pain conditions. In particular, neuropathic pain after injury to the peripheral and central nervous system does not respond well to opioids, which is likely to be caused by increased activity in the endogenous CCK system. CCK receptor antagonists may thus be useful as analgesics in combination with opioids to treat neuropathic pain.
Collapse
Affiliation(s)
- Zsuzsanna Wiesenfeld-Hallin
- Department of Medical Laboratory Sciences and Technology, Section of Clinical Neurophysiology, Huddinge University Hospital, Stockholm, Sweden.
| | | | | |
Collapse
|
25
|
McCleane GJ. A phase 1 study of the cholecystokinin (CCK) B antagonist L-365,260 in human subjects taking morphine for intractable non-cancer pain. Neurosci Lett 2002; 332:210-2. [PMID: 12399016 DOI: 10.1016/s0304-3940(02)00934-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To investigate the safety and tolerability of L-365,260 in human subjects taking morphine for intractable pain. An open label study of nine adult subjects. Two doses of L-365,260 were administered to all subjects separated by a 4 h interval (three received 10 mg, three 30 mg and three 60 mg). Haemodynamic and respiratory variables were recorded from immediately prior to first drug administration to T + 600 min. In addition, continuous electrocardiogram (ECG) monitoring and serial 12 lead ECGs were recorded along with pain and side effect measurements. No major side effects were observed. L-365,260 was well tolerated. No abnormalities in blood pressure, heart rate, respiratory rate or ECG measurements were recorded. Minor side effects were observed. L-365,260 can be safely administered at the doses investigated to human subjects receiving morphine for intractable pain.
Collapse
Affiliation(s)
- Gary J McCleane
- Rampark Pain Centre, 2 Rampark, Dromore Road, Lurgan BT66 7JH, Northern Ireland, UK.
| |
Collapse
|
26
|
Abstract
Galanin, a 29-amino-acid peptide expressed in dorsal root ganglia (DRG) and spinal dorsal horn interneurones, is regulated by nerve injury and peripheral inflammation. The functional significance of such regulation has been subject to intense studies, including the analysis of galanin null mice, with the production of apparently conflicting results. Here, we suggest that upregulation of galanin in DRG neurones following nerve injury results in antinociception via stimulation of galanin GAL1 receptors on dorsal horn neurones, and that the pro-nociceptive effect of galanin is related to presynaptic galanin GAL2 receptors on primary afferents. A selective GAL1 receptor agonist could therefore be valuable for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Hong-Xiang Liu
- Dept of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
27
|
Abstract
Cholecystokinin (CCK) is a peptide originally discovered in the gastrointestinal tract, but also found in high density in the mammalian brain. This peptide has been shown to be involved in numerous physiological functions such as feeding behavior, central respiratory control and cardiovascular tonus, vigilance states, memory processes, nociception, emotional and motivational responses. CCK interacts with nanomolar affinites with two different receptors designated CCK(1) and CCK(2). Primarily, the functional role of these binding sites in the brain and the periphery has been investigated thanks to the development of potent and selective CCK receptor antagonists and agonists. However, several studies have yielded conflicting data. Knockout mice provide unique opportunities to analyse diverse aspects of gene function in vivo. This review highlights recent progress in our understanding of the role of CCK(1) and CCK(2) receptors obtained by using mice with genetic invalidation of CCK(1) or CCK(2) receptors or natural CCK receptors mutants. The limits of this approach is discussed and some results were compared to those obtained by pharmacological blockade of CCK receptors by selective antagonists.
Collapse
Affiliation(s)
- F Noble
- Département de Pharmacochimie Moléculaire et Structurale, INSERM U266 - CNRS UMR8600, UFR des Sciences Pharmaceutiques et Biologiques, 4, Avenue de l'Observatoire 75270, Paris Cedex 06, France
| | | |
Collapse
|
28
|
Abstract
Stimulation of the brain CCK2 receptor by the C-terminal octapeptide CCK8 of cholecystokinin (CCK) negatively modulates opioid responses. This suggests the existence of physiologically relevant interactions between endogenous CCK and opioid peptides, opening new perspectives particularly in the treatment of pain or drug addiction. CCK2 receptor-deficient mice were used to analyze the incidence of this gene invalidation on opioid system. Compared with wild-type mice, mutants exhibited the following: (1) a hypersensitivity to the locomotor activity induced by inhibitors of enkephalin catabolism or by morphine; (2) a spontaneous hyperalgesia to thermal nociceptive stimulus, which was reversed by previous administration of the NMDA antagonist MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate], and a large reduction in analgesic effects of endogenous or exogenous opioids; and (3) a more severe withdrawal syndrome after chronic morphine treatment. As expected, stimulation of mu, delta, and D2 receptors on brain tissue of wild-type animals induced a dose-dependent decrease in adenylate cyclase activity, whereas a striking mirror effect was observed in mutants. All of these results suggest that the absence, in knock-out mice, of the negative feedback control on the opioid system, normally performed out by CCK2 receptor stimulation, results in an upregulation of this system. These biochemical and pharmacological results demonstrate the critical role played by CCK2 receptors in opioid-dependent responses.
