1
|
Duchon A, Hu WS. HIV-1 RNA genome packaging: it's G-rated. mBio 2024; 15:e0086123. [PMID: 38411060 PMCID: PMC11005445 DOI: 10.1128/mbio.00861-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
A member of the Retroviridae, human immunodeficiency virus type 1 (HIV-1), uses the RNA genome packaged into nascent virions to transfer genetic information to its progeny. The genome packaging step is a highly regulated and extremely efficient process as a vast majority of virus particles contain two copies of full-length unspliced HIV-1 RNA that form a dimer. Thus, during virus assembly HIV-1 can identify and selectively encapsidate HIV-1 unspliced RNA from an abundant pool of cellular RNAs and various spliced HIV-1 RNAs. Several "G" features facilitate the packaging of a dimeric RNA genome. The viral polyprotein Gag orchestrates virus assembly and mediates RNA genome packaging. During this process, Gag preferentially binds unpaired guanosines within the highly structured 5' untranslated region (UTR) of HIV-1 RNA. In addition, the HIV-1 unspliced RNA provides a scaffold that promotes Gag:Gag interactions and virus assembly, thereby ensuring its packaging. Intriguingly, recent studies have shown that the use of different guanosines at the junction of U3 and R as transcription start sites results in HIV-1 unspliced RNA species with 99.9% identical sequences but dramatically distinct 5' UTR conformations. Consequently, one species of unspliced RNA is preferentially packaged over other nearly identical RNAs. These studies reveal how conformations affect the functions of HIV-1 RNA elements and the complex regulation of HIV-1 replication. In this review, we summarize cis- and trans-acting elements critical for HIV-1 RNA packaging, locations of Gag:RNA interactions that mediate genome encapsidation, and the effects of transcription start sites on the structure and packaging of HIV-1 RNA.
Collapse
Affiliation(s)
- Alice Duchon
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
2
|
Zani A, Messali S, Bugatti A, Uggeri M, Rondina A, Sclavi L, Caccuri F, Caruso A. Molecular mechanisms behind the generation of pro-oncogenic HIV-1 matrix protein p17 variants. J Gen Virol 2024; 105. [PMID: 38687324 DOI: 10.1099/jgv.0.001982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
HIV-1 matrix protein p17 variants (vp17s), characterized by amino acid insertions at the COOH-terminal region of the viral protein, have been recently identified and studied for their biological activity. Different from their wild-type counterpart (refp17), vp17s display a potent B cell growth and clonogenic activity. Recent data have highlighted the higher prevalence of vp17s in people living with HIV-1 (PLWH) with lymphoma compared with those without lymphoma, suggesting that vp17s may play a key role in lymphomagenesis. Molecular mechanisms involved in vp17 development are still unknown. Here we assessed the efficiency of HIV-1 Reverse Transcriptase (RT) in processing this genomic region and highlighted the existence of hot spots of mutation in Gag, at the end of the matrix protein and close to the matrix-capsid junction. This is possibly due to the presence of inverted repeats and palindromic sequences together with a high content of Adenine in the 322-342 nucleotide portion, which constrain HIV-1 RT to pause on the template. To define the recombinogenic properties of hot spots of mutation in the matrix gene, we developed plasmid vectors expressing Gag and a minimally modified Gag variant, and measured homologous recombination following cell co-nucleofection by next-generation sequencing. Data obtained allowed us to show that a wide range of recombination events occur in concomitance with the identified hot spots of mutation and that imperfect events may account for vp17s generation.
Collapse
Affiliation(s)
- Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Serena Messali
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Matteo Uggeri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Rondina
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Leonardo Sclavi
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Center for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mures, Romania
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Center for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mures, Romania
| |
Collapse
|
3
|
Romero EV, Feder AF. Elevated HIV Viral Load is Associated with Higher Recombination Rate In Vivo. Mol Biol Evol 2024; 41:msad260. [PMID: 38197289 PMCID: PMC10777272 DOI: 10.1093/molbev/msad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Abstract
HIV's exceptionally high recombination rate drives its intrahost diversification, enabling immune escape and multidrug resistance within people living with HIV. While we know that HIV's recombination rate varies by genomic position, we have little understanding of how recombination varies throughout infection or between individuals as a function of the rate of cellular coinfection. We hypothesize that denser intrahost populations may have higher rates of coinfection and therefore recombination. To test this hypothesis, we develop a new approach (recombination analysis via time series linkage decay or RATS-LD) to quantify recombination using autocorrelation of linkage between mutations across time points. We validate RATS-LD on simulated data under short read sequencing conditions and then apply it to longitudinal, high-throughput intrahost viral sequencing data, stratifying populations by viral load (a proxy for density). Among sampled viral populations with the lowest viral loads (<26,800 copies/mL), we estimate a recombination rate of 1.5×10-5 events/bp/generation (95% CI: 7×10-6 to 2.9×10-5), similar to existing estimates. However, among samples with the highest viral loads (>82,000 copies/mL), our median estimate is approximately 6 times higher. In addition to co-varying across individuals, we also find that recombination rate and viral load are associated within single individuals across different time points. Our findings suggest that rather than acting as a constant, uniform force, recombination can vary dynamically and drastically across intrahost viral populations and within them over time. More broadly, we hypothesize that this phenomenon may affect other facultatively asexual populations where spatial co-localization varies.
Collapse
Affiliation(s)
- Elena V Romero
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Alison F Feder
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Herbold Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
4
|
Romero EV, Feder AF. Elevated HIV viral load is associated with higher recombination rate in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539643. [PMID: 37873119 PMCID: PMC10592651 DOI: 10.1101/2023.05.05.539643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
HIV's exceptionally high recombination rate drives its intra-host diversification, enabling immune escape and multi-drug resistance within people living with HIV. While we know that HIV's recombination rate varies by genomic position, we have little understanding of how recombination varies throughout infection or between individuals as a function of the rate of cellular coinfection. We hypothesize that denser intra-host populations may have higher rates of coinfection and therefore recombination. To test this hypothesis, we develop a new approach (Recombination Analysis via Time Series Linkage Decay, or RATS-LD) to quantify recombination using autocorrelation of linkage between mutations across time points. We validate RATS-LD on simulated data under short read sequencing conditions and then apply it to longitudinal, high-throughput intra-host viral sequencing data, stratifying populations by viral load (a proxy for density). Among sampled viral populations with the lowest viral loads (< 26,800 copies/mL), we estimate a recombination rate of 1.5 × 10-5 events/bp/generation (95% CI: 7 × 10-6 - 2.9 × 10-5), similar to existing estimates. However, among samples with the highest viral loads (> 82,000 copies/mL), our median estimate is approximately 6 times higher. In addition to co-varying across individuals, we also find that recombination rate and viral load are associated within single individuals across different time points. Our findings suggest that rather than acting as a constant, uniform force, recombination can vary dynamically and drastically across intra-host viral populations and within them over time. More broadly, we hypothesize that this phenomenon may affect other facultatively asexual populations where spatial co-localization varies.
Collapse
Affiliation(s)
- Elena V. Romero
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Alison F. Feder
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Yang X, Liu Y, Cui W, Liu M, Wang W. Distinct Gag interaction properties of HIV-1 RNA 5' leader conformers reveal a mechanism for dimeric genome selection. RNA (NEW YORK, N.Y.) 2023; 29:217-227. [PMID: 36384962 PMCID: PMC9891258 DOI: 10.1261/rna.079347.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
During HIV-1 assembly, two copies of viral genomic RNAs (gRNAs) are selectively packaged into new viral particles. This process is mediated by specific interactions between HIV-1 Gag and the packaging signals at the 5' leader (5'L) of viral gRNA. 5'L is able to adopt different conformations, which promotes either gRNA dimerization and packaging or Gag translation. Dimerization and packaging are coupled. Whether the selective packaging of the gRNA dimer is due to favorable interactions between Gag and 5'L in the packaging conformation is not known. Here, using RNAs mimicking the two 5'L conformers, we show that the 5'L conformation dramatically affects Gag-RNA interactions. Compared to the RNA in the translation conformation (5'LT), the RNA in the packaging conformation (5'LP) can bind more Gag molecules. Gag associates with 5'LP faster than it binds to 5'LT, whereas Gag dissociates from 5'LP more slowly. The Gag-5'LP complex is more stable at high salt concentrations. The NC-SP2-p6 region of Gag likely accounts for the faster association and slower dissociation kinetics for the Gag-5'LP interaction and for the higher stability. In summary, our data suggest that conformational changes play an important role in the selection of dimeric genomes, probably by affecting the binding kinetics and stability of the Gag-5'L complex.
