1
|
Can Bostan O, Damadoglu E, Sarac BE, Kilic B, Sahiner UM, Karaaslan C, Karakaya G, Kalyoncu AF. Cytokine Profiles of Chronic Urticaria Patients and The Effect of Omalizumab Treatment. Dermatol Pract Concept 2023; 13:dpc.1304a272. [PMID: 37992372 PMCID: PMC10656130 DOI: 10.5826/dpc.1304a272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 11/24/2023] Open
Abstract
INTRODUCTION Cytokines are key mediators in immunological and inflammatory conditions, including chronic spontaneous urticaria (CSU). OBJECTIVES To investigate Th1, Th2, and Th17 cytokine profiles in CSU and to evaluate the possible effect of omalizumab treatment. METHODS Patients who were followed up for CSU, as well as healthy volunteers, were included in the study. To assess urticaria activity, the 7-day-Urticaria Activity Score (UAS-7), the Urticaria Control Test (UCT), and the Chronic Urticaria Quality of Life Questionnaire (CU-QoL) were filled. Serum levels of IL-6, IL-17, IL-31, eotaxin, RANTES, TNF-α, and TSLP were analyzed by ELISA and compared in CSU and control groups. The patients were analyzed in two groups as the omalizumab group and the non-omalizumab group based on their treatment status. RESULTS Total IgE, ESR, CRP, RANTES, and TNF-a were significantly different in the overall comparison of the three groups: CSU-receiving omalizumab, CSU-not receiving omalizumab, and control groups (P <0.01, 0.015, <0.01, <0.01 and <0.01 respectively). Total IgE, CRP, RANTES, and TNF-α values were similar in those who received and did not receive omalizumab, yet these biomarkers were significantly higher in both groups than in the control group (P < 0.05). Statistical significance in ESR was observed only between the CSU-receiving omalizumab group and the control group (P = 0.01). Within the CSU patients, there was a slight but significant correlation between UCT and TNF-α (P = 0.008, r = 0.32) and IL-17 (P = 0.06, r = 0.33) levels. CONCLUSIONS The investigated cytokine profile in CSU patients may differ from healthy controls, particularly with the higher levels of RANTES and TNF-α, and omalizumab treatment does not seem to affect that profile in CSU patients.
Collapse
Affiliation(s)
- Ozge Can Bostan
- Hacettepe University Faculty of Medicine, Department of Chest Diseases, Division of Allergy and Immunology, Ankara, Turkey
| | - Ebru Damadoglu
- Hacettepe University Faculty of Medicine, Department of Chest Diseases, Division of Allergy and Immunology, Ankara, Turkey
| | - Basak Ezgi Sarac
- Hacettepe University Faculty of Science, Department of Biology, Molecular Biology Section, Ankara, Turkey
| | - Busra Kilic
- Hacettepe University Faculty of Science, Department of Biology, Molecular Biology Section, Ankara, Turkey
| | - Umit Murat Sahiner
- Hacettepe University Faculty of Medicine, Department of Pediatric Allergy and Asthma, Ankara, Turkey
| | - Cagatay Karaaslan
- Hacettepe University Faculty of Science, Department of Biology, Molecular Biology Section, Ankara, Turkey
| | - Gul Karakaya
- Hacettepe University Faculty of Medicine, Department of Chest Diseases, Division of Allergy and Immunology, Ankara, Turkey
| | - Ali Fuat Kalyoncu
- Hacettepe University Faculty of Medicine, Department of Chest Diseases, Division of Allergy and Immunology, Ankara, Turkey
| |
Collapse
|
2
|
Guidolin D, Tamma R, Annese T, Tortorella C, Ingravallo G, Gaudio F, Musto P, Specchia G, Ribatti D. Different patterns of mast cell distribution in B-cell non-Hodgkin lymphomas. Pathol Res Pract 2023; 248:154661. [PMID: 37406375 DOI: 10.1016/j.prp.2023.154661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Tumor growth, progression, and metastatic capability in non-Hodgkin lymphomas (NHLs) are influenced by different component of tumor microenvironment, including inflammatory cells. Among these latter, mast cells play a crucial role. The spatial distribution of mast cells inside the tumor stroma of different types of B-cell NHLs has not yet been investigated. The aim of this study is to analyze the pattern of distribution of mast cells in biopsy samples obtained from three different types of B-cell NHLs by utilizing an image analysis system and a mathematical model to allow a quantitative estimation to characterize their spatial distribution. As concerns the spatial distributions exhibited by mast cells in diffuse large B cell lymphoma (DLBCL), some clustering was detected in both activated B-like (ABC) and germinal center B-like (GBC) groups. In follicular lymphoma (FL), mast cell spatial distribution tends to uniformly fill the tissue space as far as the grade of the pathology increases. Finally, in marginal lymphoma tissue (MALT) lymphoma, mast cells maintain a significantly clustered spatial distribution, suggesting a lower tendency of the cells to fill the tissue space in this pathological condition. Overall, the data of this study confirm that the analysis of the spatial distribution of the tumor cells is of particular significance for the knowledge of the biological processes occurring in tumor stroma and for the development of parameters to characterize the morphologic organization of the cellular patterns in different types of tumors.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, Padova, Italy