Collapse
|
29
|
Pommier B, Beslot F, Simon A, Pophillat M, Matsui T, Dauge V, Roques BP, Noble F. Deletion of CCK2 receptor in mice results in an upregulation of the endogenous opioid system. J Neurosci 2002; 22:2005-11. [PMID: 11880531 PMCID: PMC6758856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Stimulation of the brain CCK2 receptor by the C-terminal octapeptide CCK8 of cholecystokinin (CCK) negatively modulates opioid responses. This suggests the existence of physiologically relevant interactions between endogenous CCK and opioid peptides, opening new perspectives particularly in the treatment of pain or drug addiction. CCK2 receptor-deficient mice were used to analyze the incidence of this gene invalidation on opioid system. Compared with wild-type mice, mutants exhibited the following: (1) a hypersensitivity to the locomotor activity induced by inhibitors of enkephalin catabolism or by morphine; (2) a spontaneous hyperalgesia to thermal nociceptive stimulus, which was reversed by previous administration of the NMDA antagonist MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate], and a large reduction in analgesic effects of endogenous or exogenous opioids; and (3) a more severe withdrawal syndrome after chronic morphine treatment. As expected, stimulation of mu, delta, and D2 receptors on brain tissue of wild-type animals induced a dose-dependent decrease in adenylate cyclase activity, whereas a striking mirror effect was observed in mutants. All of these results suggest that the absence, in knock-out mice, of the negative feedback control on the opioid system, normally performed out by CCK2 receptor stimulation, results in an upregulation of this system. These biochemical and pharmacological results demonstrate the critical role played by CCK2 receptors in opioid-dependent responses.
Collapse
Affiliation(s)
- Blandine Pommier
- Département de Pharmacochimie Moléculaire et Structurale, Institut National de la Santé et de la Recherche Médicale U266-Centre National de la Recherche Scientifique Unité Mixte de Recherche 8600, Paris Cedex 06, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Wiesenfeld-Hallin Z, Xu XJ. Neuropeptides in neuropathic and inflammatory pain with special emphasis on cholecystokinin and galanin. Eur J Pharmacol 2001; 429:49-59. [PMID: 11698026 DOI: 10.1016/s0014-2999(01)01305-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neuropeptides present in primary afferents and the dorsal horn of the spinal cord have an important role in the mediation of nociceptive input under normal conditions. Under pathological conditions, such as chronic inflammation or following peripheral nerve injury, the production of peptides and peptide receptors is dramatically altered, leading to a number of functional consequences. In this review, the role of two neuropeptides that undergo such altered expression under pathological conditions, cholecystokinin (CKK) and galanin, is reviewed.
Collapse
Affiliation(s)
- Z Wiesenfeld-Hallin
- Department of Medical Laboratory Sciences and Technology, Section of Clinical Neurophysiology, Karolinska Institute, Huddinge University Hospital, S-141 86 Huddinge, Sweden.
| | | |
Collapse
|
31
|
Felicio LF, Mazzini BK, Cacheiro RG, Cruz TN, Flório JC, Nasello AG. Stimulation of either cholecystokinin receptor subtype reduces while antagonists potentiate or sensitize a morphine-induced excitatory response. Peptides 2001; 22:1299-304. [PMID: 11457524 DOI: 10.1016/s0196-9781(01)00455-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cholecystokinin peptides (CCK) have been shown to antagonize many opioid-mediated effects. The present study was undertaken to determine whether peripheral injections of cholecystokinin sulphated octapeptide (CCK8), cholecystokinin tetrapeptide (CCK4), the CCK(1) (lorglumide) and the CCK(2) (PD-135,158 and LY-225910) receptor antagonists can influence a classic morphine excitatory effect, i.e. the display of Straub tail reaction in mice (STR). A total of 570 female Balb/C mice were tested. Experiment 1 was undertaken to determine whether i.p. injections of CCK8 or CCK4 can influence STR. Each animal was treated with i.p. injections of saline or CCK8 (10 and 20 nmol/kg) or CCK4 (20 and 40 nmol/kg). After 30 min all animals received an i.p. injection of morphine hydrochloride (10.0 mg/kg). The highest doses of both CCK8 (35% STR) and CCK4 (40% STR) significantly reduced STR as compared to saline (85% STR) treated mice (Fisher test; P < 0.01). In experiment 2 each animal was treated with ip injections of saline or 1.0 mg/kg lorglumide or PD-135,158 fifteen minutes before an injection of morphine at doses ranging from 1.0 to 50.0 mg/kg. In experiment 3 animals were treated with injections of saline, 0.1 or 10.0 mg/kg lorglumide or LY-225910 before an injection of a fixed MC dose (2.0 mg/kg). Both lorglumide and PD-135,158 induced a significant shift to the left in the morphine dose-response curves as well as a significant decrease in ED50 of the STR. ED50 for lorglumide was significantly lower than ED50 for PD-135,158. Both doses of lorglumide and the highest dose of LY-225910 significantly increased the percent of animals displaying STR. Experiment 4 was undertaken to determine whether repeated peripheral injections of morphine or the morphine-potentiating agents CCK(1) (lorglumide) and the CCK(2) (LY-225910) receptor antagonists can induce morphine sensitization. Each animal was treated with 5 daily i.p. injections of saline (control group), 1.5 mg/Kg morphine hydrochloride (group morphine), and 1.0 mg/Kg lorglumide (group LOR) or LY-225910 (group LY). One, two, three and four weeks after the last treatment day, all animals were challenged with one i.p. injection of morphine (1.5 mg/Kg). The morphine, LOR groups and group LY showed a significant increase in percentage of animals displaying STR. These data demonstrate that the blockade of endogenous CCK actions leads to morphine sensitization probably through both CCK receptors. The present data are consistent with the antagonistic effects of CCK and opioids in the control of morphine-induced STR. In addition, these results suggest that both CCK receptors are involved in the modulatory effects of CCK on this morphine effect.
