1
|
Bellés-Sancho P, Golaz D, Paszti S, Vitale A, Liu Y, Bailly A, Eberl L, James EK, Pessi G. Tn-seq profiling reveals that NodS of the beta-rhizobium Paraburkholderia phymatum is detrimental for nodulating soybean. Commun Biol 2024; 7:1706. [PMID: 39730742 DOI: 10.1038/s42003-024-07385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 12/09/2024] [Indexed: 12/29/2024] Open
Abstract
The beta-rhizobial strain Paraburkholderia phymatum STM815T is noteworthy for its wide host range in nodulating legumes, primarily mimosoids (over 50 different species) but also some papilionoids. It cannot, however, nodulate soybean (Glycine max [L.] Merr.), one of the world's most important crops. Here, we constructed a highly saturated genome-wide transposon library of a P. phymatum strain and employed a transposon sequencing (Tn-seq) approach to investigate the underlying genetic mechanisms of symbiotic incompatibility between P. phymatum and soybean. Soybean seedlings inoculated with the P. phymatum Tn-seq library display nodules on the roots that are mainly occupied by different mutants in a gene, nodS, coding for a methyltransferase involved in the biosynthesis of nodulation factors. The construction of a nodS deletion strain and a complemented mutant confirms that nodS is responsible for the nodulation-incompatibility of P. phymatum with soybean. Moreover, infection tests with different host plants reveal that NodS is necessary for optimal nodulation of common bean (Phaseolus vulgaris), but it is not required for nodulation of its natural host Mimosa pudica. In conclusion, our results suggest that NodS is involved in determining nodulation specificity of P. phymatum.
Collapse
Affiliation(s)
- Paula Bellés-Sancho
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| | - Daphné Golaz
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Sarah Paszti
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Alessandra Vitale
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Laboratoires d'analyses médicales, Clinique de La Source, Lausanne, Switzerland
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Euan K James
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Tamang A, Swarnkar M, Kumar P, Kumar D, Pandey SS, Hallan V. Endomicrobiome of in vitro and natural plants deciphering the endophytes-associated secondary metabolite biosynthesis in Picrorhiza kurrooa, a Himalayan medicinal herb. Microbiol Spectr 2023; 11:e0227923. [PMID: 37811959 PMCID: PMC10715050 DOI: 10.1128/spectrum.02279-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Picrorhiza kurrooa is a major source of picrosides, potent hepatoprotective molecules. Due to the ever-increasing demands, overexploitation has caused an extensive decline in its population in the wild and placed it in the endangered plants' category. At present plant in-vitro systems are widely used for the sustainable generation of P. kurrooa plants, and also for the conservation of other commercially important, rare, endangered, and threatened plant species. Furthermore, the in-vitro-generated plants had reduced content of therapeutic secondary metabolites compared to their wild counterparts, and the reason behind, not well-explored. Here, we revealed the loss of plant-associated endophytic communities during in-vitro propagation of P. kurrooa plants which also correlated to in-planta secondary metabolite biosynthesis. Therefore, this study emphasized to consider the essential role of plant-associated endophytic communities in in-vitro practices which may be the possible reason for reduced secondary metabolites in in-vitro plants.
Collapse
Affiliation(s)
- Anish Tamang
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Mohit Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
| | - Pawan Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Shiv Shanker Pandey
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Vipin Hallan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
3
|
Gao ZP, Gu WC, Li J, Qiu QT, Ma BG. Independent Component Analysis Reveals the Transcriptional Regulatory Modules in Bradyrhizobium diazoefficiens USDA110. Int J Mol Sci 2023; 24:12544. [PMID: 37628727 PMCID: PMC10454721 DOI: 10.3390/ijms241612544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The dynamic adaptation of bacteria to environmental changes is achieved through the coordinated expression of many genes, which constitutes a transcriptional regulatory network (TRN). Bradyrhizobium diazoefficiens USDA110 is an important model strain for the study of symbiotic nitrogen fixation (SNF), and its SNF ability largely depends on the TRN. In this study, independent component analysis was applied to 226 high-quality gene expression profiles of B. diazoefficiens USDA110 microarray datasets, from which 64 iModulons were identified. Using these iModulons and their condition-specific activity levels, we (1) provided new insights into the connection between the FixLJ-FixK2-FixK1 regulatory cascade and quorum sensing, (2) discovered the independence of the FixLJ-FixK2-FixK1 and NifA/RpoN regulatory cascades in response to oxygen, (3) identified the FixLJ-FixK2 cascade as a mediator connecting the FixK2-2 iModulon and the Phenylalanine iModulon, (4) described the differential activation of iModulons in B. diazoefficiens USDA110 under different environmental conditions, and (5) proposed a notion of active-TRN based on the changes in iModulon activity to better illustrate the relationship between gene regulation and environmental condition. In sum, this research offered an iModulon-based TRN for B. diazoefficiens USDA110, which formed a foundation for comprehensively understanding the intricate transcriptional regulation during SNF.
Collapse
Affiliation(s)
| | | | | | | | - Bin-Guang Ma
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (Z.-P.G.); (W.-C.G.); (J.L.); (Q.-T.Q.)
| |
Collapse
|
4
|
Shang JY, Zhang P, Jia YW, Lu YN, Wu Y, Ji S, Chen L, Wang ET, Chen WX, Sui XH. Scrutiny of NolA and NodD1 Regulatory Roles in Symbiotic Compatibility Unveils New Insights into Bradyrhizobium guangxiense CCBAU53363 Interacting with Peanut (Arachis hypogaea) and Mung Bean (Vigna radiata). Microbiol Spectr 2023; 11:e0209622. [PMID: 36475917 PMCID: PMC9927474 DOI: 10.1128/spectrum.02096-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bradyrhizobium guangxiense CCBAU53363 efficiently nodulates peanut but exhibits incompatible interaction with mung bean. By comparing the common nod region with those of other peanut bradyrhizobia efficiently nodulating these two hosts, distinctive characteristics with a single nodD isoform (nodD1) and a truncated nolA were identified. However, the regulatory roles of NodD1 and NolA and their coordination in legume-bradyrhizobial interactions remain largely unknown in terms of explaining the contrasting symbiotic compatibility. Here, we report that nolA was important for CCBAU53363 symbiosis with peanut but restricted nodulation on mung bean, while nodD1 was dispensable for CCBAU53363 symbiosis with peanut but essential for nodulation on mung bean. Moreover, nolA exerted a cumulative contribution with nodD1 to efficient symbiosis with peanut. Additionally, mutants lacking nolA delayed nodulation on peanut, and both nolA and nodD1 were required for competitive nodule colonization. It is noteworth that most of the nodulation genes and type III secretion system (T3SS)-related genes were significantly downregulated in a strain 53ΔnodD1nolA mutant compared to wild-type strain CCBAU53363, and the downregulated nodulation genes also had a greater impact than T3SS-related genes on the symbiotic defect of 53ΔnodD1nolA on peanut, which was supported by a more severe symbiotic defect induced by 53ΔnodC than that with the 53ΔnodD1nopP, 53ΔnodD1rhcJ, and 53ΔnodD1ttsI mutants. NolA did not regulate nod gene expression but did regulate the T3SS effector gene nopP in an indirect way. Meanwhile, nolA, nodW, and some T3SS-related genes besides nopP were also demonstrated as new "repressors" that seriously impaired CCBAU53363 symbiosis with mung bean. Taken together, the roles and essentiality of nolA and nodD1 in modulating symbiotic compatibility are sophisticated and host dependent. IMPORTANCE The main findings of this study were that we clarified that the roles and essentiality of nodD1 and nolA are host dependent. Importantly, for the first time, NolA was found to positively regulate T3SS effector gene nopP to mediate incompatibility on mung bean. Additionally, NolA does not regulate nod genes, which are activated by NodD1. nolA exerts a cumulative effect with nodD1 on CCBAU53363 symbiosis with peanut. These findings shed new light on our understanding of coordinated regulation of NodD1 and NolA in peanut bradyrhizobia with different hosts.
Collapse
Affiliation(s)
- Jiao Ying Shang
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pan Zhang
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yu Wen Jia
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Ning Lu
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yue Wu
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuang Ji
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - La Chen
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - En Tao Wang
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xin Hua Sui
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Adaptive Evolution of Rhizobial Symbiosis beyond Horizontal Gene Transfer: From Genome Innovation to Regulation Reconstruction. Genes (Basel) 2023; 14:genes14020274. [PMID: 36833201 PMCID: PMC9957244 DOI: 10.3390/genes14020274] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
There are ubiquitous variations in symbiotic performance of different rhizobial strains associated with the same legume host in agricultural practices. This is due to polymorphisms of symbiosis genes and/or largely unexplored variations in integration efficiency of symbiotic function. Here, we reviewed cumulative evidence on integration mechanisms of symbiosis genes. Experimental evolution, in concert with reverse genetic studies based on pangenomics, suggests that gain of the same circuit of key symbiosis genes through horizontal gene transfer is necessary but sometimes insufficient for bacteria to establish an effective symbiosis with legumes. An intact genomic background of the recipient may not support the proper expression or functioning of newly acquired key symbiosis genes. Further adaptive evolution, through genome innovation and reconstruction of regulation networks, may confer the recipient of nascent nodulation and nitrogen fixation ability. Other accessory genes, either co-transferred with key symbiosis genes or stochastically transferred, may provide the recipient with additional adaptability in ever-fluctuating host and soil niches. Successful integrations of these accessory genes with the rewired core network, regarding both symbiotic and edaphic fitness, can optimize symbiotic efficiency in various natural and agricultural ecosystems. This progress also sheds light on the development of elite rhizobial inoculants using synthetic biology procedures.
Collapse
|
6
|
Ghantasala S, Roy Choudhury S. Nod factor perception: an integrative view of molecular communication during legume symbiosis. PLANT MOLECULAR BIOLOGY 2022; 110:485-509. [PMID: 36040570 DOI: 10.1007/s11103-022-01307-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Compatible interaction between rhizobial Nod factors and host receptors enables initial recognition and signaling events during legume-rhizobia symbiosis. Molecular communication is a new paradigm of information relay, which uses chemical signals or molecules as dialogues for communication and has been witnessed in prokaryotes, plants as well as in animal kingdom. Understanding this fascinating relay of signals between plants and rhizobia during the establishment of a synergistic relationship for biological nitrogen fixation represents one of the hotspots in plant biology research. Predominantly, their interaction is initiated by flavonoids exuding from plant roots, which provokes changes in the expression profile of rhizobial genes. Compatible interactions promote the secretion of Nod factors (NFs) from rhizobia, which are recognised by cognate host receptors. Perception of NFs by host receptors initiates the symbiosis and ultimately leads to the accommodation of rhizobia within root nodules via a series of mutual exchange of signals. This review elucidates the bacterial and plant perspectives during the early stages of symbiosis, explicitly emphasizing the significance of NFs and their cognate NF receptors.