Collapse
Affiliation(s)
- Xin Yang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yong Liu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Wen Cui
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Mengmeng Liu
- Office of Research Administration, Chongqing Medical University, Chongqing 400016, China
| | - Wei Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
6
|
Singh K, Mehta D, Dumka S, Chauhan AS, Kumar S. Quasispecies Nature of RNA Viruses: Lessons from the Past. Vaccines (Basel) 2023; 11:308. [PMID: 36851186 PMCID: PMC9963406 DOI: 10.3390/vaccines11020308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Viral quasispecies are distinct but closely related mutants formed by the disparity in viral genomes due to recombination, mutations, competition, and selection pressure. Theoretical derivation for the origin of a quasispecies is owed to the error-prone replication by polymerase and mutants of RNA replicators. Here, we briefly addressed the theoretical and mathematical origin of quasispecies and their dynamics. The impact of quasispecies for major salient human pathogens is reviewed. In the current global scenario, rapid changes in geographical landscapes favor the origin and selection of mutants. It comes as no surprise that a cauldron of mutants poses a significant risk to public health, capable of causing pandemics. Mutation rates in RNA viruses are magnitudes higher than in DNA organisms, explaining their enhanced virulence and evolvability. RNA viruses cause the most devastating pandemics; for example, members of the Orthomyxoviridae family caused the great influenza pandemic (1918 flu or Spanish flu), the SARS (severe acute respiratory syndrome) and MERS (Middle East respiratory syndrome) outbreak, and the human immunodeficiency viruses (HIV), lentiviruses of the Retroviridae family, caused worldwide devastation. Rapidly evolving RNA virus populations are a daunting challenge for the designing of effective control measures like vaccines. Developing awareness of the evolutionary dispositions of RNA viral mutant spectra and what influences their adaptation and virulence will help curtail outbreaks of past and future pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
7
|
Podschwadt P, Malyshkina A, Windmann S, Werner T, Hansen W, Bayer W. A detailed analysis of F-MuLV- and SFFV-infected cells in Friend virus-infected mice reveals the contribution of both F-MuLV- and SFFV-infected cells to the interleukin-10 host response. Retrovirology 2022; 19:29. [PMID: 36527061 PMCID: PMC9758943 DOI: 10.1186/s12977-022-00613-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Friend virus (FV) is a complex of the Friend murine leukemia virus (F-MuLV) and the replication-defective, pathogenic spleen focus forming virus (SFFV). In the past, we used a fluorescently labeled F-MuLV to analyze FV target cells. To build on these findings, we have now created a double-labeled FV that contains a Katushka-labeled F-MuLV and an mTagBFP-labeled SFFV, which we have used to study the infection by the two individual viruses in the FV infection of highly susceptible BALB/c mice. RESULTS Our data show that the target cells of SFFV largely mirror those of F-MuLV, with the highest virus loads in erythroblasts, B cells and myeloid cells. The early phase of infection was dominated by cells infected by either SFFV or F-MuLV, whereas double-infected cells became dominant later in the course of infection with increasing viral loads. In the late phase of infection, the frequency of double-infected cells was similarly high as the frequencies of SFFV or F-MuLV single-infected cells, and single- and double-infected cells outnumbered the uninfected cells in the most highly infected cell populations such as erythroblasts. FV and retroviruses in general have been shown to induce interleukin 10 (IL-10) as a means of suppressing immune responses. Interestingly, we found in infected IL-10-eGFP reporter mice that SFFV-infected cells contributed to the IL-10-producing cell pool much more significantly than F-MuLV-infected cells, suggesting that the truncated SFFV envelope protein gp55 might play a role in IL-10 induction. Even though BALB/c mice mount notoriously weak immune responses against FV, infection of mice with an ablation of IL-10 expression in T cells showed transiently lower viral loads and stronger T cell activation, suggesting that IL-10 induction by FV and by SFFV in particular may contribute to a suppressed immune response in BALB/c mice. CONCLUSION Our data provide detailed information about both F-MuLV- and SFFV-infected cells during the course of FV infection in highly susceptible mice and imply that the pathogenic SFFV contributes to immune suppression.
Collapse
Affiliation(s)
- Philip Podschwadt
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anna Malyshkina
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sonja Windmann
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tanja Werner
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wiebke Hansen
- Institute for Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
8
|
Rawson JMO, Nikolaitchik OA, Yoo JA, Somoulay X, Brown MA, Mbuntcha Bogni FS, Pathak VK, Soheilian F, Slack RL, Sarafianos SG, Hu WS. Adaptation of HIV-1/HIV-2 Chimeras with Defects in Genome Packaging and Viral Replication. mBio 2022; 13:e0222022. [PMID: 36036631 PMCID: PMC9600866 DOI: 10.1128/mbio.02220-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 01/05/2023] Open
Abstract
Frequent recombination is a hallmark of retrovirus replication. In rare cases, recombination occurs between distantly related retroviruses, generating novel viruses that may significantly impact viral evolution and public health. These recombinants may initially have substantial replication defects due to impaired interactions between proteins and/or nucleic acids from the two parental viruses. However, given the high mutation rates of retroviruses, these recombinants may be able to evolve improved compatibility of these viral elements. To test this hypothesis, we examined the adaptation of chimeras between two distantly related human pathogens: HIV-1 and HIV-2. We constructed HIV-1-based chimeras containing the HIV-2 nucleocapsid (NC) domain of Gag or the two zinc fingers of HIV-2 NC, which are critical for specific recognition of viral RNA. These chimeras exhibited significant defects in RNA genome packaging and replication kinetics in T cells. However, in some experiments, the chimeric viruses replicated with faster kinetics when repassaged, indicating that viral adaptation had occurred. Sequence analysis revealed the acquisition of a single amino acid substitution, S18L, in the first zinc finger of HIV-2 NC. This substitution, which represents a switch from a conserved HIV-2 residue to a conserved HIV-1 residue at this position, partially rescued RNA packaging and replication kinetics. Further analysis revealed that the combination of two substitutions in HIV-2 NC, W10F and S18L, almost completely restored RNA packaging and replication kinetics. Our study demonstrates that chimeras of distantly related retroviruses can adapt and significantly enhance their replication by acquiring a single substitution. IMPORTANCE Novel retroviruses can emerge from recombination between distantly related retroviruses. Most notably, HIV-1 originated from zoonotic transmission of a novel recombinant (SIVcpz) into humans. Newly generated recombinants may initially have significant replication defects due to impaired interactions between viral proteins and/or nucleic acids, such as between cis- and trans-acting elements from the two parental viruses. However, provided that the recombinants retain some ability to replicate, they may be able to adapt and repair the defective interactions. Here, we used HIV-1 and HIV-2 Gag chimeras as a model system for studying the adaptation of recombinant viruses. We found that only two substitutions in the HIV-2 NC domain, W10F and S18L, were required to almost fully restore RNA genome packaging and replication kinetics. These results illustrate the extremely flexible nature of retroviruses and highlight the possible emergence of novel recombinants in the future that could pose a significant threat to public health.
Collapse
Affiliation(s)
- Jonathan M. O. Rawson
- Viral Recombination Section, HIV Dynamics and Replication Program, NCI, Frederick, Maryland, USA
| | - Olga A. Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, NCI, Frederick, Maryland, USA
| | - Jennifer A. Yoo
- Viral Recombination Section, HIV Dynamics and Replication Program, NCI, Frederick, Maryland, USA
| | - Xayathed Somoulay
- Viral Recombination Section, HIV Dynamics and Replication Program, NCI, Frederick, Maryland, USA
| | - Matthew A. Brown
- Viral Recombination Section, HIV Dynamics and Replication Program, NCI, Frederick, Maryland, USA
| | - Franck S. Mbuntcha Bogni
- Viral Recombination Section, HIV Dynamics and Replication Program, NCI, Frederick, Maryland, USA
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, NCI, Frederick, Maryland, USA
| | - Ferri Soheilian
- Electron Microscopy Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ryan L. Slack
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, NCI, Frederick, Maryland, USA
| |
Collapse
|
9
|
Beemon KL. Retroviral RNA Processing. Viruses 2022; 14:v14051113. [PMID: 35632854 PMCID: PMC9143442 DOI: 10.3390/v14051113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
This review is an accompaniment to a Special Issue on “Retroviral RNA Processing”. It discusses post-transcriptional regulation of retroviruses, ranging from the ancient foamy viruses to more modern viruses, such as HIV-1, HTLV-1, Rous sarcoma virus, murine leukemia virus, mouse mammary tumor virus, and Mason-Pfizer monkey virus. This review is not comprehensive. However, it tries to address some of the major questions in the field with examples of how different retroviruses express their genes. It is amazing that a single primary RNA transcript can have so many possible fates: genomic RNA, unspliced mRNA, and up to 50 different alternatively spliced mRNAs. This review will discuss the sorting of RNAs for packaging or translation, RNA nuclear export mechanisms, splicing, translation, RNA modifications, and avoidance of nonsense-mediated RNA decay.
Collapse
Affiliation(s)
- Karen L Beemon
- Biology Department, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
10
|
Lerner G, Weaver N, Anokhin B, Spearman P. Advances in HIV-1 Assembly. Viruses 2022; 14:v14030478. [PMID: 35336885 PMCID: PMC8952333 DOI: 10.3390/v14030478] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
The assembly of HIV-1 particles is a concerted and dynamic process that takes place on the plasma membrane of infected cells. An abundance of recent discoveries has advanced our understanding of the complex sequence of events leading to HIV-1 particle assembly, budding, and release. Structural studies have illuminated key features of assembly and maturation, including the dramatic structural transition that occurs between the immature Gag lattice and the formation of the mature viral capsid core. The critical role of inositol hexakisphosphate (IP6) in the assembly of both the immature and mature Gag lattice has been elucidated. The structural basis for selective packaging of genomic RNA into virions has been revealed. This review will provide an overview of the HIV-1 assembly process, with a focus on recent advances in the field, and will point out areas where questions remain that can benefit from future investigation.
Collapse
|
11
|
Bleykasten-Grosshans C, Fabrizio R, Friedrich A, Schacherer J. Species-wide transposable element repertoires retrace the evolutionary history of the Saccharomyces cerevisiae host. Mol Biol Evol 2021; 38:4334-4345. [PMID: 34115140 PMCID: PMC8476168 DOI: 10.1093/molbev/msab171] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Transposable elements (TE) are an important source of genetic variation with a dynamic and content that greatly differ in a wide range of species. The origin of the intraspecific content variation is not always clear and little is known about the precise nature of it. Here, we surveyed the species-wide content of the Ty LTR-retrotransposons in a broad collection of 1,011 Saccharomyces cerevisiae natural isolates to understand what can stand behind the variation of the repertoire that is the type and number of Ty elements. We have compiled an exhaustive catalog of all the TE sequence variants present in the S. cerevisiae species by identifying a large set of new sequence variants. The characterization of the TE content in each isolate clearly highlighted that each subpopulation exhibits a unique and specific repertoire, retracing the evolutionary history of the species. Most interestingly, we have shown that ancient interspecific hybridization events had a major impact in the birth of new sequence variants and therefore in the shaping of the TE repertoires. We also investigated the transpositional activity of these elements in a large set of natural isolates, and we found a broad variability related to the level of ploidy as well as the genetic background. Overall, our results pointed out that the evolution of the Ty content is deeply impacted by clade-specific events such as introgressions and therefore follows the population structure. In addition, our study lays the foundation for future investigations to better understand the transpositional regulation and more broadly the TE–host interactions.
