1
|
Taylor KL, Quackenbush J, Lamberty C, Hamby KA, Fritz ML. Polygenic response to selection by transgenic Bt-expressing crops in wild Helicoverpa zea and characterization of a major effect locus. BMC Genomics 2024; 25:1247. [PMID: 39725932 DOI: 10.1186/s12864-024-11160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Strong and shifting selective pressures of the Anthropocene are rapidly shaping phenomes and genomes of organisms worldwide. Crops expressing pesticidal proteins from Bacillus thuringiensis (Bt) represent one major selective force on insect genomes. Here we characterize a rapid response to selection by Bt crops in a major crop pest, Helicoverpa zea. We reveal the polygenic architecture of Bt resistance evolution in H. zea and identify multiple genomic regions underlying this trait. In the genomic region of largest effect, we identified a gene amplification event, where resistant individuals showed variation in copy number for multiple genes. Signals of this amplification increased over time, consistent with the history of field-evolved Bt resistance evolution. Modern wild populations from disparate geographical regions are positive for this variant at high, but not fixed, allele frequencies. We also detected selection against single copy variants at this locus in wild H. zea collected from Bt expressing plants, further supporting its role in resistance. Multiple genes were annotated in this genomic region, and all appeared to be significantly upregulated in Bt resistant H. zea. We functionally characterized genes within the copy number variant (CNV), providing insight into their potential roles in resistance evolution. Our findings reveal the nature of rapid genome evolution in a major crop pest following anthropogenic selection and highlight the role that CNVs can have in rapid evolutionary responses.
Collapse
Affiliation(s)
- Katherine L Taylor
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
- Department of Biology, Hofstra University, Hempstead, NY, 11549, USA
| | - Jane Quackenbush
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Cara Lamberty
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Kelly A Hamby
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Megan L Fritz
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA.
- University of Maryland Institute for Advanced Computer Studies, College Park, MD, 20742, USA.
| |
Collapse
|
2
|
Chen Y, Nguyen DT, Spafford H, Herron GA. A high-throughput multilocus-amplicon sequencing panel to monitor insecticide resistance in fall armyworm (FAW) Spodoptera frugiperda (Lepidoptera: Noctuidae). PEST MANAGEMENT SCIENCE 2024; 80:1510-1522. [PMID: 37953499 DOI: 10.1002/ps.7883] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Fall armyworm (FAW), Spodoptera frugiperda, is a highly polyphagous crop pest that has spread over the world rapidly and invaded Australia in 2020. Globally, FAW has been reported to be resistant to several insecticides permitted in Australia. Timely resistance diagnosis is critical for integrated pest management-based control of FAW in Australia. RESULTS We developed a multi-amplicon panel by next-generation sequencing (multiamplicon-seq) to identify known insecticide resistance mutations in Australian FAW with high throughput and low cost. The panel included nine known mutations causing insecticide resistance in FAW and four gene mutations causing insecticide resistance in several insect species, not yet reported in FAW. We sequenced 36 plates (96-well) in one MiSeq flow cell with easy sequencing library preparation. We found that Australian FAW carried a very high proportion of the F290V mutation in the acetylcholinesterase (AChE) gene that causes resistance to organophosphate and carbamate insecticides. Furthermore, FAW has a GABA-activated chloride channel mutation, A301Q in the RDL gene. The sequencing-based platform provided evidence of a duplication in the AChE gene. Here several single nucleotide polymorphisms (SNPs) within the 476-bp amplicon of the AChE gene demonstrated 100% heterozygosity across samples and some individuals carried two haplotypes with the F290V mutation. CONCLUSION Molecular surveillance by multiamplicon-seq will increase capacity for early detection and future resistance monitoring in highly dispersed Australian FAW. It can provide timely resistance information and has the potential to play an important role in the resistance management of FAW. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yizhou Chen
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Duong T Nguyen
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Helen Spafford
- Department of Primary Industries and Regional Development, Frank Wise Institute of Tropical Agriculture, Kununurra, WA, Australia
| | - Grant A Herron
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| |
Collapse
|
3
|
Liu J, Tian Z, Li R, Ni S, Sun H, Yin F, Li Z, Zhang Y, Li Y. Key Contributions of the Overexpressed Plutella xylostella Sigma Glutathione S-Transferase 1 Gene ( PxGSTs1) in the Resistance Evolution to Multiple Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2560-2572. [PMID: 38261632 DOI: 10.1021/acs.jafc.3c09458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The overexpression of insect detoxification enzymes is a typical adaptive evolutionary strategy for insects to cope with insecticide pressure. In this study, we identified a glutathione S-transferase (GST) gene, PxGSTs1, that exhibited pronounced expression in the field-resistant population of Plutella xylostella. By using RNAi (RNA interference), the transgenic fly models, and quantitative real-time polymerase chain reaction (RT-qPCR) methods, we confirmed that the augmented expression of PxGSTs1 mediates the resistance of P. xylostella to various types of insecticides, including chlorantraniliprole, novaluron, λ-cyhalothrin, and abamectin. PxGSTs1 was found to bolster insecticide resistance in two ways: direct detoxification and enhancing antioxidative defenses. In addition, our findings demonstrated that pxy-miR-8528a exerts a pivotal influence on forming insecticide resistance in P. xylostella by downregulating PxGSTs1 expression. In summary, we elucidated the multifaceted molecular and biochemical underpinnings of PxGSTs1-driven insecticide resistance in P. xylostella. Our results provide a new perspective for understanding the insecticide resistance mechanism of P. xylostella.
Collapse
Affiliation(s)
- Jiyuan Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhen Tian
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shujun Ni
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hong Sun
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fei Yin
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Zhenyu Li
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yifan Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
4
|
Ashraf MZ, Mogilicherla K, Sellamuthu G, Siino V, Levander F, Roy A. Comparative gut proteomics study revealing adaptive physiology of Eurasian spruce bark beetle, Ips typographus (Coleoptera: Scolytinae). FRONTIERS IN PLANT SCIENCE 2023; 14:1157455. [PMID: 38078109 PMCID: PMC10703158 DOI: 10.3389/fpls.2023.1157455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/01/2023] [Indexed: 01/23/2024]
Abstract
The bark beetle, Ips typographus (L.), is a major pest of Norway spruce, Picea abies (L.), causing enormous economic losses globally. The adult stage of the I. typographus has a complex life cycle (callow and sclerotized); the callow beetles feed ferociously, whereas sclerotized male beetles are more aggressive and pioneers in establishing new colonies. We conducted a comparative proteomics study to understand male and female digestion and detoxification processes in callow and sclerotized beetles. Proteome profiling was performed using high-throughput liquid chromatography-mass spectrometry. A total of >3000 proteins were identified from the bark beetle gut, and among them, 539 were differentially abundant (fold change ±2, FDR <0.05) between callow and sclerotized beetles. The differentially abundant proteins (DAPs) mainly engage with binding, catalytic activity, anatomical activity, hydrolase activity, metabolic process, and carbohydrate metabolism, and hence may be crucial for growth, digestion, detoxification, and signalling. We validated selected DAPs with RT-qPCR. Gut enzymes such as NADPH-cytochrome P450 reductase (CYC), glutathione S-transferase (GST), and esterase (EST) play a crucial role in the I. typographus for detoxification and digesting of host allelochemicals. We conducted enzyme activity assays with them and observed a positive correlation of CYC and GST activities with the proteomic results, whereas EST activity was not fully correlated. Furthermore, our investigation revealed that callow beetles had an upregulation of proteins associated with juvenile hormone (JH) biosynthesis and chitin metabolism, whereas sclerotized beetles exhibited an upregulation of proteins linked to fatty acid metabolism and the TCA cycle. These distinctive patterns of protein regulation in metabolic and functional processes are specific to each developmental stage, underscoring the adaptive responses of I. typographicus in overcoming conifer defences and facilitating their survival. Taken together, it is the first gut proteomic study comparing males and females of callow and sclerotized I. typographus, shedding light on the adaptive ecology at the molecular level. Furthermore, the information about bark beetle handling of nutritionally limiting and defence-rich spruce phloem diet can be utilized to formulate RNAi-mediated beetle management.
