1
|
Moens U, Passerini S, Falquet M, Sveinbjørnsson B, Pietropaolo V. Phosphorylation of Human Polyomavirus Large and Small T Antigens: An Ignored Research Field. Viruses 2023; 15:2235. [PMID: 38005912 PMCID: PMC10674619 DOI: 10.3390/v15112235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Protein phosphorylation and dephosphorylation are the most common post-translational modifications mediated by protein kinases and protein phosphatases, respectively. These reversible processes can modulate the function of the target protein, such as its activity, subcellular localization, stability, and interaction with other proteins. Phosphorylation of viral proteins plays an important role in the life cycle of a virus. In this review, we highlight biological implications of the phosphorylation of the monkey polyomavirus SV40 large T and small t antigens, summarize our current knowledge of the phosphorylation of these proteins of human polyomaviruses, and conclude with gaps in the knowledge and a proposal for future research directions.
Collapse
Affiliation(s)
- Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway; (M.F.); (B.S.)
| | - Sara Passerini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Mar Falquet
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway; (M.F.); (B.S.)
| | - Baldur Sveinbjørnsson
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway; (M.F.); (B.S.)
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy;
| |
Collapse
|
2
|
Eul J, Patzel V. Homologous SV40 RNA trans-splicing: a new mechanism for diversification of viral sequences and phenotypes. RNA Biol 2013; 10:1689-99. [PMID: 24178438 DOI: 10.4161/rna.26707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Simian Virus 40 (SV40) is a polyomavirus found in both monkeys and humans, which causes cancer in some animal models. In humans, SV40 has been reported to be associated with cancers but causality has not been proven yet. The transforming activity of SV40 is mainly due to its 94-kD large T antigen, which binds to the retinoblastoma (pRb) and p53 tumor suppressor proteins, and thereby perturbs their functions. Here we describe a 100 kD super T antigen harboring a duplication of the pRB binding domain that was associated with unusual high cell transformation activity and that was generated by a novel mechanism involving homologous RNA trans-splicing of SV40 early transcripts in transformed rodent cells. Enhanced trans-splice activity was observed in clones carrying a single point mutation in the large T antigen 5' donor splice site (ss). This mutation impaired cis-splicing in favor of an alternative trans-splice reaction via a cryptic 5'ss within a second cis-spliced SV40 pre-mRNA molecule and enabled detectable gene expression. Next to the cryptic 5'ss we identified additional trans-splice helper functions, including putative dimerization domains and a splice enhancer sequence. Our findings suggest RNA trans-splicing as a SV40-intrinsic mechanism that supports the diversification of viral RNA and phenotypes.
Collapse
Affiliation(s)
- Joachim Eul
- Institut fuer Molekularbiologie und Biochemie; Freie Universität Berlin; Berlin, German
| | - Volker Patzel
- Department of Microbiology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| |
Collapse
|
3
|
Abstract
Over 50 years of polyomavirus research has produced a wealth of insights into not only general biologic processes in mammalian cells, but also, how conditions can be altered and signaling systems tweaked to produce transformation phenotypes. In the past few years three new members (KIV, WUV, and MCV) have joined two previously known (JCV and BKV) human polyomaviruses. In this review, we present updated information on general virologic features of these polyomaviruses in their natural host, concentrating on the association of MCV with human Merkel cell carcinoma. We further present a discussion on advances made in SV40 as the prototypic model, which has and will continue to inform our understanding about viruses and cancer.
Collapse
Affiliation(s)
- Ole Gjoerup
- Cancer Virology Program, Hillman Cancer Research Pavilion, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | |
Collapse
|
4
|
Pipas JM. SV40: Cell transformation and tumorigenesis. Virology 2008; 384:294-303. [PMID: 19070883 DOI: 10.1016/j.virol.2008.11.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
Abstract
The story of SV40-induced tumorigenesis and cellular transformation is intimately entwined with the development of modern molecular biology. Because SV40 and other viruses have small genomes and are relatively easy to manipulate in the laboratory, they offered tractable systems for molecular analysis. Thus, many of the early efforts to understand how eukaryotes replicate their DNA, regulate expression of their genes, and translate mRNA were focused on viral systems. The discovery that SV40 induces tumors in certain laboratory animals and transforms many types of cultured cells offered the first opportunity to explore the molecular basis for cancer. The goal of this article is to highlight some of the experiments that have led to our current view of SV40-induced transformation and to provide some context as to how they contributed to basic research in molecular biology and to our understanding of cancer.
Collapse
Affiliation(s)
- James M Pipas
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA.
| |
Collapse
|
5
|
Wen CC, Cheng SA, Hsuen SP, Huang YL, Kuo ZK, Lee HF, Kuo CH, Du JL, Wang WB. SV40 T/t-common polypeptide specifically induces apoptosis in human cancer cells that overexpress HER2/neu. Cancer Res 2006; 66:5847-57. [PMID: 16740724 DOI: 10.1158/0008-5472.can-05-2109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previously, we reported that SV40 T/t-common polypeptide, which contains the NH(2)-terminal common domain of SV40 large T and small t antigens, can repress HER2/neu (also known as erbB-2) expression and consequently suppress the tumorigenic potential of the HER2/neu-overexpressing ovarian carcinoma cells. Here we report that T/t-common could specifically induce apoptosis in HER2/neu-overexpressing human cancer cell lines but not in nontransformed cell lines and HER2/neu low-expressing human cancer cell lines. The ability of T/t-common to induce apoptosis in HER2/neu-overexpressing cancer cells was derived from its ability to inhibit HER2/neu because reexpression of a large amount of HER2/neu could block apoptosis induced by T/t-common. T/t-common expression in HER2/neu-overexpressing SK-OV-3 cancer cells led to down-regulation of Bcl-2 and Bcl-X(L), and overexpression of Bcl-2 could inhibit the ability of T/t-common to induce apoptosis in these cells. Therefore, the apoptosis-inducing activity of T/t-common is related to its ability to inhibit Bcl-2 expression in HER2/neu-overexpressing cancer cells. Consistent with the apoptosis-inducing activity of T/t-common, we found that T/t-common could specifically inhibit the soft-agarose colony-forming ability of the HER2/neu-overexpressing human cancer cell lines but not that of the HER2/neu low-expressing human cancer cell lines. Finally, we showed that T/t-common could specifically sensitize HER2/neu-overexpressing human cancer cell lines, but not HER2/neu low-expressing human cancer cell lines, to chemotherapeutic agent etoposide. Together, these data suggest that T/t-common alone or in combination with chemotherapy may provide a new approach for treatment of cancers that overexpress HER2/neu.