Collapse
Affiliation(s)
- L F Felicio
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Brazil 05508-970.
| | | | | | | | | | | |
Collapse
|
32
|
Gustafsson H, Afrah AW, Stiller CO. Morphine-induced in vivo release of spinal cholecystokinin is mediated by delta-opioid receptors--effect of peripheral axotomy. J Neurochem 2001; 78:55-63. [PMID: 11432973 DOI: 10.1046/j.1471-4159.2001.00393.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Morphine and other opioid agonists induce spinal in vivo release of cholecystokinin (CCK), a neuropeptide with anti-opioid properties. However, so far the opioid receptor subtype responsible for this effect has not been determined. In the present in vivo microdialysis study, the morphine-induced release of cholecystokinin-like immunoreactivity (CCK-LI) in the dorsal horn was completely blocked by the delta-opioid antagonist naltrindole (10 microM in the perfusion fluid). Neither the mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr amide (CTOP; 10 microM in the perfusion fluid), nor the kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI); 10 microM in the perfusion fluid) had any significant effect in this respect. In addition, systemic administration of the delta-opioid receptor agonist BW373U86 (1 mg/kg, s.c.) and spinal administration of the delta(2)-opioid receptor agonist, Tyr-D-Ala-Phe-Glu-Val-Val-Gly amide ([D-Ala(2)] deltorphin II) (1 microM in the perfusion fluid) induced a significant increase of the CCK-LI level. The effect of BW373U86 on spinal CCK-LI release was completely blocked by spinal administration of naltrindole. The mu-opioid receptor agonist [D-ala(2)-N-Me-Phe(4)-Gly(5)-ol]-enkephalin (DAMGO) (1 microM in the perfusion fluid or 1 mg/kg, s.c.) failed to alter the CCK-LI level. Peripheral nerve lesions have previously been shown to down-regulate mu- and delta-opioid receptors in the dorsal horn, to increase the gene-expression of CCK and CCK-receptor mRNA in dorsal root ganglion neurons and to alter the potassium-induced spinal CCK-LI release. After complete sciatic nerve transection, administration of the two selective delta-opioid receptor agonists induced a significant release of CCK-LI, which was comparable to controls. In contrast, neither systemic nor spinal administration of morphine and DAMGO altered the spinal CCK-LI release in axotomized animals. The present data indicate that the delta-opioid receptor mediates morphine-induced CCK-LI release in the spinal cord.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Axotomy
- Cholecystokinin/metabolism
- Injections, Spinal
- Male
- Morphine/pharmacology
- Narcotic Antagonists/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Sciatic Nerve/physiology
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- H Gustafsson
- Department of Physiology and Pharmacology, Division of Pharmacological Pain Research, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
33
|
Heinricher MM, McGaraughty S, Tortorici V. Circuitry underlying antiopioid actions of cholecystokinin within the rostral ventromedial medulla. J Neurophysiol 2001; 85:280-6. [PMID: 11152727 DOI: 10.1152/jn.2001.85.1.280] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is now well established that the analgesic actions of opioids can be modified by "anti-analgesic" or "antiopioid" peptides, among them cholecystokinin (CCK). Although the focus of much recent work concerned with CCK-opioid interactions has been at the level of the spinal cord, CCK also acts within the brain to modify opioid analgesia. The aim of the present study was to characterize the actions of CCK in a brain region in which the circuitry mediating the analgesic actions of opioids is relatively well understood, the rostral ventromedial medulla (RVM). Single-cell recording was combined with local infusion of CCK in the RVM and systemic administration of morphine in lightly anesthetized rats. The tail-flick reflex was used as a behavioral index of nociceptive responsiveness. Two classes of RVM neurons with distinct responses to opioids have been identified. OFF cells are activated, indirectly, by morphine and mu-opioid agonists, and there is strong evidence that this activation is crucial to opioid antinociception. ON cells, thought to facilitate nociception, are directly inhibited by opioids. Cells of a third class, NEUTRAL cells, do not respond to opioids, and whether they have any role in nociceptive modulation is unknown. CCK microinjected into the RVM by itself had no effect on tail flick latency or the firing of any cell class but significantly attenuated opioid activation of OFF cells and inhibition of the tail flick. Opioid suppression of ON-cell firing was not significantly altered by CCK. Thus CCK acting within the RVM attenuates the analgesic effect of systemically administered morphine by preventing activation of the putative pain inhibiting output neurons of the RVM, the OFF cells. CCK thus differs from another antiopioid peptide, orphanin FQ/nociceptin, which interferes with opioid analgesia by potently suppressing all OFF-cell firing.
Collapse
Affiliation(s)
- M M Heinricher
- Department of Neurological Surgery, Oregon Health Sciences University, Portland, Oregon 97201, USA.
| | | | | |
Collapse
|
34
|
Coudoré-Civiale MA, Courteix C, Fialip J, Boucher M, Eschalier A. Spinal effect of the cholecystokinin-B receptor antagonist CI-988 on hyperalgesia, allodynia and morphine-induced analgesia in diabetic and mononeuropathic rats. Pain 2000; 88:15-22. [PMID: 11098095 DOI: 10.1016/s0304-3959(00)00304-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since evidence points to the involvement of cholecystokinin (CCK) in nociception, we examined the effect of intrathecal CI-988, an antagonist of the CCK-B receptors, on mechanical hyperalgesia and allodynia in normal, mononeuropathic and diabetic rats,. Owing to the anti-opioid activity of CCK, it has been suggested that hyperactivity in the spinal CCK system is responsible for the low sensitivity of neuropathic pain to opioids. We therefore also evaluated the effect of the combination of i.t. CI-988 + i.v. morphine on mechanical hyperalgesia in diabetic and mononeuropathic rats using isobolographic analysis. Although ineffective in normal rats, CI-988 induced antinociceptive effects in diabetic (290 +/- 20 g with a cut-off of 750 g) and mononeuropathic (117 +/- 16 g; cut-off 750 g) rats, suggesting an involvement of the CCKergic system in neurogenic pain conditions. The combination of CI-988 and morphine showed a superadditive interaction in the diabetic rats only (477 +/- 16 g; cut-off 750 g), in comparison with the antinociceptive effect of each drug. In addition, CI-988 exhibited a weak anti-allodynic effect in mononeuropathic rats, and no anti-allodynic effect in diabetic rats. These results show the CCK-B receptor blockade-mediated antinociceptive effects and reveals the antinociceptive action of morphine in diabetic rats after CCKergic system inhibition.