| | - Roberto Tamma
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy
| | - Tiziana Annese
- Department of Medicine and Surgery, University LUM "G. Degennaro", Casamassima, Ba, Italy
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, Padova, Italy
| | - Giuseppe Ingravallo
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Medical School, Bari, Italy
| | - Francesco Gaudio
- Section of Hematology, Department of Precision and Regenerative Medicine and Ionian Area, "Aldo Moro" University of Bari Medical School, Bari, Italy
| | - Pellegrino Musto
- Section of Hematology, Department of Precision and Regenerative Medicine and Ionian Area, "Aldo Moro" University of Bari Medical School, Bari, Italy
| | - Giorgina Specchia
- Section of Hematology, Department of Precision and Regenerative Medicine and Ionian Area, "Aldo Moro" University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
3
|
Knoedler L, Knoedler S, Panayi AC, Lee CAA, Sadigh S, Huelsboemer L, Stoegner VA, Schroeter A, Kern B, Mookerjee V, Lian CG, Tullius SG, Murphy GF, Pomahac B, Kauke-Navarro M. Cellular activation pathways and interaction networks in vascularized composite allotransplantation. Front Immunol 2023; 14:1179355. [PMID: 37266446 PMCID: PMC10230044 DOI: 10.3389/fimmu.2023.1179355] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Vascularized composite allotransplantation (VCA) is an evolving field of reconstructive surgery that has revolutionized the treatment of patients with devastating injuries, including those with limb losses or facial disfigurement. The transplanted units are typically comprised of different tissue types, including skin, mucosa, blood and lymphatic vasculature, muscle, and bone. It is widely accepted that the antigenicity of some VCA components, such as skin, is particularly potent in eliciting a strong recipient rejection response following transplantation. The fine line between tolerance and rejection of the graft is orchestrated by different cell types, including both donor and recipient-derived lymphocytes, macrophages, and other immune and donor-derived tissue cells (e.g., endothelium). Here, we delineate the role of different cell and tissue types during VCA rejection. Rejection of VCA grafts and the necessity of life-long multidrug immunosuppression remains one of the major challenges in this field. This review sheds light on recent developments in decoding the cellular signature of graft rejection in VCA and how these may, ultimately, influence the clinical management of VCA patients by way of novel therapies that target specific cellular processes.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Adriana C. Panayi
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Catherine A. A. Lee
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sam Sadigh
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Lioba Huelsboemer
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Viola A. Stoegner
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Andreas Schroeter
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Barbara Kern
- Department of Plastic Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Vikram Mookerjee
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Christine G. Lian
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
4
|
Zhu J, Han Q, Li Q, Wang F, Dong M, Liu N, Li X, Chen D, Yang D, Song Y, Yang Y. A multi-enzyme-like activity exhibiting mussel-inspired nanozyme hydrogel for bacteria-infected wound healing. Biomater Sci 2023; 11:2711-2725. [PMID: 36802175 DOI: 10.1039/d2bm02004a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacterial infection, tissue hypoxia, and inflammatory and oxidative stress are several key problems in wound healing of chronic infections. Herein, a multi-enzyme-like activity exhibiting multifunctional hydrogel made up of mussel-inspired carbon dot reduced-Ag (CDs/AgNPs) and Cu/Fe-nitrogen-doped carbon (Cu,Fe-NC) was designed. Due to the loss of glutathione (GSH) and oxidase (OXD)-like activity of the nanozyme (decomposes O2 to generate a superoxide anion radical (O2˙-) and hydroxyl radical production (˙OH)), the multifunctional hydrogel exhibited excellent antibacterial performance. More importantly, during the bacterial elimination within the inflammatory phase of wound healing, the hydrogel could act as a catalase (CAT)-like agent to supply adequate O2 by catalyzing intracellular H2O2 for hypoxia abatement. The catechol groups on the CDs/AgNPs endowed them with the dynamic redox equilibrium properties of phenol-quinones, thus providing the hydrogel with mussel-like adhesion properties. The multifunctional hydrogel was shown to excellently promote bacterial infection wound healing and maximize the efficiency of nanozymes.