Collapse
Affiliation(s)
- Muhammad Zubair Ashraf
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Gothandapani Sellamuthu
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund, Sweden
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
5
|
Heckel DG. Perspectives on gene copy number variation and pesticide resistance. PEST MANAGEMENT SCIENCE 2022; 78:12-18. [PMID: 34480789 DOI: 10.1002/ps.6631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/28/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Although the generation of evolutionary diversity by gene duplication has long been known, the implications for pesticide resistance are just now beginning to be appreciated. A few examples will be cited to illustrate the point that there are many variations on the theme that gene duplication does not follow a set pattern. Transposable elements may facilitate the process but the mechanistic details are obscure and unpredictable. New developments in DNA sequencing technology and genome assembly promise to reveal more examples, yet care must be taken in interpreting the results of transcriptome and genome assemblies and independent means of validation are important. Once a specific gene family is identified, special methods generally must be used to avoid underestimating population polymorphisms and being trapped in preconceptions about the simplicity of the process. © 2021 The Author. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- David G Heckel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
6
|
Talipouo A, Mavridis K, Nchoutpouen E, Djiappi-Tchamen B, Fotakis EA, Kopya E, Bamou R, Kekeunou S, Awono-Ambene P, Balabanidou V, Balaska S, Wondji CS, Vontas J, Antonio-Nkondjio C. High insecticide resistance mediated by different mechanisms in Culex quinquefasciatus populations from the city of Yaoundé, Cameroon. Sci Rep 2021; 11:7322. [PMID: 33795804 PMCID: PMC8017000 DOI: 10.1038/s41598-021-86850-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Culex mosquitoes particularly Culex quinquefasciatus are important arboviral and filariasis vectors, however despite this important epidemiological role, there is still a paucity of data on their bionomics. The present study was undertaken to assess the insecticide resistance status of Cx. quinquefasciatus populations from four districts of Yaoundé (Cameroon). All Culex quinquefasciatus populations except one displayed high resistance to bendiocarb and malathion with mortalities ranging from 0 to 89% while high resistance intensity against both permethrin and deltamethrin was recorded. Molecular analyses revealed high frequencies of the ACE-1 G119S mutation (ranging from 0 to 33%) and kdr L1014F allele (ranging from 55 to 74%) in all Cx. quinquefasciatus populations. Significant overexpression was detected for cytochrome P450s genes CYP6AA7 and CYP6Z10, as well as for Esterase A and Esterase B genes. The total cuticular hydrocarbon content, a proxy of cuticular resistance, was significantly increased (compared to the S-lab strain) in one population. The study confirms strong insecticide resistance mediated by different mechanisms in Cx. quinquefasciatus populations from the city of Yaoundé. The expansion of insecticide resistance in Culex populations could affect the effectiveness of current vector control measures and stress the need for the implementation of integrated vector control strategies in urban settings.
Collapse
Affiliation(s)
- Abdou Talipouo
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun.
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé 1, P.O. Box 337, Yaoundé, Cameroon.
| | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Elysée Nchoutpouen
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun
| | - Borel Djiappi-Tchamen
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun
- Vector Borne Diseases Laboratory of the Research Unit Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang, Cameroon
| | - Emmanouil Alexandros Fotakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Edmond Kopya
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé 1, P.O. Box 337, Yaoundé, Cameroon
| | - Roland Bamou
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun
- Vector Borne Diseases Laboratory of the Research Unit Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang, Cameroon
| | - Sévilor Kekeunou
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé 1, P.O. Box 337, Yaoundé, Cameroon
| | - Parfait Awono-Ambene
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Sofia Balaska
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Charles Sinclair Wondji
- Department of Vector Biology Liverpool School of Tropical Medicine Pembroke Place, Liverpool, L3 5QA, UK
- Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroun
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece
| | - Christophe Antonio-Nkondjio
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun.
- Department of Vector Biology Liverpool School of Tropical Medicine Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
7
|
Ahmad V. Prospective of extracellular matrix and drug correlations in disease management. Asian J Pharm Sci 2020; 16:147-160. [PMID: 33995610 PMCID: PMC8105415 DOI: 10.1016/j.ajps.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/20/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022] Open
Abstract
The extracellular matrix (ECM) comprises of many structural molecules that constitute the extracellular environment. ECM molecules are characterized by specific features like diversity, complexity and signaling, which are also results of improvement or development of disease mediated by some physiological changes. Several drugs have also been used to manage diseases and they have been reported to modulate ECM assembly, including physiological changes, beyond their primary targets and ECM metabolism. This review highlights the alteration of ECM environment for diseases and effect of different classes of drugs like nonsteroidal anti-inflammatory drugs, immune suppressant drug, steroids on ECM or its components. Thus, it is summarized from previously conducted researches that diseases can be managed by targeting specific components of ECM which are involved in the pathophysiology of diseases. Moreover, the drug delivery focused on targeting the ECM components also has the potential for the discovery of targeted and site specific release of drugs. Therefore, ECM or its components could be future targets for the development of new drugs for controlling various disease conditions including neurodegenerative diseases and cancers.
Collapse
Affiliation(s)
- Varish Ahmad
- Health Information Technology Department, Faculty of Applied Studies, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Fent K, Schmid M, Christen V. Global transcriptome analysis reveals relevant effects at environmental concentrations of cypermethrin in honey bees (Apis mellifera). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113715. [PMID: 32023783 DOI: 10.1016/j.envpol.2019.113715] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/16/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Cypermethrin is a frequently used insecticide in agriculture and households but its chronic and molecular effects are poorly known are . Here we describe effects of sublethal cypermethrin exposure on the global transcriptome in the brain of honey bees determined by RNA-sequencing. Exposure for 48 h to 0.3 ng/bee cypermethrin (3 ng/mL sucrose solution) causes 38 differentially expressed genes (DEGs), of which 29 are up-regulated and 9 down-regulated. Exposure to 3 ng/bee causes differential expression of 265 DEGs (209 up-, 56 down-regulated). Among the 24 DEGs shared by both concentrations are genes encoding muscular structure, muscular processes and esterase B1. Functional analysis (GO term analysis) confirms the enrichment of muscular development, structure and function among the 89 and 35 significantly altered GO terms at the low and high concentration, respectively. Up-regulation of nine DEGs determined by RT-qPCR showed a good correlation with RNA-sequence data. Among them are genes including esterase B1, titin, twitchin, mucin-19, insulin like growth factor binding protein, golgin like protein and helix loop protein. Our study demonstrates for the first time molecular effects of cypermethrin at environmental concentrations, which include expressional induction of genes encoding muscular and cellular processes and metabolism enzymes. Further studies should demonstrate the physiological consequences in bees.
Collapse
Affiliation(s)
- Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland; Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental Systems Science, Institute of Biogeochemistry and Pollution Dynamics, CH-8092, Zürich, Switzerland.
| | - Michael Schmid
- Genexa AG, Dienerstrasse 7, CH-8004, Zürich, Switzerland
| | - Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland
| |
Collapse
|
9
|
Li Q, Li J, Kang KL, Wu YJ. A safety type of genetically engineered bacterium that degrades chemical pesticides. AMB Express 2020; 10:33. [PMID: 32072335 PMCID: PMC7028883 DOI: 10.1186/s13568-020-00967-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/03/2020] [Indexed: 11/10/2022] Open
Abstract
Chemical pesticides are used widely and their residues are found in the environment. Pesticide pollution has become a global problem. To find an economical, effective and safety way to degrade residues of pesticides in environment, we constructed a genetically engineered bacterium (GEB) having the ability to degrade pesticides, emit green fluorescence and has a containment system by using a dual plasmid expression system. One plasmid contains the genes of enhanced green fluorescent protein (EGFP) and carboxylesterase B1 (CarE B1), which were cloned downstream of lambda PL promoter and expressed constitutively. The gene of CarE B1 encodes an insect-detoxifying enzyme possessing the degradability to organochloride pesticides, organophosphorus pesticides, carbamates, and pyrethoid insecticides. The other is the conditional suicide plasmid for containment system, in which the lethal gene used was the nuclease gene of Serratia marcescens without the leader-coding sequence and was placed downstream of T7 promoter. The GEB has wide prospects of application on cleanup of pesticide residues with its degradability to several pesticides and containment system.
Collapse
|
10
|
Hao H, Tyshenko MG, Walker VK. Isolation and characterization of a dihydrofolate reductase gene mutation in methotrexate-resistant Drosophila cells. Gene Expr 2018; 6:231-9. [PMID: 9196078 PMCID: PMC6148270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stepwise increases in methotrexate (MTX) concentration over a 4-year period led to the selection of a highly drug-resistant (2 x 10(-4) M MTX) Drosophila cell line. Uptake experiments with [3H]MTX showed a slightly lower level of intracellular MTX in the resistant S3Mtx cells than in the susceptible S3 parental cell line. Southern blot analysis demonstrated that the gene for the MTX target, dihydrofolate reductase (DHFR), was not significantly amplified in the resistant line. To determine the molecular basis for resistance, the DHFR cDNA sequence was amplified by polymerase chain reaction from both the resistant and susceptible cells. Sequence comparison revealed a single T to A base change at nucleotide 89, which resulted in the substitution of Gln for Leu at residue 30 in S3Mtx cells. Expression and purification of the wild-type and mutant DHFR from E. coli cells showed that the S3Mtx enzyme had a reduced binding affinity for the antifolates, MTX and trimethoprim, with 15-fold higher K[d] and K[i] values than those from the wild-type enzyme. Molecular modeling confirmed that the replacement of the hydrophobic Leu by the more polar Gln was in the substrate binding site and thus would decrease the binding of MTX. These results suggest that the high level of MTX resistance in the selected cell line can be attributed to the mutation in the DHFR gene and also provides a model for pesticide resistance in insects.