Collapse
Affiliation(s)
- Marie-Ange Coudoré-Civiale
- Laboratoire de Physiologie, Faculté de Pharmacie, INSERM EPI 9904, 28 place Henri-Dunant, B.P. 38, 63001 Clermont-Ferrand Cedex 1, France Laboratoire de Pharmacologie, Faculté de Pharmacie, INSERM EPI 9904, 28 place Henri-Dunant, B.P. 38, 63001 Clermont-Ferrand Cedex 1, France Laboratoire de Pharmacologie Médicale, Faculté de Médecine, INSERM EPI 9904, 28 place Henri-Dunant, B.P. 38, 63001 Clermont-Ferrand Cedex 1, France
| | | | | | | | | |
Collapse
|
35
|
Xu XJ, Hökfelt T, Bartfai T, Wiesenfeld-Hallin Z. Galanin and spinal nociceptive mechanisms: recent advances and therapeutic implications. Neuropeptides 2000; 34:137-47. [PMID: 11021973 DOI: 10.1054/npep.2000.0820] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Galanin is a peptide consisting of 29 or 30 (in humans) amino acids that is present in sensory and spinal dorsal horn neurons. Endogenous galanin may have an important modulatory function on nociceptive input at the spinal level. In addition, exogenously administered galanin exerts complex effects on spinal nociceptive transmission, where inhibitory action appears to predominate. Peripheral nerve injury and inflammation, conditions associated with chronic pain, upregulate the synthesis of galanin in sensory neurons and spinal cord neurons, respectively. Hence, the sensory effect of galanin may be increased under these conditions, raising the possibility that modulation of the activity of the galanin system may produce antinociception.
Collapse
Affiliation(s)
- X J Xu
- Department of Medical Laboratory Sciences and Technology, Division of Clinical Neurophysiology, Karolinska Institutet, S-141 86 Huddinge, Sweden.
| | | | | | | |
Collapse
|
36
|
Broberger C, Farkas-Szallasi T, Szallasi A, Lundberg JM, Hökfelt T, Wiesenfeld-Hallin Z, Xu XJ. Increased spinal cholecystokinin activity after systemic resiniferatoxin: electrophysiological and in situ hybridization studies. Pain 2000; 84:21-28. [PMID: 10601669 DOI: 10.1016/s0304-3959(99)00173-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study assessed the effect of a single subcutaneous injection of resiniferatoxin (RTX), an ultrapotent capsaicin analogue, on the activity of spinal cholecystokinin (CCK) systems, by using electrophysiological and in situ hybridization techniques. Subcutaneous RTX at 0.3 mg/kg, but not vehicle, produced marked thermal hypoalgesia in rats on the hot plate and tail flick tests. Partial recovery from hypoalgesia occurred in some (<50%), but not all, RTX-treated rats after 2 weeks. The flexor reflex in response to activation of high threshold afferents was recorded 15-35 days after RTX- or vehicle-treatment. There was no obvious difference between RTX- and vehicle-treated rats in the baseline flexor reflex. Intravenous morphine at 1 mg/kg caused a depression of the flexor reflex in vehicle- and in RTX-treated rats. The reflex depressive effect of morphine was significantly briefer in RTX-treated, non-recovered rats than vehicle-treated rats. Furthermore, CI-988, a high affinity antagonist of CCKB receptors, caused a minor depression of the reflex in vehicle- and RTX-treated rats that had partially recovered, whereas the reflex depressive effect of CI-988 was significantly enhanced in RTX-treated, non-recovered rats. In situ hybridization showed that RTX treatment caused a marked and significant increase in the number of dorsal root ganglion (DRG) neurone profiles expressing CCKB receptor mRNA, whereas only a small increase was observed for CCKA receptor mRNA expressing neurone profiles. Significantly more DRG neurone profiles expressed CCKB receptor mRNA in RTX-treated, non-recovered rats compared to partially recovered rats. RTX-treatment did not influence the expression of CCK mRNA in DRGs. Since CCK functions as a physiological antagonist of morphine, it is suggested that RTX treatment enhances the activity of spinal CCK systems, leading to the reduced effect of morphine and increased effect of the CCKB receptor antagonist CI-988. This may mainly be due to upregulation of CCKB receptors in DRG neurones.
Collapse
Affiliation(s)
- Christian Broberger
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden Department of Physiology and Pharmacology, Division of Pharmacology, Karolinska Institute, Stockholm, Sweden Department of Medical Laboratory Sciences and Technology, Division of Clinical Neurophysiology, Karolinska Institute, Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Cholecystokinin (CCK) acts as an anti-opioid peptide. The mechanisms of CCK-opioid interaction under normal and pathological conditions were examined with various techniques. Nerve injury induces upregulation of CCK mRNA and CCK2 receptors in sensory neurons. The involvement of CCK in spinal nociception in normal and axotomized rats was examined. The CCK2 receptor antagonist CI-988 did not reduce spinal hyperexcitability following repetitive C-fiber stimulation in normal or axotomized rats, suggesting that CCK is probably not released from injured primary afferents. With in vivo microdialysis intravenous (i.v.) or intrathecal (i.t.) morphine increased the extracellular level of CCK in the dorsal horn in a naloxone reversible manner. Morphine also released CCK after axotomy, but not during carrageenan-induced inflammation. In contrast, K(+)-stimulation failed to increase extracellular levels of CCK in axotomized rats, but did so in inflamed rats. Double-coloured immunofluorescence technique revealed partial co-localization between CCK-like immunoreactivity (LI) and mu-opioid receptor (MOR)-LI in superficial dorsal horn neurons. The presence of MOR in CCK containing neurons suggests a possible direct influence of opioids on CCK release in the spinal cord. Axotomy, but not inflammation, induced a moderate decrease in CCK- and MOR-LI in the dorsal horn. I.v. morphine further temporarily reduced CCK- and MOR-LIs in axotomized, but not in normal or inflamed, rats. While the effect of morphine on CCK-LI can be interpreted as the result of increased CCK release, the effect on MOR-LI may be related to changes in the microenvironment of the dorsal horn induced by nerve injury.