Collapse
Affiliation(s)
- Swathi Ghantasala
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India.
| |
Collapse
|
7
|
Arashida H, Odake H, Sugawara M, Noda R, Kakizaki K, Ohkubo S, Mitsui H, Sato S, Minamisawa K. Evolution of rhizobial symbiosis islands through insertion sequence-mediated deletion and duplication. THE ISME JOURNAL 2022; 16:112-121. [PMID: 34272493 PMCID: PMC8692435 DOI: 10.1038/s41396-021-01035-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 11/08/2022]
Abstract
Symbiosis between organisms influences their evolution via adaptive changes in genome architectures. Immunity of soybean carrying the Rj2 allele is triggered by NopP (type III secretion system [T3SS]-dependent effector), encoded by symbiosis island A (SymA) in B. diazoefficiens USDA122. This immunity was overcome by many mutants with large SymA deletions that encompassed T3SS (rhc) and N2 fixation (nif) genes and were bounded by insertion sequence (IS) copies in direct orientation, indicating homologous recombination between ISs. Similar deletion events were observed in B. diazoefficiens USDA110 and B. japonicum J5. When we cultured a USDA122 strain with a marker gene sacB inserted into the rhc gene cluster, most sucrose-resistant mutants had deletions in nif/rhc gene clusters, similar to the mutants above. Some deletion mutants were unique to the sacB system and showed lower competitive nodulation capability, indicating that IS-mediated deletions occurred during free-living growth and the host plants selected the mutants. Among 63 natural bradyrhizobial isolates, 2 possessed long duplications (261-357 kb) harboring nif/rhc gene clusters between IS copies in direct orientation via homologous recombination. Therefore, the structures of symbiosis islands are in a state of flux via IS-mediated duplications and deletions during rhizobial saprophytic growth, and host plants select mutualistic variants from the resultant pools of rhizobial populations. Our results demonstrate that homologous recombination between direct IS copies provides a natural mechanism generating deletions and duplications on symbiosis islands.
Collapse
Affiliation(s)
- Haruka Arashida
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Haruka Odake
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Masayuki Sugawara
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Ryota Noda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Kaori Kakizaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Satoshi Ohkubo
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Hisayuki Mitsui
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan.
| |
Collapse
|
8
|
Salas A, Cabrera JJ, Jiménez-Leiva A, Mesa S, Bedmar EJ, Richardson DJ, Gates AJ, Delgado MJ. Bacterial nitric oxide metabolism: Recent insights in rhizobia. Adv Microb Physiol 2021; 78:259-315. [PMID: 34147187 DOI: 10.1016/bs.ampbs.2021.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a reactive gaseous molecule that has several functions in biological systems depending on its concentration. At low concentrations, NO acts as a signaling molecule, while at high concentrations, it becomes very toxic due to its ability to react with multiple cellular targets. Soil bacteria, commonly known as rhizobia, have the capacity to establish a N2-fixing symbiosis with legumes inducing the formation of nodules in their roots. Several reports have shown NO production in the nodules where this gas acts either as a signaling molecule which regulates gene expression, or as a potent inhibitor of nitrogenase and other plant and bacteria enzymes. A better understanding of the sinks and sources of NO in rhizobia is essential to protect symbiotic nitrogen fixation from nitrosative stress. In nodules, both the plant and the microsymbiont contribute to the production of NO. From the bacterial perspective, the main source of NO reported in rhizobia is the denitrification pathway that varies significantly depending on the species. In addition to denitrification, nitrate assimilation is emerging as a new source of NO in rhizobia. To control NO accumulation in the nodules, in addition to plant haemoglobins, bacteroids also contribute to NO detoxification through the expression of a NorBC-type nitric oxide reductase as well as rhizobial haemoglobins. In the present review, updated knowledge about the NO metabolism in legume-associated endosymbiotic bacteria is summarized.
Collapse
Affiliation(s)
- Ana Salas
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
9
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
10
|
Han F, He X, Chen W, Gai H, Bai X, He Y, Takeshima K, Ohwada T, Wei M, Xie F. Involvement of a Novel TetR-Like Regulator (BdtR) of Bradyrhizobium diazoefficiens in the Efflux of Isoflavonoid Genistein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1411-1423. [PMID: 32924759 DOI: 10.1094/mpmi-08-20-0243-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A wide variety of leguminous plant-released (iso)flavonoids, such as genistein, are potential inducers of the nodulation (nod) genes of endosymbiotic rhizobia for the production of Nod factors, which are vital signaling molecules for triggering the symbiotic process. However, these (iso)flavonoids are generally thought to be toxic to the bacterial partner to varying degrees. Here, a novel TetR-like regulator gene of the soybean symbiont Bradyrhizobium diazoefficiens USDA110, bdtR (systematic designation blr7023), was characterized. It was found to be rapidly and preferentially induced by genistein, and its mutation resulted in significantly increased expression of the neighboring bll7019-bll7021 genes, encoding a multidrug resistance efflux pump system, in the absence of this isoflavonoid. Then, the transcriptional start site of BdtR was determined, and it was revealed that BdtR acted as a transcriptional repressor of the above efflux system through the binding of an AT-rich operator, which could be completely prevented by genistein. In addition, the ΔbdtR deletion mutant strain showed higher accumulation of extracellular genistein and became less susceptible to the isoflavonoid. In contrast, the inactivation of BdtR led to the significantly decreased induction of a nodulation gene (nodY) independent of the expression of nodD1 and nodW and to much weaker nodulation competitiveness. Taken together, the results show that BdtR plays an early sensing role in maintaining the intracellular homeostasis of genistein, helping to alleviate its toxic effect on this bacterium by negatively regulating neighboring genes encoding an efflux pump system while being essentially required for nodule occupancy competitiveness.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Fang Han
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Xueqian He
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Wenwen Chen
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Haoyu Gai
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Xuemei Bai
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Yongxing He
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Keisuke Takeshima
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Takuji Ohwada
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Min Wei
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
11
|
Piromyou P, Songwattana P, Teamtisong K, Tittabutr P, Boonkerd N, Tantasawat PA, Giraud E, Göttfert M, Teaumroong N. Mutualistic co-evolution of T3SSs during the establishment of symbiotic relationships between Vigna radiata and Bradyrhizobia. Microbiologyopen 2019; 8:e00781. [PMID: 30628192 PMCID: PMC6612562 DOI: 10.1002/mbo3.781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023] Open
Abstract
This study supports the idea that the evolution of type III secretion system (T3SS) is one of the factors that controls Vigna radiata-bradyrhizobia symbiosis. Based on phylogenetic tree data and gene arrangements, it seems that the T3SSs of the Thai bradyrhizobial strains SUTN9-2, DOA1, and DOA9 and the Senegalese strain ORS3257 may share the same origin. Therefore, strains SUTN9-2, DOA1, DOA9, and ORS3257 may have evolved their T3SSs independently from other bradyrhizobia, depending on biological and/or geological events. For functional analyses, the rhcJ genes of ORS3257, SUTN9-2, DOA9, and USDA110 were disrupted. These mutations had cultivar-specific effects on nodulation properties. The T3SSs of ORS3257 and DOA9 showed negative effects on V. radiata nodulation, while the T3SS of SUTN9-2 showed no effect on V. radiata symbiosis. In the roots of V. radiata CN72, the expression levels of the PR1 gene after inoculation with ORS3257 and DOA9 were significantly higher than those after inoculation with ORS3257 ΩT3SS, DOA9 ΩT3SS, and SUTN9-2. The T3Es from ORS3257 and DOA9 could trigger PR1 expression, which ultimately leads to abort nodulation. In contrast, the T3E from SUTN9-2 reduced PR1 expression. It seems that the mutualistic relationship between SUTN9-2 and V. radiata may have led to the selection of the most well-adapted combination of T3SS and symbiotic bradyrhizobial genotype.
Collapse
Affiliation(s)
- Pongdet Piromyou
- School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Pongpan Songwattana
- School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Kamonluck Teamtisong
- The Center for Scientific and Technological EquipmentSuranaree University of TechnologyNakhon RatchasimaThailand
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Piyada Alisha Tantasawat
- School of Crop Production Technology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Eric Giraud
- IRD, Laboratory of Tropical and Mediterranean SymbiosesUMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de BaillarguetMontpellierFrance
| | | | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| |
Collapse
|
12
|
Liu YH, Wang ET, Jiao YS, Tian CF, Wang L, Wang ZJ, Guan JJ, Singh RP, Chen WX, Chen WF. Symbiotic characteristics of Bradyrhizobium diazoefficiens USDA 110 mutants associated with shrubby sophora (Sophora flavescens) and soybean (Glycine max). Microbiol Res 2018; 214:19-27. [PMID: 30031478 DOI: 10.1016/j.micres.2018.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/09/2018] [Accepted: 05/14/2018] [Indexed: 01/20/2023]
Abstract
Site-specific insertion plasmid pVO155 was used to knockout the genes involved in the alternation of host range of strain Bradyrhizobium diazoefficiens USDA 110 from its original determinate-nodule-forming host soybean (Glycine max), to promiscuous and indeterminate-nodule-forming shrubby legume sophora (Sophora flavescens). Symbiotic phenotypes of these mutants inoculated to these two legumes, were compared to those infected by wild-type strain USDA 110. Six genes of the total fourteen Tn5 transposon mutated genes were broken using the pVO155 plasmid. Both Tn5 and pVO155-inserted mutants could nodulate S. flavescens with different morphologies of low-efficient indeterminate nodules. One to several rod or irregular bacteroids, containing different contents of poly-β-hydroxybutyrate or polyphosphate were found within the symbiosomes in nodulated cells of S. flavescens infected by the pVO155-inserted mutants. Moreover, none of bacteroids were observed in the pseudonodules of S. flavescens, infected by wild-type strain USDA 110. These mutants had the nodulation ability with soybean but the symbiotic efficiency reduced to diverse extents. These findings enlighten the complicated interactions between rhizobia and legumes, i. e., mutation of genes involved in metabolic pathways, transporters, chemotaxis and mobility could alter the rhizobial entry and development of the bacteroid inside the nodules of a new host legume.