Collapse
Affiliation(s)
| | - Romeo Fabrizio
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF)
| |
Collapse
|
12
|
Tang R, Yu Z, Ma Y, Wu Y, Phoebe Chen YP, Wong L, Li J. Genetic source completeness of HIV-1 circulating recombinant forms (CRFs) predicted by multi-label learning. Bioinformatics 2021; 37:750-758. [PMID: 33063094 DOI: 10.1093/bioinformatics/btaa887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/12/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
MOTIVATION Infection with strains of different subtypes and the subsequent crossover reading between the two strands of genomic RNAs by host cells' reverse transcriptase are the main causes of the vast HIV-1 sequence diversity. Such inter-subtype genomic recombinants can become circulating recombinant forms (CRFs) after widespread transmissions in a population. Complete prediction of all the subtype sources of a CRF strain is a complicated machine learning problem. It is also difficult to understand whether a strain is an emerging new subtype and if so, how to accurately identify the new components of the genetic source. RESULTS We introduce a multi-label learning algorithm for the complete prediction of multiple sources of a CRF sequence as well as the prediction of its chronological number. The prediction is strengthened by a voting of various multi-label learning methods to avoid biased decisions. In our steps, frequency and position features of the sequences are both extracted to capture signature patterns of pure subtypes and CRFs. The method was applied to 7185 HIV-1 sequences, comprising 5530 pure subtype sequences and 1655 CRF sequences. Results have demonstrated that the method can achieve very high accuracy (reaching 99%) in the prediction of the complete set of labels of HIV-1 recombinant forms. A few wrong predictions are actually incomplete predictions, very close to the complete set of genuine labels. AVAILABILITY AND IMPLEMENTATION https://github.com/Runbin-tang/The-source-of-HIV-CRFs-prediction. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Runbin Tang
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Hunan 411105, China.,Advanced Analytics Institute, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Zuguo Yu
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Hunan 411105, China.,School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Yuanlin Ma
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Hunan 411105, China
| | - Yaoqun Wu
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Hunan 411105, China
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Limsoon Wong
- School of Computing, National University of Singapore, Singapore 117417, Singapore
| | - Jinyan Li
- Advanced Analytics Institute, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
13
|
Chen EC, Maldonado RJK, Parent LJ. Visualizing Rous Sarcoma Virus Genomic RNA Dimerization in the Nucleus, Cytoplasm, and at the Plasma Membrane. Viruses 2021; 13:v13050903. [PMID: 34068261 PMCID: PMC8153106 DOI: 10.3390/v13050903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 01/01/2023] Open
Abstract
Retroviruses are unique in that they package their RNA genomes as non-covalently linked dimers. Failure to dimerize their genomes results in decreased infectivity and reduced packaging of genomic RNA into virus particles. Two models of retrovirus genome dimerization have been characterized: in murine leukemia virus (MLV), genomic RNA dimerization occurs co-transcriptionally in the nucleus, resulting in the preferential formation of genome homodimers; whereas in human immunodeficiency virus (HIV-1), genomic RNA dimerization occurs in the cytoplasm and at the plasma membrane, with a random distribution of heterodimers and homodimers. Although in vitro studies have identified the genomic RNA sequences that facilitate dimerization in Rous sarcoma virus (RSV), in vivo characterization of the location and preferences of genome dimerization has not been performed. In this study, we utilized three single molecule RNA imaging approaches to visualize genome dimers of RSV in cultured quail fibroblasts. The formation of genomic RNA heterodimers within cells was dependent on the presence of the dimerization initiation site (DIS) sequence in the L3 stem. Subcellular localization analysis revealed that heterodimers were present the nucleus, cytoplasm, and at the plasma membrane, indicating that genome dimers can form in the nucleus. Furthermore, single virion analysis revealed that RSV preferentially packages genome homodimers into virus particles. Therefore, the mechanism of RSV genomic RNA dimer formation appears more similar to MLV than HIV-1.
Collapse
Affiliation(s)
- Eunice C. Chen
- Department of Medicine, Division of Infectious Diseases and Epidemiology, Penn State College of Medicine, Hershey, PA 17033, USA; (E.C.C.); (R.J.K.M.)
| | - Rebecca J. Kaddis Maldonado
- Department of Medicine, Division of Infectious Diseases and Epidemiology, Penn State College of Medicine, Hershey, PA 17033, USA; (E.C.C.); (R.J.K.M.)
| | - Leslie J. Parent
- Department of Medicine, Division of Infectious Diseases and Epidemiology, Penn State College of Medicine, Hershey, PA 17033, USA; (E.C.C.); (R.J.K.M.)
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
- Correspondence: ; Tel.: +1-717-531-7199
| |
Collapse
|
14
|
Cilento ME, Kirby KA, Sarafianos SG. Avoiding Drug Resistance in HIV Reverse Transcriptase. Chem Rev 2021; 121:3271-3296. [PMID: 33507067 DOI: 10.1021/acs.chemrev.0c00967] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
HIV reverse transcriptase (RT) is an enzyme that plays a major role in the replication cycle of HIV and has been a key target of anti-HIV drug development efforts. Because of the high genetic diversity of the virus, mutations in RT can impart resistance to various RT inhibitors. As the prevalence of drug resistance mutations is on the rise, it is necessary to design strategies that will lead to drugs less susceptible to resistance. Here we provide an in-depth review of HIV reverse transcriptase, current RT inhibitors, novel RT inhibitors, and mechanisms of drug resistance. We also present novel strategies that can be useful to overcome RT's ability to escape therapies through drug resistance. While resistance may not be completely avoidable, designing drugs based on the strategies and principles discussed in this review could decrease the prevalence of drug resistance.
Collapse
Affiliation(s)
- Maria E Cilento
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| |
Collapse
|
15
|
Huang XH, Yu G, Zheng C, Zhou PP, Anderson C, Zhao J, Lam TTY, Li Y, Chen L, Lin P, Zhang M, Yan J, He X. Genomic characterization of a new CRF01_AE/CRF07_BC case from a MSM patient in Guangdong, China. J Med Virol 2021; 93:6383-6387. [PMID: 33448453 DOI: 10.1002/jmv.26799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/18/2020] [Accepted: 01/12/2021] [Indexed: 11/06/2022]
Abstract
The CRF01_AE and CRF07_BC clades dominate the human immunodeficiency virus (HIV) epidemics in China. Both clades have been identified in the men who have sex with men (MSM) population in Guangdong province, raising a serious concern of possible complex recombination events ahead. Here, we report the first case of CRF01_AE/CRF07_BC recombinant sampled from a MSM patient in southern China. The genomic structure of this case is a mosaic with some regions resembling the CRF01_AE and CRF07_BC clades. Our phylogenetic analyses show that the two parental lineages of this recombinant virus were mainly found in the MSM population. This case has a different genomic composition compared with other recombinants descended from the same parental clades CRF01_AE and CRF07_BC. Our finding suggests that the MSM populations have become a hotspot for expanding viral diversity through the viral recombination mechanism. Therefore, further epidemiologic surveillance and monitoring should be conducted within the MSM populations to help advance our knowledge of viral transmission mechanisms. Additionally, these measures will serve to enhance the control and prevention of HIV/acquired immunodeficiency syndrome in China.
Collapse
Affiliation(s)
- Xu-He Huang
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Guolong Yu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Chenli Zheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Ping-Ping Zhou
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Claire Anderson
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia, USA
| | - Jin Zhao
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, HKSAR, Hong Kong, China
| | - Yan Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Lin Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Peng Lin
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia, USA
| | - Jin Yan
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xiang He
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| |
Collapse
|
16
|
Yeo JY, Koh DWS, Yap P, Goh GR, Gan SKE. Spontaneous Mutations in HIV-1 Gag, Protease, RT p66 in the First Replication Cycle and How They Appear: Insights from an In Vitro Assay on Mutation Rates and Types. Int J Mol Sci 2020; 22:E370. [PMID: 33396460 PMCID: PMC7796399 DOI: 10.3390/ijms22010370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
While drug resistant mutations in HIV-1 are largely credited to its error prone HIV-1 RT, the time point in the infection cycle that these mutations can arise and if they appear spontaneously without selection pressures both remained enigmatic. Many HIV-1 RT mutational in vitro studies utilized reporter genes (LacZ) as a template to investigate these questions, thereby not accounting for the possible contribution of viral codon usage. To address this gap, we investigated HIV-1 RT mutation rates and biases on its own Gag, protease, and RT p66 genes in an in vitro selection pressure free system. We found rare clinical mutations with a general avoidance of crucial functional sites in the background mutations rates for Gag, protease, and RT p66 at 4.71 × 10-5, 6.03 × 10-5, and 7.09 × 10-5 mutations/bp, respectively. Gag and p66 genes showed a large number of 'A to G' mutations. Comparisons with silently mutated p66 sequences showed an increase in mutation rates (1.88 × 10-4 mutations/bp) and that 'A to G' mutations occurred in regions reminiscent of ADAR neighbor sequence preferences. Mutational free energies of the 'A to G' mutations revealed an avoidance of destabilizing effects, with the natural p66 gene codon usage providing barriers to disruptive amino acid changes. Our study demonstrates the importance of studying mutation emergence in HIV genes in a RT-PCR in vitro selection pressure free system to understand how fast drug resistance can emerge, providing transferable applications to how new viral diseases and drug resistances can emerge.
Collapse
Affiliation(s)
- Joshua Yi Yeo
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
- Experimental Drug Development Centre, A*STAR, 10 Biopolis Road Chromos #05-01, Singapore 138670, Singapore
| | - Darius Wen-Shuo Koh
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
- Experimental Drug Development Centre, A*STAR, 10 Biopolis Road Chromos #05-01, Singapore 138670, Singapore
| | - Ping Yap
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
| | - Ghin-Ray Goh
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
| | - Samuel Ken-En Gan
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
- Experimental Drug Development Centre, A*STAR, 10 Biopolis Road Chromos #05-01, Singapore 138670, Singapore
- p53 Laboratory, A*STAR, 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore 138648, Singapore
| |
Collapse
|
17
|
Boyd PS, Brown JB, Brown JD, Catazaro J, Chaudry I, Ding P, Dong X, Marchant J, O’Hern CT, Singh K, Swanson C, Summers MF, Yasin S. NMR Studies of Retroviral Genome Packaging. Viruses 2020; 12:v12101115. [PMID: 33008123 PMCID: PMC7599994 DOI: 10.3390/v12101115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/03/2022] Open
Abstract
Nearly all retroviruses selectively package two copies of their unspliced RNA genomes from a cellular milieu that contains a substantial excess of non-viral and spliced viral RNAs. Over the past four decades, combinations of genetic experiments, phylogenetic analyses, nucleotide accessibility mapping, in silico RNA structure predictions, and biophysical experiments were employed to understand how retroviral genomes are selected for packaging. Genetic studies provided early clues regarding the protein and RNA elements required for packaging, and nucleotide accessibility mapping experiments provided insights into the secondary structures of functionally important elements in the genome. Three-dimensional structural determinants of packaging were primarily derived by nuclear magnetic resonance (NMR) spectroscopy. A key advantage of NMR, relative to other methods for determining biomolecular structure (such as X-ray crystallography), is that it is well suited for studies of conformationally dynamic and heterogeneous systems—a hallmark of the retrovirus packaging machinery. Here, we review advances in understanding of the structures, dynamics, and interactions of the proteins and RNA elements involved in retroviral genome selection and packaging that are facilitated by NMR.