Collapse
Affiliation(s)
- Chun-Chiang Wen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sullivan CS, Pipas JM. T antigens of simian virus 40: molecular chaperones for viral replication and tumorigenesis. Microbiol Mol Biol Rev 2002; 66:179-202. [PMID: 12040123 PMCID: PMC120785 DOI: 10.1128/mmbr.66.2.179-202.2002] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Simian virus 40 (SV40) is a small DNA tumor virus that has been extensively characterized due to its relatively simple genetic organization and the ease with which its genome is manipulated. The large and small tumor antigens (T antigens) are the major regulatory proteins encoded by SV40. Large T antigen is responsible for both viral and cellular transcriptional regulation, virion assembly, viral DNA replication, and alteration of the cell cycle. Deciphering how a single protein can perform such numerous and diverse functions has remained elusive. Recently it was established that the SV40 T antigens, including large T antigen, are molecular chaperones, each with a functioning DnaJ domain. The molecular chaperones were originally identified as bacterial genes essential for bacteriophage growth and have since been shown to be conserved in eukaryotes, participating in an array of both viral and cellular processes. This review discusses the mechanisms of DnaJ/Hsc70 interactions and how they are used by T antigen to control viral replication and tumorigenesis. The use of the DnaJ/Hsc70 system by SV40 and other viruses suggests an important role for these molecular chaperones in the regulation of the mammalian cell cycle and sheds light on the enigmatic SV40 T antigen-a most amazing molecule.
Collapse
Affiliation(s)
- Christopher S Sullivan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
7
|
Hahn WC, Dessain SK, Brooks MW, King JE, Elenbaas B, Sabatini DM, DeCaprio JA, Weinberg RA. Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol 2002; 22:2111-23. [PMID: 11884599 PMCID: PMC133688 DOI: 10.1128/mcb.22.7.2111-2123.2002] [Citation(s) in RCA: 475] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2001] [Revised: 11/29/2001] [Accepted: 01/07/2002] [Indexed: 11/20/2022] Open
Abstract
While it is clear that cancer arises from the accumulation of genetic mutations that endow the malignant cell with the properties of uncontrolled growth and proliferation, the precise combinations of mutations that program human tumor cell growth remain unknown. The study of the transforming proteins derived from DNA tumor viruses in experimental models of transformation has provided fundamental insights into the process of cell transformation. We recently reported that coexpression of the simian virus 40 (SV40) early region (ER), the gene encoding the telomerase catalytic subunit (hTERT), and an oncogenic allele of the H-ras gene in normal human fibroblast, kidney epithelial, and mammary epithelial cells converted these cells to a tumorigenic state. Here we show that the SV40 ER contributes to tumorigenic transformation in the presence of hTERT and oncogenic H-ras by perturbing three intracellular pathways through the actions of the SV40 large T antigen (LT) and the SV40 small t antigen (ST). LT simultaneously disables the retinoblastoma (pRB) and p53 tumor suppressor pathways; however, complete transformation of human cells requires the additional perturbation of protein phosphatase 2A by ST. Expression of ST in this setting stimulates cell proliferation, permits anchorage-independent growth, and confers increased resistance to nutrient deprivation. Taken together, these observations define the elements of the SV40 ER required for the transformation of human cells and begin to delineate a set of intracellular pathways whose disruption, in aggregate, appears to be necessary to generate tumorigenic human cells.
Collapse
Affiliation(s)
- William C Hahn
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Rundell K, Parakati R. The role of the SV40 ST antigen in cell growth promotion and transformation. Semin Cancer Biol 2001; 11:5-13. [PMID: 11243894 DOI: 10.1006/scbi.2000.0341] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The simian virus 40 small-t (ST) antigen plays a key role in permissive and nonpermissive infections, increasing virus yields in lytic cycles of primate cells and enhancing the ability of large-T (LT) to transform rodent or even human cells. In the absence of ST, tumors in rodent model systems appear primarily in lymphoid and other proliferative tissues and transformation is reduced in several in vitro systems. The functions of ST largely reflect its binding and inhibition of protein phosphatase 2A, although a recently described dnaJ domain also contributes to its biology. The dnaJ domain is present in LT and a third early gene product, the 17kT protein, for which a potential role in transformation deserves further evaluation.
Collapse
Affiliation(s)
- K Rundell
- Department of Microbiology-Immunology, Northwestern University, and The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA.
| | | |
Collapse
|
9
|
Lin YC, Peng JM, Wang WB. The N-terminal common domain of simian virus 40 large T and small t antigens acts as a transformation suppressor of the HER-2/neu oncogene. Oncogene 2000; 19:2704-13. [PMID: 10851070 DOI: 10.1038/sj.onc.1203582] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Overexpression of HER-2/neu (also known as c-erbB-2) proto-oncogene frequently occurs in many different types of human cancers, including ovarian carcinoma, and is known to enhance tumor metastasis and chemoresistance. Previous studies showed that inhibition of HER-2/neu expression by various agents, such as adenovirus E1A and simian virus 40 large T, can lead to suppression of tumorigenicity of HER-2/neu-overexpressing cancer cells. Here we report that T/t-common, which contains the N-terminal common domain of simian virus 40 large T and small t antigens, could specifically repress the HER-2/neu promoter. When the coding sequence of T/t-common was stably transfected into the HER-2/neu-overexpressing human ovarian carcinoma SK-OV-3 cells, the expression of HER-2/neu was dramatically reduced by the expression of T/t-common. Accordingly the tumorigenic potential of these T/t-common-expressing clones, including the ability to grow anchorage-independently and the ability to induce tumor in nu/nu mice, was also drastically suppressed. Furthermore, when T/t-common was transiently cotransfected with the activated genomic neu into NIH3T3 cells, the transforming activity of the latter was suppressed by T/t-common in soft-agarose microcolony formation assays. Taken together, these data suggest that T/t-common may act as a transformation suppressor of the HER-2/neu oncogene. Oncogene (2000).