Collapse
Affiliation(s)
- Yuan Hui Liu
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D. F. 11340, México
| | - Yin Shan Jiao
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Lei Wang
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Zi Jian Wang
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Jia Jing Guan
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Raghvendra Pratap Singh
- Microbial Genomics Laboratory, National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh 275101, India
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| | - Wen Feng Chen
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Transcriptomic Studies of the Effect of nod Gene-Inducing Molecules in Rhizobia: Different Weapons, One Purpose. Genes (Basel) 2017; 9:genes9010001. [PMID: 29267254 PMCID: PMC5793154 DOI: 10.3390/genes9010001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 12/16/2022] Open
Abstract
Simultaneous quantification of transcripts of the whole bacterial genome allows the analysis of the global transcriptional response under changing conditions. RNA-seq and microarrays are the most used techniques to measure these transcriptomic changes, and both complement each other in transcriptome profiling. In this review, we exhaustively compiled the symbiosis-related transcriptomic reports (microarrays and RNA sequencing) carried out hitherto in rhizobia. This review is specially focused on transcriptomic changes that takes place when five rhizobial species, Bradyrhizobium japonicum (=diazoefficiens) USDA 110, Rhizobium leguminosarum biovar viciae 3841, Rhizobium tropici CIAT 899, Sinorhizobium (=Ensifer) meliloti 1021 and S. fredii HH103, recognize inducing flavonoids, plant-exuded phenolic compounds that activate the biosynthesis and export of Nod factors (NF) in all analysed rhizobia. Interestingly, our global transcriptomic comparison also indicates that each rhizobial species possesses its own arsenal of molecular weapons accompanying the set of NF in order to establish a successful interaction with host legumes.
Collapse
|
14
|
Passaglia LMP. Bradyrhizobium elkanii nod regulon: insights through genomic analysis. Genet Mol Biol 2017; 40:703-716. [PMID: 28767122 PMCID: PMC5596368 DOI: 10.1590/1678-4685-gmb-2016-0228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/16/2017] [Indexed: 12/26/2022] Open
Abstract
A successful symbiotic relationship between soybean [Glycinemax (L.) Merr.] and Bradyrhizobium species requires expression of the bacterial structural nod genes that encode for the synthesis of lipochitooligosaccharide nodulation signal molecules, known as Nod factors (NFs). Bradyrhizobium diazoefficiens USDA 110 possesses a wide nodulation gene repertoire that allows NF assembly and modification, with transcription of the nodYABCSUIJnolMNOnodZ operon depending upon specific activators, i.e., products of regulatory nod genes that are responsive to signaling molecules such as flavonoid compounds exuded by host plant roots. Central to this regulatory circuit of nod gene expression are NodD proteins, members of the LysR-type regulator family. In this study, publicly available Bradyrhizobium elkanii sequenced genomes were compared with the closely related B. diazoefficiens USDA 110 reference genome to determine the similarities between those genomes, especially with regards to the nod operon and nod regulon. Bioinformatics analyses revealed a correlation between functional mechanisms and key elements that play an essential role in the regulation of nod gene expression. These analyses also revealed new genomic features that had not been clearly explored before, some of which were unique for some B. elkanii genomes.
Collapse
Affiliation(s)
- Luciane M P Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Whole-Genome Sequences of 14 Strains of Bradyrhizobium canariense and 1 Strain of Bradyrhizobium japonicum Isolated from Lupinus spp. in Algeria. GENOME ANNOUNCEMENTS 2017; 5:5/29/e00676-17. [PMID: 28729275 PMCID: PMC5522942 DOI: 10.1128/genomea.00676-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We report here the whole-genome sequences of 14 strains of Bradyrhizobium canariense, isolated from root nodules of Lupinus microanthus and Lupinus angustifolius, and 1 strain of Bradyrhizobium japonicum isolated from root nodules from Lupinus angustifolius in Algeria. These sequences add to the known diversity of this agronomically important genus.
Collapse
|
16
|
Lardi M, Murset V, Fischer HM, Mesa S, Ahrens CH, Zamboni N, Pessi G. Metabolomic Profiling of Bradyrhizobium diazoefficiens-Induced Root Nodules Reveals Both Host Plant-Specific and Developmental Signatures. Int J Mol Sci 2016; 17:E815. [PMID: 27240350 PMCID: PMC4926349 DOI: 10.3390/ijms17060815] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/13/2016] [Accepted: 05/19/2016] [Indexed: 01/17/2023] Open
Abstract
Bradyrhizobium diazoefficiens is a nitrogen-fixing endosymbiont, which can grow inside root-nodule cells of the agriculturally important soybean and other host plants. Our previous studies described B. diazoefficiens host-specific global expression changes occurring during legume infection at the transcript and protein level. In order to further characterize nodule metabolism, we here determine by flow injection-time-of-flight mass spectrometry analysis the metabolome of (i) nodules and roots from four different B. diazoefficiens host plants; (ii) soybean nodules harvested at different time points during nodule development; and (iii) soybean nodules infected by two strains mutated in key genes for nitrogen fixation, respectively. Ribose (soybean), tartaric acid (mungbean), hydroxybutanoyloxybutanoate (siratro) and catechol (cowpea) were among the metabolites found to be specifically elevated in one of the respective host plants. While the level of C4-dicarboxylic acids decreased during soybean nodule development, we observed an accumulation of trehalose-phosphate at 21 days post infection (dpi). Moreover, nodules from non-nitrogen-fixing bacteroids (nifA and nifH mutants) showed specific metabolic alterations; these were also supported by independent transcriptomics data. The alterations included signs of nitrogen limitation in both mutants, and an increased level of a phytoalexin in nodules induced by the nifA mutant, suggesting that the tissue of these nodules exhibits defense and stress reactions.
Collapse
Affiliation(s)
- Martina Lardi
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland.
| | - Valérie Murset
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093 Zürich, Switzerland.
| | - Hans-Martin Fischer
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093 Zürich, Switzerland.
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), E-18080 Granada, Spain.
| | - Christian H Ahrens
- Agroscope, Institute for Plant Production Sciences, Research Group Molecular Diagnostics, Genomics and Bioinformatics & Swiss Institute of Bioinformatics (SIB), CH-8820 Wädenswil, Switzerland.
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, CH-8093 Zürich, Switzerland.
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland.
| |
Collapse
|
17
|
Lira MA, Nascimento LRS, Fracetto GGM. Legume-rhizobia signal exchange: promiscuity and environmental effects. Front Microbiol 2015; 6:945. [PMID: 26441880 PMCID: PMC4561803 DOI: 10.3389/fmicb.2015.00945] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/27/2015] [Indexed: 12/29/2022] Open
Abstract
Although signal exchange between legumes and their rhizobia is among the best-known examples of this biological process, most of the more characterized data comes from just a few legume species and environmental stresses. Although a relative wealth of information is available for some model legumes and some of the major pulses such as soybean, little is known about tropical legumes. This relative disparity in current knowledge is also apparent in the research on the effects of environmental stress on signal exchange; cool-climate stresses, such as low-soil temperature, comprise a relatively large body of research, whereas high-temperature stresses and drought are not nearly as well understood. Both tropical legumes and their environmental stress-induced effects are increasingly important due to global population growth (the demand for protein), climate change (increasing temperatures and more extreme climate behavior), and urbanization (and thus heavy metals). This knowledge gap for both legumes and their environmental stresses is compounded because whereas most temperate legume-rhizobia symbioses are relatively specific and cultivated under relatively stable environments, the converse is true for tropical legumes, which tend to be promiscuous, and grow in highly variable conditions. This review will clarify some of this missing information and highlight fields in which further research would benefit our current knowledge.
Collapse
Affiliation(s)
- Mario A. Lira
- Agronomy Department, Federal Rural University of PernambucoRecife, Brazil
- National Council for Research and Scientific and Technological DevelopmentBrasília, Brazil
| | - Luciana R. S. Nascimento
- Agronomy Department, Federal Rural University of PernambucoRecife, Brazil
- National Council for Research and Scientific and Technological DevelopmentBrasília, Brazil
| | | |
Collapse
|
18
|
Ledermann R, Bartsch I, Remus-Emsermann MN, Vorholt JA, Fischer HM. Stable Fluorescent and Enzymatic Tagging of Bradyrhizobium diazoefficiens to Analyze Host-Plant Infection and Colonization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:959-67. [PMID: 26035130 DOI: 10.1094/mpmi-03-15-0054-ta] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bradyrhizobium diazoefficiens USDA 110 (formerly named Bradyrhizobium japonicum) can fix dinitrogen when living as an endosymbiont in root nodules of soybean and some other legumes. Formation of a functional symbiosis relies on a defined developmental program mediated by controlled gene expression in both symbiotic partners. In contrast to other well-studied Rhizobium-legume model systems that have been thoroughly examined by means of genetically tagged strains, analysis of B. diazoefficiens host infection has been impaired due to the lack of suitable tagging systems. Here, we describe the construction of B. diazoefficiens strains constitutively expressing single-copy genes for fluorescent proteins (eBFP2, mTurquoise2, GFP+, sYFP2, mCherry, HcRed) and enzymes (GusA, LacZ). For stable inheritance, the constructs were recombined into the chromosome. Effectiveness and versatility of the tagged strains was demonstrated in plant infection assays. (i) The infection process was followed from root-hair attachment to colonization of nodule cells with epifluorescent microscopy. (ii) Monitoring mixed infections with two strains producing different fluorescent proteins allowed rapid analysis of nodule occupancy and revealed that the majority of nodules contained clonal populations. (iii) Microscopic analysis of nodules induced by fluorescent strains provided evidence for host-dependent control of B. diazoefficiens bacteroid morphology in nodules of Aeschynomene afraspera and Arachis hypogaea (peanut), as deduced from their altered morphology compared with bacteroids in soybean nodules.