Collapse
Affiliation(s)
- Hong Hao
- Department of Biology, Queen’s University, Kingston, Ontario, Canada K7L 3N6
| | - Michael G. Tyshenko
- Department of Biology, Queen’s University, Kingston, Ontario, Canada K7L 3N6
| | - Virginia K. Walker
- Department of Biology, Queen’s University, Kingston, Ontario, Canada K7L 3N6
- Address correspondence to Dr. Virginia K. Walker. Tel: 613-545-6123; Fax: 613-545-6617; E-mail:
| |
Collapse
|
11
|
Zimmer CT, Garrood WT, Singh KS, Randall E, Lueke B, Gutbrod O, Matthiesen S, Kohler M, Nauen R, Davies TGE, Bass C. Neofunctionalization of Duplicated P450 Genes Drives the Evolution of Insecticide Resistance in the Brown Planthopper. Curr Biol 2018; 28:268-274.e5. [PMID: 29337073 PMCID: PMC5788746 DOI: 10.1016/j.cub.2017.11.060] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/25/2022]
Abstract
Gene duplication is a major source of genetic variation that has been shown to underpin the evolution of a wide range of adaptive traits [1, 2]. For example, duplication or amplification of genes encoding detoxification enzymes has been shown to play an important role in the evolution of insecticide resistance [3, 4, 5]. In this context, gene duplication performs an adaptive function as a result of its effects on gene dosage and not as a source of functional novelty [3, 6, 7, 8]. Here, we show that duplication and neofunctionalization of a cytochrome P450, CYP6ER1, led to the evolution of insecticide resistance in the brown planthopper. Considerable genetic variation was observed in the coding sequence of CYP6ER1 in populations of brown planthopper collected from across Asia, but just two sequence variants are highly overexpressed in resistant strains and metabolize imidacloprid. Both variants are characterized by profound amino-acid alterations in substrate recognition sites, and the introduction of these mutations into a susceptible P450 sequence is sufficient to confer resistance. CYP6ER1 is duplicated in resistant strains with individuals carrying paralogs with and without the gain-of-function mutations. Despite numerical parity in the genome, the susceptible and mutant copies exhibit marked asymmetry in their expression with the resistant paralogs overexpressed. In the primary resistance-conferring CYP6ER1 variant, this results from an extended region of novel sequence upstream of the gene that provides enhanced expression. Our findings illustrate the versatility of gene duplication in providing opportunities for functional and regulatory innovation during the evolution of an adaptive trait. The cytochrome P450 CYP6ER1 is duplicated in imidacloprid resistant N. lugens strains Amino-acid alterations in certain CYP6ER1 variants confer resistance to imidacloprid Resistant hoppers have paralogs with and without the gain-of-function mutations The susceptible and mutant CYP6ER1 copies show marked divergence in their expression
Collapse
Affiliation(s)
- Christoph T Zimmer
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - William T Garrood
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Kumar Saurabh Singh
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Emma Randall
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Bettina Lueke
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | - Oliver Gutbrod
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | - Svend Matthiesen
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | - Maxie Kohler
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | - T G Emyr Davies
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK.
| |
Collapse
|
12
|
Jugulam M, Gill BS. Molecular cytogenetics to characterize mechanisms of gene duplication in pesticide resistance. PEST MANAGEMENT SCIENCE 2018; 74:22-29. [PMID: 28714247 DOI: 10.1002/ps.4665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
Recent advances in molecular cytogenetics empower construction of physical maps to illustrate the precise position of genetic loci on the chromosomes. Such maps provide visible information about the position of DNA sequences, including the distribution of repetitive sequences on the chromosomes. This is an important step toward unraveling the genetic mechanisms implicated in chromosomal aberrations (e.g., gene duplication). In response to stress, such as pesticide selection, duplicated genes provide an immediate adaptive advantage to organisms that overcome unfavorable conditions. Although the significance of gene duplication as one of the important events driving genetic diversity has been reported, the precise mechanisms of gene duplication that contribute to pesticide resistance, especially to herbicides, are elusive. With particular reference to pesticide resistance, we discuss the prospects of application of molecular cytogenetic tools to uncover mechanism(s) of gene duplication, and illustrate hypothetical models that predict the evolutionary basis of gene duplication. The cytogenetic basis of duplicated genes, their stability, as well as the magnitude of selection pressure, can determine the dynamics of the genetic locus (loci) conferring pesticide resistance not only at the population level, but also at the individual level. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mithila Jugulam
- Department of Agronomy Kansas State University, Manhattan, KS, USA
| | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
13
|
Liu QM, Li CX, Wu Q, Shi QM, Sun AJ, Zhang HD, Guo XX, Dong YD, Xing D, Zhang YM, Han Q, Diao XP, Zhao TY. Identification of Differentially Expressed Genes In Deltamethrin-Resistant Culex pipiens quinquefasciatus. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2017; 33:324-330. [PMID: 29369035 DOI: 10.2987/17-6658.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Culex quinquefasciatus is one of China's major house-dwelling mosquito species and an important vector of filariasis and encephalitis. Chemical treatments represent one of the most successful approaches for comprehensive mosquito prevention and control. However, the widespread use of chemical pesticides has led to the occurrence and development of insecticide resistance. Therefore, in-depth studies of resistance to insecticides are of vital importance. In this study, we performed a gene expression analysis to investigate genes from Cx. quinquefasciatus that may confer pyrethroid resistance. We aimed to understand the mechanisms of Cx. quinquefasciatus resistance to pyrethroid insecticides and provide insights into insect resistance management. Using a resistance bioassay, we determined the deltamethrin LC50 values (lethal concentration required to kill 50% of the population) for Cx. quinquefasciatus larvae in the F21, F23, F24, F26, F27, and F30 generations. The 7 tested strains exhibited pesticide resistance that was 25.25 to 87.83 times higher than that of the SanYa strain. Moreover, the expression of the OBPjj7a (odorant-binding protein OBPjj7a), OBP28 (odorant-binding protein OBP28), and E2 (ubiquitin-conjugating enzyme) genes was positively correlated with deltamethrin resistance ( R2 = 0.836, P = 0.011; R2 = 0.788, P = 0.018; and R2 = 0.850, P = 0.009, respectively) in Cx. quinquefasciatus. The expression of 4 additional genes, H/ACA, S19, SAR2, and PGRP, was not correlated with deltamethrin resistance. In summary, this study identified 3 Cx. quinquefasciatus genes with potential involvement in deltamethrin resistance, and these results may provide a theoretical basis for the control of mosquito resistance and insights into resistance detection.
Collapse
|
14
|
Wang LL, Lu XP, Smagghe G, Meng LW, Wang JJ. Functional characterization of BdB1, a well-conserved carboxylesterase among tephritid fruit flies associated with malathion resistance in Bactrocera dorsalis (Hendel). Comp Biochem Physiol C Toxicol Pharmacol 2017; 200:1-8. [PMID: 28697978 DOI: 10.1016/j.cbpc.2017.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 11/21/2022]
Abstract
There are many evidences that insect carboxylesterase possess important physiological roles in xenobiotic metabolism and are implicated in the detoxification of organophosphate (OP) insecticides. Despite the ongoing resistance development in the oriental fruit fly, Bactrocera dorsalis (Hendel), the molecular basis of carboxylesterase and its ability to confer OP resistance remain largely obscure. This study was initiated to provide a better understanding of carboxylesterase-mediated resistance mechanism in a tephritid pest fly. Here, we narrow this research gap by demonstrating a well-conserved esterase B1 gene, BdB1, mediates malathion resistance development via gene upregulation with the use of a laboratory selected malathion-resistant strain (MR) of B. dorsalis. No sequence mutation of BdB1 was detected between MR and the susceptible strain (MS) of B. dorsalis. BdB1 is predominantly expressed in the midgut, a key insect tissue for detoxification. As compared with transcripts in MS, BdB1 was significantly more abundant in multiple tissues in the MR. RNA interference (RNAi)-mediated knockdown of BdB1 significantly increased malathion susceptibility. Furthermore, heterologous expression along with cytotoxicity assay revealed BdB1 could probably have the function of malathion detoxification.
Collapse
Affiliation(s)
- Luo-Luo Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Department of Crop Protection, Ghent University, B-9000 Ghent, Belgium
| | - Xue-Ping Lu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China; Department of Crop Protection, Ghent University, B-9000 Ghent, Belgium
| | - Li-Wei Meng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
15
|
Hopkins DH, Fraser NJ, Mabbitt PD, Carr PD, Oakeshott JG, Jackson CJ. Structure of an Insecticide Sequestering Carboxylesterase from the Disease Vector Culex quinquefasciatus: What Makes an Enzyme a Good Insecticide Sponge? Biochemistry 2017; 56:5512-5525. [DOI: 10.1021/acs.biochem.7b00774] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Davis H. Hopkins
- Research
School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Nicholas J. Fraser
- Research
School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Peter D. Mabbitt
- Research
School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Paul D. Carr
- Research
School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - John G. Oakeshott
- CSIRO, GPO
Box 1700, Canberra, Australian Capital Territory 2601, Australia
| | - Colin J. Jackson
- Research
School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| |
Collapse
|
16
|
Martins WFS, Subramaniam K, Steen K, Mawejje H, Liloglou T, Donnelly MJ, Wilding CS. Detection and quantitation of copy number variation in the voltage-gated sodium channel gene of the mosquito Culex quinquefasciatus. Sci Rep 2017; 7:5821. [PMID: 28725028 PMCID: PMC5517494 DOI: 10.1038/s41598-017-06080-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/07/2017] [Indexed: 01/23/2023] Open
Abstract
Insecticide resistance is typically associated with alterations to the insecticidal target-site or with gene expression variation at loci involved in insecticide detoxification. In some species copy number variation (CNV) of target site loci (e.g. the Ace-1 target site of carbamate insecticides) or detoxification genes has been implicated in the resistance phenotype. We show that field-collected Ugandan Culex quinquefasciatus display CNV for the voltage-gated sodium channel gene (Vgsc), target-site of pyrethroid and organochlorine insecticides. In order to develop field-applicable diagnostics for Vgsc CN, and as a prelude to investigating the possible association of CN with insecticide resistance, three assays were compared for their accuracy in CN estimation in this species. The gold standard method is droplet digital PCR (ddPCR), however, the hardware is prohibitively expensive for widespread utility. Here, ddPCR was compared to quantitative PCR (qPCR) and pyrosequencing. Across all platforms, CNV was detected in ≈10% of mosquitoes, corresponding to three or four copies (per diploid genome). ddPCR and qPCR-Std-curve yielded similar predictions for Vgsc CN, indicating that the qPCR protocol developed here can be applied as a diagnostic assay, facilitating monitoring of Vgsc CN in wild populations and the elucidation of association between the Vgsc CN and insecticide resistance.