Collapse
Affiliation(s)
- Junrun Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China.
| | - Qinqin Han
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China.
| | - Qiulan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China.
| | - Fang Wang
- State Key Laboratory of Primate Biomedical Research/Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China
| | - Miaodan Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China.
| | - Nuoya Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China.
| | - Xiao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China. .,Department of Gynaecology, the First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Dan Chen
- Peking University, School of Materials Science and Engineering, Beijing 100871, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China. .,State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, China
| | - Yuzhu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China.
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China.
| |
Collapse
|
5
|
Polak D, Elbe-Bürger A, Kitzmüller C, Zlabinger GJ, Bohle B. Human neutrophils require short exposure to cytokines and allergen to become functional antigen-presenting cells. Allergy 2023; 78:291-293. [PMID: 35912416 PMCID: PMC10087710 DOI: 10.1111/all.15460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/08/2022] [Accepted: 07/28/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Dominika Polak
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Claudia Kitzmüller
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Barbara Bohle
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Blue light irradiation alleviated dextran sulfate sodium-induced colitis mediated by the Bmal1 pathway in macrophages. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
West PW, Bulfone-Paus S. Mast cell tissue heterogeneity and specificity of immune cell recruitment. Front Immunol 2022; 13:932090. [PMID: 35967445 PMCID: PMC9374002 DOI: 10.3389/fimmu.2022.932090] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Mast cells occupy a unique niche within tissues as long lived perpetrators of IgE mediated hypersensitivity and anaphylaxis, as well as other immune responses. However, mast cells are not identical in different tissues and the impact of this tissue heterogeneity on the interaction with other immune cells and on defined immune responses is still unclear. In this review, we synthesize the characteristics of mast cell heterogeneity in the gut and the skin. Furthermore, we attempt to connect mast cell heterogeneity with functional diversity by exploring differences in mast cell-induced immune cell recruitment in these two model organs. The differential expression of certain receptors on mast cells of different tissues, notably tissue-specific expression patterns of integrins, complement receptors and MRGPRX2, could indicate that tissue environment-dependent factors skew mast cell-immune cell interactions, for example by regulating the expression of these receptors.
Collapse
Affiliation(s)
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
8
|
Michel L, Korste S, Spomer A, Hendgen-Cotta UB, Rassaf T, Totzeck M. PD1 Deficiency Modifies Cardiac Immunity during Baseline Conditions and in Reperfused Acute Myocardial Infarction. Int J Mol Sci 2022; 23:ijms23147533. [PMID: 35886878 PMCID: PMC9321105 DOI: 10.3390/ijms23147533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022] Open
Abstract
The programmed cell death protein 1 (PD1) immune checkpoint prevents inflammatory tissue damage by inhibiting immune reactions. Understanding the relevance of cardiac PD1 signaling may provide new insights into the inflammatory events under baseline conditions and disease. Here, we demonstrate distinct immunological changes upon PD1 deficiency in healthy hearts and during reperfused acute myocardial infarction (repAMI). In PD1-deficient mice, upregulated inflammatory cytokines were identified under baseline conditions including cardiac interleukins and extracellular signal-related kinase 1/2 (ERK1/2). A murine in vivo repAMI model to determine inflammatory changes in the early phase showed downregulation of the ligand PDL1, paralleled by an endothelial injury, indicated by loss of the CD31 signal. Immunofluorescence imaging showed decreased PDL1 expression specifically in the infarct zone, highlighting an involvement in PDL1 in myocardial injury response. Pharmacological depletion of PD1 prior to repAMI did not alter the area of infarction but led to increased numbers of CD8+ T cells in treated mice. We conclude that PD1/PDL1 signaling plays a significant role in healthy hearts and repAMI, emphasizing the relevance of adaptive immunity during myocardial injury. The findings highlight the risk for adverse outcomes from acute myocardial infarction in the growing group of patients receiving immune checkpoint inhibitor therapy.