Collapse
Affiliation(s)
- Raphael Ledermann
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Ilka Bartsch
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | | | - Julia A Vorholt
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Hans-Martin Fischer
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| |
Collapse
|
19
|
del Cerro P, Rolla-Santos AAP, Gomes DF, Marks BB, Pérez-Montaño F, Rodríguez-Carvajal MÁ, Nakatani AS, Gil-Serrano A, Megías M, Ollero FJ, Hungria M. Regulatory nodD1 and nodD2 genes of Rhizobium tropici strain CIAT 899 and their roles in the early stages of molecular signaling and host-legume nodulation. BMC Genomics 2015; 16:251. [PMID: 25880529 PMCID: PMC4393855 DOI: 10.1186/s12864-015-1458-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/09/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Nodulation and symbiotic nitrogen fixation are mediated by several genes, both of the host legume and of the bacterium. The rhizobial regulatory nodD gene plays a critical role, orchestrating the transcription of the other nodulation genes. Rhizobium tropici strain CIAT 899 is an effective symbiont of several legumes-with an emphasis on common bean (Phaseolus vulgaris)-and is unusual in carrying multiple copies of nodD, the roles of which remain to be elucidated. RESULTS Phenotypes, Nod factors and gene expression of nodD1 and nodD2 mutants of CIAT 899 were compared with those of the wild type strain, both in the presence and in the absence of the nod-gene-inducing molecules apigenin and salt (NaCl). Differences between the wild type and mutants were observed in swimming motility and IAA (indole acetic acid) synthesis. In the presence of both apigenin and salt, large numbers of Nod factors were detected in CIAT 899, with fewer detected in the mutants. nodC expression was lower in both mutants; differences in nodD1 and nodD2 expression were observed between the wild type and the mutants, with variation according to the inducing molecule, and with a major role of apigenin with nodD1 and of salt with nodD2. In the nodD1 mutant, nodulation was markedly reduced in common bean and abolished in leucaena (Leucaena leucocephala) and siratro (Macroptilium atropurpureum), whereas a mutation in nodD2 reduced nodulation in common bean, but not in the other two legumes. CONCLUSION Our proposed model considers that full nodulation of common bean by R. tropici requires both nodD1 and nodD2, whereas, in other legume species that might represent the original host, nodD1 plays the major role. In general, nodD2 is an activator of nod-gene transcription, but, in specific conditions, it can slightly repress nodD1. nodD1 and nodD2 play other roles beyond nodulation, such as swimming motility and IAA synthesis.
Collapse
Affiliation(s)
- Pablo del Cerro
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, 6 Apdo Postal 41012, Sevilla, Spain.
| | | | | | | | - Francisco Pérez-Montaño
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, 6 Apdo Postal 41012, Sevilla, Spain.
| | | | | | - Antonio Gil-Serrano
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apdo Postal 553, 41071, Sevilla, Spain.
| | - Manuel Megías
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, 6 Apdo Postal 41012, Sevilla, Spain.
| | - Francisco Javier Ollero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, 6 Apdo Postal 41012, Sevilla, Spain.
| | | |
Collapse
|
20
|
Zuleta LFG, Cunha CDO, de Carvalho FM, Ciapina LP, Souza RC, Mercante FM, de Faria SM, Baldani JI, Straliotto R, Hungria M, de Vasconcelos ATR. The complete genome of Burkholderia phenoliruptrix strain BR3459a, a symbiont of Mimosa flocculosa: highlighting the coexistence of symbiotic and pathogenic genes. BMC Genomics 2014; 15:535. [PMID: 24972629 PMCID: PMC4101177 DOI: 10.1186/1471-2164-15-535] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/05/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Burkholderia species play an important ecological role related to xenobiosis, the promotion of plant growth, the biocontrol of agricultural diseases, and symbiotic and non-symbiotic biological nitrogen fixation. Here, we highlight our study as providing the first complete genome of a symbiotic strain of B. phenoliruptrix, BR3459a (=CLA1), which was originally isolated in Brazil from nodules of Mimosa flocculosa and is effective in fixing nitrogen in association with this leguminous species. RESULTS Genomic comparisons with other pathogenic and non-pathogenic Burkholderia strains grouped B. phenoliruptrix BR3459a with plant-associated beneficial and environmental species, although it shares a high percentage of its gene repertoire with species of the B. cepacia complex (Bcc) and "pseudomallei" group. The genomic analyses showed that the bce genes involved in exopolysaccharide production are clustered together in the same genomic region, constituting part of the Group III cluster of non-pathogenic bacteria. Regarding environmental stresses, we highlight genes that might be relevant in responses to osmotic, heat, cold and general stresses. Furthermore, a number of particularly interesting genes involved in the machinery of the T1SS, T2SS, T3SS, T4ASS and T6SS secretion systems were identified. The xenobiotic properties of strain BR3459a were also investigated, and some enzymes involved in the degradation of styrene, nitrotoluene, dioxin, chlorocyclohexane, chlorobenzene and caprolactam were identified. The genomic analyses also revealed a large number of antibiotic-related genes, the most important of which were correlated with streptomycin and novobiocin. The symbiotic plasmid showed high sequence identity with the symbiotic plasmid of B. phymatum. Additionally, comparative analysis of 545 housekeeping genes among pathogenic and non-pathogenic Burkholderia species strongly supports the definition of a new genus for the second branch, which would include BR3459a. CONCLUSIONS The analyses of B. phenoliruptrix BR3459a showed key property of fixing nitrogen that together with genes for high tolerance to environmental stresses might explain a successful strategy of symbiosis in the tropics. The strain also harbours interesting sets of genes with biotechnological potential. However, the resemblance of certain genes to those of pathogenic Burkholderia raise concerns about large-scale applications in agriculture or for bioremediation.
Collapse
|
21
|
Siqueira AF, Ormeño-Orrillo E, Souza RC, Rodrigues EP, Almeida LGP, Barcellos FG, Batista JSS, Nakatani AS, Martínez-Romero E, Vasconcelos ATR, Hungria M. Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean. BMC Genomics 2014; 15:420. [PMID: 24888481 PMCID: PMC4070871 DOI: 10.1186/1471-2164-15-420] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 05/20/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The soybean-Bradyrhizobium symbiosis can be highly efficient in fixing nitrogen, but few genomic sequences of elite inoculant strains are available. Here we contribute with information on the genomes of two commercial strains that are broadly applied to soybean crops in the tropics. B. japonicum CPAC 15 (=SEMIA 5079) is outstanding in its saprophytic capacity and competitiveness, whereas B. diazoefficiens CPAC 7 (=SEMIA 5080) is known for its high efficiency in fixing nitrogen. Both are well adapted to tropical soils. The genomes of CPAC 15 and CPAC 7 were compared to each other and also to those of B. japonicum USDA 6T and B. diazoefficiens USDA 110T. RESULTS Differences in genome size were found between species, with B. japonicum having larger genomes than B. diazoefficiens. Although most of the four genomes were syntenic, genome rearrangements within and between species were observed, including events in the symbiosis island. In addition to the symbiotic region, several genomic islands were identified. Altogether, these features must confer high genomic plasticity that might explain adaptation and differences in symbiotic performance. It was not possible to attribute known functions to half of the predicted genes. About 10% of the genomes was composed of exclusive genes of each strain, but up to 98% of them were of unknown function or coded for mobile genetic elements. In CPAC 15, more genes were associated with secondary metabolites, nutrient transport, iron-acquisition and IAA metabolism, potentially correlated with higher saprophytic capacity and competitiveness than seen with CPAC 7. In CPAC 7, more genes were related to the metabolism of amino acids and hydrogen uptake, potentially correlated with higher efficiency of nitrogen fixation than seen with CPAC 15. CONCLUSIONS Several differences and similarities detected between the two elite soybean-inoculant strains and between the two species of Bradyrhizobium provide new insights into adaptation to tropical soils, efficiency of N2 fixation, nodulation and competitiveness.
Collapse
Affiliation(s)
- Arthur Fernandes Siqueira
- />Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), C.P. 60001, Londrina, PR 86051-990 Brazil
- />Embrapa Soja, C.P. 231, Londrina, PR 86001-970 Brazil
| | - Ernesto Ormeño-Orrillo
- />Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Rangel Celso Souza
- />Laboratório Nacional de Computação Científica, Rua Getúlio Vargas 333, Petrópolis, RJ 25651-071 Brazil
| | | | - Luiz Gonzaga Paula Almeida
- />Laboratório Nacional de Computação Científica, Rua Getúlio Vargas 333, Petrópolis, RJ 25651-071 Brazil
| | | | - Jesiane Stefânia Silva Batista
- />Department Structural, Molecular and Genetic Biology, Universidade Estadual de Ponta Grossa (UEPG), Av. General Carlos Cavalcanti 4748, Ponta Grossa, PR 84030-900 Brazil
| | | | | | | | - Mariangela Hungria
- />Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), C.P. 60001, Londrina, PR 86051-990 Brazil
- />Embrapa Soja, C.P. 231, Londrina, PR 86001-970 Brazil
| |
Collapse
|
22
|
Zhang XX, Guo HJ, Wang R, Sui XH, Zhang YM, Wang ET, Tian CF, Chen WX. Genetic divergence of bradyrhizobium strains nodulating soybeans as revealed by multilocus sequence analysis of genes inside and outside the symbiosis island. Appl Environ Microbiol 2014; 80:3181-90. [PMID: 24632260 PMCID: PMC4018923 DOI: 10.1128/aem.00044-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/07/2014] [Indexed: 01/26/2023] Open
Abstract
The genus Bradyrhizobium has been considered to be a taxonomically difficult group. In this study, phylogenetics and evolutionary genetics analyses were used to investigate divergence levels among Bradyrhizobium strains nodulating soybeans in China. Eleven genospecies were identified by sequence analysis of three phylogenetic and taxonomic markers (SMc00019, thrA, and truA). This was also supported by analyses of eight genes outside the symbiosis island ("off-island" genes; SMc00019, thrA, truA, fabB, glyA, phyR, exoN, and hsfA). However, seven genes inside the symbiosis island ("island" genes; nifA, nifH, nodC, nodV, fixA, trpD, and rhcC2) showed contrasting lower levels of nucleotide diversity and recombination rates than did off-island genes. Island genes had significantly incongruent gene phylogenies compared to the species tree. Four phylogenetic clusters were observed in island genes, and the epidemic cluster IV (harbored by Bradyrhizobium japonicum, Bradyrhizobium diazoefficiens, Bradyrhizobium huanghuaihaiense, Bradyrhizobium liaoningense, Bradyrhizobium daqingense, Bradyrhizobium sp. I, Bradyrhizobium sp. III, and Bradyrhizobium sp. IV) was not found in Bradyrhizobium yuanmingense, Bradyrhizobium sp. II, or Bradyrhizobium elkanii. The gene flow level of island genes among genospecies is discussed in the context of the divergence level of off-island genes.