Collapse
Affiliation(s)
- Walter Fabricio Silva Martins
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Departamento de Biologia, Universidade Estadual da Paraíba, Campina Grande, Brazil
| | | | - Keith Steen
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Henry Mawejje
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Triantafillos Liloglou
- Department of Molecular and Clinical Cancer Medicine, Roy Castle Lung Cancer Research, Liverpool, UK
| | - Martin James Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Craig Stephen Wilding
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
17
|
Alyokhin A, Chen YH. Adaptation to toxic hosts as a factor in the evolution of insecticide resistance. CURRENT OPINION IN INSECT SCIENCE 2017; 21:33-38. [PMID: 28822486 DOI: 10.1016/j.cois.2017.04.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Insecticide resistance is a serious economic problem that jeopardizes sustainability of chemical control of herbivorous insects and related arthropods. It can be viewed as a specific case of adaptation to toxic chemicals, which has been driven in large part, but not exclusively, by the necessity for insect pests to tolerate defensive compounds produced by their host plants. Synthetic insecticides may simply change expression of specific sets of detoxification genes that have evolved due to ancestral associations with host plants. Feeding on host plants with more abundant or novel secondary metabolites has even been shown to prime insect herbivores to tolerate pesticides. Clear understanding of basic evolutionary processes is important for achieving lasting success in managing herbivorous arthropods.
Collapse
Affiliation(s)
- Andrei Alyokhin
- School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, ME 04469, United States.
| | - Yolanda H Chen
- Department of Plant and Soil Science, 63 Carrigan Dr., University of Vermont, Burlington, VT 05405, United States
| |
Collapse
|
18
|
Chevillon C, Pasteur N, Marquine M, Heyse D, Raymond M. POPULATION STRUCTURE AND DYNAMICS OF SELECTED GENES IN THE MOSQUITOCULEX PIPIENS. Evolution 2017; 49:997-1007. [DOI: 10.1111/j.1558-5646.1995.tb02334.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/1994] [Accepted: 06/08/1994] [Indexed: 11/29/2022]
Affiliation(s)
- Christine Chevillon
- Institut des Sciences de l'Evolution (Centre National de la Recherche Scientifique; Unité de Recherche Associée 327); Laboratoire Génétique et Environnement, Université de Montpellier II (Case courrier 65); place Eugène Bataillon 34095 Montpellier France
| | - Nicole Pasteur
- Institut des Sciences de l'Evolution (Centre National de la Recherche Scientifique; Unité de Recherche Associée 327); Laboratoire Génétique et Environnement, Université de Montpellier II (Case courrier 65); place Eugène Bataillon 34095 Montpellier France
| | - Maïté Marquine
- Institut des Sciences de l'Evolution (Centre National de la Recherche Scientifique; Unité de Recherche Associée 327); Laboratoire Génétique et Environnement, Université de Montpellier II (Case courrier 65); place Eugène Bataillon 34095 Montpellier France
| | - Denise Heyse
- Institut des Sciences de l'Evolution (Centre National de la Recherche Scientifique; Unité de Recherche Associée 327); Laboratoire Génétique et Environnement, Université de Montpellier II (Case courrier 65); place Eugène Bataillon 34095 Montpellier France
| | - Michel Raymond
- Institut des Sciences de l'Evolution (Centre National de la Recherche Scientifique; Unité de Recherche Associée 327); Laboratoire Génétique et Environnement, Université de Montpellier II (Case courrier 65); place Eugène Bataillon 34095 Montpellier France
| |
Collapse
|
19
|
Fernández-Medina RD, Carareto CMA, Struchiner CJ, Ribeiro JMC. Transposable elements in the Anopheles funestus transcriptome. Genetica 2017; 145:275-293. [PMID: 28424974 DOI: 10.1007/s10709-017-9964-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 03/27/2017] [Indexed: 12/27/2022]
Abstract
Transposable elements (TEs) are present in most of the eukaryotic genomes and their impact on genome evolution is increasingly recognized. Although there is extensive information on the TEs present in several eukaryotic genomes, less is known about the expression of these elements at the transcriptome level. Here we present a detailed analysis regarding the expression of TEs in Anopheles funestus, the second most important vector of human malaria in Africa. Several transcriptionally active TE families belonging both to Class I and II were identified and characterized. Interestingly, we have identified a full-length putative active element (including the presence of full length TIRs in the genomic sequence) belonging to the hAT superfamily, which presents active members in other insect genomes. This work contributes to a comprehensive understanding of the landscape of transposable elements in A. funestus transcriptome. Our results reveal that TEs are abundant and diverse in the mosquito and that most of the TE families found in the genome are represented in the mosquito transcriptome, a fact that could indicate activity of these elements.The vast diversity of TEs expressed in A. funestus suggests that there is ongoing amplification of several families in this organism.
Collapse
Affiliation(s)
- Rita D Fernández-Medina
- Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública, Av. Brasil, 4365, Rio de Janeiro, Brazil.
| | - Claudia M A Carareto
- Departamento de Biologia, UNESP-Universidade Estadual Paulista, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, Brazil
| | - Cláudio J Struchiner
- Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública, Av. Brasil, 4365, Rio de Janeiro, Brazil
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD, 20852, USA
| |
Collapse
|
20
|
Grigoraki L, Pipini D, Labbé P, Chaskopoulou A, Weill M, Vontas J. Carboxylesterase gene amplifications associated with insecticide resistance in Aedes albopictus: Geographical distribution and evolutionary origin. PLoS Negl Trop Dis 2017; 11:e0005533. [PMID: 28394886 PMCID: PMC5398709 DOI: 10.1371/journal.pntd.0005533] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/20/2017] [Accepted: 03/28/2017] [Indexed: 02/06/2023] Open
Abstract
Background Aedes albopictus is one of the most invasive human disease vectors. Its control has been largely based on insecticides, such as the larvicide temephos. Temephos resistance has been associated with the up-regulation, through gene amplification, of two carboxylesterase (CCE) genes closely linked on the genome, capable of sequestering and metabolizing temephos oxon, the activated form of temephos. Principal findings Here, we investigated the occurrence, geographical distribution and origin of the CCE amplicon in Ae. albopictus populations from several geographical regions worldwide. The haplotypic diversity at the CCEae3a locus revealed high polymorphism, while phylogenetic analysis showed an absence of correlation between haplotype similarity and geographic origin. Two types of esterase amplifications were found, in two locations only (Athens and Florida): one, previously described, results in the amplification of both CCEae3a and CCEae6a; the second is being described for the first time and results in the amplification of CCEae3a only. The two amplification events are independent, as confirmed by sequence analysis. All individuals from Athens and Florida carrying the CCEae3a-CCEae6a co-amplicon share a common haplotype, indicating a single amplification event, which spread between the two countries. Significance The importance of passive transportation of disease vectors, including individuals carrying resistance mechanisms, is discussed in the light of efficient and sustainable vector control strategies. Control of mosquito borne diseases is being seriously challenged by the ongoing development of insecticide resistance. Resistance of Aedes albopictus, a major arbovirus vector, to the organophosphate larvicide temephos was recently associated with the up-regulation, through gene amplification, of two carboxylesterases; CCEae3a and CCEae6a. Here we investigated the worldwide distribution and origin of the amplified esterases, which is of great value for designing and implementing efficient vector control programs. Individuals with amplification of both esterases were found in Greece and Florida (U.S.A), representing a single amplification event that spread between the two countries, highlighting the importance of passive transportation of disease vectors carrying resistance mechanisms, which is mainly facilitated by human activities. In addition, individuals with amplification of the CCEae3a only, but not the CCEae6a, representing a second and independent amplification event were found in Florida. The worldwide haplotypic diversity obtained for CCEae3a is consistent with the highly invasive nature of the Aedes albopictus.