Collapse
Affiliation(s)
- Z Wiesenfeld-Hallin
- Karolinska Institutet, Department of Medical Laboratory Sciences and Technology, Division of Clinical Neurophysiology, Huddinge University Hospital, S-141 86, Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
38
|
Miranda-Paiva CM, Felicio LF. Differential role of cholecystokinin receptor subtypes in opioid modulation of ongoing maternal behavior. Pharmacol Biochem Behav 1999; 64:165-9. [PMID: 10495012 DOI: 10.1016/s0091-3057(99)00117-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cholecystokinin (CCK) can have effects opposite those of opioids. The present study was undertaken to determine whether peripheral injections of antagonists of the CCK1 receptor (lorglumide) and the CCK2 receptor (L-365,260) can influence the effects of morphine on maternal behavior during lactation. A total of 110 female Wistar rats were tested on days 5 and 6 postpartum. Groups were randomly assigned to morphine vehicle (MV-SC) + saline (S-IP), MV + lorglumide (LOR: 1.0 or 10.0 mg/kg), MV + L-365,260 (10 mg/kg), morphine chlorhydrate (MC: 7.0 mg/kg) + S, MC + LOR (1.0 or 10.0 mg/kg), and MC + L-365,260 (1.0 or 10 mg/kg). Maternal behavior testing was started 30 min after the injections, at which time pups were placed in the home cage of their mother. Latencies for retrieval, grouping, and crouching responses were scored. The results show that both lorglumide and L-365,260 potentiated the MC-induced inhibition of maternal behavior. In addition L-365,260 treatment alone inhibited maternal behavior. Blockade of both the CCK1 and CCK2 receptors potentiated the morphine-induced disruption of maternal behavior, while CCK2 antagonism alone also inhibited this behavior. The results suggest that CCK antagonism of opioid-induced disruption of maternal behavior occurs due to the action of CCK on both CCK1 and CCK2 receptor subtypes.
Collapse
Affiliation(s)
- C M Miranda-Paiva
- Department of Pathology, Faculty of Veterinary Medicine, University of São Paulo, Brazil
| | | |
Collapse
|
39
|
Gustafsson H, Afrah A, Brodin E, Stiller CO. Pharmacological characterization of morphine-induced in vivo release of cholecystokinin in rat dorsal horn: effects of ion channel blockers. J Neurochem 1999; 73:1145-54. [PMID: 10461906 DOI: 10.1046/j.1471-4159.1999.0731145.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies indicate that an increased release of cholecystokinin (CCK) in response to morphine administration may counteract opioid-induced analgesia at the spinal level. In the present study we used in vivo microdialysis to demonstrate that systemic administration of antinociceptive doses of morphine (1-5 mg/kg, s.c.) induces a dose-dependent and naloxone-reversible release of CCK-like immunoreactivity (CCK-LI) in the dorsal horn of the spinal cord. A similar response could also be observed following perfusion of the dialysis probe for 60 min with 100 microM but not with 1 microM morphine. The CCK-LI release induced by morphine (5 mg/kg, s.c.) was found to be calcium-dependent and tetrodotoxin-sensitive (1 microM in the perfusion medium). Topical application of either the L-type calcium channel blocker verapamil (50 microg) or the N-type calcium channel blocker omega-conotoxin GVIA (0.4 microg) onto the dorsal spinal cord completely prevented the CCK-LI release induced by morphine (5 mg/kg, s.c.). Our data indicate that activation of L- and N-type calcium channels is of importance for morphine-induced CCK release, even though the precise site of action of morphine in the dorsal horn remains unclear. The present findings also suggest a mechanism for the potentiation of opioid analgesia by L- and N-type calcium channel blocking agents.
Collapse
Affiliation(s)
- H Gustafsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
40
|
Abstract
Cholecystokinin (CCK) is a peptide originally discovered in the gastrointestinal tract but also found in high density in the mammalian brain. The C-terminal sulphated octapeptide fragment of cholecystokinin (CCK8) constitutes one of the major neuropeptides in the brain; CCK8 has been shown to be involved in numerous physiological functions such as feeding behavior, central respiratory control and cardiovascular tonus, vigilance states, memory processes, nociception, emotional and motivational responses. CCK8 interacts with nanomolar affinities with two different receptors designated CCK-A and CCK-B. The functional role of CCK and its binding sites in the brain and periphery has been investigated thanks to the development of potent and selective CCK receptor antagonists and agonists. In this review, the strategies followed to design these probes, and their use to study the anatomy of CCK pathways, the neurochemical and pharmacological properties of this peptide and the clinical perspectives offered by manipulation of the CCK system will be reported. The physiological and pathological implication of CCK-B receptor will be confirmed in CCK-B receptor deficient mice obtained by gene targeting (Nagata el al., 1996. Proc. Natl. Acad. Sci. USA 93, 11825-11830). Moreover, CCK receptor gene structure, deletion and mutagenesis experiments, and signal transduction mechanisms will be discussed.