Collapse
Affiliation(s)
- Xing Xing Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Hui Juan Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Rui Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Xin Hua Sui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Yan Ming Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Serventi F, Youard ZA, Murset V, Huwiler S, Bühler D, Richter M, Luchsinger R, Fischer HM, Brogioli R, Niederer M, Hennecke H. Copper starvation-inducible protein for cytochrome oxidase biogenesis in Bradyrhizobium japonicum. J Biol Chem 2012; 287:38812-23. [PMID: 23012364 DOI: 10.1074/jbc.m112.406173] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microarray analysis of Bradyrhizobium japonicum grown under copper limitation uncovered five genes named pcuABCDE, which are co-transcribed and co-regulated as an operon. The predicted gene products are periplasmic proteins (PcuA, PcuC, and PcuD), a TonB-dependent outer membrane receptor (PcuB), and a cytoplasmic membrane-integral protein (PcuE). Homologs of PcuC and PcuE had been discovered in other bacteria, namely PCu(A)C and YcnJ, where they play a role in cytochrome oxidase biogenesis and copper transport, respectively. Deletion of the pcuABCDE operon led to a pleiotropic phenotype, including defects in the aa(3)-type cytochrome oxidase, symbiotic nitrogen fixation, and anoxic nitrate respiration. Complementation analyses revealed that, under our assay conditions, the tested functions depended only on the pcuC gene and not on pcuA, pcuB, pcuD, or pcuE. The B. japonicum genome harbors a second pcuC-like gene (blr7088), which, however, did not functionally replace the mutated pcuC. The PcuC protein was overexpressed in Escherichia coli, purified to homogeneity, and shown to bind Cu(I) with high affinity in a 1:1 stoichiometry. The replacement of His(79), Met(90), His(113), and Met(115) by alanine perturbed copper binding. This corroborates the previously purported role of this protein as a periplasmic copper chaperone for the formation of the Cu(A) center on the aa(3)-type cytochrome oxidase. In addition, we provide evidence that PcuC and the copper chaperone ScoI are important for the symbiotically essential, Cu(A)-free cbb(3)-type cytochrome oxidase specifically in endosymbiotic bacteroids of soybean root nodules, which could explain the symbiosis-defective phenotype of the pcuC and scoI mutants.
Collapse
Affiliation(s)
- Fabio Serventi
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich (ETH Zürich), Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Host specificity determinants as a genetic continuum. Trends Microbiol 2011; 20:88-93. [PMID: 22196375 DOI: 10.1016/j.tim.2011.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/10/2011] [Accepted: 11/15/2011] [Indexed: 01/22/2023]
Abstract
Host specificity is an important concept that underlies the interaction of all clinically and agriculturally relevant microbes with their hosts. Changes in the host specificity of animal pathogens, in particular, are often of greatest concern due to their immediate and unexpected impact on human health. Host switching or host jumps can often be traced to modification of key microbial pathogenicity factors that facilitate the formation of particular host associations. An increase in the number of genome-level studies has begun revealing that almost any type of change, from the simplest to the most complex, can potentially impact host specificity. This review highlights examples of host specificity determinants of viruses, bacteria and fungi, and presents them from within a genetic continuum that spans from the single residue through to entire genomic islands.
Collapse
|
25
|
Koch M, Delmotte N, Rehrauer H, Vorholt JA, Pessi G, Hennecke H. Rhizobial adaptation to hosts, a new facet in the legume root-nodule symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:784-90. [PMID: 20459317 DOI: 10.1094/mpmi-23-6-0784] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Rhizobia are able to infect legume roots, elicit root nodules, and live therein as endosymbiotic, nitrogen-fixing bacteroids. Host recognition and specificity are the results of early programming events in bacteria and plants, in which important signal molecules play key roles. Here, we introduce a new aspect of this symbiosis: the adaptive response to hosts. This refers to late events in bacteroids in which specific genes are transcribed and translated that help the endosymbionts to meet the disparate environmental requirements imposed by the hosts in which they live. The host-adaptation concept was elaborated with Bradyrhizobium japonicum and three different legumes (soybean, cowpea, and siratro). Transcriptomes and proteomes in root-nodule bacteroids were analyzed and compared, and genes and proteins were identified which are specifically induced in only one of the three hosts. We focused on those determinants that were congruent in the two data sets of host-specific transcripts and proteins: seven for soybean, five for siratro, and two for cowpea. One gene cluster for a predicted ABC-type transporter, differentially expressed in siratro, was deleted in B. japonicum. The respective mutant had a symbiotic defect on siratro rather than on soybean or cowpea. This result demonstrates the value of the applied approach and corroborates the host-specific adaptation concept.
Collapse
Affiliation(s)
- Marion Koch
- Institute of Microbiology, ETH, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
Bühler D, Rossmann R, Landolt S, Balsiger S, Fischer HM, Hennecke H. Disparate pathways for the biogenesis of cytochrome oxidases in Bradyrhizobium japonicum. J Biol Chem 2010; 285:15704-13. [PMID: 20335176 DOI: 10.1074/jbc.m109.085217] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This work addresses the biogenesis of heme-copper terminal oxidases in Bradyrhizobium japonicum, the nitrogen-fixing root nodule symbiont of soybean. B. japonicum has four quinol oxidases and four cytochrome oxidases. The latter include the aa(3)- and cbb(3)-type oxidases. Although both have a Cu(B) center in subunit I, the subunit II proteins differ in having either a Cu(A) center (in aa(3)) or a covalently bound heme c (in cbb(3)). Two biogenesis factors were genetically studied here, the periplasmically exposed CoxG and ScoI proteins, which are the respective homologs of the mitochondrial copper-trafficking chaperones Cox11 and Sco1 for the formation of the Cu(B) center in subunit I and the Cu(A) center in subunit II of cytochrome aa(3). We could demonstrate copper binding to ScoI in vitro, a process for which the thiols of cysteine residues 74 and 78 in the ScoI polypeptide were shown to be essential. Knock-out mutations in the B. japonicum coxG and scoI genes led to loss of cytochrome aa(3) assembly and activity in the cytoplasmic membrane, whereas the cbb(3)-type cytochrome oxidase apparently remained unaffected. This suggests that subunit I of the cbb(3)-type oxidase obtains its copper cofactor via a different pathway than cytochrome aa(3). In contrast to the coxG mutation, the scoI mutation caused a decreased symbiotic nitrogen fixation activity. We hypothesize that a periplasmic B. japonicum protein other than any of the identified Cu(A) proteins depends on ScoI and is required for an effective symbiosis.
Collapse
Affiliation(s)
- Doris Bühler
- Institute of Microbiology, Swiss Federal Institute of Technology, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Somers E, Vanderleyden J, Srinivasan M. Rhizosphere Bacterial Signalling: A Love Parade Beneath Our Feet. Crit Rev Microbiol 2008; 30:205-40. [PMID: 15646398 DOI: 10.1080/10408410490468786] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Plant roots support the growth and activities of a wide variety of microorganisms that may have a profound effect on the growth and/or health of plants. Among these microorganisms, a high diversity of bacteria have been identified and categorized as deleterious, beneficial, or neutral with respect to the plant. The beneficial bacteria, termed plant growth-promoting rhizobacteria (PGPR), are widely studied by microbiologists and agronomists because of their potential in plant production. Azospirillum, a genus of versatile PGPR, is able to enhance the plant growth and yield of a wide range of economically important crops in different soils and climatic regions. Plant beneficial effects of Azospirillum have mainly been attributed to the production of phytohormones, nitrate reduction, and nitrogen fixation, which have been subject of extensive research throughout the years. These elaborate studies made Azospirillum one of the best-characterized genera of PGPR. However, the genetic and molecular determinants involved in the initial interaction between Azospirillum and plant roots are not yet fully understood. This review will mainly highlight the current knowledge on Azospirillum plant root interactions, in the context of preceding and ongoing research on the association between plants and plant growth-promoting rhizobacteria.
Collapse
Affiliation(s)
- E Somers
- Centre of Microbial and Plant Genetics, K U Leuven, Heverlee, Belgium.
| | | | | |
Collapse
|
28
|
Wei M, Yokoyama T, Minamisawa K, Mitsui H, Itakura M, Kaneko T, Tabata S, Saeki K, Omori H, Tajima S, Uchiumi T, Abe M, Ohwada T. Soybean seed extracts preferentially express genomic loci of Bradyrhizobium japonicum in the initial interaction with soybean, Glycine max (L.) Merr. DNA Res 2008; 15:201-14. [PMID: 18511436 PMCID: PMC2575884 DOI: 10.1093/dnares/dsn012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 05/02/2008] [Indexed: 11/12/2022] Open
Abstract
Initial interaction between rhizobia and legumes actually starts via encounters of both partners in the rhizosphere. In this study, the global expression profiles of Bradyrhizobium japonicum USDA 110 in response to soybean (Glycine max) seed extracts (SSE) and genistein, a major soybean-released isoflavone for nod genes induction of B. japonicum, were compared. SSE induced many genomic loci as compared with genistein (5.0 microM), nevertheless SSE-supplemented medium contained 4.7 microM genistein. SSE markedly induced four predominant genomic regions within a large symbiosis island (681 kb), which include tts genes (type III secretion system) and various nod genes. In addition, SSE-treated cells expressed many genomic loci containing genes for polygalacturonase (cell-wall degradation), exopolysaccharide synthesis, 1-aminocyclopropane-1-carboxylate deaminase, ribosome proteins family and energy metabolism even outside symbiosis island. On the other hand, genistein-treated cells exclusively showed one expression cluster including common nod gene operon within symbiosis island and six expression loci including multidrug resistance, which were shared with SSE-treated cells. Twelve putatively regulated genes were indeed validated by quantitative RT-PCR. Several SSE-induced genomic loci likely participate in the initial interaction with legumes. Thus, these results can provide a basic knowledge for screening novel genes relevant to the B. japonicum- soybean symbiosis.