Collapse
Affiliation(s)
- Linda Grigoraki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Dimitra Pipini
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Pierrick Labbé
- Institut des sciences de l’évolution, CNRS–IRD–Université de Montpellier-EPHE, Montpellier, France
| | | | - Mylene Weill
- Institut des sciences de l’évolution, CNRS–IRD–Université de Montpellier-EPHE, Montpellier, France
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
21
|
Chatonnet A, Lenfant N, Marchot P, Selkirk ME. Natural genomic amplification of cholinesterase genes in animals. J Neurochem 2017; 142 Suppl 2:73-81. [PMID: 28382676 DOI: 10.1111/jnc.13990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 12/31/2022]
Abstract
Tight control of the concentration of acetylcholine at cholinergic synapses requires precise regulation of the number and state of the acetylcholine receptors, and of the synthesis and degradation of the neurotransmitter. In particular, the cholinesterase activity has to be controlled exquisitely. In the genome of the first experimental models used (man, mouse, zebrafish and drosophila), there are only one or two genes coding for cholinesterases, whereas there are more genes for their closest relatives the carboxylesterases. Natural amplification of cholinesterase genes was first found to occur in some cancer cells and in insect species subjected to evolutionary pressure by insecticides. Analysis of the complete genome sequences of numerous representatives of the various metazoan phyla show that moderate amplification of cholinesterase genes is not uncommon in molluscs, echinoderms, hemichordates, prochordates or lepidosauria. Amplification of acetylcholinesterase genes is also a feature of parasitic nematodes or ticks. In these parasites, over-production of cholinesterase-like proteins in secreted products and the saliva are presumed to have effector roles related to host infection. These amplification events raise questions about the role of the amplified gene products, and the adaptation processes necessary to preserve efficient cholinergic transmission. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Arnaud Chatonnet
- Dynamique Musculaire et Métabolisme, INRA, Université Montpellier, Place Viala, Montpellier France
| | - Nicolas Lenfant
- Dynamique Musculaire et Métabolisme, INRA, Université Montpellier, Place Viala, Montpellier France.,Aix-Marseille Université / Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques laboratory, Marseille, France
| | - Pascale Marchot
- Aix-Marseille Université / Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques laboratory, Marseille, France
| | - Murray E Selkirk
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
22
|
Games PD, Alves SN, Katz BB, Tomich JM, Serrão JE. Differential protein expression in the midgut of Culex quinquefasciatus mosquitoes induced by the insecticide temephos. MEDICAL AND VETERINARY ENTOMOLOGY 2016; 30:253-263. [PMID: 27072633 DOI: 10.1111/mve.12172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/03/2015] [Accepted: 01/15/2016] [Indexed: 06/05/2023]
Abstract
Mosquitoes are vectors for pathogens of malaria, lymphatic filariasis, dengue, chikungunya, yellow fever and Japanese encephalitis. Culex quinquefasciatus Say, 1823 (Diptera: Culicidae) is a known vector of lymphatic filariasis. Its control in Brazil has been managed using the organophosphate temephos. Studies examining the proteins of Cx. quinquefasciatus that are differentially expressed in response to temephos further understanding of the modes of action of the insecticide and may potentially identify resistance factors in the mosquito. In the present study, a comparative proteomic analysis, using 2-dimensional electrophoresis coupled with matrix-assisted laser desorption/ionization (MALDI) time of flight (TOF)/TOF mass spectrometry, and bioinformatics analyses were performed to identify midgut proteins in Cx. quinquefasciatus larvae that were differentially expressed in response to exposure to temephos relative to those in untreated controls. A total of 91 protein spots were differentially expressed; 40 were upregulated and 51 were downregulated by temephos. A total of 22 proteins, predominantly upregulated, were identified as known to play a role in the immune response, whereas the downregulated proteins were involved in energy and protein catabolism. This is the first proteome study of the midgut of Cx. quinquefasciatus and it provides insights into the molecular mechanisms of insecticide-induced responses in the mosquito.
Collapse
Affiliation(s)
- P D Games
- Department of General Biology, State University of Viçosa, Viçosa, Brazil
| | - S N Alves
- Department of Biology, State University of São João del-Rey, Divinópolis, Brazil
| | - B B Katz
- Biotechnology Core Facility and Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, U.S.A
| | - J M Tomich
- Biotechnology Core Facility and Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, U.S.A
| | - J E Serrão
- Department of General Biology, State University of Viçosa, Viçosa, Brazil
| |
Collapse
|
23
|
Wang B, Li F, Ni M, Zhang H, Xu K, Tian J, Hu J, Shen W, Li B. Molecular Signatures of Reduced Nerve Toxicity by CeCl3 in Phoxim-exposed Silkworm Brains. Sci Rep 2015; 5:12761. [PMID: 26227613 PMCID: PMC4521201 DOI: 10.1038/srep12761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/09/2015] [Indexed: 12/04/2022] Open
Abstract
CeCl3 can reduce the damage caused by OP pesticides, in this study we used the brain of silkworms to investigate the mechanism of CeCl3 effects on pesticide resistance. The results showed that phoxim treatments led to brain damages, swelling and death of neurons, chromatin condensation, and mitochondrial damage. Normal nerve conduction was severely affected by phoxim treatments, as revealed by: increases in the contents of neurotransmitters Glu, NO, and ACh by 63.65%, 61.14%, and 98.54%, respectively; decreases in the contents of 5-HT and DA by 53.19% and 43.71%, respectively; reductions in the activities of Na(+)/K(+)-ATPase, Ca(2+)/Mg(2+)-ATPase, and AChE by 85.27%, 85.63%, and 85.63%, respectively; and increase in the activity of TNOS by 22.33%. CeCl3 pretreatment can significantly reduce such damages. Results of DGE and qRT-PCR indicated that CeCl3 treatments significantly upregulated the expression levels of CYP4G23, cyt-b5, GSTs-σ1, ace1, esterase-FE4, and β-esterase 2. Overall, phoxim treatments cause nerve tissue lesions, neuron death, and nerve conduction hindrance, but CeCl3 pretreatments can promote the expression of phoxim resistance-related genes in silkworm brains to reduce phoxim-induced damages. Our study provides a potential new method to improve the resistance of silkworms against OP pesticides.
Collapse
Affiliation(s)
- Binbin Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Min Ni
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Hua Zhang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Kaizun Xu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jianghai Tian
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jingsheng Hu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Weide Shen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, PR China
| |
Collapse
|
24
|
Saavedra-Rodriguez K, Strode C, Flores AE, Garcia-Luna S, Reyes-Solis G, Ranson H, Hemingway J, Black WC. Differential transcription profiles in Aedes aegypti detoxification genes after temephos selection. INSECT MOLECULAR BIOLOGY 2014; 23:199-215. [PMID: 24299217 PMCID: PMC4091897 DOI: 10.1111/imb.12073] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The mosquito Aedes aegypti is the main vector of Dengue and Yellow Fever flaviviruses. The organophosphate insecticide temephos is a larvicide that is used globally to control Ae. aegypti populations; many of which have in turn evolved resistance. Target site alteration in the acetylcholine esterase of this species has not being identified. Instead, we tracked changes in transcription of metabolic detoxification genes using the Ae. aegypti 'Detox Chip' microarray during five generations of temephos selection. We selected for temephos resistance in three replicates in each of six collections, five from Mexico, and one from Peru. The response to selection was tracked in terms of lethal concentrations. Uniform upregulation was seen in the epsilon class glutathione-S-transferase (eGST) genes in strains from Mexico prior to laboratory selection, while eGSTs in the Iquitos Peru strain became upregulated after five generations of temephos selection. While expression of many carboxyl/cholinesterase esterase (CCE) genes increased with selection, no single esterase was consistently upregulated and this same pattern was noted in the cytochrome P450 monooxygenase (CYP) genes and in other genes involved in reduction or oxidation of xenobiotics. Bioassays using glutathione-S-transferase (GST), CCE and CYP inhibitors suggest that various CCEs instead of GSTs are the main metabolic mechanism conferring resistance to temephos. We show that temephos-selected strains show no cross resistance to permethrin and that genes associated with temephos selection are largely independent of those selected with permethrin in a previous study.
Collapse
Affiliation(s)
| | - Clare Strode
- Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Adriana E. Flores
- Laboratorio de Entomología Médica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, México
| | - Selene Garcia-Luna
- Department of Microbiology, Colorado State University, Fort Collins, Colorado
| | | | - Hilary Ranson
- Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Janet Hemingway
- Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - William C. Black
- Department of Microbiology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
25
|
Gaines TA, Wright AA, Molin WT, Lorentz L, Riggins CW, Tranel PJ, Beffa R, Westra P, Powles SB. Identification of genetic elements associated with EPSPs gene amplification. PLoS One 2013; 8:e65819. [PMID: 23762434 PMCID: PMC3677901 DOI: 10.1371/journal.pone.0065819] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/28/2013] [Indexed: 01/22/2023] Open
Abstract
Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene evolved in the weed species Amaranthus palmeri to confer resistance to glyphosate, the world's most important herbicide. However, the gene amplification mechanism is unknown. We sequenced the EPSPS gene and genomic regions flanking EPSPS loci in A. palmeri, and searched for mobile genetic elements or repetitive sequences. The EPSPS gene was 10,229 bp, containing 8 exons and 7 introns. The gene amplification likely proceeded through a DNA-mediated mechanism, as introns exist in the amplified gene copies and the entire amplified sequence is at least 30 kb in length. Our data support the presence of two EPSPS loci in susceptible (S) A. palmeri, and that only one of these was amplified in glyphosate-resistant (R) A. palmeri. The EPSPS gene amplification event likely occurred recently, as no sequence polymorphisms were found within introns of amplified EPSPS copies from R individuals. Sequences with homology to miniature inverted-repeat transposable elements (MITEs) were identified next to EPSPS gene copies only in R individuals. Additionally, a putative Activator (Ac) transposase and a repetitive sequence region were associated with amplified EPSPS genes. The mechanism controlling this DNA-mediated amplification remains unknown. Further investigation is necessary to determine if the gene amplification may have proceeded via DNA transposon-mediated replication, and/or unequal recombination between different genomic regions resulting in replication of the EPSPS gene.
Collapse
Affiliation(s)
- Todd A Gaines
- Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, Crawley, Western Australia, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chénais B, Caruso A, Hiard S, Casse N. The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. Gene 2012; 509:7-15. [PMID: 22921893 DOI: 10.1016/j.gene.2012.07.042] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/16/2012] [Accepted: 07/25/2012] [Indexed: 11/25/2022]
Abstract
Transposable elements (TEs) are present in roughly all genomes. These mobile DNA sequences are able to invade genomes and their impact on genome evolution is substantial. The mobility of TEs can induce the appearance of deleterious mutations, gene disruption and chromosome rearrangements, but transposition activity also has positive aspects and the mutational activities of TEs contribute to the genetic diversity of organisms. This short review aims to give a brief overview of the impact TEs may have on animal and plant genome structure and expression, and the relationship between TEs and the stress response of organisms, including insecticide resistance.