Collapse
|
18
|
Identification of the initial nucleocapsid recognition element in the HIV-1 RNA packaging signal. Proc Natl Acad Sci U S A 2020; 117:17737-17746. [PMID: 32647061 PMCID: PMC7395439 DOI: 10.1073/pnas.2008519117] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Understanding the molecular determinants of retroviral genome packaging is important for drug discovery and development of vectors for gene delivery. We show that the HIV-1 leader, which contains the RNA elements necessary for genome packaging, binds approximately two dozen copies of the cognate NC protein with affinities ranging from ∼40 nM to 1.4 µM. Binding to the four highest-affinity “initial” binding sites occurs with endothermic energetics attributed to NC-induced localized RNA melting. Mutations that stabilize these sites inhibit NC binding in vitro and RNA packaging in transfected cells. A small-molecule inhibitor of RNA packaging binds specifically to the initial NC binding sites and stabilizes the RNA structure. Our findings identify a potential RNA Achilles’ heel for HIV therapeutic development. Selective packaging of the HIV-1 genome during virus assembly is mediated by interactions between the dimeric 5ʹ-leader of the unspliced viral RNA and the nucleocapsid (NC) domains of a small number of assembling viral Gag polyproteins. Here, we show that the dimeric 5′-leader contains more than two dozen NC binding sites with affinities ranging from 40 nM to 1.4 μM, and that all high-affinity sites (Kd ≲ 400 nM) reside within a ∼150-nt region of the leader sufficient to promote RNA packaging (core encapsidation signal, ΨCES). The four initial binding sites with highest affinity reside near two symmetrically equivalent three-way junction structures. Unlike the other high-affinity sites, which bind NC with exothermic energetics, binding to these sites occurs endothermically due to concomitant unwinding of a weakly base-paired [UUUU]:[GGAG] helical element. Mutations that stabilize base pairing within this element eliminate NC binding to this site and severely impair RNA packaging into virus-like particles. NMR studies reveal that a recently discovered small-molecule inhibitor of HIV-1 RNA packaging that appears to function by stabilizing the structure of the leader binds directly to the [UUUU]:[GGAG] helix. Our findings suggest a sequential NC binding mechanism for Gag-genome assembly and identify a potential RNA Achilles’ heel to which HIV therapeutics may be targeted.
Collapse
|
19
|
Rawson JMO, Nikolaitchik OA, Keele BF, Pathak VK, Hu WS. Recombination is required for efficient HIV-1 replication and the maintenance of viral genome integrity. Nucleic Acids Res 2018; 46:10535-10545. [PMID: 30307534 PMCID: PMC6237782 DOI: 10.1093/nar/gky910] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/20/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023] Open
Abstract
Retroviruses package two complete RNA genomes into a viral particle but generate only one provirus after each infection. This pseudodiploid replication strategy facilitates frequent recombination, which occurs during DNA synthesis when reverse transcriptase switches templates between two copackaged RNA genomes, generating chimeric DNA. Recombination has played an important role in shaping the current HIV-1 pandemic; however, whether recombination is required for HIV-1 replication is currently unknown. In this report, we examined viral replication when recombination was blocked in defined regions of the HIV-1 genome. We found that blocking recombination reduced viral titers. Furthermore, a significant proportion of the resulting proviruses contained large deletions. Analyses of the deletion junctions indicated that these deletions were the direct consequence of blocking recombination. Thus, our findings illustrate that recombination is a major mechanism to maintain HIV-1 genome integrity. Our study also shows that both obligatory and nonobligatory crossovers occur during reverse transcription, thereby supporting both the forced and dynamic copy-choice models of retroviral recombination. Taken together, our results demonstrate that, in most viruses, both packaged RNA genomes contribute to the genetic information in the DNA form. Furthermore, recombination allows generation of the intact HIV-1 DNA genome and is required for efficient viral replication.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Olga A Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, U.S.A
| |
Collapse
|
20
|
Xie S, Cooley A, Armendariz D, Zhou P, Hon GC. Frequent sgRNA-barcode recombination in single-cell perturbation assays. PLoS One 2018; 13:e0198635. [PMID: 29874289 PMCID: PMC5991360 DOI: 10.1371/journal.pone.0198635] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/22/2018] [Indexed: 11/18/2022] Open
Abstract
Simultaneously detecting CRISPR-based perturbations and induced transcriptional changes in the same cell is a powerful approach to unraveling genome function. Several lentiviral approaches have been developed, some of which rely on the detection of distally located genetic barcodes as an indirect proxy of sgRNA identity. Since barcodes are often several kilobases from their corresponding sgRNAs, viral recombination-mediated swapping of barcodes and sgRNAs is feasible. Using a self-circularization-based sgRNA-barcode library preparation protocol, we estimate the recombination rate to be ~50% and we trace this phenomenon to the pooled viral packaging step. Recombination is random, and decreases the signal-to-noise ratio of the assay. Our results suggest that alternative approaches can increase the throughput and sensitivity of single-cell perturbation assays.
Collapse
Affiliation(s)
- Shiqi Xie
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Anne Cooley
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Daniel Armendariz
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Pei Zhou
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Gary C. Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
21
|
Hegde M, Strand C, Hanna RE, Doench JG. Uncoupling of sgRNAs from their associated barcodes during PCR amplification of combinatorial CRISPR screens. PLoS One 2018; 13:e0197547. [PMID: 29799876 PMCID: PMC5969736 DOI: 10.1371/journal.pone.0197547] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/03/2018] [Indexed: 12/26/2022] Open
Abstract
Many implementations of pooled screens in mammalian cells rely on linking an element of interest to a barcode, with the latter subsequently quantitated by next generation sequencing. However, substantial uncoupling between these paired elements during lentiviral production has been reported, especially as the distance between elements increases. We detail that PCR amplification is another major source of uncoupling, and becomes more pronounced with increased amounts of DNA template molecules and PCR cycles. To lessen uncoupling in systems that use paired elements for detection, we recommend minimizing the distance between elements, using low and equal template DNA inputs for plasmid and genomic DNA during PCR, and minimizing the number of PCR cycles. We also present a vector design for conducting combinatorial CRISPR screens that enables accurate barcode-based detection with a single short sequencing read and minimal uncoupling.
Collapse
Affiliation(s)
- Mudra Hegde
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Christine Strand
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Ruth E. Hanna
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - John G. Doench
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
22
|
Garcia-Ruiz H, Diaz A, Ahlquist P. Intermolecular RNA Recombination Occurs at Different Frequencies in Alternate Forms of Brome Mosaic Virus RNA Replication Compartments. Viruses 2018; 10:v10030131. [PMID: 29543718 PMCID: PMC5869524 DOI: 10.3390/v10030131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/27/2023] Open
Abstract
Positive-strand RNA viruses replicate their genomes in membrane-bound replication compartments. Brome mosaic virus (BMV) replicates in vesicular invaginations of the endoplasmic reticulum membrane. BMV has served as a productive model system to study processes like virus-host interactions, RNA replication and recombination. Here we present multiple lines of evidence showing that the structure of the viral RNA replication compartments plays a fundamental role and that recruitment of parental RNAs to a common replication compartment is a limiting step in intermolecular RNA recombination. We show that a previously defined requirement for an RNA recruitment element on both parental RNAs is not to function as a preferred crossover site, but in order for individual RNAs to be recruited into the replication compartments. Moreover, modulating the form of the replication compartments from spherular vesicles (spherules) to more expansive membrane layers increased intermolecular RNA recombination frequency by 200- to 1000-fold. We propose that intermolecular RNA recombination requires parental RNAs to be recruited into replication compartments as monomers, and that recruitment of multiple RNAs into a contiguous space is much more common for layers than for spherules. These results could explain differences in recombination frequencies between viruses that replicate in association with smaller spherules versus larger double-membrane vesicles and convoluted membranes.
Collapse
Affiliation(s)
- Hernan Garcia-Ruiz
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA.
- Nebraska Center for Virology, Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA.
| | - Arturo Diaz
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA.
- Department of Biology, La Sierra University, Riverside, CA 92515, USA.
| | - Paul Ahlquist
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA.
- Howard Hughes Medical Institute and Morgridge Institute for Research, University of Wisconsin-Madison, MadisonWI 53706, USA.
| |
Collapse
|
23
|
The KT Jeang Retrovirology prize 2017: Michael Emerman. Retrovirology 2017. [PMID: 28637466 PMCID: PMC5480113 DOI: 10.1186/s12977-017-0362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
24
|
Menéndez-Arias L, Sebastián-Martín A, Álvarez M. Viral reverse transcriptases. Virus Res 2017; 234:153-176. [PMID: 28043823 DOI: 10.1016/j.virusres.2016.12.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/19/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
Abstract
Reverse transcriptases (RTs) play a major role in the replication of Retroviridae, Metaviridae, Pseudoviridae, Hepadnaviridae and Caulimoviridae. RTs are enzymes that are able to synthesize DNA using RNA or DNA as templates (DNA polymerase activity), and degrade RNA when forming RNA/DNA hybrids (ribonuclease H activity). In retroviruses and LTR retrotransposons (Metaviridae and Pseudoviridae), the coordinated action of both enzymatic activities converts single-stranded RNA into a double-stranded DNA that is flanked by identical sequences known as long terminal repeats (LTRs). RTs of retroviruses and LTR retrotransposons are active as monomers (e.g. murine leukemia virus RT), homodimers (e.g. Ty3 RT) or heterodimers (e.g. human immunodeficiency virus type 1 (HIV-1) RT). RTs lack proofreading activity and display high intrinsic error rates. Besides, high recombination rates observed in retroviruses are promoted by poor processivity that causes template switching, a hallmark of reverse transcription. HIV-1 RT inhibitors acting on its polymerase activity constitute the backbone of current antiretroviral therapies, although novel drugs, including ribonuclease H inhibitors, are still necessary to fight HIV infections. In Hepadnaviridae and Caulimoviridae, reverse transcription leads to the formation of nicked circular DNAs that will be converted into episomal DNA in the host cell nucleus. Structural and biochemical information on their polymerases is limited, although several drugs inhibiting HIV-1 RT are known to be effective against the human hepatitis B virus polymerase. In this review, we summarize current knowledge on reverse transcription in the five virus families and discuss available biochemical and structural information on RTs, including their biosynthesis, enzymatic activities, and potential inhibition.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Alba Sebastián-Martín
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
25
|
Abstract
During the evolution of human immunodeficiency virus (HIV), transmissions between humans and primates resulted in multiple HIV lineages in humans. This evolution has been rapid, giving rise to a complex classification and allowing for worldwide spread and intermixing of subtypes, which has consequently led to dozens of circulating recombinant forms. In the Republic of Korea, 12,522 cases of HIV infection have been reported between 1985, when AIDS was first identified, and 2015. This review focuses on the evolution of HIV infection worldwide and the molecular epidemiologic characteristics of HIV in Korea.