Collapse
Affiliation(s)
- Y C Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
10
|
Powell AJ, Darmon AJ, Gonos ES, Lam EW, Peden KW, Jat PS. Different functions are required for initiation and maintenance of immortalization of rat embryo fibroblasts by SV40 large T antigen. Oncogene 1999; 18:7343-50. [PMID: 10602490 DOI: 10.1038/sj.onc.1203154] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have used two different, but complementary assays to characterize functions of SV40 T antigen that are necessary for its ability to immortalize rat embryo fibroblasts. In accordance with previous work, we found that several functions were required. These include activities that map to the p53 binding domain and the amino terminal 176 amino acids which contain the J domain as well as the CR1 and CR2 domain required for binding and sequestering the RB family of pocket proteins. Moreover, we found that even though activities dependent only upon the amino terminus were sufficient for immortalization they were unable to maintain it. This suggests that immortalization by these amino terminal functions requires either additional events or immortalization of a subset of cells within the heterogeneous rat embryo fibroblast population. We further found that an activity dependent upon amino acids 17 - 27 which remove a portion of the CR1 domain and the predicted alpha-1 helix of the J domain was not necessary to maintain growth but was required for direct immortalization suggesting that at least one of the functions required initially was not required to maintain the immortal state. This represents the first demonstration that some of the functions required for maintenance of the immortal state differ from those required for initiation of immortalization.
Collapse
Affiliation(s)
- A J Powell
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, Courtauld Building, 91 Riding House Street, London W1P 8BT, UK
| | | | | | | | | | | |
Collapse
|
11
|
Kolzau T, Hansen RS, Zahra D, Reddel RR, Braithwaite AW. Inhibition of SV40 large T antigen induced apoptosis by small T antigen. Oncogene 1999; 18:5598-603. [PMID: 10523837 DOI: 10.1038/sj.onc.1202942] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is well established that the expression of simian virus 40 (SV40) early gene products causes oncogenic transformation of rodent cells. An important aspect of this process is the inactivation of the p53 and retinoblastoma (pRb) tumour suppressor proteins through interaction with the SV40 large tumour antigen (LT). In addition, the SV40 small tumour antigen (ST) may enhance LT induced transformation. Here we show that LT induces apoptotic cell death in rat embryo fibroblast (REF) cells and that ST functions to inhibit this effect by a mechanism which is different from other known anti-apoptotic proteins. Mutational analysis of LT indicates that mutants defective in the pRb-binding domain are unable to induce apoptosis whereas LT mutants defective in the p53-binding domain are still competent to induce apoptosis. Thus, interaction between LT and one or more pRb family members must occur for induction of apoptosis and that binding of p53 by LT is insufficient to inhibit LT induced apoptosis in REFs. The data presented herein suggest that the anti-apoptotic function of ST may explain, at least in part, how ST contributes to SV40 early region induced transformation of REF cells.
Collapse
Affiliation(s)
- T Kolzau
- Department of Pathology, Dunedin School of Medicine, University of Otago, Box 913, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
12
|
Abstract
SV40 large T antigen (TAg)-mediated transformation is dependent on binding to p53 and the retinoblastoma tumor suppressor protein (pRB) and inactivating their growth suppressive functions. Transformation minimally requires three regions of TAg: a C-terminal domain that mediates binding to p53; the LXCXE motif (residues 103-107), necessary for binding to pRB and the related proteins p107 and p130; and an N-terminal domain (residues 1-82) that contains homology to the J domain found in cellular DnaJ/Hsp40 molecular chaperone proteins. We have found that the N-terminal J domain of T Ag cooperates with the LXCXE motif to inactivate the growth suppressive functions of the pRB-related proteins.
Collapse
Affiliation(s)
- J A DeCaprio
- Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
| |
Collapse
|
13
|
Zalvide J, Stubdal H, DeCaprio JA. The J domain of simian virus 40 large T antigen is required to functionally inactivate RB family proteins. Mol Cell Biol 1998; 18:1408-15. [PMID: 9488456 PMCID: PMC108854 DOI: 10.1128/mcb.18.3.1408] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1997] [Accepted: 12/19/1997] [Indexed: 02/06/2023] Open
Abstract
Transformation by simian virus 40 large T antigen (TAg) is dependent on the inactivation of cellular tumor suppressors. Transformation minimally requires the following three domains: (i) a C-terminal domain that mediates binding to p53; (ii) the LXCXE domain (residues 103 to 107), necessary for binding to the retinoblastoma tumor suppressor protein, pRB, and the related p107 and p130; and (iii) an N-terminal domain that is homologous to the J domain of DnaJ molecular chaperone proteins. We have previously demonstrated that the N-terminal J domain of TAg affects the RB-related proteins by perturbing the phosphorylation status of p107 and p130 and promoting the degradation of p130 and that this domain is required for transformation of cells that express either p107 or p130. In this work, we demonstrate that the J domain of TAg is required to inactivate the ability of each member of the pRB family to induce a G1 arrest in Saos-2 cells. Furthermore, the J domain is required to override the repression of E2F activity mediated by p130 and pRB and to disrupt p130-E2F DNA binding complexes. These results imply that while the LXCXE domain serves as a binding site for the RB-related proteins, the J domain plays an important role in inactivating their function.
Collapse
Affiliation(s)
- J Zalvide
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
14
|
Tevethia MJ, Bonneau RH, Griffith JW, Mylin L. A simian virus 40 large T-antigen segment containing amino acids 1 to 127 and expressed under the control of the rat elastase-1 promoter produces pancreatic acinar carcinomas in transgenic mice. J Virol 1997; 71:8157-66. [PMID: 9343166 PMCID: PMC192272 DOI: 10.1128/jvi.71.11.8157-8166.1997] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The simian virus 40 large T antigen induces tumors in a wide variety of tissues in transgenic mice, the precise tissues depending on the tissue specificity of the upstream region controlling T-antigen expression. Expression of mutant T antigens that contain a subset of the protein's activities restricts the spectrum of tumors induced. Others showed previously that expression of a mutant large T antigen containing the N-terminal 121 amino acids (T1-121) under control of the lymphotropic papovavirus promoter resulted in slow-growing choroid plexus tumors, whereas full-length T antigen under the same promoter induced rapidly growing CPR tumors, T-cell lymphomas, and B-cell lymphomas. In those instances, the alteration in tumor induction or progression correlated with inability of the mutant large T antigen to bind the tumor suppressor p53. In the study reported here, we investigated the capacity of an N-terminal T antigen segment (T1-127) expressed in conjunction with small t antigen under control of the rat elastase-1 (E1) promoter to induce pancreatic tumors. The results show that pancreases of transgenic mice expressing T1-127 and small t antigen display acinar cell dysplasia at birth that progresses to neoplasia. The average age to death in these mice is within the range reported for transgenic mice expressing full-length T antigen under control of the E1 promoter. These results indicate that sequestering p53 by binding is not required for the development of rapidly growing acinar cell carcinomas. In addition, we provide evidence that small t antigen is unlikely to be required. Finally, we show that the p53 protein in acinar cell carcinomas is wild type in conformation.