Collapse
Affiliation(s)
- Benoît Chénais
- Université du Maine, EA2160 Mer Molécules Santé, UFR Sciences et Techniques, Avenue Olivier Messiaen, F-72085 Le Mans, France.
| | | | | | | |
Collapse
|
27
|
|
28
|
Bass C, Field LM. Gene amplification and insecticide resistance. PEST MANAGEMENT SCIENCE 2011; 67:886-90. [PMID: 21538802 DOI: 10.1002/ps.2189] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/01/2011] [Accepted: 03/18/2011] [Indexed: 05/03/2023]
Abstract
Pesticide resistance in arthropods has been shown to evolve by two main mechanisms, the enhanced production of metabolic enzymes, which bind to and/or detoxify the pesticide, and mutation of the target protein, which makes it less sensitive to the pesticide. One route that leads to enhanced metabolism is the duplication or amplification of the structural gene(s) encoding the detoxifying enzyme, and this has now been described for the three main families (esterases, glutathione S-transferases and cytochrome P450 monooxygenases) implicated in resistance. More recently, a direct or indirect role for gene duplication or amplification has been described for target-site resistance in several arthropod species. This mini-review summarises the involvement of gene duplication/amplification in the insecticide/acaricide resistance of insect and mite pests and highlights recent developments in this area in relation to P450-mediated and target-site resistance.
Collapse
Affiliation(s)
- Chris Bass
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts, UK.
| | | |
Collapse
|
29
|
Crainey JL, Malcolm CA. Retrotransposon insertion sites vary within and between populations of Culexpipiensform molestus. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2010; 104:355-8. [DOI: 10.1179/136485910x12743554759984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Komagata O, Kasai S, Tomita T. Overexpression of cytochrome P450 genes in pyrethroid-resistant Culex quinquefasciatus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:146-152. [PMID: 20080182 DOI: 10.1016/j.ibmb.2010.01.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/30/2009] [Accepted: 01/05/2010] [Indexed: 05/28/2023]
Abstract
JPal-per strain of Culex quinquefasciatus exhibits extremely high resistance against pyrethroids in larvae, though the resistance is greatly lower in adults. Increased microsome monooxygenase metabolism is one of the major factors of the larval resistance in this strain. We cloned 46 novel cytochrome P450 cDNAs from JPal-per strain. An oligonucleotide microarray was designed for the novel 46 genes plus 16 previously reported P450 genes along with other non-P450 gene probes. Of these, five P450 genes were upregulated (>2.5-fold) in JPal-per larvae as compared with a susceptible strain. The expression ratios for the highest three among the five P450 genes screened in the microarray analysis, CYP9M10, CYP4H34 and CYP6Z10, were further validated by qPCR as 264-, 8.3-, and 3.9-fold, respectively. In JPal-per, the transcription levels of CYP9M10 and CYP4H34 showed a similar stage-dependent pattern as a high expression level during the larvfrom Ogasawara Islands in Japanal stage dramatically decreases in the adult stage. This larval specific overexpression manner of the two genes was consistent with the characteristic of stage-dependent resistance of JPal-per strain previously reported, suggesting that the two P450s, CYP9M10 and CYP4H34, are involved in pyrethroid detoxification in JPal-per strain.
Collapse
Affiliation(s)
- Osamu Komagata
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | | | | |
Collapse
|
31
|
Wilson KHS. The genome sequence of the protostome Daphnia pulex encodes respective orthologues of a neurotrophin, a Trk and a p75NTR: evolution of neurotrophin signaling components and related proteins in the bilateria. BMC Evol Biol 2009; 9:243. [PMID: 19807921 PMCID: PMC2772990 DOI: 10.1186/1471-2148-9-243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 10/06/2009] [Indexed: 11/12/2022] Open
Abstract
Background Neurotrophins and their Trk and p75NTR receptors play an important role in the nervous system. To date, neurotrophins, Trk and p75NTR have only been found concomitantly in deuterostomes. In protostomes, homologues to either neurotrophin, Trk or p75NTR are reported but their phylogenetic relationship to deuterostome neurotrophin signaling components is unclear. Drosophila has neurotrophin homologues called Spätzles (Spz), some of which were recently renamed neurotrophins, but direct proof that these are deuterostome neurotrophin orthologues is lacking. Trks belong to the receptor tyrosine kinase (RTK) family and among RTKs, Trks and RORs are closest related. Flies lack Trks but have ROR and ROR-related proteins called NRKs playing a neurotrophic role. Mollusks have so far the most similar proteins to Trks (Lymnaea Trk and Aplysia Trkl) but the exact phylogenetic relationship of mollusk Trks to each other and to vertebrate Trks is unknown. p75NTR belongs to the tumor necrosis factor receptor (TNFR) superfamily. The divergence of the TNFR families in vertebrates has been suggested to parallel the emergence of the adaptive immune system. Only one TNFR representative, the Drosophila Wengen, has been found in protostomes. To clarify the evolution of neurotrophin signaling components in bilateria, this work analyzes the genome of the crustacean Daphnia pulex as well as new genetic data from protostomes. Results The Daphnia genome encodes a neurotrophin, p75NTR and Trk orthologue together with Trkl, ROR, and NRK-RTKs. Drosophila Spz1, 2, 3, 5, 6 orthologues as well as two new groups of Spz proteins (Spz7 and 8) are also found in the Daphnia genome. Searching genbank and the genomes of Capitella, Helobdella and Lottia reveals neurotrophin signaling components in other protostomes. Conclusion It appears that a neurotrophin, Trk and p75NTR existed at the protostome/deuterostome split. In protostomes, a "neurotrophin superfamily" includes Spzs and neurotrophins which respectively form two paralogous families. Trks and Trkl proteins also form closely related paralogous families within the protostomian RTKs, whereby Trkls are absent in deuterostomes. The finding of p75NTR in several protostomes suggests that death domain TNFR superfamily proteins appeared early in evolution.
Collapse
Affiliation(s)
- Karen H S Wilson
- University of Gothenburg, The Sven Lovén Centre for Marine Sciences - Kristineberg, S-450 34 Fiskebäckskil, Sweden.
| |
Collapse
|
32
|
Beaty BJ, Prager DJ, James AA, Jacobs-Lorena M, Miller LH, Law JH, Collins FH, Kafatos FC. From Tucson to genomics and transgenics: the vector biology network and the emergence of modern vector biology. PLoS Negl Trop Dis 2009; 3:e343. [PMID: 19333394 PMCID: PMC2659576 DOI: 10.1371/journal.pntd.0000343] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Barry J Beaty
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Singh G, Prakash S. Gokilaht®-S 5EC testing on Culex quinquefasciatus Say larvae for an early detection in esterase and monooxygenase resistance system. Parasitol Res 2008; 104:1087-91. [PMID: 19085008 DOI: 10.1007/s00436-008-1292-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 11/17/2008] [Indexed: 11/26/2022]
Affiliation(s)
- Gavendra Singh
- Department of Zoology, Dayalbagh Educational Institute, Dayalbagh, Agra, 282 005, India.
| | | |
Collapse
|
34
|
Strong AC, Kondratieff BC, Doyle MS, Black WC. Resistance to permethrin in Culex tarsalis in northeastern Colorado. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2008; 24:281-288. [PMID: 18666537 DOI: 10.2987/5593.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Resistance to permethrin and the activity of metabolic enzymes were monitored in field-collected Culex tarsalis from northeastern Colorado during 2005 and 2006 and compared with a lab strain from Bakersfield, CA. Collections were made from 13 different sites within and outside of the mosquito abatement area. Resistance levels by year and early vs. late season were examined and median lethal time values and 95% confidence intervals were compared with the lab strain. Mosquitoes collected in 2005 were more resistant to permethrin than either the lab strain or mosquitoes collected in 2006. Glutathione S-transferase levels recorded in 2005 were 9-12x higher than either the lab strain or 2006 mosquitoes; activity of mixed-function oxidases was also greater. Both mechanisms may play a role in permethrin resistance or reflect nontarget exposure to other pesticides in Cx. tarsalis in northeastern Colorado.
Collapse
Affiliation(s)
- Adam C Strong
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
35
|
Rao MS, . UM, . BG, . BCR, . CR, . SBK, . VJR. Larvicidal Efficacy of Neonicotinoid Classes of Compounds on Culex quinquefasciatus. ACTA ACUST UNITED AC 2007. [DOI: 10.3923/je.2008.45.50] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Li Q, Chen R, Li W, Qiao CL, Wu YJ. A genetically engineered Escherichia coli, expressing the fusion protein of green fluorescent protein and carboxylesterase B1, can be easily detected in the environment following degradation of pesticide residues. Biotechnol Lett 2007; 29:1357-62. [PMID: 17581706 DOI: 10.1007/s10529-007-9410-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 04/16/2007] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
Genetically engineered Escherichia coli, expressing the fusion protein of enhanced green fluorescent protein (EGFP) and carboxylesterase B1 (CarE B1), was successfully constructed by cloning the genes into the pET-28b vector and then transforming E. coli BL21 (DE3). Expression of the fusion protein was induced in E. coli BL21 (DE3) which could then degrade environmental pesticides and could be easily detected using fluorescence spectrophotometry or by the naked eye in daylight.