Collapse
Affiliation(s)
- Min Wei
- Department of Agricultural and Life Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Tadashi Yokoyama
- Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu 183-8509, Tokyo, Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Science, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Hisayuki Mitsui
- Graduate School of Life Science, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Manabu Itakura
- Graduate School of Life Science, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Takakazu Kaneko
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Chiba 292-0812, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Chiba 292-0812, Japan
| | - Kazuhiko Saeki
- Department of Biological Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | - Hirofumi Omori
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shigeyuki Tajima
- Department of Life Science, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | - Toshiki Uchiumi
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan
| | - Mikiko Abe
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan
| | - Takuji Ohwada
- Department of Agricultural and Life Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
29
|
Lee KB, De Backer P, Aono T, Liu CT, Suzuki S, Suzuki T, Kaneko T, Yamada M, Tabata S, Kupfer DM, Najar FZ, Wiley GB, Roe B, Binnewies TT, Ussery DW, D'Haeze W, Herder JD, Gevers D, Vereecke D, Holsters M, Oyaizu H. The genome of the versatile nitrogen fixer Azorhizobium caulinodans ORS571. BMC Genomics 2008; 9:271. [PMID: 18522759 PMCID: PMC2443382 DOI: 10.1186/1471-2164-9-271] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 06/04/2008] [Indexed: 11/17/2022] Open
Abstract
Background Biological nitrogen fixation is a prokaryotic process that plays an essential role in the global nitrogen cycle. Azorhizobium caulinodans ORS571 has the dual capacity to fix nitrogen both as free-living organism and in a symbiotic interaction with Sesbania rostrata. The host is a fast-growing, submergence-tolerant tropical legume on which A. caulinodans can efficiently induce nodule formation on the root system and on adventitious rootlets located on the stem. Results The 5.37-Mb genome consists of a single circular chromosome with an overall average GC of 67% and numerous islands with varying GC contents. Most nodulation functions as well as a putative type-IV secretion system are found in a distinct symbiosis region. The genome contains a plethora of regulatory and transporter genes and many functions possibly involved in contacting a host. It potentially encodes 4717 proteins of which 96.3% have homologs and 3.7% are unique for A. caulinodans. Phylogenetic analyses show that the diazotroph Xanthobacter autotrophicus is the closest relative among the sequenced genomes, but the synteny between both genomes is very poor. Conclusion The genome analysis reveals that A. caulinodans is a diazotroph that acquired the capacity to nodulate most probably through horizontal gene transfer of a complex symbiosis island. The genome contains numerous genes that reflect a strong adaptive and metabolic potential. These combined features and the availability of the annotated genome make A. caulinodans an attractive organism to explore symbiotic biological nitrogen fixation beyond leguminous plants.
Collapse
Affiliation(s)
- Kyung-Bum Lee
- Laboratory of Plant Biotechnology, Biotechnology Research Center, University of Tokyo, Tokyo 113-8657, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jitacksorn S, Sadowsky MJ. Nodulation gene regulation and quorum sensing control density-dependent suppression and restriction of nodulation in the Bradyrhizobium japonicum-soybean symbiosis. Appl Environ Microbiol 2008; 74:3749-56. [PMID: 18441104 PMCID: PMC2446537 DOI: 10.1128/aem.02939-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 04/21/2008] [Indexed: 11/20/2022] Open
Abstract
The nodulation of Glycine max cv. Lambert and the nodulation-restricting plant introduction (PI) genotype PI 417566 by wild-type Bradyrhizobium japonicum USDA110 is regulated in a population-density-dependent manner. Nodulation on both plant genotypes was suppressed (inhibited) when plants received a high-density inoculum (10(9) cells/ml) of strain USDA110 grown in complex medium, and more nodules were produced on plants receiving a low-cell-density inoculum (10(5) cells/ml). Since cell-free supernatants from strain USDA110 grown to high cell density in complex medium decreased the expression of an nodY-lacZ fusion, this phenomenon was attributed to bradyoxetin-induced repression of nod gene expression. Inoculation of either the permissive soybean genotype (cv. Lambert) or PI 417566 with 10(9) cells/ml of the nodD2, nolA, nodW, and nwsB mutants of USDA110 enhanced nodulation (up to 24%) relative to that seen with inoculations done with 10(5) cells/ml of the mutants or the wild-type strain, indicating that these genes are involved in population-density-dependent nodulation of soybeans. In contrast, the number of nodules produced by an nodD1 mutant on either soybean genotype was less than those seen with the wild-type strain inoculated at a low inoculum density. The nodD2 mutant outcompeted B. japonicum strain USDA123 for nodulation of G. max cv. Lambert at a high or low inoculum density, and the results of root-tip-marking and time-to-nodulate studies indicated that the nolA and nodD2 mutants nodulated this soybean genotype faster than wild-type USDA110. Taken together, the results from these studies indicate that the nodD2 mutant of B. japonicum may be useful to enhance soybean nodulation at high inoculum densities and that NodD2 is a key repressor influencing host-controlled restriction of nodulation, density-dependent suppression of nodulation, perception of bradyoxetin, and competitiveness in the soybean-B. japonicum symbiosis.
Collapse
Affiliation(s)
- Siriluck Jitacksorn
- University of Minnesota, Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108, USA
| | | |
Collapse
|
31
|
Yokoyama T. Flavonoid-responsive nodY-lacZ expression in three phylogenetically different Bradyrhizobium groups. Can J Microbiol 2008; 54:401-10. [PMID: 18449225 DOI: 10.1139/w08-021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Previously, restriction fragment length polymorphism analysis using the nodD1YABC gene probe showed the genetic diversity of common nodD1ABC gene regions of Bradyrhizobium japonicum, Bradyrhizobium elkanii, and the Thai soybean Bradyrhizobium. The nodD1 sequences of representative strains of the 3 groups differed phylogenetically, suggesting that responses of NodD1 proteins of the 3 Bradyrhizobium groups to diverse flavonoids may differ. To confirm this hypothesis, 6 representative strains were chosen from the 3 Bradyrhizobium groups. Six reporter strains were constructed, all carrying the pZB32 plasmid, which contains a nod box and the nodY-lacZ fusion of B. japonicum USDA 110. Differences in nodY-lacZ expression among the strains in response to 37 flavonoid compounds at various concentrations were evaluated. Of those compounds, prunetin (4',5-dihydroxy-7-methoxyisoflavone) and esculetin (6,7-dihydroxycoumarin) were identified as Bradyrhizobium group-specific nod gene inducers. Esculetin showed nod gene induction activities unique to Thai Bradyrhizobium strains. The levels of nodY-lacZ induction among B. japonicum and Thai Bradyrhizobium strains increased with increasing concentration of prunetin, whereas, those in B. elkanii strains did not.
Collapse
Affiliation(s)
- Tadashi Yokoyama
- Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
32
|
Lang K, Lindemann A, Hauser F, Göttfert M. The genistein stimulon of Bradyrhizobium japonicum. Mol Genet Genomics 2008; 279:203-11. [PMID: 18214545 DOI: 10.1007/s00438-007-0280-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 07/30/2007] [Indexed: 12/25/2022]
Abstract
An initializing step in the rhizobia-legume symbiosis is the secretion of flavonoids by plants that leads to the expression of nodulation genes in rhizobia. Here we report the genome-wide transcriptional response of Bradyrhizobium japonicum to genistein, an isoflavone secreted by soybean. About 100 genes were induced in the wild type. This included all nod box-associated genes, the flagellar cluster and several genes that are likely to be involved in transport processes. To elucidate the role of known regulators, we analysed mutant strains. This revealed that the two-component response regulator NodW is essential for induction of almost all genistein-inducible genes, with the exception of 8 genes. The phenotype of the nodW mutant could be partially suppressed by overexpression of NwsB, which is also a two-component response regulator. These data indicate that genistein has a much broader function than mere induction of nod genes.
Collapse
Affiliation(s)
- Kathrin Lang
- Institute of Genetics, Dresden University of Technology, Helmholtzstrasse 10, 01069, Dresden, Germany
| | | | | | | |
Collapse
|
33
|
Pessi G, Ahrens CH, Rehrauer H, Lindemann A, Hauser F, Fischer HM, Hennecke H. Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1353-63. [PMID: 17977147 DOI: 10.1094/mpmi-20-11-1353] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The transcriptome of endosymbiotic Bradyrhizobium japonicum bacteroids was assessed, using RNA extracted from determinate soybean root nodules. Results were compared with the transcript profiles of B. japonicum cells grown in either aerobic or microaerobic culture. Microoxia is a known trigger for the induction of symbiotically relevant genes. In fact, one third of the genes induced in bacteroids at day 21 after inoculation are congruent with those up-regulated in culture by a decreased oxygen concentration. The other induced genes, however, may be regulated by cues other than oxygen limitation. Both groups of genes provide a rich source for the possible discovery of novel functions related to symbiosis. Samples taken at different timepoints in nodule development have led to the distinction of genes expressed early and late in bacteroids. The experimental approach applied here is also useful for B. japonicum mutant analyses. As an example, we compared the transcriptome of wild-type bacteroids with that of bacteroids formed by a mutant defective in the RNA polymerase transcription factor sigma54. This led to a collection of hitherto unrecognized B. japonicum genes potentially transcribed in planta in a sigma54-dependent manner.
Collapse
Affiliation(s)
- Gabriella Pessi
- Institute of Microbiology, Eidgenössische Technische Hochschule, CH-8093 Zürich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
34
|
New target genes controlled by the Bradyrhizobium japonicum two-component regulatory system RegSR. J Bacteriol 2007; 189:8928-43. [PMID: 17951393 DOI: 10.1128/jb.01088-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
RegSR-like proteins, members of the family of two-component regulatory systems, are present in a large number of proteobacteria in which they globally control gene expression mostly in a redox-responsive manner. The controlled target genes feature an enormous functional diversity. In Bradyrhizobium japonicum, the facultative root nodule symbiont of soybean, RegSR activate the transcription of the nitrogen fixation regulatory gene nifA, thus forming a RegSR-NifA cascade which is part of a complex regulatory network for gene regulation in response to changing oxygen concentrations. Whole-genome transcription profiling was performed here in order to assess the full regulatory scope of RegSR. The comparative analysis of wild-type and delta regR cells grown under oxic and microoxic conditions revealed that expression of almost 250 genes is dependent on RegR, a result that underscores the important contribution of RegR to oxygen- or redox-regulated gene expression in B. japonicum. Furthermore, transcription profiling of delta regR bacteroids compared with wild-type bacteroids revealed expression changes for about 1,200 genes in young and mature bacteroids. Incidentally, many of these were found to be induced in symbiosis when wild-type bacteroids were compared with free-living, culture-grown wild-type cells, and they appeared to encode diverse functions possibly related to symbiosis and nitrogen fixation. We demonstrated direct RegR-mediated control at promoter regions of several selected target genes by means of DNA binding experiments and in vitro transcription assays, which revealed six novel direct RegR target promoters.
Collapse
|
35
|
González V, Santamaría RI, Bustos P, Hernández-González I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramírez MA, Jiménez-Jacinto V, Collado-Vides J, Dávila G. The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci U S A 2006; 103:3834-9. [PMID: 16505379 PMCID: PMC1383491 DOI: 10.1073/pnas.0508502103] [Citation(s) in RCA: 257] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report the complete 6,530,228-bp genome sequence of the symbiotic nitrogen fixing bacterium Rhizobium etli. Six large plasmids comprise one-third of the total genome size. The chromosome encodes most functions necessary for cell growth, whereas few essential genes or complete metabolic pathways are located in plasmids. Chromosomal synteny is disrupted by genes related to insertion sequences, phages, plasmids, and cell-surface components. Plasmids do not show synteny, and their orthologs are mostly shared by accessory replicons of species with multipartite genomes. Some nodulation genes are predicted to be functionally related with chromosomal loci encoding for the external envelope of the bacterium. Several pieces of evidence suggest an exogenous origin for the symbiotic plasmid (p42d) and p42a. Additional putative horizontal gene transfer events might have contributed to expand the adaptive repertoire of R. etli, because they include genes involved in small molecule metabolism, transport, and transcriptional regulation. Twenty-three putative sigma factors, numerous isozymes, and paralogous families attest to the metabolic redundancy and the genomic plasticity necessary to sustain the lifestyle of R. etli in symbiosis and in the soil.