Collapse
Affiliation(s)
- M J Tevethia
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | |
Collapse
|
15
|
Stubdal H, Zalvide J, Campbell KS, Schweitzer C, Roberts TM, DeCaprio JA. Inactivation of pRB-related proteins p130 and p107 mediated by the J domain of simian virus 40 large T antigen. Mol Cell Biol 1997; 17:4979-90. [PMID: 9271376 PMCID: PMC232349 DOI: 10.1128/mcb.17.9.4979] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inactivation of the retinoblastoma tumor suppressor protein (pRB) contributes to tumorigenesis in a wide variety of cancers. In contrast, the role of the two pRB-related proteins, p130 and p107, in oncogenic transformation is unclear. The LXCXE domain of simian virus 40 large T antigen (TAg) specifically binds to pRB, p107, and p130. We have previously shown that the N terminus and the LXCXE domain of TAg cooperate to alter the phosphorylation state of p130 and p107. Here, we demonstrate that TAg promotes the degradation of p130 and that the N terminus of TAg is required for this activity. The N terminus of TAg has homology to the J domain of the DnaJ family of molecular chaperone proteins. Mutants with mutations in the J-domain homology region of TAg are defective for altering p130 and p107 phosphorylation and for p130 degradation. A heterologous J-domain from a human DnaJ protein can functionally substitute for the N terminus of TAg in the effect on p107 and p130 phosphorylation and p130 stability. We further demonstrate that the J-domain homology region of TAg confers a growth advantage to wild-type mouse embryo fibroblasts (MEFs) but is dispensable in the case of MEFs lacking both p130 and p107. This indicates that p107 and p130 have overlapping growth-suppressing activities whose inactivation is mediated by the J domain of TAg.
Collapse
Affiliation(s)
- H Stubdal
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
16
|
Riley MI, Yoo W, Mda NY, Folk WR. Tiny T antigen: an autonomous polyomavirus T antigen amino-terminal domain. J Virol 1997; 71:6068-74. [PMID: 9223500 PMCID: PMC191866 DOI: 10.1128/jvi.71.8.6068-6074.1997] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Three mRNAs from the murine polyomavirus early region encode the three well-characterized tumor antigens. We report the existence of a fourth alternatively spliced mRNA which encodes a fourth tumor antigen, tiny T antigen, which comprises the amino-terminal domain common to all of the T antigens but is extended by six unique amino acid residues. The amount of tiny T antigen in infected cells is small because of its short half-life. Tiny T antigen stimulates the ATPase activity of Hsc70, most likely because of its DnaJ-like motif. The common amino-terminal domain may interface with chaperone complexes to assist the T antigens in carrying out their diverse functions of replication, transcription, and transformation in the appropriate cellular compartments.
Collapse
Affiliation(s)
- M I Riley
- Department of Biochemistry, University of Missouri-Columbia, 65121, USA.
| | | | | | | |
Collapse
|
17
|
Campbell KS, Mullane KP, Aksoy IA, Stubdal H, Zalvide J, Pipas JM, Silver PA, Roberts TM, Schaffhausen BS, DeCaprio JA. DnaJ/hsp40 chaperone domain of SV40 large T antigen promotes efficient viral DNA replication. Genes Dev 1997; 11:1098-110. [PMID: 9159391 DOI: 10.1101/gad.11.9.1098] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The amino-terminal domain of SV40 large tumor antigen (TAg) is required for efficient viral DNA replication. However, the biochemical activity associated with this domain has remained obscure. We show here that the amino-terminal domain of TAg shares functional homology with the J-domain of DnaJ/hsp40 molecular chaperones. DnaJ proteins function as cofactors by regulating the activity of a member of the 70-kD heat shock protein family. Genetic analyses demonstrated that amino-terminal sequences of TAg comprise a novel J-domain that mediates a specific interaction with the constitutively expressed hsc70 and show that the J-domain is also required for efficient viral DNA replication in vivo. Furthermore, we demonstrated that the J-domain of two human DnaJ homologs, HSJ1 or DNAJ2, could substitute functionally for the amino-terminus of TAg in promoting viral DNA replication. Together, our findings suggest that TAg uses its J-domain to support SV40 DNA replication in a manner that is strikingly similar to the use of Escherichia coli DnaJ by bacteriophage lambda in DNA replication. However, TAg has evolved a more efficient strategy of DNA replication through an intrinsic J-domain to associate directly with a partner chaperone protein. Our observations provide evidence of a role for chaperone proteins in the process of eukaryotic DNA replication.
Collapse
Affiliation(s)
- K S Campbell
- Department of Cancer Biology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kelley WL, Georgopoulos C. The T/t common exon of simian virus 40, JC, and BK polyomavirus T antigens can functionally replace the J-domain of the Escherichia coli DnaJ molecular chaperone. Proc Natl Acad Sci U S A 1997; 94:3679-84. [PMID: 9108037 PMCID: PMC20500 DOI: 10.1073/pnas.94.8.3679] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/1996] [Accepted: 01/23/1997] [Indexed: 02/04/2023] Open
Abstract
The N-terminal 70 residue "J-domain" of the Escherichia coli DnaJ molecular chaperone is the defining and highly conserved feature of a large protein family. Based upon limited, yet significant, amino acid sequence homology to the J-domain, the DNA encoding the T/t common exon of the simian virus 40 (SV40), JC, or BK polyoma virus T antigen oncoproteins was used to construct J-domain replacement chimeras of the E. coli DnaJ chaperone. The virally encoded J-domains successfully substituted for the bacterial counterpart in vivo as shown by (i) complementation for viability at low and high temperature of a hypersensitive bacterial reporter strain, and (ii) the restoration of bacteriophage lambda plaque forming ability in the same strain. The amino acid change, H42Q, in the SV40 T/t and the JC virus T/t exon, which is positionally equivalent to the canonical dnaJ259 H33Q mutation within the E. coli J-domain, entirely abolished complementing activity. These results strongly suggest that the heretofore functionally undefined viral T/t common exon represents a bona fide J-domain that preserves critical features of the characteristic domain fold essential for J-domain interaction with the ATPase domain of the Hsp70 family. This finding has implications for the regulation of DNA tumor virus T antigens by molecular chaperones.