Collapse
Affiliation(s)
- Bum Sik Chin
- Center for Infectious Diseases, National Medical Center, Seoul, Korea.
| |
Collapse
|
26
|
Lentiviral vectors can be used for full-length dystrophin gene therapy. Sci Rep 2017; 7:44775. [PMID: 28303972 PMCID: PMC5356018 DOI: 10.1038/srep44775] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is caused by a lack of dystrophin expression in patient muscle fibres. Current DMD gene therapy strategies rely on the expression of internally deleted forms of dystrophin, missing important functional domains. Viral gene transfer of full-length dystrophin could restore wild-type functionality, although this approach is restricted by the limited capacity of recombinant viral vectors. Lentiviral vectors can package larger transgenes than adeno-associated viruses, yet lentiviral vectors remain largely unexplored for full-length dystrophin delivery. In our work, we have demonstrated that lentiviral vectors can package and deliver inserts of a similar size to dystrophin. We report a novel approach for delivering large transgenes in lentiviruses, in which we demonstrate proof-of-concept for a ‘template-switching’ lentiviral vector that harnesses recombination events during reverse-transcription. During this work, we discovered that a standard, unmodified lentiviral vector was efficient in delivering full-length dystrophin to target cells, within a total genomic load of more than 15,000 base pairs. We have demonstrated gene therapy with this vector by restoring dystrophin expression in DMD myoblasts, where dystrophin was expressed at the sarcolemma of myotubes after myogenic differentiation. Ultimately, our work demonstrates proof-of-concept that lentiviruses can be used for permanent full-length dystrophin gene therapy, which presents a significant advancement in developing an effective treatment for DMD.
Collapse
|
27
|
Counsell JR, Asgarian Z, Meng J, Ferrer V, Vink CA, Howe SJ, Waddington SN, Thrasher AJ, Muntoni F, Morgan JE, Danos O. Lentiviral vectors can be used for full-length dystrophin gene therapy. Sci Rep 2017; 7:79. [PMID: 28250438 PMCID: PMC5427806 DOI: 10.1038/s41598-017-00152-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 02/13/2017] [Indexed: 01/08/2023] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is caused by a lack of dystrophin expression in patient muscle fibres. Current DMD gene therapy strategies rely on the expression of internally deleted forms of dystrophin, missing important functional domains. Viral gene transfer of full-length dystrophin could restore wild-type functionality, although this approach is restricted by the limited capacity of recombinant viral vectors. Lentiviral vectors can package larger transgenes than adeno-associated viruses, yet lentiviral vectors remain largely unexplored for full-length dystrophin delivery. In our work, we have demonstrated that lentiviral vectors can package and deliver inserts of a similar size to dystrophin. We report a novel approach for delivering large transgenes in lentiviruses, in which we demonstrate proof-of-concept for a 'template-switching' lentiviral vector that harnesses recombination events during reverse-transcription. During this work, we discovered that a standard, unmodified lentiviral vector was efficient in delivering full-length dystrophin to target cells, within a total genomic load of more than 15,000 base pairs. We have demonstrated gene therapy with this vector by restoring dystrophin expression in DMD myoblasts, where dystrophin was expressed at the sarcolemma of myotubes after myogenic differentiation. Ultimately, our work demonstrates proof-of-concept that lentiviruses can be used for permanent full-length dystrophin gene therapy, which presents a significant advancement in developing an effective treatment for DMD.
Collapse
Affiliation(s)
- John R Counsell
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
- UCL Cancer Institute, Paul O 'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
- Molecular and Cellular Immunology, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
- Gene Transfer Technology Group, Institute for Womens Health, University College London, 86-96, Chenies Mews, London, UK.
| | - Zeinab Asgarian
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Jinhong Meng
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Veronica Ferrer
- UCL Cancer Institute, Paul O 'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Conrad A Vink
- Molecular and Cellular Immunology, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Steven J Howe
- Molecular and Cellular Immunology, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Womens Health, University College London, 86-96, Chenies Mews, London, UK
- MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Adrian J Thrasher
- Molecular and Cellular Immunology, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Olivier Danos
- UCL Cancer Institute, Paul O 'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK
- Biogen, 14 Cambridge Center, Cambridge, MA, 02142, USA
| |
Collapse
|
28
|
Keane SC, Summers MF. NMR Studies of the Structure and Function of the HIV-1 5'-Leader. Viruses 2016; 8:v8120338. [PMID: 28009832 PMCID: PMC5192399 DOI: 10.3390/v8120338] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 12/25/2022] Open
Abstract
The 5′-leader of the human immunodeficiency virus type 1 (HIV-1) genome plays several critical roles during viral replication, including differentially establishing mRNA versus genomic RNA (gRNA) fates. As observed for proteins, the function of the RNA is tightly regulated by its structure, and a common paradigm has been that genome function is temporally modulated by structural changes in the 5′-leader. Over the past 30 years, combinations of nucleotide reactivity mapping experiments with biochemistry, mutagenesis, and phylogenetic studies have provided clues regarding the secondary structures of stretches of residues within the leader that adopt functionally discrete domains. More recently, nuclear magnetic resonance (NMR) spectroscopy approaches have been developed that enable direct detection of intra- and inter-molecular interactions within the intact leader, providing detailed insights into the structural determinants and mechanisms that regulate HIV-1 genome packaging and function.
Collapse
Affiliation(s)
- Sarah C Keane
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Michael F Summers
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
29
|
Cross- and Co-Packaging of Retroviral RNAs and Their Consequences. Viruses 2016; 8:v8100276. [PMID: 27727192 PMCID: PMC5086612 DOI: 10.3390/v8100276] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 12/23/2022] Open
Abstract
Retroviruses belong to the family Retroviridae and are ribonucleoprotein (RNP) particles that contain a dimeric RNA genome. Retroviral particle assembly is a complex process, and how the virus is able to recognize and specifically capture the genomic RNA (gRNA) among millions of other cellular and spliced retroviral RNAs has been the subject of extensive investigation over the last two decades. The specificity towards RNA packaging requires higher order interactions of the retroviral gRNA with the structural Gag proteins. Moreover, several retroviruses have been shown to have the ability to cross-/co-package gRNA from other retroviruses, despite little sequence homology. This review will compare the determinants of gRNA encapsidation among different retroviruses, followed by an examination of our current understanding of the interaction between diverse viral genomes and heterologous proteins, leading to their cross-/co-packaging. Retroviruses are well-known serious animal and human pathogens, and such a cross-/co-packaging phenomenon could result in the generation of novel viral variants with unknown pathogenic potential. At the same time, however, an enhanced understanding of the molecular mechanisms involved in these specific interactions makes retroviruses an attractive target for anti-viral drugs, vaccines, and vectors for human gene therapy.
Collapse
|
30
|
NMR detection of intermolecular interaction sites in the dimeric 5'-leader of the HIV-1 genome. Proc Natl Acad Sci U S A 2016; 113:13033-13038. [PMID: 27791166 DOI: 10.1073/pnas.1614785113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
HIV type-1 (HIV-1) contains a pseudodiploid RNA genome that is selected for packaging and maintained in virions as a noncovalently linked dimer. Genome dimerization is mediated by conserved elements within the 5'-leader of the RNA, including a palindromic dimer initiation signal (DIS) that has been proposed to form kissing hairpin and/or extended duplex intermolecular contacts. Here, we have applied a 2H-edited NMR approach to directly probe for intermolecular interactions in the full-length, dimeric HIV-1 5'-leader (688 nucleotides; 230 kDa). The interface is extensive and includes DIS:DIS base pairing in an extended duplex state as well as intermolecular pairing between elements of the upstream Unique-5' (U5) sequence and those near the gag start site (AUG). Other pseudopalindromic regions of the leader, including the transcription activation (TAR), polyadenylation (PolyA), and primer binding (PBS) elements, do not participate in intermolecular base pairing. Using a 2H-edited one-dimensional NMR approach, we also show that the extended interface structure forms on a time scale similar to that of overall RNA dimerization. Our studies indicate that a kissing dimer-mediated structure, if formed, exists only transiently and readily converts to the extended interface structure, even in the absence of the HIV-1 nucleocapsid protein or other RNA chaperones.
Collapse
|
31
|
Deep Sequencing of the HIV-1 env Gene Reveals Discrete X4 Lineages and Linkage Disequilibrium between X4 and R5 Viruses in the V1/V2 and V3 Variable Regions. J Virol 2016; 90:7142-58. [PMID: 27226378 DOI: 10.1128/jvi.00441-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/23/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED HIV-1 requires the CD4 receptor and a coreceptor (CCR5 [R5 phenotype] or CXCR4 [X4 phenotype]) to enter cells. Coreceptor tropism can be assessed by either phenotypic or genotypic analysis, the latter using bioinformatics algorithms to predict tropism based on the env V3 sequence. We used the Primer ID sequencing strategy with the MiSeq sequencing platform to reveal the structure of viral populations in the V1/V2 and C2/V3 regions of the HIV-1 env gene in 30 late-stage and 6 early-stage subjects. We also used endpoint dilution PCR followed by cloning of env genes to create pseudotyped virus to explore the link between genotypic predictions and phenotypic assessment of coreceptor usage. We found out that the most stringently sequence-based calls of X4 variants (Geno2Pheno false-positive rate [FPR] of ≤2%) formed distinct lineages within the viral population, and these were detected in 24 of 30 late-stage samples (80%), which was significantly higher than what has been seen previously by using other approaches. Non-X4 lineages were not skewed toward lower FPR scores in X4-containing populations. Phenotypic assays showed that variants with an intermediate FPR (2 to 20%) could be either X4/dual-tropic or R5 variants, although the X4 variants made up only about 25% of the lineages with an FPR of <10%, and these variants carried a distinctive sequence change. Phylogenetic analysis of both the V1/V2 and C2/V3 regions showed evidence of recombination within but very little recombination between the X4 and R5 lineages, suggesting that these populations are genetically isolated. IMPORTANCE Primer ID sequencing provides a novel approach to study genetic structures of viral populations. X4 variants may be more prevalent than previously reported when assessed by using next-generation sequencing (NGS) and with a greater depth of sampling than single-genome amplification (SGA). Phylogenetic analysis to identify lineages of sequences with intermediate FPR values may provide additional information for accurately predicting X4 variants by using V3 sequences. Limited recombination occurs between X4 and R5 lineages, suggesting that X4 and R5 variants are genetically isolated and may be replicating in different cell types or that X4/R5 recombinants have reduced fitness.