Collapse
Affiliation(s)
- Víctor González
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
- *To whom correspondence may be addressed. E-mail:
or
| | - Rosa I. Santamaría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Patricia Bustos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Ismael Hernández-González
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Arturo Medrano-Soto
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Gabriel Moreno-Hagelsieb
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Sarath Chandra Janga
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Miguel A. Ramírez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Verónica Jiménez-Jacinto
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Julio Collado-Vides
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Guillermo Dávila
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
- *To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
36
|
Brencic A, Winans SC. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 2005; 69:155-94. [PMID: 15755957 PMCID: PMC1082791 DOI: 10.1128/mmbr.69.1.155-194.2005] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diverse interactions between hosts and microbes are initiated by the detection of host-released chemical signals. Detection of these signals leads to altered patterns of gene expression that culminate in specific and adaptive changes in bacterial physiology that are required for these associations. This concept was first demonstrated for the members of the family Rhizobiaceae and was later found to apply to many other plant-associated bacteria as well as to microbes that colonize human and animal hosts. The family Rhizobiaceae includes various genera of rhizobia as well as species of Agrobacterium. Rhizobia are symbionts of legumes, which fix nitrogen within root nodules, while Agrobacterium tumefaciens is a pathogen that causes crown gall tumors on a wide variety of plants. The plant-released signals that are recognized by these bacteria are low-molecular-weight, diffusible molecules and are detected by the bacteria through specific receptor proteins. Similar phenomena are observed with other plant pathogens, including Pseudomonas syringae, Ralstonia solanacearum, and Erwinia spp., although here the signals and signal receptors are not as well defined. In some cases, nutritional conditions such as iron limitation or the lack of nitrogen sources seem to provide a significant cue. While much has been learned about the process of host detection over the past 20 years, our knowledge is far from being complete. The complex nature of the plant-microbe interactions makes it extremely challenging to gain a comprehensive picture of host detection in natural environments, and thus many signals and signal recognition systems remain to be described.
Collapse
Affiliation(s)
- Anja Brencic
- Department of Microbiology, 361A Wing Hall, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
37
|
Kobayashi H, Naciri-Graven Y, Broughton WJ, Perret X. Flavonoids induce temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. NGR234. Mol Microbiol 2004; 51:335-47. [PMID: 14756776 DOI: 10.1046/j.1365-2958.2003.03841.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rhizobia, soil bacteria of the Rhizobiales, enter the roots of homologous legumes, where they induce the formation of nitrogen-fixing nodules. Signals emanating from both symbiotic partners control nodule development. Efficient nodulation requires precise, temporal regulation of symbiotic genes. Roots continuously release flavonoids that interact with transcriptional activators of the LysR family. NodD proteins, which are members of this family, act both as sensors of the environment and modulate the expression of genes preceded by conserved promoter sequences called nod-boxes. The symbiotic plasmid of the broad host-range Rhizobium sp. NGR234 caries 19 nod-boxes (NB1 to NB19), all of which were cloned upstream of a lacZ-reporter gene. A flavonoid, daidzein was able to induce 18 of the 19 nod-boxes in a NodD1-dependent manner. Interestingly, induction of four nod-boxes (NB6, NB15, NB16 and NB17) is highly dependent on NodD2 and was delayed in comparison with the others. In turn, NodD2 is involved in the repression of the NB8 nodABCIJnolOnoeI operon. Activation of transcription of nodD2 is also dependent on flavonoids despite the absence of a nod-box like sequence in the upstream promoter region. Mutational analysis showed that syrM 2 (another member of the LysR family), which is controlled by NB19, is also necessary for expression of nodD 2. Thus, NodD1, NodD2 and SyrM2 co-modulate a flavonoid-inducible regulatory cascade that coordinates the expression of symbiotic genes with nodule development.
Collapse
Affiliation(s)
- Hajime Kobayashi
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, Université de Genève, 1 chemin de l'Impératrice, 1292 Chambésy, Genève, Switzerland
| | | | | | | |
Collapse
|
38
|
Streit WR, Schmitz RA, Perret X, Staehelin C, Deakin WJ, Raasch C, Liesegang H, Broughton WJ. An evolutionary hot spot: the pNGR234b replicon of Rhizobium sp. strain NGR234. J Bacteriol 2004; 186:535-42. [PMID: 14702322 PMCID: PMC305759 DOI: 10.1128/jb.186.2.535-542.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium sp. strain NGR234 has an exceptionally broad host range and is able to nodulate more than 112 genera of legumes. Since the overall organization of the NGR234 genome is strikingly similar to that of the narrow-host-range symbiont Rhizobium meliloti strain 1021 (also known as Sinorhizobium meliloti), the obvious question is why are the spectra of hosts so different? Study of the early symbiotic genes of both bacteria (carried by the SymA plasmids) did not provide obvious answers. Yet, both rhizobia also possess second megaplasmids that bear, among many other genes, those that are involved in the synthesis of extracellular polysaccharides (EPSs). EPSs are involved in fine-tuning symbiotic interactions and thus may help answer the broad- versus narrow-host-range question. Accordingly, we sequenced two fragments (total, 594 kb) that encode 575 open reading frames (ORFs). Comparisons revealed 19 conserved gene clusters with high similarity to R. meliloti, suggesting that a minimum of 28% (158 ORFs) of the genetic information may have been acquired from a common ancestor. The largest conserved cluster carried the exo and exs genes and contained 31 ORFs. In addition, nine highly conserved regions with high similarity to Agrobacterium tumefaciens C58, Bradyrhizobium japonicum USDA110, and Mesorhizobium loti strain MAFF303099, as well as two conserved clusters that are highly homologous to similar regions in the plant pathogen Erwinia carotovora, were identified. Altogether, these findings suggest that >/==" BORDER="0">40% of the pNGR234b genes are not strain specific and were probably acquired from a wide variety of other microbes. The presence of 26 ORFs coding for transposases and site-specific integrases supports this contention. Surprisingly, several genes involved in the degradation of aromatic carbon sources and genes coding for a type IV pilus were also found.
Collapse
Affiliation(s)
- W R Streit
- Institut für Mikrobiologie und Genetik, Universität Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Caldelari Baumberger I, Fraefel N, Göttfert M, Hennecke H. New NodW- or NifA-regulated Bradyrhizobium japonicum genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:342-351. [PMID: 12744463 DOI: 10.1094/mpmi.2003.16.4.342] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A cluster of genes coding for putative plant cell-wall degrading enzymes (i.e., genes for two endoglucanases [gunA and gunA2], one pectinmethylesterase [pme], and one polygalacturonase [pgl]) was identified by sequence similarities in the symbiotic region of the Bradyrhizobium japonicum chromosome. In addition, a systematic screen of the region revealed several genes potentially transcribed by the sigma(54)-RNA polymerase and activated by the transcriptional regulator NifA (i.e., genes for proteins with similarity to outer membrane proteins [id117 and id525] and a citrate carrier [id331 or citA] and one open reading frame without similarity to known proteins [id747]). Expression studies using transcriptional lacZ fusions showed that gunA2 and pgl were strongly induced by the isoflavone genistein in a NodW-dependent manner, suggesting a role of the gene products in early events of the nodulation process; by contrast, gunA and pme expression was very weak in the conditions tested. The gunA2 gene product was purified and was shown to have cellulase activity. beta-Galactosidase activity expressed from transcriptional lacZ fusions to id117, id525, and id747 in the wild type and in nifA and rpoN mutant backgrounds confirmed that their transcription was dependent on NifA and sigma(54). Despite the presence of a -24/-12-type promoter and a NifA binding site upstream of citA, no regulation could be demonstrated in this case. Null mutations introduced in gunA, gunA2, pgl, pme, citA, id117, id525, and id747 did not impair the symbiosis with the host plants.
Collapse
|
40
|
Loh J, Stacey G. Nodulation gene regulation in Bradyrhizobium japonicum: a unique integration of global regulatory circuits. Appl Environ Microbiol 2003; 69:10-7. [PMID: 12513971 PMCID: PMC152446 DOI: 10.1128/aem.69.1.10-17.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- John Loh
- Department of Plant Microbiology and Pathology, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
41
|
Krause A, Doerfel A, Göttfert M. Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:1228-35. [PMID: 12481995 DOI: 10.1094/mpmi.2002.15.12.1228] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Sequencing the symbiotic region of Bradyrhizobium japonicum revealed a gene cluster (tts) encoding a type III secretion system (TTSS) that is similar to those found in Mesorhizobium loti MAFF303099 and Rhizobium strain NGR234. In addition to genes that are likely to encode structural core components of the TTSS, the cluster contains several open reading frames that are found exclusively in rhizobia or that are specific to B. japonicum. Depending on the host, mutations within this cluster affected nodulation capacity to different extents. One of the genes likely encodes a transcriptional activator (TtsI) of the two-component regulatory family. Upstream of ttsI, a nod box promoter was identified. Expression of ttsI could be induced by genistein. This induction depended on the transcriptional activator protein NodW as well as the nodD1nodD2nolA gene region. TtsI was found to be involved in transcriptional regulation of the tts gene cluster. Sequence comparison revealed a conserved tts box element within putative promoter regions of several genes. Here, we propose a model of the regulatory cascade leading to the induction of the tts gene cluster.
Collapse
Affiliation(s)
- Andrea Krause
- Institut für Genetik, Technische Universität Dresden, Mommsenstrasse 13, 01062 Dresden, Germany.
| | | | | |
Collapse
|
42
|
O'Leary ND, O'Connor KE, Dobson ADW. Biochemistry, genetics and physiology of microbial styrene degradation. FEMS Microbiol Rev 2002; 26:403-17. [PMID: 12413667 DOI: 10.1111/j.1574-6976.2002.tb00622.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The last few decades have seen a steady increase in the global production and utilisation of the alkenylbenzene, styrene. The compound is of major importance in the petrochemical and polymer-processing industries, which can contribute to the pollution of natural resources via the release of styrene-contaminated effluents and off-gases. This is a cause for some concern as human over-exposure to styrene, and/or its early catabolic intermediates, can have a range of destructive health effects. These features have prompted researchers to investigate routes of styrene degradation in microorganisms, given the potential application of these organisms in bioremediation/biodegradation strategies. This review aims to examine the recent advances which have been made in elucidating the underlying biochemistry, genetics and physiology of microbial styrene catabolism, identifying areas of interest for the future and highlighting the potential industrial importance of individual catabolic pathway enzymes.