Collapse
Affiliation(s)
- W L Kelley
- Departement de Biochimie Médicale, Centre Médical Universitaire, Université de Genève, Geneva, Switzerland.
| | | |
Collapse
|
19
|
Tevethia MJ, Lacko HA, Kierstead TD, Thompson DL. Adding an Rb-binding site to an N-terminally truncated simian virus 40 T antigen restores growth to high cell density, and the T common region in trans provides anchorage-independent growth and rapid growth in low serum concentrations. J Virol 1997; 71:1888-96. [PMID: 9032319 PMCID: PMC191260 DOI: 10.1128/jvi.71.3.1888-1896.1997] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The simian virus 40 large T antigen is sufficient to confer on cells multiple transformed cell growth characteristics, including growth to a high cell density, rapid growth in medium containing low serum concentrations, and anchorage-independent growth. We showed previously that distinct regions of the protein were involved in conferring these properties and that removal of the first 127 amino acids of T antigen abrogated all three activities. At least three large-T-antigen transformation-related activities have been localized to that region: binding of the tumor suppressor gene product Rb and two independent activities contained within the common region shared by large T and small t antigens. The experiments described here were directed toward determining whether these were the only activities from the N terminus that were needed. To do so we reintroduced an Rb-binding region into the N-terminally truncated T antigen (T128-708) and examined the growth properties of cells immortalized by it in the presence and absence of small t antigen, which can provide the T-common-region transformation-related activities in trans. We show that an Rb-binding region consisting of amino acids 101 to 118, when introduced into a heterologous site in T128-708, is capable of physically binding Rb and that binding is sufficient for cells expressing the protein to acquire the ability to grow to a high saturation density. However, in low-serum medium, the growth rate of the cells and maximal cell density are reduced relative to those of wild-type-T-antigen-expressing cells, and the cells cannot divide without anchorage. This result suggests that although Rb binding is sufficient in the context of T128-708 to confer growth to a high density, one or more other N-terminally located T-antigen activities are needed for cells to acquire the additional growth properties. Small t antigen in trans supplied those activities. These results indicate that the T-common-region activities and Rb binding are the only activities from the T-antigen N terminus needed to restore full transforming activity to the N-terminally truncated T antigen.
Collapse
Affiliation(s)
- M J Tevethia
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | |
Collapse
|
20
|
Eckner R, Ludlow JW, Lill NL, Oldread E, Arany Z, Modjtahedi N, DeCaprio JA, Livingston DM, Morgan JA. Association of p300 and CBP with simian virus 40 large T antigen. Mol Cell Biol 1996; 16:3454-64. [PMID: 8668161 PMCID: PMC231340 DOI: 10.1128/mcb.16.7.3454] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
p300 and the CREB-binding protein CBP are two large nuclear phosphoproteins that are structurally highly related. Both function, in part, as transcriptional adapters and are targeted by the adenovirus E1A oncoprotein. We show here that p300 and CBP interact with another transforming protein, the simian virus 40 large T antigen (T). This interaction depends on the integrity of a region of T which is critical for its transforming and mitogenic properties and includes its LXCXE Rb-binding motif. T interferes with normal p300 and CBP function on at least two different levels. The presence of T alters the phosphorylation states of both proteins and inhibits their transcriptional activities on certain promoters. Although E1A and T show little sequence similarity, they interact with the same domain of p300 and CBP, suggesting that this region exhibits considerable flexibility in accommodating diverse protein ligands.
Collapse
Affiliation(s)
- R Eckner
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Weisshart K, Bradley MK, Weiner BM, Schneider C, Moarefi I, Fanning E, Arthur AK. An N-terminal deletion mutant of simian virus 40 (SV40) large T antigen oligomerizes incorrectly on SV40 DNA but retains the ability to bind to DNA polymerase alpha and replicate SV40 DNA in vitro. J Virol 1996; 70:3509-16. [PMID: 8648684 PMCID: PMC190225 DOI: 10.1128/jvi.70.6.3509-3516.1996] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A peptide encompassing the N-terminal 82 amino acids of simian virus 40 (SV40) large T antigen was previously shown to bind to the large subunit of DNA polymerase alpha-primase (I. Dornreiter, A. Höss, A. K. Arthur, and E. Fanning, EMBO J. 9:3329-3336, 1990). We report here that a mutant T antigen, T83-708, lacking residues 2 to 82 retained the ability to bind to DNA polymerase alpha-primase, implying that it carries a second binding site for DNA polymerase alpha-primase. The mutant protein also retained ATPase, helicase, and SV40 origin DNA-binding activity. However, its SV40 DNA replication activity in vitro was reduced compared with that of wild-type protein. The reduction in replication activity was accompanied by a lower DNA-binding affinity to SV40 origin sequences and aberrant oligomerization on viral origin DNA. Thus, the first 82 residues of SV40 T antigen are not strictly required for its interaction with DNA polymerase alpha-primase or for DNA replication function but may play a role in correct hexamer assembly and efficient DNA binding at the origin.
Collapse
|
22
|
Stubdal H, Zalvide J, DeCaprio JA. Simian virus 40 large T antigen alters the phosphorylation state of the RB-related proteins p130 and p107. J Virol 1996; 70:2781-8. [PMID: 8627752 PMCID: PMC190135 DOI: 10.1128/jvi.70.5.2781-2788.1996] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
p130 and p107 are nuclear phosphoproteins related to the retinoblastoma gene product (pRb). pRb, p107, and p130 each undergo cell cycle-dependent phosphorylation, form complexes with the E2F family of transcription factors, and associate with oncoproteins of DNA tumor viruses, including simian virus 40 (SV40) large T antigen (TAg) and adenovirus ElA protein. The results of recent studies with mouse embryo fibroblasts (MEFs) lacking the retinoblastoma gene (Rb-1) have suggested that p130 and p107 may be important targets for SV40 large TAg-mediated transformation (J.B. Christensen and M.J. Imperiale, J. Virol. 65:3945-3948, 1995; J. Zalvide and J.A. DeCaprio, Mol. Cell. Biol. 15:5800-5810, 1995). In this report, we demonstrate that the expression of TAg affects the phosphorylation state of p130 and p107. In cells expressing wild-type TAg, only un(der)phosphorylated p130 and p107 were detected. To determine the domains within TAg that contribute to this effect on the phosphorylation of p130, we performed transient expression assays. While transiently expressed p130 was apparently phosphorylated normally, only un(der)phosphorylated p130 was detected when p130 was coexpressed with TAg. Using this assay, we found that the first 147 amino acids of TAg were sufficient to alter the phosphorylation state of p130. Within this region, the LXCXE domain of TAg, required for binding to the retinoblastoma family of proteins, was necessary but not sufficient to affect p130 phosphorylation. Residues within the first 82 amino acids of TAg were also required. TAg with mutations in the N terminus retained the ability to efficiently associate with p130 but did not affect its phosphorylation state. This demonstrates that the effect of SV40 TAg on p130 is not simply the result of binding and suggests that TAg has a novel effect on p130 and p107 that differs from its effect on pRb.