Collapse
|
9
|
Picrasma quassioides (D.DON) Benn. Ethanolic Extract Improves Atopic Dermatitis and Hyperactivity Disorder in DNCB-Treated BALB/c Mice. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder that can be associated with psychiatric disorders. Picrasma quassioides (D.Don) Benn (Gomokpi, GMP), a traditional medicinal herb, has been used to treat skin diseases, including AD. The current study examined the effects of an ethanolic extract of GMP on 2,4-dinitrochlorobenzene (DNCB)-induced AD mice. The severity of skin symptoms and behavioral changes in AD mice were evaluated. GMP alleviated the AD-like skin inflammation and hyperlocomotion activity in DNCB-treated BALB/c mice. The effects of GMP behavioral abnormalities might occur by inhibiting TNF-α production in the PFC. GMP suppressed the production of TARC (Th2 chemokine) in TI-stimulated HaCaT keratinocytes. Moreover, GMP also exerted immunosuppressive effects by reducing TNF-α production in LPS-stimulated Raw264.7 macrophages, IL-17 expression in PI-stimulated EL4 cells, and VEGF secretion in SP-stimulated HMC-1 cells. These findings suggest that GMP could be useful for treating AD by modulating inflammatory responses and comorbid behavioral changes.
Collapse
|
10
|
Lee JA, Shin JY, Hong SS, Cho YR, Park JH, Seo DW, Oh JS, Kang JS, Lee JH, Ahn EK. Tetracera loureiri Extract Regulates Lipopolysaccharide-Induced Inflammatory Response Via Nuclear Factor-κB and Mitogen Activated Protein Kinase Signaling Pathways. PLANTS (BASEL, SWITZERLAND) 2022; 11:284. [PMID: 35161266 PMCID: PMC8839383 DOI: 10.3390/plants11030284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Tetracera loureiri (T. loureiri) is a woody climber inhabiting open deciduous or evergreen forests in Southeast Asia. A decoction comprising its stem and other herbs is a traditional Thai remedy for fatigue and jaundice, as well as to promote overall health. Anti-inflammatory effects induced by T. loureiri extract have not been reported. In this study, we investigated the anti-inflammatory effect of an ethanol extract of T. loureiri (ETL) on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 macrophages. We found that ETL treatment inhibited the production of nitric oxide (NO) in LPS-stimulated RAW264.7 cells, without affecting cell viability. The effect of ETL on the expression of various pro-inflammatory mediators was analyzed using reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). We observed that ETL inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels and decreased the production of prostaglandin E2 (PGE2) by COX-2 in RAW264.7 macrophages. ETL dose-dependently reduced the production of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in LPS-induced RAW264.7 cells, in a dose-dependent manner. Furthermore, ETL suppressed the LPS-induced nuclear translocation of the nuclear factor, NF-κB. Additionally, ETL was found to inhibit the activation of mitogen-activated protein kinases (MAPK), such as extracellular signal-regulated kinase, c-Jun-N-terminal kinase, and p38 MAPK. In conclusion, our findings demonstrate that ETL inhibits the expression of pro-inflammatory mediators and cytokines, thereby downregulating NF-κB and MAPK signaling pathways in LPS-stimulated macrophages, Consequently, ETL is a potential therapeutic agent for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Jung A Lee
- Bio-Center, Gyeonggido Business and Science Accelerator (GBSA), Suwon 16229, Korea; (J.A.L.); (S.S.H.); (Y.-R.C.)
| | - Ju Young Shin
- College of Pharmacy, Dankook University, Cheonan 31116, Korea; (J.Y.S.); (J.-H.P.); (D.-W.S.); (J.S.O.)