Collapse
Affiliation(s)
- F Noble
- Département de Pharmacochimie Moléculaire et Structurale, INSERM U266-CNRS UMR 8600, Université René Descartes, UFR des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | |
Collapse
|
41
|
Lucas GA, Hoffmann O, Alster P, Wiesenfeld-Hallin Z. Extracellular cholecystokinin levels in the rat spinal cord following chronic morphine exposure: an in vivo microdialysis study. Brain Res 1999; 821:79-86. [PMID: 10064790 DOI: 10.1016/s0006-8993(99)01068-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Conflicting results concerning the issue of whether or not chronic morphine exposure induces an increase in CCK biosynthesis have been found in many CNS sites, including the spinal cord, where CCK activity may contribute to the facilitation of the development of opiate tolerance. The present study was undertaken in order to monitor the extracellular level of CCK under spontaneous and stimulus-evoked release in the spinal cord dorsal horn of drug naive and morphine tolerant rats. Tolerance was induced by implantation of two morphine pellets (2x75 mg) which induced a stable morphine plasma concentration after 48 h post-implantation. The tail-flick test and naloxone precipitated withdrawal were used as indexes of tolerance and dependence to morphine. The effect of morphine-pellet implantation on basal and K+-induced release of CCK-like immunoreactivity (CCK-LI) in the rat dorsal horn were monitored with in vivo microdialysis 96 h after implantation of morphine or placebo pellets, when rats showed tolerance and dependence. Basal CCK levels were below the detection limit of the assay (0.6 pM) in both tolerant and normal animals. K+ (100 mM) in the perfusion medium induced a more than 3-fold increase of the extracellular level of CCK-LI in control animals, and a more than 4-fold increase on CCK-LI in morphine-pellet implanted animals. However, this difference was not significant. In addition, naloxone (2 mg/kg; i.v.), did not induce any change in the extracellular level of CCK in either group. The present study suggests that the modulatory interaction between CCK and opioids in the development of tolerance in the spinal cord may occur without necessarily increasing the extracellular level of CCK. Another possible explanation of the finding is that the microdialysis technique is not sensitive enough to detect differences in unstimulated CCK levels in normal and tolerant animals.
Collapse
Affiliation(s)
- G A Lucas
- Department of Medical Laboratory Sciences and Technology, Karolinska Institute, Division of Clinical Neurophysiology, Huddinge University Hospital, S-141 86, Huddinge, Sweden
| | | | | | | |
Collapse
|
42
|
Holmes BB, Rady JJ, Smith DJ, Fujimoto JM. Supraspinal neurotensin-induced antianalgesia in mice is mediated by spinal cholecystokinin. JAPANESE JOURNAL OF PHARMACOLOGY 1999; 79:141-9. [PMID: 10202849 DOI: 10.1254/jjp.79.141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intracerebral injection of neurotensin into specific brain loci in rats produces hyperalgesia due to the release of cholecystokinin (CCK) in the spinal cord. The present purpose was to show in another species that neurotensin can antagonize the antinociceptive action of morphine through the spinal CCK mechanism in mice. Neurotensin given intracerebroventricularly (i.c.v.) at doses higher than 100 ng produced antinociception in the tail flick test. However, at lower doses between 1 pg to 25 ng, neurotensin antagonized the antinociceptive action of morphine given intrathecally (i.t.), thus demonstrating the antianalgesic activity of neurotensin. The rightward shift in the morphine dose-response curve produced by i.c.v. neurotensin was eliminated by an i.t. pretreatment with CCK8 antibody (5 microl of antiserum solution diluted 1:1000). I.t. administration of lorglumide, a CCK(A)-receptor antagonist (10-1000 ng), and PD135,158, a CCK(B)-receptor antagonist (250-500 ng), also eliminated the antianalgesic action of neurotensin. Thus, the mechanism of the antianalgesic action of neurotensin given i.c.v. involved spinal CCK. This mode of action is similar to that for the antianalgesic action of supraspinal pentobarbital which also involves spinal CCK.
Collapse
Affiliation(s)
- B B Holmes
- Department of Pharmacology and Toxicology, Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
| | | | | | | |
Collapse
|
43
|
WILSON J, WOODRUFF GN, LITTLE HJ. Concurrent chronic administration of a CCK(B) antagonist can decrease tolerance to the ataxic effects of ethanol. Addict Biol 1999; 4:35-45. [PMID: 20575768 DOI: 10.1080/13556219971821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effects of chronic administration of a CCK(B) antagonist, CAM1028, were examined on the development of tolerance to ethanol and the appearance of withdrawal signs. Ethanol was given chronically by liquid diet, and none of the dose schedules of CAM1028 affected the amount of ethanol taken in during the chronic treatment. Brain ethanol concentrations were not altered by the administration of CAM1028.The ataxic effects of ethanol were tested on a rotorod, 3 hours after cessation of the ethanol administration, and the last injections of CAM1028 were given 8 hours before withdrawal from the ethanol treatment. When administered at 0.03, 0.1 or 0.3 mg/kg, CAM1028 decreased the extent of tolerance development. Higher doses, 1 and 3 mg/kg, did not alter the tolerance development. Chronic administration of CAM1028 had a small effect in protecting against the effects of ethanol withdrawal that, in contrast to the effects on the tolerance, was seen only at the highest dose, 10 mg/kg, of CAM1028.