Collapse
Affiliation(s)
- H Stubdal
- Division of Neoplastic Disease Mechanisms, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
23
|
Tiemann F, Zerrahn J, Deppert W. Cooperation of simian virus 40 large and small T antigens in metabolic stabilization of tumor suppressor p53 during cellular transformation. J Virol 1995; 69:6115-21. [PMID: 7666515 PMCID: PMC189508 DOI: 10.1128/jvi.69.10.6115-6121.1995] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Metabolic stabilization of the tumor suppressor p53 is a key event in cellular transformation by simian virus 40 (SV40). Expression of the SV40 large tumor antigen (large T) is necessary but not sufficient for this process, as metabolic stabilization of p53 complexed to large T in abortively SV40-infected cells strictly depends on the cellular systems analyzed (F. Tiemann and W. Deppert, J. Virol. 68:2869-2878, 1994). Comparative analyses of various cells differing in metabolic stabilization of p53 upon abortive infection with SV40 revealed that metabolic stabilization of p53 closely correlated with expression of the SV40 small t antigen (small t) in these cells: 3T3 cells do not express small t and do not stabilize p53 upon infection with wild-type SV40. However, ectopic expression of small t in 3T3 cells provided these cells with the capacity to stabilize p53 upon SV40 infection. Conversely, precrisis mouse embryo cells express small t and mediate metabolic stabilization of p53 upon infection with wild-type SV40. Infection of these cells with an SV40 small-t deletion mutant did not lead to metabolic stabilization of p53. Small-t expression and metabolic stabilization of p53 correlated with an enhanced transformation efficiency by SV40, supporting the conclusion that at least part of the documented helper effect of small t in SV40 transformation is its ability to promote metabolic stabilization of p53 complexed to large T.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Antigens, Polyomavirus Transforming/biosynthesis
- Antigens, Polyomavirus Transforming/isolation & purification
- Antigens, Polyomavirus Transforming/metabolism
- Base Sequence
- Cell Transformation, Neoplastic
- Cells, Cultured
- DNA Primers
- Electrophoresis, Polyacrylamide Gel
- Embryo, Mammalian
- Fibroblasts
- Gene Expression
- Gene Expression Regulation, Viral
- Genes, Viral
- Genes, p53
- Immunoblotting
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Molecular Weight
- Protein Binding
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Simian virus 40/genetics
- Simian virus 40/physiology
- Tumor Suppressor Protein p53/isolation & purification
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- F Tiemann
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, Hamburg, Germany
| | | | | |
Collapse
|
24
|
Casaz P, Rice PW, Cole CN, Hansen U. A TEF-1-independent mechanism for activation of the simian virus 40 (SV40) late promoter by mutant SV40 large T antigens. J Virol 1995; 69:3501-9. [PMID: 7745697 PMCID: PMC189063 DOI: 10.1128/jvi.69.6.3501-3509.1995] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Simian virus 40 (SV40) large tumor antigen (T antigen) stimulates the activity of the SV40 late promoter and a number of cellular and other viral promoters. We have characterized the ability of T antigens with mutations in the DNA-binding domain and within the N-terminal 85 residues to activate the SV40 late promoter. T antigens lacking both nonspecific and sequence-specific DNA-binding activities were able to induce the late promoter. Mutations within the N-terminal 85 residues of T antigen diminished activation by less than twofold. Activation by wild-type and most of the mutant T antigens required intact binding sites for the cellular transcription factor TEF-1 in the late promoter. Curiously, two mutants altered in the N-terminal region and an additional mutant altered in the DNA-binding domain activated a late promoter derivative lacking TEF-1 binding sites, indicating the existence of a TEF-1-independent pathway for activation of the late promoter. A consensus binding site for the TATA binding protein, TBP, was created in variants of late promoters either containing or lacking TEF-1 binding sites. Basal expression was increased by the consensus TBP binding site only when TEF-1 binding sites were present, leading to a reduction in the degree of activation by T antigen. However, activation by a mutant T antigen of the promoter lacking TEF-1 sites was unchanged or slightly enhanced by the consensus TBP binding site. These results suggest that some mutant T antigens can stabilize an interaction between TBP and additional factors bound to the late promoter.
Collapse
Affiliation(s)
- P Casaz
- Committee on Virology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
25
|
|
26
|
Wang WB, Bikel I, Marsilio E, Newsome D, Livingston DM. Transrepression of RNA polymerase II promoters by the simian virus 40 small t antigen. J Virol 1994; 68:6180-7. [PMID: 8083958 PMCID: PMC237037 DOI: 10.1128/jvi.68.10.6180-6187.1994] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Simian virus 40 (SV40) small t antigen (t) can activate transcription from certain RNA polymerase II and III promoters (M. Loeken, I. Bikel, D. M. Livingston, and J. Brady, Cell 55:1171-1177, 1988). Here we report a new function of t, its ability to repress human c-fos promoter and AP-1 transcriptional activity in CV-1P cells. This function is the product of a discrete N-terminal domain of t, because the large T antigen (T)/t-common polypeptide, which contains only the first 82 amino acids common to both T and t of SV40, was, like the intact protein, an active repressor. The data further suggest that the t- and T/t-common-mediated repression of c-fos expression was most likely manifest at the level of transcription. In keeping with the possibility that t affects the expression of the genomic c-fos promoter, it also led to repression of AP-1 formation. Thus, SV40 is both an activator and a repressor of transcription. Its ability to inhibit c-fos expression should be considered in light of the natural history of SV40 in its natural host.