| | - Seong Su Hong
- Bio-Center, Gyeonggido Business and Science Accelerator (GBSA), Suwon 16229, Korea; (J.A.L.); (S.S.H.); (Y.-R.C.)
| | - Young-Rak Cho
- Bio-Center, Gyeonggido Business and Science Accelerator (GBSA), Suwon 16229, Korea; (J.A.L.); (S.S.H.); (Y.-R.C.)
| | - Ju-Hyoung Park
- College of Pharmacy, Dankook University, Cheonan 31116, Korea; (J.Y.S.); (J.-H.P.); (D.-W.S.); (J.S.O.)
| | - Dong-Wan Seo
- College of Pharmacy, Dankook University, Cheonan 31116, Korea; (J.Y.S.); (J.-H.P.); (D.-W.S.); (J.S.O.)
| | - Joa Sub Oh
- College of Pharmacy, Dankook University, Cheonan 31116, Korea; (J.Y.S.); (J.-H.P.); (D.-W.S.); (J.S.O.)
| | - Jae-Shin Kang
- Biological Genetic Resources Utilization Division, National Institute of Biological Resources, Incheon 22689, Korea; (J.-S.K.); (J.H.L.)
| | - Jae Ho Lee
- Biological Genetic Resources Utilization Division, National Institute of Biological Resources, Incheon 22689, Korea; (J.-S.K.); (J.H.L.)
| | - Eun-Kyung Ahn
- Bio-Center, Gyeonggido Business and Science Accelerator (GBSA), Suwon 16229, Korea; (J.A.L.); (S.S.H.); (Y.-R.C.)
| |
Collapse
|
11
|
Illiano A, Pinto G, Gaglione R, Arciello A, Amoresano A. Inflammation protein quantification by multiple reaction monitoring mass spectrometry in lipopolysaccharide-stimulated THP-1 cells. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9166. [PMID: 34270816 PMCID: PMC9285679 DOI: 10.1002/rcm.9166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 05/06/2023]
Abstract
RATIONALE Inflammation is a cascade of events mediated by a cytokine network triggering the cellular response. In order to monitor the modulation of the crucial inflammatory proteins, e.g., Tumour Necrosis Factor-α (TNF-α), Interferon-γ (INF-γ), Interleukin-8 (IL-8) and Interleukin-10 (IL-10), upon stimulation with endotoxins, differentiated and undifferentiated THP-1 cells were treated with lipopolysaccharides (LPSs) from E. coli, key cell wall components of Gram-negative bacteria. METHODS The multiple reaction monitoring mass spectrometry (MRM-MS) method was optimized by using the standard proteins to be quantified, in order to construct external calibration curves and define the analytical parameters. The developed method was used to quantify the above-mentioned inflammatory proteins in THP-1 differentiated cells upon stimulation with LPSs with high accuracy, sensitivity, and robustness. RESULTS The analysis of such proteins in MRM mode allowed the kinetics of stimulation along the time up to 24 h to be followed and the MS results were found to be comparable with those obtained by Western-blotting. A significant increase in TNF-α release triggered a cascade mechanism leading to the production of INF-γ and IL-8. IL-10, instead, was found to be constant throughout the process. CONCLUSIONS The developed MRM-MS method allowed the quantification of TNF-α, INF-γ, IL-8 and IL-10 along a time-course from 2 to 24 h. Hence, a trace of the kinetics of the inflammatory response in THP-1 cells upon stimulation with E. coli LPSs was obtained. Finally, the extensibility of the developed MRM method to serum samples and other matrices demonstrated the versatility of the approach and the possibility to quantify multiple target proteins in different biological samples by using a few microliters in a single analysis.