Collapse
|
32
|
Delviks-Frankenberry KA, Nikolaitchik OA, Burdick RC, Gorelick RJ, Keele BF, Hu WS, Pathak VK. Minimal Contribution of APOBEC3-Induced G-to-A Hypermutation to HIV-1 Recombination and Genetic Variation. PLoS Pathog 2016; 12:e1005646. [PMID: 27186986 PMCID: PMC4871359 DOI: 10.1371/journal.ppat.1005646] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/28/2016] [Indexed: 11/19/2022] Open
Abstract
Although the predominant effect of host restriction APOBEC3 proteins on HIV-1 infection is to block viral replication, they might inadvertently increase retroviral genetic variation by inducing G-to-A hypermutation. Numerous studies have disagreed on the contribution of hypermutation to viral genetic diversity and evolution. Confounding factors contributing to the debate include the extent of lethal (stop codon) and sublethal hypermutation induced by different APOBEC3 proteins, the inability to distinguish between G-to-A mutations induced by APOBEC3 proteins and error-prone viral replication, the potential impact of hypermutation on the frequency of retroviral recombination, and the extent to which viral recombination occurs in vivo, which can reassort mutations in hypermutated genomes. Here, we determined the effects of hypermutation on the HIV-1 recombination rate and its contribution to genetic variation through recombination to generate progeny genomes containing portions of hypermutated genomes without lethal mutations. We found that hypermutation did not significantly affect the rate of recombination, and recombination between hypermutated and wild-type genomes only increased the viral mutation rate by 3.9 × 10-5 mutations/bp/replication cycle in heterozygous virions, which is similar to the HIV-1 mutation rate. Since copackaging of hypermutated and wild-type genomes occurs very rarely in vivo, recombination between hypermutated and wild-type genomes does not significantly contribute to the genetic variation of replicating HIV-1. We also analyzed previously reported hypermutated sequences from infected patients and determined that the frequency of sublethal mutagenesis for A3G and A3F is negligible (4 × 10-21 and1 × 10-11, respectively) and its contribution to viral mutations is far below mutations generated during error-prone reverse transcription. Taken together, we conclude that the contribution of APOBEC3-induced hypermutation to HIV-1 genetic variation is substantially lower than that from mutations during error-prone replication.
Collapse
Affiliation(s)
- Krista A. Delviks-Frankenberry
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Olga A. Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Ryan C. Burdick
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Lab, Frederick, Maryland, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Lab, Frederick, Maryland, United States of America
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| |
Collapse
|
33
|
Abstract
The enzyme reverse transcriptase (RT) was discovered in retroviruses almost 50 years ago. The demonstration that other types of viruses, and what are now called retrotransposons, also replicated using an enzyme that could copy RNA into DNA came a few years later. The intensity of the research in both the process of reverse transcription and the enzyme RT was greatly stimulated by the recognition, in the mid-1980s, that human immunodeficiency virus (HIV) was a retrovirus and by the fact that the first successful anti-HIV drug, azidothymidine (AZT), is a substrate for RT. Although AZT monotherapy is a thing of the past, the most commonly prescribed, and most successful, combination therapies still involve one or both of the two major classes of anti-RT drugs. Although the basic mechanics of reverse transcription were worked out many years ago, and the first high-resolution structures of HIV RT are now more than 20 years old, we still have much to learn, particularly about the roles played by the host and viral factors that make the process of reverse transcription much more efficient in the cell than in the test tube. Moreover, we are only now beginning to understand how various host factors that are part of the innate immunity system interact with the process of reverse transcription to protect the host-cell genome, the host cell, and the whole host, from retroviral infection, and from unwanted retrotransposition.
Collapse
|
34
|
Love TMT, Park SY, Giorgi EE, Mack WJ, Perelson AS, Lee HY. SPMM: estimating infection duration of multivariant HIV-1 infections. Bioinformatics 2015; 32:1308-15. [PMID: 26722117 DOI: 10.1093/bioinformatics/btv749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022] Open
Abstract
MOTIVATION Illustrating how HIV-1 is transmitted and how it evolves in the following weeks is an important step for developing effective vaccination and prevention strategies. It is currently possible through DNA sequencing to account for the diverse array of viral strains within an infected individual. This provides an unprecedented opportunity to pinpoint when each patient was infected and which viruses were transmitted. RESULTS Here we develop a mathematical tool for early HIV-1 evolution within a subject whose infection originates either from a single or multiple viral variants. The shifted Poisson mixture model (SPMM) provides a quantitative guideline for segregating viral lineages, which in turn enables us to assess when a subject was infected. The infection duration estimated by SPMM showed a statistically significant linear relationship with that by Fiebig laboratory staging (P = 0.00059) among 37 acutely infected subjects. Our tool provides a functional approach to understanding early genetic diversity, one of the most important parameters for deciphering HIV-1 transmission and predicting the rate of disease progression. AVAILABILITY AND IMPLEMENTATION SPMM, webserver, is available at http://www.hayounlee.org/web-tools.html. CONTACT hayoun@usc.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tanzy M T Love
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, 14642, USA
| | - Sung Yong Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, 90089, USA
| | - Elena E Giorgi
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA and
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, 90089, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA and
| | - Ha Youn Lee
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA and
| |
Collapse
|
35
|
Haqqani AA, Marek SL, Kumar J, Davenport M, Wang H, Tilton JC. Central memory CD4+ T cells are preferential targets of double infection by HIV-1. Virol J 2015; 12:184. [PMID: 26559763 PMCID: PMC4642630 DOI: 10.1186/s12985-015-0415-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/01/2015] [Indexed: 12/14/2022] Open
Abstract
Background Template switching between two distinct HIV-1 RNA genomes during reverse transcription gives rise to recombinant viruses that greatly expand the genetic diversity of HIV-1 and have adverse implications for drug resistance, immune escape, and vaccine design. Virions with two distinct genomes are produced exclusively from cells infected with two or more viruses, or ‘doubly infected’ cells. Previous studies have revealed higher than expected frequencies of doubly infected cells compared to frequencies based on chance alone, suggesting non-random enhancement of double infection. Methods We investigated double infection of unstimulated primary CD4+ T cells using reporter viruses carrying genes for different fluorescent proteins, EGFP and mCherry, combined with sophisticated modeling techniques based on Poisson distribution. Additionally, through the use of multiparameter flow cytometry we examined the susceptibility of naïve and memory subsets of CD4+ T cells to double infection by HIV. Results Using our double infection system, we confirm non-random enhancement of multiple infection events. Double infection of CD4+ T cells was not found to be a consequence of suboptimal provirus expression rescued by Tat in trans—as has been reported in cell lines—but rather due to a heterogeneous cell population in which only a fraction of primary peripheral blood CD4+ T cells are susceptible to HIV infection regardless of viral titer. Intriguingly, double infection of CD4+ T cells occurred preferentially in memory CD4+ T cells—particularly the central memory (TCM) subset—but was not a consequence of SAMHD1-mediated restriction of HIV infection in naïve cells. Conclusions These findings reveal that double infection in primary CD4+ T cells is primarily a consequences of cellular heterogeneity and not rescue of suboptimal provirus expression by Tat in trans. Additionally, we report a previously unappreciated phenomenon of enhanced double infection within primary TCM cells and suggest that these long-lived cells may serve as an archive that drive ongoing viral recombination events in vivo.
Collapse
Affiliation(s)
- Aiman A Haqqani
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, BRB 919, Cleveland, OH, 44106, USA.
| | - Samantha L Marek
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, BRB 919, Cleveland, OH, 44106, USA.
| | - Jagadish Kumar
- Complex Systems in Biology Group, Center for Vascular Research, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Miles Davenport
- Complex Systems in Biology Group, Center for Vascular Research, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Heng Wang
- DDC Clinic-Center for Special Needs Children, Middlefield, OH, 44062, USA.
| | - John C Tilton
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, BRB 919, Cleveland, OH, 44106, USA.
| |
Collapse
|
36
|
Nikolaitchik O, Keele B, Gorelick R, Alvord WG, Mazurov D, Pathak VK, Hu WS. High recombination potential of subtype A HIV-1. Virology 2015; 484:334-340. [PMID: 26164392 PMCID: PMC6258064 DOI: 10.1016/j.virol.2015.06.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 05/28/2015] [Accepted: 06/09/2015] [Indexed: 01/18/2023]
Abstract
Recombination can assort polymorphic alleles to increase diversity in the HIV-1 population. To better understand the recombination potential of subtype A HIV-1, we generated viruses containing sequences from two variants circulating in Russia and analyzed the polymerase gene (pol) of the recombinants after one round of HIV-1 replication using single-genome sequencing. We observed that recombination occurred throughout pol and could easily assort alleles containing mutations that conferred resistance to currently approved antivirals. We measured the recombination rate in various regions of pol including a G-rich region that has been previously proposed to be a recombination hot spot. Our study does not support a recombination hot spot in this G-rich region. Importantly, of the 58 proviral sequences containing crossover event(s) in pol, we found that each sequence was a unique genotype indicating that recombination is a powerful genetic mechanism in assorting the genomes of subtype A HIV-1 variants.
Collapse
Affiliation(s)
- Olga Nikolaitchik
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Brandon Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Robert Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - W Gregory Alvord
- Data Management Services, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Dmitriy Mazurov
- Institute of Immunology, Kashirskoe shosse 24-2, Moscow 115478, Russia
| | - Vinay K Pathak
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Wei-Shau Hu
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
37
|
Palm AA, Esbjörnsson J, Månsson F, Biague A, da Silva ZJ, Norrgren H, Jansson M, Medstrand P. Cocirculation of several similar but unique HIV-1 recombinant forms in Guinea-Bissau revealed by near full-length genomic sequencing. AIDS Res Hum Retroviruses 2015; 31:938-45. [PMID: 26066756 DOI: 10.1089/aid.2015.0073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The dynamic HIV-1 epidemic has resulted in the emergence of several different subtypes and recombinant forms that may differ in biological properties. A recombinant form of CRF02_AG and subsubtype A3 (A3/02) was recently described based on env sequencing and was associated with faster disease progression rates compared with its parental strains. Here, we performed near full-length sequencing of the A3/02 variant to characterize the recombination patterns of a potential novel and more pathogenic circulating recombinant form of HIV-1 in Guinea-Bissau. HIV-1 proviral DNA was extracted from blood samples of individuals infected with the A3/02 recombinant form. The recombination patterns were investigated for six samples that were successfully amplified and sequenced. We found that all six full-length genomes were recombinant forms composed of CRF02_AG and A3 with a recombination hot-spot in the C2 region of env. However, the recombination patterns in the remaining genome differed between samples. Two samples displayed similar recombination profiles, indicative of a homogeneous recombinant form circulating in the population in Guinea-Bissau, whereas the remaining four samples represented unique recombinant forms. The characterization of five different recombination profiles indicated a high frequency of recombination. The recombination breakpoint in the C2 region was identified as the principal common feature shared between sequences, suggesting that this region may have an impact on disease progression rate. Since novel recombinant forms may have characteristics associated with a higher potential of spread in the human population, this study highlights the importance of continuous screening and surveillance of the HIV-1 epidemic.