Collapse
Affiliation(s)
- W B Wang
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
27
|
Dickmanns A, Zeitvogel A, Simmersbach F, Weber R, Arthur AK, Dehde S, Wildeman AG, Fanning E. The kinetics of simian virus 40-induced progression of quiescent cells into S phase depend on four independent functions of large T antigen. J Virol 1994; 68:5496-508. [PMID: 8057432 PMCID: PMC236950 DOI: 10.1128/jvi.68.9.5496-5508.1994] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Microinjection of purified simian virus 40 large-T-antigen protein or DNA encoding T antigen into serum-starved cells stimulates them to re-enter the cell cycle and progress through G1 into the S phase. Genetic analysis of T antigen indicated that neither its Rb/p107-binding activity nor its p53-binding activity is essential to induce DNA synthesis in CV1P cells. However, T antigens bearing missense mutations that inactivate either activity induced slower progression of the cells into the S phase than did wild-type T antigen. Inactivation of both activities resulted in a T antigen essentially unable to induce DNA synthesis. Missense mutations in either the DNA-binding region of the N terminus also impaired the ability of full-length T antigen to stimulate DNA synthesis in CV1P cells. The wild-type kinetics of cell cycle progression were restored by genetic complementation after coinjection of plasmid DNAs encoding different mutant T antigens or coinjection of purified mutant T-antigen proteins, suggesting that the four mitogenic functions of T antigen are independent. The maximal rate of induction of DNA synthesis in secondary primate cells and established rodent cell lines required the same four functions of T antigen. A model to explain how four independent activities could cooperate to stimulate cell cycle progression is presented.
Collapse
|
28
|
Mungre S, Enderle K, Turk B, Porrás A, Wu YQ, Mumby MC, Rundell K. Mutations which affect the inhibition of protein phosphatase 2A by simian virus 40 small-t antigen in vitro decrease viral transformation. J Virol 1994; 68:1675-81. [PMID: 8107228 PMCID: PMC236626 DOI: 10.1128/jvi.68.3.1675-1681.1994] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Three independent point mutations within residues 97 to 103 of the simian virus 40-small-t antigen (small-t) greatly reduced the ability of purified small-t to inhibit protein phosphatase 2A in vitro. These mutations affected the interaction of small-t antigen with the protein phosphatase 2A A subunit translated in vitro, and a peptide from the region identified by these mutations released the A subunit from immune complexes. When introduced into virus, the mutations eliminated the ability of small-t to enhance viral transformation of growth-arrested rat F111 cells. In contrast, the mutant small-t antigens were unimpaired in the transactivation of the adenovirus E2 promoter, an activity which was reduced by a double mutation in small-t residues 43 and 45.
Collapse
Affiliation(s)
- S Mungre
- Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois 60611-3008
| | | | | | | | | | | | | |
Collapse
|
29
|
Loeken MR. Multiple, distinct trans-activation functions are encoded by the simian virus 40 large T and small t antigens, only some of which require the 82-residue amino-terminal common domain. J Virol 1993; 67:7684-9. [PMID: 8230491 PMCID: PMC238242 DOI: 10.1128/jvi.67.12.7684-7689.1993] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Simian virus 40 (SV40) small t and large T antigens can each trans activate the adenovirus (Ad) E2A and the Ad VA-I promoters. The first 82 amino acids of large T and small t are identical. However, this large T-small t common domain between residues 1 and 82 does not trans activate, suggesting that large T and small t each encode separate trans-activation functions. To determine whether the large T or small t unique domains, which are required for trans activation of the E2A promoter, are sufficient for this activity, we have employed expression plasmids separately encoding the common and unique domains of large T and small t. Cotransfection of a large T unique domain expression plasmid efficiently trans activated the E2A promoter. Optimal trans activation by large T required the motif that binds cellular proteins such as the retinoblastoma gene product, which is located in the large T unique domain, and additional large T structures outside this motif. In contrast, the small t unique domain did not trans activate the E2A promoter. Experiments utilizing E2A promoter mutants containing only the ATF- or EIIF-binding sites demonstrated that trans activation by small t involves only the EIIF transcription factor and that this function requires both the common (residues 1 to 82) and the small t unique domains expressed as a colinear protein. trans activation by large T, in contrast, involves at least three mechanisms. There appear to be at least two mechanisms that involve the EIIF transcription factor, at least one of which does not require the common domain (residues 1 to 82) and one mechanism that involves the ATF factor and does require both the common and the large T unique domains.
Collapse
Affiliation(s)
- M R Loeken
- Joslin Diabetes Center, Boston, Massachusetts
| |
Collapse
|
30
|
Zerrahn J, Deppert W. Analysis of simian virus 40 small t antigen-induced progression of rat F111 cells minimally transformed by large T antigen. J Virol 1993; 67:1555-63. [PMID: 8382310 PMCID: PMC237526 DOI: 10.1128/jvi.67.3.1555-1563.1993] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Minimal transformants of rat F111 fibroblasts were established after infection with the large T antigen (large T)-encoding retroviral expression vector pZIPTEX (M. Brown, M. McCormack, K. Zinn, M. Farrell, I. Bikel, and D. Livingston, J. Virol. 60:290-293, 1986). Coexpression of small t antigen (small t) in these cells efficiently led to their progression toward a significantly enhanced transformed phenotype. Small t forms a complex with phosphatase 2A and thereby might influence cellular phosphorylation processes, including the phosphorylation of large T. Since phosphorylation can modulate the transforming activity of large T, we asked whether the phosphorylation status of large T in minimally transformed cells might differ from that of large T in maximally transformed FR(wt648) cells and whether it might be altered by coexpression of small t. We found the phosphate turnover on large T in minimally transformed cells significantly different from that in fully transformed cells. This resulted in underphosphorylation of large T in minimally transformed cells at phosphorylation sites previously shown to be involved in the regulation of the transforming activity of large T. However, coexpression of small t in the minimally transformed cells did not alter the phosphate turnover on large T during progression; i.e., it did not induce a change in the steady-state phosphorylation of large T. This suggests that the helper function of small t during the progression of these cells was not mediated by modulating phosphatase 2A activity toward large T.
Collapse
Affiliation(s)
- J Zerrahn
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, Universität Hamburg, Germany
| | | |
Collapse
|
31
|
Feldherr CM, Lanford RE, Akin D. Signal-mediated nuclear transport in simian virus 40-transformed cells is regulated by large tumor antigen. Proc Natl Acad Sci U S A 1992; 89:11002-5. [PMID: 1279701 PMCID: PMC50471 DOI: 10.1073/pnas.89.22.11002] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Transformation of cultured cells with simian virus 40 (SV40), or transfection with the early region of the SV40 genome, causes a significant increase in both the rate of signal-mediated nuclear transport and the functional size of the transport channels (located in the pore complexes). By microinjecting purified large tumor (T) antigen into the cytoplasm of murine BALB/c 3T3 cells, we have demonstrated that this protein alone can account for the increase in transport capacity. The T antigen-dependent changes can be partially inhibited by cycloheximide and require a functional nuclear localization sequence. Although necessary, the nuclear localization sequence by itself cannot produce the observed variations in nuclear permeability and presumably function in a "helper" capacity, in association with another, as yet unidentified domain.