Collapse
Affiliation(s)
- Qin Li
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100080, P.R. China
| | | | | | | | | |
Collapse
|
37
|
Li X, Schuler MA, Berenbaum MR. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. ANNUAL REVIEW OF ENTOMOLOGY 2007; 52:231-53. [PMID: 16925478 DOI: 10.1146/annurev.ento.51.110104.151104] [Citation(s) in RCA: 1283] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Xenobiotic resistance in insects has evolved predominantly by increasing the metabolic capability of detoxificative systems and/or reducing xenobiotic target site sensitivity. In contrast to the limited range of nucleotide changes that lead to target site insensitivity, many molecular mechanisms lead to enhancements in xenobiotic metabolism. The genomic changes that lead to amplification, overexpression, and coding sequence variation in the three major groups of genes encoding metabolic enzymes, i.e., cytochrome P450 monooxygenases (P450s), esterases, and glutathione-S-transferases (GSTs), are the focus of this review. A substantial number of the adaptive genomic changes associated with insecticide resistance that have been characterized to date are transposon mediated. Several lines of evidence suggest that P450 genes involved in insecticide resistance, and perhaps insecticide detoxification genes in general, may share an evolutionary association with genes involved in allelochemical metabolism. Differences in the selective regime imposed by allelochemicals and insecticides may account for the relative importance of regulatory or structural mutations in conferring resistance.
Collapse
Affiliation(s)
- Xianchun Li
- Department of Entomology and BIO5, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
38
|
Sousa-Polezzi RDC, Bicudo HEMDC. Genetic variation along time in a Brazilian population of Aedes aegypti (Diptera: Culicidae), detected by changes in the esterase patterns. Genetica 2005; 125:43-53. [PMID: 16175454 DOI: 10.1007/s10709-005-4915-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 03/23/2005] [Indexed: 11/29/2022]
Abstract
Aedes aegypti from the Brazilian cities of São José do Rio Preto (SJ) and Goiânia (GO) were analyzed as to their esterase patterns and the results were compared with data obtained about 5 years before for SJ population. Esterase bands not detected in the previous study were now observed in mosquitoes from both SJ and GO populations, being the last considered a population resistant to insecticides. Other similarities between SJ and GO populations in this study, and some differences in comparison with the previous data on SJ were observed, involving, in addition to changes in band type, changes in frequency of mosquitoes expressing them and differential gene activation during development. As it is generally true for genetic features, changes in the esterase patterns are expected to be the result of factors such as selection by environmental conditions and genetic drift. In the present case, continuous use of insecticides aiming mosquito population size control in SJ by sanitary authorities could be involved in the observed changes. Changed esterases were classified as carboxylesterases and cholinesterases, which are enzymes already shown to take part in the development of resistance in several organisms. In addition, data obtained in the elapsed time by authorities responsible for the mosquito control has shown increasing insecticide resistance of SJ population mosquitoes parallel to increase in the total amount of esterases, reinforcing the mentioned possibility.
Collapse
Affiliation(s)
- Rita de Cássia Sousa-Polezzi
- Instituto de Biociências, Letras e Ciências Exatas (IBILCE), Departamento de Biologia, Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265, CEP 15054-000, São José do Rio Preto, SP, Brasil
| | | |
Collapse
|
39
|
|
40
|
Hemingway J, Hawkes NJ, McCarroll L, Ranson H. The molecular basis of insecticide resistance in mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:653-65. [PMID: 15242706 DOI: 10.1016/j.ibmb.2004.03.018] [Citation(s) in RCA: 652] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 03/18/2004] [Indexed: 05/09/2023]
Abstract
Insecticide resistance is an inherited characteristic involving changes in one or more insect gene. The molecular basis of these changes are only now being fully determined, aided by the availability of the Drosophila melanogaster and Anopheles gambiae genome sequences. This paper reviews what is currently known about insecticide resistance conferred by metabolic or target site changes in mosquitoes.
Collapse
Affiliation(s)
- Janet Hemingway
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | | | | | |
Collapse
|
41
|
Buss DS, Callaghan A. Molecular comparisons of the Culex pipiens (L.) complex esterase gene amplicons. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:433-441. [PMID: 15110864 DOI: 10.1016/j.ibmb.2004.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Revised: 02/06/2004] [Accepted: 02/10/2004] [Indexed: 05/24/2023]
Abstract
The amplification of carboxylesterase genes is a mechanism of organophosphate resistance in Culex mosquitoes. Amplified carboxylesterase genes from an insecticide resistant Culex pipiens strain collected in Cyprus were analysed and compared to other Culex amplified carboxylesterase alleles. A 12 kb section of genomic DNA containing two gene loci coding for carboxylesterase alleles A5 and B5 was cloned and sequenced. A comparison between this amplicon and one from a strain with co-amplified carboxylesterase alleles A2 and B2 revealed a number of differences. The intergenic spacer was 3.7 kb in length in the A5-B5 amplicon (2.7 kb in A2-B2) and contained putative Juan and transposable elements upstream of B5. A fragment of a gene with high homology to aldehyde oxidase was also present immediately downstream of A5. The comparison revealed no differences that would explain the successful spread of the A2-B2 amplicon worldwide whilst the A5-B5 amplicon is restricted to the Mediterranean.
Collapse
Affiliation(s)
- D S Buss
- Division of Zoology, School of Animal and Microbial Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK
| | | |
Collapse
|
42
|
Coleman M, Vontas JG, Hemingway J. Molecular characterization of the amplified aldehyde oxidase from insecticide resistant Culex quinquefasciatus. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:768-79. [PMID: 11846778 DOI: 10.1046/j.0014-2956.2001.02682.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Primary structural information including the complete nucleotide sequence of the first insect aldehyde oxidase (AO) was obtained from the common house mosquito Culex quinquefasciatus (Say) through cloning and sequencing of both genomic DNA and cDNA. The deduced amino-acid sequence encodes a 150-kDa protein of 1266 amino-acid residues, which is consistent with the expected monomeric subunit size of AO. The Culex AO sequence contains a molybdopterin cofactor binding domain and two iron-sulfur centres. A comparison of the partial sequences of AO from insecticide resistant and susceptible strains of C. quinquefasciatus shows two distinct alleles of this enzyme, one of which is amplified in the insecticide resistant strain on a 30-kb DNA amplicon alongside two resistance-associated esterases. The amplified AO gene results in elevated AO activity in all life stages, but activity is highest in 3rd instar larvae. The elevated enzyme can be seen as a separate band on polyacrylamide gel electrophoresis. The role of AO in xenobiotic oxidation in mammals and the partial inhibition of elevated AO activity by a range of insecticides in Culex, suggest that this AO may play a role in insecticide resistance.
Collapse
|
43
|
Doucet D, Tyshenko MG, Davies PL, Walker VK. A family of expressed antifreeze protein genes from the moth, Choristoneura fumiferana. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:38-46. [PMID: 11784296 DOI: 10.1046/j.0014-2956.2001.02628.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The freeze-intolerant insect, Choristoneura fumiferana (spruce budworm), produces multiple antifreeze protein (AFP) isoforms for protection during the overwintering stage. We now report the cloning of AFP genes from insects; Afp-Lu1 encodes a approximately 9-kDa AFP isoform, and Afp-Iu1 encodes a approximately 12-kDa AFP isoform. Both CfAFP genes have similar structures with a single 3- to 3.6-kb intron interrupting the coding region. The second exon of an additional CfAFP gene, 2.7a, encoding a new approximately 9-kDa isoform, was found 3.7 kb upstream of Afp-Lu1 and demonstrates that some AFP family members are linked in tandem. This gene appears to encode an AFP with 68-76% identity to previously isolated CfAFPs. With its eight Cys residues necessary for disulfide bonding and five perfectly conserved 'Thr button' (Thr-Xaa-Thr) ice-binding motifs, it can be modeled as a functional AFP. Southern blot analysis shows that there are approximately 17 genes in this AFP family, with each of the isoforms represented by two to five gene copies. Transcript accumulation from Afp-Lu1 and Afp-Iu1 (or closely related genes) was maximal during the overwintering stage, while 2.7a transcripts were only detected in first instars, larvae that are normally found only in the summer. Contrary to expectations, this differential expression demonstrates that CfAFP gene family transcripts are primarily regulated during development, rather than by seasonally low temperatures.
Collapse
Affiliation(s)
- Daniel Doucet
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
44
|
Pasteur N, Nancé E, Bons N. Tissue localization of overproduced esterases in the mosquito Culex pipiens (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2001; 38:791-801. [PMID: 11761376 DOI: 10.1603/0022-2585-38.6.791] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have investigated the tissue distribution of overproduced esterases A (A1 and A2) and B (B1 and B2) in strains of Culex pipiens L. by immunocytochemistry. S-LAB mosquitoes, lacking overproduced esterases, were used as reference. Tissues showing a strong specific reaction (fluorescence) were observed with anti-esterase A1 antiserum in S54 (with A1) and BOUAKE (with A2) strains, and with anti-esterase B1 antiserum in TEM-R and EDIT (with B1) and BOUAKE (with B2) strains. Overproduction of esterases A and B was tissue-specific. The most constant pattern for the two types of esterases was their overproduction in the alimentary canal and Malpighian tubes, although fluorescence varied in intensity depending on strains and developmental stages. There was no difference in the tissue distribution of esterases Al and A2. In contrast, esterases B pattern was highly variable among strains. Differences between TEM-R and EDIT were explained by the different overall overproduction and number of copies of the amplified gene (10-fold higher in TEM-R). The most striking difference in esterase B1 and B2 tissue localization concerned the nervous system where neurons were intenisely fluorescent in TEM-R and EDIT (B1), but not in BOUAKE (B2). All esterase B positive tissues in TEM-R contained large quantities of esterase B1 mRNA (in situ hybridization), indicating that at least part of the protein revealed by immunochemistry was produced in the tissues where it was observed. Our results are discussed in terms of the protection that the different esterases can confer during exposition to organophosphorous insecticides.