Collapse
Affiliation(s)
- Angelica A. Palm
- Department of Experimental Medical Science Lund, Lund University, Lund, Sweden
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Joakim Esbjörnsson
- Department of Translational Medicine, Lund University, Malmö, Sweden
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Månsson
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Antonio Biague
- National Public Health Laboratory, Bissau, Guinea-Bissau
| | | | - Hans Norrgren
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Marianne Jansson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine Lund, Lund University, Lund, Sweden
| | - Patrik Medstrand
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | | |
Collapse
|
38
|
The impact of HIV-1 genetic diversity on the efficacy of a combinatorial RNAi-based gene therapy. Gene Ther 2015; 22:485-95. [PMID: 25716532 DOI: 10.1038/gt.2015.11] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/13/2014] [Accepted: 01/15/2015] [Indexed: 11/08/2022]
Abstract
A hurdle for human immunodeficiency virus (HIV-1) therapy is the genomic diversity of circulating viruses and the possibility that drug-resistant virus variants are selected. Although RNA interference (RNAi) is a powerful tool to stably inhibit HIV-1 replication by the expression of antiviral short hairpin RNAs (shRNAs) in transduced T cells, this approach is also vulnerable to pre-existing genetic variation and the development of viral resistance through mutation. To prevent viral escape, we proposed to combine multiple shRNAs against important regions of the HIV-1 RNA genome, which should ideally be conserved in all HIV-1 subtypes. The vulnerability of RNAi therapy to viral escape has been studied for a single subtype B strain, but it is unclear whether the antiviral shRNAs can inhibit diverse virus isolates and subtypes, including drug-resistant variants that could be present in treated patients. To determine the breadth of the RNAi gene therapy approach, we studied the susceptibility of HIV-1 subtypes A-E and drug-resistant variants. In addition, we monitored the evolution of HIV-1 escape variants. We demonstrate that the combinatorial RNAi therapy is highly effective against most isolates, supporting the future testing of this gene therapy in appropriate in vivo models.
Collapse
|
39
|
van Bel N, Das AT, Cornelissen M, Abbink TEM, Berkhout B. A short sequence motif in the 5' leader of the HIV-1 genome modulates extended RNA dimer formation and virus replication. J Biol Chem 2014; 289:35061-74. [PMID: 25368321 DOI: 10.1074/jbc.m114.621425] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 5' leader of the HIV-1 RNA genome encodes signals that control various steps in the replication cycle, including the dimerization initiation signal (DIS) that triggers RNA dimerization. The DIS folds a hairpin structure with a palindromic sequence in the loop that allows RNA dimerization via intermolecular kissing loop (KL) base pairing. The KL dimer can be stabilized by including the DIS stem nucleotides in the intermolecular base pairing, forming an extended dimer (ED). The role of the ED RNA dimer in HIV-1 replication has hardly been addressed because of technical challenges. We analyzed a set of leader mutants with a stabilized DIS hairpin for in vitro RNA dimerization and virus replication in T cells. In agreement with previous observations, DIS hairpin stability modulated KL and ED dimerization. An unexpected previous finding was that mutation of three nucleotides immediately upstream of the DIS hairpin significantly reduced in vitro ED formation. In this study, we tested such mutants in vivo for the importance of the ED in HIV-1 biology. Mutants with a stabilized DIS hairpin replicated less efficiently than WT HIV-1. This defect was most severe when the upstream sequence motif was altered. Virus evolution experiments with the defective mutants yielded fast replicating HIV-1 variants with second site mutations that (partially) restored the WT hairpin stability. Characterization of the mutant and revertant RNA molecules and the corresponding viruses confirmed the correlation between in vitro ED RNA dimer formation and efficient virus replication, thus indicating that the ED structure is important for HIV-1 replication.
Collapse
Affiliation(s)
- Nikki van Bel
- From the Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Centre Amsterdam, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands and
| | - Atze T Das
- From the Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Centre Amsterdam, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands and
| | - Marion Cornelissen
- From the Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Centre Amsterdam, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands and
| | - Truus E M Abbink
- From the Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Centre Amsterdam, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands and the Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 0SP, United Kingdom
| | - Ben Berkhout
- From the Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Centre Amsterdam, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands and
| |
Collapse
|
40
|
Gao Y, Guan X, Liu Y, Li X, Yun B, Qi X, Wang Y, Gao H, Cui H, Liu C, Zhang Y, Wang X, Gao Y. An avian leukosis virus subgroup J isolate with a Rous sarcoma virus-like 5'-LTR shows enhanced replication capability. J Gen Virol 2014; 96:150-158. [PMID: 25274857 DOI: 10.1099/vir.0.071290-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) was first isolated from meat-producing chickens that had developed myeloid leukosis. However, ALV-J infections associated with hemangiomas have occurred in egg-producing (layer) flocks in China. In this study, we identified an ALV-J layer isolate (HLJ13SH01) as a recombinant of ALV-J and a Rous sarcoma virus Schmidt-Ruppin B strain (RSV-SRB), which contained the RSV-SRB 5'-LTR and the other genes of ALV-J. Replication kinetic testing indicated that the HLJ13SH01 strain replicated faster than other ALV-J layer isolates in vitro. Sequence analysis indicated that the main difference between the two isolates was the 5'-LTR sequences, particularly the U3 sequences. A 19 nt insertion was uniquely found in the U3 region of the HLJ13SH01 strain. The results of a Dual-Glo luciferase assay revealed that the 19 nt insertion in the HLJ13SH01 strain increased the enhancer activity of the U3 region. Moreover, an additional CCAAT/enhancer element was found in the 19 nt insertion and the luciferase assay indicated that this element played a key role in increasing the enhancer activity of the 5'-U3 region. To confirm the potentiation effect of the 19 nt insertion and the CCAAT/enhancer element on virus replication, three infectious clones with 5'-U3 region variations were constructed and rescued. Replication kinetic testing of the rescued viruses demonstrated that the CCAAT/enhancer element in the 19 nt insertion enhanced the replication capacity of the ALV-J recombinant in vitro.
Collapse
Affiliation(s)
- Yanni Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xiaolu Guan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Yongzhen Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xiaofei Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Bingling Yun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Honglei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xiaomei Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, PR China
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| |
Collapse
|
41
|
Rawson JMO, Mansky LM. Retroviral vectors for analysis of viral mutagenesis and recombination. Viruses 2014; 6:3612-42. [PMID: 25254386 PMCID: PMC4189041 DOI: 10.3390/v6093612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 12/29/2022] Open
Abstract
Retrovirus population diversity within infected hosts is commonly high due in part to elevated rates of replication, mutation, and recombination. This high genetic diversity often complicates the development of effective diagnostics, vaccines, and antiviral drugs. This review highlights the diverse vectors and approaches that have been used to examine mutation and recombination in retroviruses. Retroviral vectors for these purposes can broadly be divided into two categories: those that utilize reporter genes as mutation or recombination targets and those that utilize viral genes as targets of mutation or recombination. Reporter gene vectors greatly facilitate the detection, quantification, and characterization of mutants and/or recombinants, but may not fully recapitulate the patterns of mutagenesis or recombination observed in native viral gene sequences. In contrast, the detection of mutations or recombination events directly in viral genes is more biologically relevant but also typically more challenging and inefficient. We will highlight the advantages and disadvantages of the various vectors and approaches used as well as propose ways in which they could be improved.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Institute for Molecular Virology, University of Minnesota, Moos Tower 18-242, 515 Delaware St SE, Minneapolis, MN 55455, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Moos Tower 18-242, 515 Delaware St SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
42
|
Abstract
Reverse transcription is an obligatory step in retrovirus replication in the course of which the retroviral RNA/DNA-dependent DNA polymerase (RT) copies the single-stranded positive sense RNA genome to synthesize the double-stranded viral DNA. At the same time the RT-associated RNaseH activity degrades the genomic RNA template, which has just been copied. The viral nucleocapsid protein NCp7 is an obligatory partner of RT, chaperoning synthesis of the complete viral DNA flanked by the two long-terminal repeats (LTR), required for viral DNA integration into the host genome and its expression. Here we describe assays for in vitro and ex vivo monitoring of reverse transcription and the chaperoning role of the nucleocapsid protein (NC).