Collapse
Affiliation(s)
- Niall D O'Leary
- Microbiology Department, National Food Biotechnology Centre, National University of Ireland, Cork, Ireland.
| | | | | |
Collapse
|
43
|
Loh J, Carlson RW, York WS, Stacey G. Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proc Natl Acad Sci U S A 2002; 99:14446-51. [PMID: 12393811 PMCID: PMC137903 DOI: 10.1073/pnas.222336799] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2002] [Indexed: 11/18/2022] Open
Abstract
Bradyrhizobium japonicum is a symbiotic bacterium that nodulates soybean. Critical for the infection and establishment of this symbiosis are the bacterial nodulation genes (nod, nol, noe), which are induced in the presence of plant produced isoflavones. Transcription of the nodulation genes is also controlled in a population density-dependent fashion. Expression of the nod genes is maximal at low population densities, and decreases significantly at higher culture densities. Population density control of the nodulation genes involves NolA and NodD2, both of which function in tandem to repress nod gene expression. An extracellular secreted factor (CDF) is known to mediate this repression. Here, we report that CDF is a novel signaling molecule, designated bradyoxetin, different from other Gram-negative quorum signals. The proposed structure of bradyoxetin is 2-[4-[[4-(3-aminooxetan-2-yl)phenyl](imino)methyl]phenyl]oxetan-3-ylamine. Interestingly, expression of bradyoxetin is iron-regulated, and is maximally produced under iron-starved conditions. Consistent with this, expression of the nodulation genes occurred in an iron-dependent fashion. Addition of iron to B. japonicum cultures at high optical densities resulted in decreased bradyoxetin production, and a concomitant reduction in nolA expression. A corresponding increase in nodY-lacZ expression was observed with iron treatment.
Collapse
Affiliation(s)
- John Loh
- Department of Plant Microbiology and Pathology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
44
|
da Silva ACR, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LMC, do Amaral AM, Bertolini MC, Camargo LEA, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RMB, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJS, Ferreira RCC, Ferro MIT, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EGM, Lemos MVF, Locali EC, Machado MA, Madeira AMBN, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CFM, Miyaki CY, Moon DH, Moreira LM, Novo MTM, Okura VK, Oliveira MC, Oliveira VR, Pereira HA, Rossi A, Sena JAD, Silva C, de Souza RF, Spinola LAF, Takita MA, Tamura RE, Teixeira EC, Tezza RID, Trindade dos Santos M, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 2002; 417:459-63. [PMID: 12024217 DOI: 10.1038/417459a] [Citation(s) in RCA: 803] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genus Xanthomonas is a diverse and economically important group of bacterial phytopathogens, belonging to the gamma-subdivision of the Proteobacteria. Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, which affects most commercial citrus cultivars, resulting in significant losses worldwide. Symptoms include canker lesions, leading to abscission of fruit and leaves and general tree decline. Xanthomonas campestris pv. campestris (Xcc) causes black rot, which affects crucifers such as Brassica and Arabidopsis. Symptoms include marginal leaf chlorosis and darkening of vascular tissue, accompanied by extensive wilting and necrosis. Xanthomonas campestris pv. campestris is grown commercially to produce the exopolysaccharide xanthan gum, which is used as a viscosifying and stabilizing agent in many industries. Here we report and compare the complete genome sequences of Xac and Xcc. Their distinct disease phenotypes and host ranges belie a high degree of similarity at the genomic level. More than 80% of genes are shared, and gene order is conserved along most of their respective chromosomes. We identified several groups of strain-specific genes, and on the basis of these groups we propose mechanisms that may explain the differing host specificities and pathogenic processes.
Collapse
Affiliation(s)
- A C R da Silva
- Departamento de Bioquímica, Instituto de Química, Av. Prof. Lineu Prestes 748, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Loh J, Lohar DP, Andersen B, Stacey G. A two-component regulator mediates population-density-dependent expression of the Bradyrhizobium japonicum nodulation genes. J Bacteriol 2002; 184:1759-66. [PMID: 11872728 PMCID: PMC134882 DOI: 10.1128/jb.184.6.1759-1766.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bradyrhizobium japonicum nod gene expression was previously shown to be population density dependent. Induction of the nod genes is highest at low culture density and repressed at high population densities. This repression involves both NolA and NodD2 and is mediated by an extracellular factor found in B. japonicum conditioned medium. NolA and NodD2 expression is maximal at high population densities. We demonstrate here that a response regulator, encoded by nwsB, is required for the full expression of the B. japonicum nodYABC operon. In addition, NwsB is also required for the population-density-dependent expression of both nolA and nodD2. Expression of nolA and nodD2 in the nwsB mutant remained at a basal level, even at high culture densities. The nwsB defect could be complemented by overexpression of a second response regulator, NodW. Consistent with the fact that NolA and NodD2 repress nod gene expression, the expression of a nodY-lacZ fusion in the nwsB mutant was unaffected by culture density. In plant assays with GUS fusions, nodules infected with the wild type showed no nodY-GUS expression. In contrast, nodY-GUS expression was not repressed in nodules infected with the nwsB mutant. Nodule competition assays between the wild type and the nwsB mutant revealed that the addition of conditioned medium resulted in a competitive advantage for the nwsB mutant.
Collapse
Affiliation(s)
- John Loh
- Center for Legume Research and Department of Microbiology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | |
Collapse
|
46
|
Ip H, D'Aoust F, Begum AA, Zhang H, Smith DL, Driscoll BT, Charles TC. Bradyrhizobium japonicum mutants with enhanced sensitivity to genistein resulting in altered nod gene regulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:1404-1410. [PMID: 11768535 DOI: 10.1094/mpmi.2001.14.12.1404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Bradyrhizobium japonicum mutants with altered nod gene induction characteristics were isolated by screening mutants for genistein-independent nod gene expression. Plasmid pZB32, carrying a nodY::lacZ transcriptional gene fusion, was introduced into B. japonicum cells that had been subjected to UV mutagenesis. Ten independent transformants producing a blue color on plates containing 5bromo-4chloro-3indolyl-beta-D-galactopyranoside but lacking genistein, indicative of constitutive expression of the nodY::lacZ reporter gene, were isolated. Beta-galactosidase activity assays revealed that while all of the 10 strains were sensitive to low concentrations of genistein, none exhibited truly constitutive nodY::lacZ expression in liquid culture. Soybean plants inoculated with three of the mutants were chlorotic and stunted, with shoot dry weights close to those of the uninoculated plants, indicating the absence of nitrogen fixation. Differences in the kinetics of nodY::lacZ expression and lipochitin oligosaccharide Nod signal production suggested that the strains carried different mutations. Some of these strains may be useful in mitigating the low root zone temperature-associated delay in soybean nodulation at the northern extent of soybean cultivation.
Collapse
Affiliation(s)
- H Ip
- Department of Biology, University of Waterloo, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Lipochitin Nod signals are produced by rhizobia and are required for the establishment of a nitrogen-fixing symbiosis with a legume host. The nodulation genes encode products required for the synthesis of this signal and are induced in response to plant-produced flavonoid compounds. The addition of chitin and lipo-chitin oligomers to Bradyrhizobium japonicum cultures resulted in a significant reduction in the expression of a nod-lacZ fusion. Intracellular expression of NodC, encoding a chitin synthase, also reduced nod gene expression. In contrast, expression of the ChiB chitinase increased nod gene expression. The chain length of the oligosaccharide was important in feedback regulation, with chitotetraose molecules the best modulators of nod gene expression. Feedback regulation is mediated by the induction of nolA by chitin, resulting in elevated levels of the repressor protein, NodD2.
Collapse
Affiliation(s)
- J T Loh
- Center for Legume Research, Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA
| | | |
Collapse
|
48
|
Marie C, Broughton WJ, Deakin WJ. Rhizobium type III secretion systems: legume charmers or alarmers? CURRENT OPINION IN PLANT BIOLOGY 2001; 4:336-342. [PMID: 11418344 DOI: 10.1016/s1369-5266(00)00182-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mutagenesis and sequence analyses of rhizobial genomes have revealed the presence of genes encoding type III secretion systems. Considered as a machine used by plant and animal pathogens to deliver virulence factors into their hosts, this secretion apparatus has recently been proven to play a role in symbiotic bacteria-leguminous plant interactions.
Collapse
Affiliation(s)
- C Marie
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, Université de Genève, 1 ch de l'Impératrice, 1292, Chambésy-Genève, Switzerland.
| | | | | |
Collapse
|
49
|
Affiliation(s)
- W J Broughton
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, Université de Genève, 1292 Chambésy/Geneva, Switzerland.
| | | | | |
Collapse
|
50
|
Abstract
Eukaryotes often form symbioses with microorganisms. Among these, associations between plants and nitrogen-fixing bacteria are responsible for the nitrogen input into various ecological niches. Plants of many different families have evolved the capacity to develop root or stem nodules with diverse genera of soil bacteria. Of these, symbioses between legumes and rhizobia (Azorhizobium, Bradyrhizobium, Mesorhizobium, and Rhizobium) are the most important from an agricultural perspective. Nitrogen-fixing nodules arise when symbiotic rhizobia penetrate their hosts in a strictly controlled and coordinated manner. Molecular codes are exchanged between the symbionts in the rhizosphere to select compatible rhizobia from pathogens. Entry into the plant is restricted to bacteria that have the "keys" to a succession of legume "doors". Some symbionts intimately associate with many different partners (and are thus promiscuous), while others are more selective and have a narrow host range. For historical reasons, narrow host range has been more intensively investigated than promiscuity. In our view, this has given a false impression of specificity in legume-Rhizobium associations. Rather, we suggest that restricted host ranges are limited to specific niches and represent specialization of widespread and more ancestral promiscuous symbioses. Here we analyze the molecular mechanisms governing symbiotic promiscuity in rhizobia and show that it is controlled by a number of molecular keys.
Collapse
Affiliation(s)
- X Perret
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, Université de Genève, 1292 Chambésy/Geneva, Switzerland
| | | | | |
Collapse
|