Collapse
Affiliation(s)
- N Pasteur
- Institut des Sciences de l'Evolution (UMR CNRS 5554), Université de Montpellier-2, France
| | | | | |
Collapse
|
45
|
Abstract
Insects, including Drosophila, readily respond to toxins such as phytotoxins, metal ions, and insecticides in their environment by evolving resistance. Although Drosophila are seldom targets for insecticides, nevertheless populations worldwide have evolved resistance to a variety of insecticides, and these resistance alleles persist in high frequency. In many cases, Drosophila use the same genetic and biochemical mechanisms that underlie resistance in pest insects, including single-site changes in target molecules resulting from point mutations and upregulation of degradative enzymes, particularly cytochrome P450 enzymes and glutathione S-transferases. However, several types of resistance found in pest insects, such as gene amplification and knock-down resistance, have not been reported in Drosophila field populations. Excellent Drosophila-plant models are being studied to understand the adaptation to phytotoxins; P450 enzymes are clearly involved in phytotoxin resistance in one of these models. The genetic advantages of D. melanogaster, including availability of the sequenced genome, should allow further study of these genes and identification of new ones, particularly regulatory genes, responsible for resistance.
Collapse
Affiliation(s)
- T G Wilson
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
46
|
Feschotte C, Fourrier N, Desmons I, Mouchès C. Birth of a retroposon: the Twin SINE family from the vector mosquito Culex pipiens may have originated from a dimeric tRNA precursor. Mol Biol Evol 2001; 18:74-84. [PMID: 11141194 DOI: 10.1093/oxfordjournals.molbev.a003721] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
SINEs are short interspersed repetitive elements found in many eukaryotic genomes and are believed to propagate by retroposition. Almost all SINEs reported to date have a composite structure made of a 5' tRNA-related region followed by a tRNA-unrelated region. Here, we describe a new type of tRNA-derived SINEs from the genome of the mosquito Culex pipiens. These elements, called TWINs, are approximately 220 bp long and reiterated at approximately 500 copies per haploid genome. TWINs have a unique structure compared with other tRNA-SINEs described so far. They consist of two tRNA(Arg)-related regions separated by a 39-bp spacer. Other tRNA-unrelated sequences include a 5-bp leader preceding the left tRNA-like unit and a short trailer located downstream of the right tRNA-like region. This 3' trailer is a 10-bp sequence that is ended by a TTTT motif and followed by a polyA tract of variable length. The right tRNA-like unit also contains a 16-bp sequence which is absent in the left one and appears to be located in the ancestral anticodon stem precisely at a position expected for a nuclear tRNA intron. According to this singular structure, we hypothesize that the TWIN: SINE family originated from an unprocessed polymerase III transcript containing two tRNA sequences. We suggest that some peculiar properties acquired by this dicistronic transcript, such as a polyA tail and a 3' stem-loop secondary structure, promote its retroposition by increasing its chances of being recognized by a reverse transcriptase encoded elsewhere in the C. pipiens genome.
Collapse
Affiliation(s)
- C Feschotte
- Laboratoire Ecologie Moléculaire et Faculté Sciences et Techniques Côte-Basque, Université de Pau et des Pays de l'Adour, Pau, France
| | | | | | | |
Collapse
|
47
|
Feschotte C, Mouchès C. Recent amplification of miniature inverted-repeat transposable elements in the vector mosquito Culex pipiens: characterization of the Mimo family. Gene 2000; 250:109-16. [PMID: 10854784 DOI: 10.1016/s0378-1119(00)00187-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We describe a new family of repetitive elements, named Mimo, from the mosquito Culex pipiens. Structural characteristics of these elements fit well with those of miniature inverted-repeat transposable elements (MITEs), which are ubiquitous and highly abundant in plant genomes. The occurrence of Mimo in C. pipiens provides new evidence that MITEs are not restricted to plant genomes, but may be widespread in arthropods as well. The copy number of Mimo elements in C. pipiens ( approximately 1000 copies in a 540Mb genome) supports the hypothesis that there is a positive correlation between genome size and the magnitude of MITE proliferation. In contrast to most MITE families described so far, members of the Mimo family share a high sequence conservation, which may reflect a recent amplification history in this species. In addition, we found that Mimo elements are a frequent nest for other MITE-like elements, suggesting that multiple and successive MITE transposition events have occurred very recently in the C. pipiens genome. Despite evidence for recent mobility of these MITEs, no element has been found to encode a protein; therefore, we do not know how they have transposed and have spread in the genome. However, some sequence similarities in terminal inverted-repeats suggest a possible filiation of some of these mosquito MITEs with pogo-like DNA transposons.
Collapse
Affiliation(s)
- C Feschotte
- Laboratoire Ecologie Moléculaire and Faculté Sciences et Techniques Côte-Basque, Université de Pau et des Pays de l'Adour, Pau, France
| | | |
Collapse
|
48
|
Hemingway J, Coleman M, Paton M, McCarroll L, Vaughan A, Desilva D. Aldehyde oxidase is coamplified with the World's most common Culex mosquito insecticide resistance-associated esterases. INSECT MOLECULAR BIOLOGY 2000; 9:93-99. [PMID: 10672076 DOI: 10.1046/j.1365-2583.2000.00160.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The evolution and spread of insecticide resistance is an important factor in human disease prevention and crop protection. The mosquito Culex quinquefasciatus is the main vector of the disease filariasis and a member of a species complex which is a common biting nuisance worldwide. The common insecticide resistance mechanism in this species involves germline amplification of the esterases estalpha21 and estbeta21. This amplification has arisen once and rapidly spread worldwide. Less common and more variable resistance phenotypes involve coamplification of estalpha3 and estbeta1, or individual amplification of a single estbeta1, different alleles of the same estalpha and estbeta gene loci. Estalpha21 and estbeta21 are on the same large fragment of amplified DNA (amplicon) 2.7 kb apart. We have now shown that this amplicon contains another full-length gene immediately 5' of estalpha21 which codes for a molybdenum-containing hydroxylase, with highest homology to aldehyde oxidase (AO) from other organisms. The full-length putative AO gene is not present on the estalpha3/estbeta1 or estbeta1 amplicons, but multiple truncated 5' ends of this gene are present around the presumed estalpha3/estbeta1 amplicon breakpoint. Polymerase chain reaction (PCR) analysis of insecticide-susceptible genomic DNA demonstrated that a different allele of the putative AO gene in its non-amplified form is immediately 5' of estalpha. The 'AO' gene on the estalpha21/estbeta21 amplicon is expressed and resistant insects have greater AO activity. This AO activity is sensitive to inhibition by an aldehyde-containing herbicide and pesticide. This enzyme may confer a selective advantage to these insects in the presence of insecticide, as AO in mammals is believed to be important in the detoxification process of several environmental pollutants.
Collapse
Affiliation(s)
- J Hemingway
- School of Biosciences, University of Wales, Cardiff, UK.
| | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Ono M, Swanson JJ, Field LM, Devonshire AL, Siegfried BD. Amplification and methylation of an esterase gene associated with insecticide-resistance in greenbugs, Schizaphis graminum (Rondani) (Homoptera: Aphididae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1999; 29:1065-1073. [PMID: 10612041 DOI: 10.1016/s0965-1748(99)00082-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The greenbug aphid, Schizaphis graminum (Rondani) has developed resistance to organophosphorus insecticides by the over-production of esterases that have been classified as Type I and Type II. The first twenty N-terminal amino acids of the Type I esterase were determined and used to design an oligonucleotide, which in conjunction with an active site primer derived from conserved sequences of other insect esterases and two internal primers specific for esterases from another aphid species resulted in a 0.85 kb genomic DNA fragment from resistant greenbugs. This was extended by 5' RACE which provided approximately 1.2 kb of the 5' end of the esterase gene. The 5' DNA sequence corresponded to 19 of the 20 known amino acids of the Type I esterase, with the last needing only a one base change (probably resulting from a PCR artifact). Furthermore, the sequence showed very close similarity to the amplified E4/FE4 esterase genes of Myzus persicae (Sulzer). A comparison of sequences suggested that the S. graminum gene has introns in the same positions as the first two introns of E4/FE4, with the second intron being considerably larger in S. graminum. Probing of Southern blots with the 0.85 kb esterase fragment showed that the gene encoding the Type I esterase is amplified 4- to 8-fold in resistant S. graminum and that the amplified sequences contain 5-methylcytosine at MspI/HpaII sites, again in agreement with previous findings for M. persicae genes.
Collapse
Affiliation(s)
- M Ono
- Department of Entomology, University of Nebraska, Lincoln 68583-0816, USA
| | | | | | | | | |
Collapse
|