Collapse
|
43
|
Herrera-Carrillo E, Paxton WA, Berkhout B. The search for a T cell line for testing novel antiviral strategies against HIV-1 isolates of diverse receptor tropism and subtype origin. J Virol Methods 2014; 203:88-96. [PMID: 24698763 DOI: 10.1016/j.jviromet.2014.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/18/2014] [Accepted: 03/21/2014] [Indexed: 11/16/2022]
Abstract
The world-wide HIV epidemic is characterized by increasing genetic diversity with multiple viral subtypes, circulating recombinant forms (CRFs) and unique recombinant forms (URFs). Antiretroviral drug design and basic virology studies have largely focused on HIV-1 subtype B. There have been few direct comparisons by subtype, perhaps due to the lack of uniform and standardized culture systems for the in vitro propagation of diverse HIV-1 subtypes. Although peripheral blood mononuclear cells (PBMCs) are major targets and reservoirs of HIV, PBMCs culturing is relatively difficult and not always reproducible. In addition, long-term experiments cannot be performed because PBMCs are short-lived cells. We faced these problems during the in vitro testing of an experimental RNA interference (RNAi) based gene therapy. Therefore, many T cell lines that support HIV-1 infection were tested and compared for replication of HIV-1 isolates, including viruses that use different receptors and diverse subtypes. The PM1 T cell line was comparable to PBMCs for culturing of any of the HIV-1 strains and subtypes. The advantage of PM1 cells in long-term cultures for testing the safety and efficacy of an RNAi-based gene therapy was demonstrated. PM1 may thus provide a valuable research tool for studying new anti-HIV therapies.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - William A Paxton
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
44
|
Tsai L, Tasovski I, Leda AR, Chin MPS, Cheng-Mayer C. The number and genetic relatedness of transmitted/founder virus impact clinical outcome in vaginal R5 SHIVSF162P3N infection. Retrovirology 2014; 11:22. [PMID: 24612462 PMCID: PMC3975242 DOI: 10.1186/1742-4690-11-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/23/2014] [Indexed: 12/31/2022] Open
Abstract
Background Severe genetic bottleneck occurs during HIV-1 sexual transmission whereby most infections are initiated by a single transmitted/founder (T/F) virus. Similar observations had been made in nonhuman primates exposed mucosally to SIV/SHIV. We previously reported variable clinical outcome in rhesus macaques inoculated intravaginally (ivg) with a high dose of R5 SHIVSF162P3N. Given the potential contributions of viral diversity to HIV-1 persistence and AIDS pathogenesis and recombination between retroviral genomes increases the genetic diversity, we tested the hypothesis that transmission of multiple variants contributes to heightened levels of virus replication and faster disease progression in the SHIVSF162P3N ivg-infected monkeys. Results We found that the differences in viral replication and disease progression between the transiently viremic (TV; n = 2), chronically-infected (CP; n = 8) and rapid progressor (RP; n = 4) ivg-infected macaques cannot be explained by which variant in the inoculum was infecting the animal. Rather, transmission of a single variant was observed in both TV rhesus, with 1–2 T/F viruses found in the CPs and 2–4 in all four RP macaques. Moreover, the genetic relatedness of the T/F viruses in the CP monkeys with multivariant transmission was greater than that seen in the RPs. Biological characterization of a subset of T/F envelopes from chronic and rapid progressors revealed differences in their ability to mediate entry into monocyte-derived macrophages, with enhanced macrophage tropism observed in the former as compared to the latter. Conclusion Our study supports the tenet that sequence diversity of the infecting virus contributes to higher steady-state levels of HIV-1 virus replication and faster disease progression and highlights the role of macrophage tropism in HIV-1 transmission and persistence.
Collapse
Affiliation(s)
| | | | | | | | - Cecilia Cheng-Mayer
- Aaron Diamond AIDS Research Center, Aaron Diamond Professor at the Rockefeller University, New York, NY, USA.
| |
Collapse
|
45
|
Kuzembayeva M, Dilley K, Sardo L, Hu WS. Life of psi: how full-length HIV-1 RNAs become packaged genomes in the viral particles. Virology 2014; 454-455:362-70. [PMID: 24530126 DOI: 10.1016/j.virol.2014.01.019] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 01/03/2014] [Accepted: 01/24/2014] [Indexed: 12/27/2022]
Abstract
As a member of the retrovirus family, HIV-1 packages its RNA genome into particles and replicates through a DNA intermediate that integrates into the host cellular genome. The multiple genes encoded by HIV-1 are expressed from the same promoter and their expression is regulated by splicing and ribosomal frameshift. The full-length HIV-1 RNA plays a central role in viral replication as it serves as the genome in the progeny virus and is used as the template for Gag and GagPol translation. In this review, we summarize findings that contribute to our current understanding of how full-length RNA is expressed and transported, cis- and trans-acting elements important for RNA packaging, the locations and timing of RNA:RNA and RNA:Gag interactions, and the processes required for this RNA to be packaged into viral particles.
Collapse
Affiliation(s)
- Malika Kuzembayeva
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Kari Dilley
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Luca Sardo
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
46
|
Abstract
UNLABELLED HIV-1 infection is characterized by the rapid generation of genetic diversity that facilitates viral escape from immune selection and antiretroviral therapy. Despite recombination's crucial role in viral diversity and evolution, little is known about the genomic factors that influence recombination between highly similar genomes. In this study, we use a minimally modified full-length HIV-1 genome and high-throughput sequence analysis to study recombination in gag and pol in T cells. We find that recombination is favored at a number of recombination hot spots, where recombination occurs six times more frequently than at corresponding cold spots. Interestingly, these hot spots occur near important features of the HIV-1 genome but do not occur at sites immediately around protease inhibitor or reverse transcriptase inhibitor drug resistance mutations. We show that the recombination hot and cold spots are consistent across five blood donors and are independent of coreceptor-mediated entry. Finally, we check common experimental confounders and find that these are not driving the location of recombination hot spots. This is the first study to identify the location of recombination hot spots between two similar viral genomes with great statistical power and under conditions that closely reflect natural recombination events among HIV-1 quasispecies. IMPORTANCE The ability of HIV-1 to evade the immune system and antiretroviral therapy depends on genetic diversity within the viral quasispecies. Retroviral recombination is an important mechanism that helps to generate and maintain this genetic diversity, but little is known about how recombination rates vary within the HIV-1 genome. We measured recombination rates in gag and pol and identified recombination hot and cold spots, demonstrating that recombination is not random but depends on the underlying gene sequence. The strength and location of these recombination hot and cold spots can be used to improve models of viral dynamics and evolution, which will be useful for the design of robust antiretroviral therapies.
Collapse
|
47
|
Tromas N, Zwart MP, Poulain M, Elena SF. Estimation of the in vivo recombination rate for a plant RNA virus. J Gen Virol 2013; 95:724-732. [PMID: 24362963 DOI: 10.1099/vir.0.060822-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Phylogenomic evidence suggested that recombination is an important evolutionary force for potyviruses, one of the larger families of plant RNA viruses. However, mixed-genotype potyvirus infections are marked by low levels of cellular coinfection, precluding template switching and recombination events between virus genotypes during genomic RNA replication. To reconcile these conflicting observations, we evaluated the in vivo recombination rate (rg) of Tobacco etch virus (TEV; genus Potyvirus, family Potyviridae) by coinfecting plants with pairs of genotypes marked with engineered restriction sites as neutral markers. The recombination rate was then estimated using two different approaches: (i) a classical approach that assumed recombination between marked genotypes can occur in the whole virus population, rendering an estimate of rg = 7.762 × 10(-8) recombination events per nucleotide site per generation, and (ii) an alternative method that assumed recombination between marked genotypes can occur only in coinfected cells, rendering a much higher estimate of rg = 3.427 × 10(-5) recombination events per nucleotide site per generation. This last estimate is similar to the TEV mutation rate, suggesting that recombination should be at least as important as point mutation in creating variability. Finally, we compared our mutation and recombination rate estimates to those reported for animal RNA viruses. Our analysis suggested that high recombination rates may be an unavoidable consequence of selection for fast replication at the cost of low fidelity.
Collapse
Affiliation(s)
- Nicolas Tromas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 València, Spain
| | - Mark P Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 València, Spain
| | - Maïté Poulain
- Genoscreen, 1 Rue du Professeur Calmette, 59000 Lille, France
| | - Santiago F Elena
- The Santa Fe Institute, Santa Fe, NM 87501, USA.,Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 València, Spain
| |
Collapse
|
48
|
Generation of multiple replication-competent retroviruses through recombination between PreXMRV-1 and PreXMRV-2. J Virol 2013; 87:11525-37. [PMID: 23966380 DOI: 10.1128/jvi.01787-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We previously identified two novel endogenous murine leukemia virus proviruses, PreXMRV-1 and PreXMRV-2, and showed that they most likely recombined during xenograft passaging of a human prostate tumor in mice to generate xenotropic murine leukemia virus-related virus (XMRV). To determine the recombination potential of PreXMRV-1 and PreXMRV-2, we examined the generation of replication-competent retroviruses (RCRs) over time in a cell culture system. We observed that either virus alone was noninfectious and the RNA transcripts of the viruses were undetectable in the blood and spleen of nude mice that carry them. To determine their potential to generate RCRs through recombination, we transfected PreXMRV-1 and PreXMRV-2 into 293T cells and used the virus produced to infect fresh cells; the presence of reverse transcriptase activity at 10 days postinfection indicated the presence of RCRs. Population sequencing of proviral DNA indicated that all RCRs contained the gag and 5' half of pol from PreXMRV-2 and the long terminal repeat, 3' half of pol (including integrase), and env from PreXMRV-1. All crossovers were within sequences of at least 9 identical nucleotides, and crossovers within each of two selected recombination zones of 415 nucleotides (nt) in the 5' untranslated region and 982 nt in pol were required to generate RCRs. A recombinant with the same genotype as XMRV was not detected, and our analysis indicates that the probability of generating an identical RCR is vanishingly small. In addition, the studies indicate that the process of RCR formation is primarily driven by selection for viable cis and trans elements from the parental proviruses.
Collapse
|
49
|
Palm AA, Esbjörnsson J, Månsson F, Kvist A, Isberg PE, Biague A, da Silva ZJ, Jansson M, Norrgren H, Medstrand P. Faster progression to AIDS and AIDS-related death among seroincident individuals infected with recombinant HIV-1 A3/CRF02_AG compared with sub-subtype A3. J Infect Dis 2013; 209:721-8. [PMID: 23935204 DOI: 10.1093/infdis/jit416] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) is divided into subtypes and circulating recombinant forms (CRFs) but the impact of subtype/CRF on disease progression is not fully understood. METHODS We determined the HIV-1 subtype/CRF of 152 seroincident individuals from Guinea-Bissau, based on the C2-V3 region of env. Disease progression was measured as time from estimated seroconversion to AIDS and AIDS-related death. Hazard ratios (HRs) were calculated using a Cox proportional hazard model, adjusting for gender and age at seroconversion. RESULTS The major subtypes/CRFs identified were CRF02_AG (53%), A3 (29%), and A3/02 (a recombinant of A3 and CRF02_AG) (13%). Infection with A3/02 was associated with a close to 3-fold increased risk of AIDS and AIDS-related death compared to A3 (HR = 2.6 [P = 0.011] and 2.9 [P = 0.032], respectively). The estimated time from seroconversion to AIDS and AIDS-related death was 5.0 and 8.0 years for A3/02, 6.2 and 9.0 years for CRF02_AG, and 7.2 and 11.3 years for A3. CONCLUSION Our results show that there are differences in disease progression between HIV-1 A-like subtypes/CRFs. Individuals infected with A3/02 have among the fastest progression rates to AIDS reported to date. Determining the HIV-1 subtype of infected individuals could be important in the management of HIV-1 infections.
Collapse
|
50
|
Cooperation: another mechanism of viral evolution. Trends Microbiol 2013; 21:320-4. [DOI: 10.1016/j.tim.2013.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 02/05/2023]
|