Collapse
|
44
|
Rökaeus A, Waschek JA. Tissue-specific enhancement and restriction of galanin gene expression in transgenic mice by 5' flanking sequences. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 60:150-9. [PMID: 9757022 DOI: 10.1016/s0169-328x(98)00162-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Galanin (GAL) is a 29/30 amino acid residue neuropeptide that regulates a wide variety of neuroendocrine functions. Galanin is expressed in specific populations of neurons in the hypothalamus and other regions of the brain and in numerous peripheral sites. Previous studies in which galanin-reporter genes were transfected into neural crest-derived neuroblastoma and other tumor cells indicated that cell-specific galanin expression is controlled by gene elements on the 5' flanking sequence which enhance and restrict transcriptional activity. To determine how the gene sequences act in vivo, we first determined the distribution of endogenous galanin gene expression in normal mice. Galanin mRNA was detected in several parts of the central nervous system (CNS), and in several peripheral organs, including the pituitary, pancreas, small and large intestine, adrenal gland, lung, tongue, testes, ovary-fallopian tubes, and uterus, but not at detectable levels in the heart, liver, kidney, urinary bladder or skeletal muscle. We then created several lines of transgenic mice which contained either 5 or 0.131 kilobases (kb) of the bovine galanin gene 5' flanking sequence fused to the luciferase (luc) reporter gene (5GAL-luc vs. 0.1GAL-luc mice, respectively) and compared luciferase activity in these and other organs. In some regions of the CNS that expressed high amounts of galanin mRNA, such as the spinal cord, hypothalamus, thalamus, and medulla, transgene expression was significantly higher in 5GAL-luc vs. 0.1GAL-luc mice, whereas in certain other regions of the brain and in all peripheral organs, the ratio was strikingly reversed. It is concluded that 5 kb of flanking sequence contains elements that mediate basal transcriptional activity in certain parts of the CNS, but also contains sequences that restrict expression in many tissues. However, because the larger transgene was expressed at very low levels in some peripheral sites of high galanin expression such as the pituitary, pancreas, adrenal gland, and intestine, it is concluded that sequences on the 5 kb transgene are not sufficient to direct expression to these peripheral tissues in mice.
Collapse
Affiliation(s)
- A Rökaeus
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77, Stockholm, Sweden.
| | | |
Collapse
|
45
|
Chen XH, Geller EB, Adler MW. CCK(B) receptors in the periaqueductal grey are involved in electroacupuncture antinociception in the rat cold water tail-flick test. Neuropharmacology 1998; 37:751-7. [PMID: 9707289 DOI: 10.1016/s0028-3908(98)00028-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cholecystokinin octapeptide (CCK-8) (0.25-2.0 ng), the CCK(A) receptor antagonist L-364,718 (60-100 ng) or the CCK(B) receptor antagonist L-365,260 (0.3125-1.25 ng) was administered into the periaqueductal grey (PAG) of male SD rats. The antinociceptive effect induced by electroacupuncture (EA) stimulation of different frequencies was then measured by the cold water tail-flick (CWT) test. The results showed that (1) microinjection of CCK-8 into the PAG can significantly block the antinociceptive effect induced by all frequencies of EA stimulation. The effectiveness of the blockade was 100 > 2 Hz. In addition, CCK-8 blocks the antinociception seen following termination of the electrical stimulation at 100 Hz; (2) microinjection of L-365,260 (1.25 ng) into the PAG significantly increased the 100 Hz EA antinociceptive effect but not the 2 Hz EA antinociceptive effect and microinjection of L-364,718 into PAG did not affect either 2 or 100 Hz EA antinociception. These results demonstrate that CCK-8 in the PAG can antagonize the antinociceptive effect induced by EA stimulation, and the CCK effect is likely to be mediated by the CCK(B) receptor, but not the CCK(A) receptor.
Collapse
Affiliation(s)
- X H Chen
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | |
Collapse
|
46
|
de Araujo Lucas G, Alster P, Brodin E, Wiesenfeld-Hallin Z. Differential release of cholecystokinin by morphine in rat spinal cord. Neurosci Lett 1998; 245:13-6. [PMID: 9596344 DOI: 10.1016/s0304-3940(98)00163-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The analgesic efficacy of opioids is reduced in neuropathic pain states and increased in inflammation. Since the neuropeptide cholecystokinin (CCK) plays a role in the modulation of opiate-induced analgesia, the morphine-mediated release of CCK in the spinal cord of rats was compared with in vivo microdialysis in normals and different pain models. The effect of systemic and intrathecal (i.t.) morphine on the extracellular level of CCK was analyzed in the spinal cord dorsal horn of halothane-anaesthetized normal rats as well as during peripheral neuropathy and inflammation. No difference was found in basal CCK level among groups. However, morphine significantly increased extracellular CCK concentration after both systemic and spinal application in intact as well as axotomized rats and this effect was naloxone-reversible in non-lesioned animals. Similar results were seen in axotomized rats. In contrast, morphine did not induce CCK release during carrageenan-induced inflammation. These data provide evidence that the ability of opiates to release CCK under different pain states may play a key role in their analgesic efficacy.
Collapse
Affiliation(s)
- G de Araujo Lucas
- Karolinska Institute, Department of Medical Laboratory Sciences and Technology, Huddinge University Hospital, Sweden
| | | | | | | |
Collapse
|
47
|
Perrot S, Idänpään-Heikkilä JJ, Guilbaud G, Kayser V. The enhancement of morphine antinociception by a CCKB receptor antagonist in the rat depends on the phase of inflammation and the intensity of carrageenin-induced hyperalgesia. Pain 1998; 74:269-74. [PMID: 9520241 DOI: 10.1016/s0304-3959(97)00178-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ability of the cholecystokinin B (CCKB) receptor antagonist L-365,260 to modulate the antinociceptive action of systemic morphine was investigated using the well established rat model of localized inflammation induced by intraplantar injection of carrageenin. The effects of morphine (0.1-1 mg/kg i.v.) alone or in combination with the CCKB receptor antagonist (0.2 mg/kg s.c.) were determined at different time-points (at 1, 3 and 24 h) after the injection of carrageenin by measuring the vocalization threshold to paw pressure. L-365,260 was found to be ineffective in modulating the responses to all doses of morphine at 1 and 24 h after carrageenin. By contrast, at 3 h, the CCKB receptor antagonist reversed the ineffectiveness of the low dose (0.1 mg/kg i.v.) of morphine on the inflamed paw. Further, in the L-365,260-pretreated rats, a significant correlation between the antinociceptive effect of the low dose (0.1 mg/kg) of morphine and the intensity of the mechanical hyperalgesia was observed, indicating that the CCK control of the degree of sensitivity to opioids can vary among-the animals. Our data illustrate a differential and limited effect of L-365,260 on opioid antinociception in carrageenin-injected rats, depending on the dose of morphine, the phase of inflammation and the intensity of hyperalgesia.