Collapse
Affiliation(s)
- C M Feldherr
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville 32610
| | | | | |
Collapse
|
32
|
Maulbecker C, Mohr I, Gluzman Y, Bartholomew J, Botchan M. A deletion in the simian virus 40 large T antigen impairs lytic replication in monkey cells in vivo but enhances DNA replication in vitro: new complementation function of T antigen. J Virol 1992; 66:2195-207. [PMID: 1312627 PMCID: PMC289012 DOI: 10.1128/jvi.66.4.2195-2207.1992] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We describe a new complementation function within the simian virus 40 (SV40) A gene. This function is required for viral DNA replication and virus production in vivo but, surprisingly, does not affect any of the intrinsic enzymatic functions of T antigen directly required for in vitro DNA replication. Other well-characterized SV40 T-antigen mutants, whether expressed stably from integrated genomes or in cotransfection experiments, complement these mutants for in vivo DNA replication and plaque formation. These new SV40 mutants were isolated and cloned from human cells which stably carry the viral DNA. The alteration in the large-T-antigen gene was shown by marker rescue and nucleotide sequence analysis to be a deletion of 322 bp spanning the splice-donor site of the first exon, creating a 14-amino-acid deletion in the large T antigen. The mutant gene was expressed in H293 human cells from an adenovirus vector, and the protein was purified by immunoaffinity chromatography. The mutant protein directs greater levels of DNA replication in vitro than does the wild-type protein. Moreover, the mutant protein reduces the lag time for in vitro DNA synthesis and can be diluted to lower levels than wild-type T antigen and still promote good replication, which is in clear contrast to the in vivo situation. These biochemical features of the protein are independent of the source of the cellular replication factors (i.e., HeLa, H293, COS 7, or CV1 cells) and the cells from which the T antigens were purified. The mutant T antigen does not transform Rat-2 cells. Several different models which might reconcile the differences observed in vivo and in vitro are outlined. We propose that the function of T antigen affected prepares cells for SV40 replication by activation of a limiting cellular replication factor. Furthermore, a link between the induction of a cellular replication factor and transformation by SV40 is discussed.
Collapse
Affiliation(s)
- C Maulbecker
- Laboratory of Chemical Biodynamics, Lawrence Berkeley Laboratory, University of California, Berkeley 94720
| | | | | | | | | |
Collapse
|
33
|
Carbone M, Hauser J, Carty MP, Rundell K, Dixon K, Levine AS. Simian virus 40 (SV40) small t antigen inhibits SV40 DNA replication in vitro. J Virol 1992; 66:1804-8. [PMID: 1310784 PMCID: PMC240946 DOI: 10.1128/jvi.66.3.1804-1808.1992] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We describe a biochemical function of simian virus 40 small t antigen, the inhibition of simian virus 40 large T antigen-mediated viral DNA replication in an in vitro replication system. Our results suggest that in this system, small t antigen prevents protein phosphatase 2A-mediated activation of large T antigen.
Collapse
Affiliation(s)
- M Carbone
- Section on Viruses and Cellular Biology, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
34
|
Marsilio E, Cheng SH, Schaffhausen B, Paucha E, Livingston DM. The T/t common region of simian virus 40 large T antigen contains a distinct transformation-governing sequence. J Virol 1991; 65:5647-52. [PMID: 1654462 PMCID: PMC249088 DOI: 10.1128/jvi.65.10.5647-5652.1991] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Simian virus 40 large T antigen (T) can transform cultured cells, but the mechanisms by which it functions are not entirely understood. Several lines of evidence have suggested that the amino-terminal approximately 130 residues of T may be sufficient to confer the transforming capability. Oligonucleotide-directed mutagenesis was used to generate a series of deletion and substitution mutants within the amino-terminal 82 residues of T, the segment which is shared with simian virus 40 small t antigen (t). Results of stability and transformation assays of these mutants strongly suggest that the 1-to-82 region of T contains sequences which govern T transforming activity and affect in vivo stability. Instability and a defect in transforming activity could be separated from one another genetically. Thus, the 1-to-82 region appears to contain a specific region that contributes to the transforming function of the protein. This segment operates by means other than the simple binding of pRb and/or p107.
Collapse
Affiliation(s)
- E Marsilio
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
35
|
Simian virus 40 large-T antigen expresses a biological activity complementary to the p300-associated transforming function of the adenovirus E1A gene products. Mol Cell Biol 1991. [PMID: 1848672 DOI: 10.1128/mcb.11.4.2116] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report we present evidence that simian virus 40 T antigen encodes a biological activity that is functionally equivalent to the transforming activity lost by deletion of the E1A p300-binding region. T-antigen constructs from which the pRb-binding region has been deleted are virtually unable to induce foci of transformed cells in a ras cooperation assay in primary baby rat kidney cells. Nevertheless, such a construct can cooperate with an E1A N-terminal deletion mutant, itself devoid of transforming activity, to induce foci in this assay. The heterologous trans-cooperating activity observed between E1A and T-antigen deletion products is as efficient as trans cooperation between mutants expressing individual E1A domains. The cooperating function can be impaired by a deletion near the N terminus of T antigen. Such a deletion impairs neither the p53-binding function nor the activity of the pRb-binding region.
Collapse
|
36
|
Yaciuk P, Carter MC, Pipas JM, Moran E. Simian virus 40 large-T antigen expresses a biological activity complementary to the p300-associated transforming function of the adenovirus E1A gene products. Mol Cell Biol 1991; 11:2116-24. [PMID: 1848672 PMCID: PMC359899 DOI: 10.1128/mcb.11.4.2116-2124.1991] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this report we present evidence that simian virus 40 T antigen encodes a biological activity that is functionally equivalent to the transforming activity lost by deletion of the E1A p300-binding region. T-antigen constructs from which the pRb-binding region has been deleted are virtually unable to induce foci of transformed cells in a ras cooperation assay in primary baby rat kidney cells. Nevertheless, such a construct can cooperate with an E1A N-terminal deletion mutant, itself devoid of transforming activity, to induce foci in this assay. The heterologous trans-cooperating activity observed between E1A and T-antigen deletion products is as efficient as trans cooperation between mutants expressing individual E1A domains. The cooperating function can be impaired by a deletion near the N terminus of T antigen. Such a deletion impairs neither the p53-binding function nor the activity of the pRb-binding region.
Collapse
Affiliation(s)
- P Yaciuk
- Cold Spring Harbor Laboratory, New York 11724
| | | | | | | |
Collapse
|