Collapse
Affiliation(s)
- S Perrot
- Unité de Recherches de Physiopharmacologie du Système Nerveux, I.N.S.E.R.M. U 161, Paris, France
| | | | | | | |
Collapse
|
48
|
Zhang X, Bao L, Shi TJ, Ju G, Elde R, Hökfelt T. Down-regulation of mu-opioid receptors in rat and monkey dorsal root ganglion neurons and spinal cord after peripheral axotomy. Neuroscience 1998; 82:223-40. [PMID: 9483516 DOI: 10.1016/s0306-4522(97)00240-6] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To understand the role of opioids and their receptors in chronic pain following peripheral nerve injury, we have studied the mu-opioid receptor in rat and monkey lumbar 4 and 5 dorsal root ganglion neurons and the superficial dorsal horn of the spinal cord under normal circumstances and after peripheral axotomy. Our results show that many small neurons in rat and monkey dorsal root ganglia, and some medium-sized and large neurons in rat dorsal root ganglia, express mu-opioid receptor-like immunoreactivity. Most of these neurons contain calcitonin gene-related peptide. The mu-opioid receptor was closely associated with the somatic plasmalemma of the dorsal root ganglion neurons. Both mu-opioid receptor-immunoreactive nerve fibers and cell bodies were observed in lamina II of the dorsal horn. The highest intensity of mu-opioid receptor-like immunoreactivity was observed in the deep part of lamina II. Most mu-opioid receptor-like immunoreactivity in the dorsal horn originated from spinal neurons. A few mu-opioid receptor-positive peripheral afferent terminals in the rat and monkey dorsal horn were calcitonin gene-related peptide-immunoreactive. In addition to pre- and post-junctional receptors in rat and monkey dorsal horn neurons, mu-opioid receptors were localized on the presynaptic membrane of some synapses of primary afferent terminals in the monkey dorsal horn. Peripheral axotomy caused a reduction in the number and intensity of mu-opioid receptor-positive neurons in the rat and monkey dorsal root ganglia, and of mu-opioid receptor-like immunoreactivity in the dorsal horn of the spinal cord. The decrease in mu-opioid receptor-like immunoreactivity was more pronounced in the monkey than in the rat dorsal root ganglia and spinal cord. It is probable that there was a parallel trans-synaptic down-regulation of mu-opioid-like immunoreactivity in local dorsal horn neurons of the monkey. These data suggest that one factor underlying the well known insensitivity of neuropathic pain to opioid analgesics could be due to a marked reduction in the number of mu-opioid receptors in the axotomized sensory neurons and in interneurons in the dorsal horn of the spinal cord.
Collapse
Affiliation(s)
- X Zhang
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
49
|
McDonald MP, Crawley JN. Galanin-acetylcholine interactions in rodent memory tasks and Alzheimer's disease. J Psychiatry Neurosci 1997; 22:303-17. [PMID: 9401311 PMCID: PMC1188878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Galanin is a 29-amino-acid neuropeptide that is widely distributed in the mammalian central nervous system. Galanin-immunoreactive cell bodies, fibres and terminals, and galanin binding sites, are located in the basal forebrain of rats, monkeys and humans. Galanin fibres hyperinnervate the surviving cholinergic cell bodies in patients with Alzheimer's disease (AD). In rats, galanin inhibits acetylcholine release and produces deficits in learning and memory. These findings suggest that overexpressed galanin may contribute to the cognitive impairments exhibited by patients with AD. This paper reviews the literature on galanin distribution and function in light of its putative role in the mnemonic deficits in patients with AD, the effects of galanin on tests of learning and memory, and preliminary experiments with galanin antagonists in animal models of AD.
Collapse
Affiliation(s)
- M P McDonald
- Section on Behavioral Neuropharmacology, National Institute of Mental Health, Bethesda, Md. 20892, USA
| | | |
Collapse
|
50
|
Betancur C, Azzi M, Rostène W. Nonpeptide antagonists of neuropeptide receptors: tools for research and therapy. Trends Pharmacol Sci 1997; 18:372-86. [PMID: 9357322 DOI: 10.1016/s0165-6147(97)01109-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The recent development of selective and highly potent nonpeptide antagonists for peptide receptors has constituted a major breakthrough in the field of neuropeptide research. Following the discovery of the first nonpeptide antagonists for peptide receptors ten years ago, numerous other antagonists have been developed for most neuropeptide families. These new, metabolically stable compounds, orally active and capable of crossing the blood-brain barrier, offer clear advantages over the previously available peptide antagonists. Nonpeptide antagonists have provided valuable tools to investigate peptide receptors at the molecular, pharmacological and anatomical levels, and have considerably advanced our understanding of the pathophysiological roles of peptides in the CNS and periphery. Evidence from animal and clinical studies suggests that nonpeptide antagonists binding to peptide receptors could be useful for the treatment of disease states associated with high levels of neuropeptides. In this article Catalina Batancur, Mounia Azzi and William Rostène will address the recent developments in nonpeptide antagonists for neuropeptide receptors, with a particular focus on their CNS actions.
Collapse
Affiliation(s)
- C Betancur
- INSERM U. 339, Hôpital Saint-Antoine, Paris, France
| | | | | |
Collapse
|