Collapse
Affiliation(s)
- Anna Illiano
- CEINGE Advanced BiotechnologiesUniversity of Naples Federico IINaplesItaly
- Department of Chemical SciencesUniversity of Naples Federico IINaplesItaly
- Consorzio Interuniversitario Istituto Nazionale Biostrutture e BiosistemiRomeItaly
| | - Gabriella Pinto
- Department of Chemical SciencesUniversity of Naples Federico IINaplesItaly
- Consorzio Interuniversitario Istituto Nazionale Biostrutture e BiosistemiRomeItaly
| | - Rosa Gaglione
- Department of Chemical SciencesUniversity of Naples Federico IINaplesItaly
| | - Angela Arciello
- Department of Chemical SciencesUniversity of Naples Federico IINaplesItaly
| | - Angela Amoresano
- Department of Chemical SciencesUniversity of Naples Federico IINaplesItaly
- Consorzio Interuniversitario Istituto Nazionale Biostrutture e BiosistemiRomeItaly
| |
Collapse
|
12
|
Rauner G, Kuperwasser C. Microenvironmental control of cell fate decisions in mammary gland development and cancer. Dev Cell 2021; 56:1875-1883. [PMID: 34256927 DOI: 10.1016/j.devcel.2021.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022]
Abstract
Cell fate decisions are critical for adequate tissue development, maintenance and regeneration. In the mammary gland, epithelial cell fates are tightly controlled by the microenvironment. Here, we review how cell fate decisions are regulated by components of the microenvironment during mammary gland development and how pathological changes in the microenvironment can alter cell fates, leading to malignancy. Specifically, we describe the current understanding of how mammary cell fate is controlled and directed by three elements: the extracellular matrix, the immune microenvironment, and hormones-and how these elements can converge to create microenvironments that promote a fourth element: DNA damage.
Collapse
Affiliation(s)
- Gat Rauner
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Charlotte Kuperwasser
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory for the Convergence of Biomedical, Physical, and Engineering Sciences, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
13
|
Ribatti D, Annese T, Tamma R. Adipocytes, mast cells and angiogenesis. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:1051-1056. [PMID: 34171054 PMCID: PMC8343648 DOI: 10.47162/rjme.61.4.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Healthy adipose tissue contains a wide variety of innate and adaptive immune cells, including macrophages, dendritic cells, mast cells, eosinophils, neutrophils, and lymphocytes. Numerous signaling molecules in the adipose microenvironment can positively or negatively modulate angiogenic processes, regulate the interaction between the vascular system and adipocytes, and participate in tumor progression. Mast cells are involved in the new formation or metabolism of fat, are present in abundant quantities in fatty tissue, among fat cells, and a number of mediators released from mast cells play a role in adipogenesis. Moreover, mast cells produce several pro-angiogenic factors and are involved in tumor angiogenesis. In this context, the angiogenic effect might be amplified when the adipocytes and mast cells act in concert, and treatment of adipose tissue- and mast cell-associated cancers with anti-angiogenic drugs may represent an alternative or adjuvant strategy for the treatment of these tumors.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy;
| | | | | |
Collapse
|
14
|
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) has infected more than 42.5 million people globally resulting in the death of over 1.15 million subjects. It has inflicted severe public health and economic hardships across the world. In addition to acute respiratory distress syndrome, respiratory failure, sepsis, and acute kidney injury, COVID-19 also causes heart failure (HF). COVID-19-induced HF is manifested via different mechanisms, including, but not limited to, (1) virus-induced infiltration of inflammatory cells, which could impair the function of the heart; (2) pro-inflammatory cytokines (monocyte chemoattractant protein-1, interleukin-1β; interleukin-6; tumor necrosis factor-α) that could cause necrosis and death of the myocardium; (3) endothelial injury coupled with micro-thrombosis which could damage the endocardium; and (4) acute respiratory distress syndrome and respiratory failure that could lead to heart failure due to severe hypoxia. It is concluded that the etiology of COVID-19-induced HF is multifactorial and mitigation of the development of HF in patients with COVID-19 will require different approaches such as social distancing, drug therapy, and the urgent development of a vaccine to eradicate the disease.
Collapse
Affiliation(s)
- Ernest A. Adeghate
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Nabil Eid
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Jaipaul Singh
- School of Natural Sciences, University of Central Lancashire, PR1 2HE Preston, England, UK
| |
Collapse
|
15
|
Kozaczek M, Bottje W, Kong B, Dridi S, Albataineh D, Lassiter K, Hakkak R. Long-Term Soy Protein Isolate Consumption Reduces Liver Steatosis Through Changes in Global Transcriptomics in Obese Zucker Rats. Front Nutr 2020; 7:607970. [PMID: 33363197 PMCID: PMC7759473 DOI: 10.3389/fnut.2020.607970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
To determine how soy protein isolate (SPI) ameliorated liver steatosis in male obese Zucker rats, we conducted global transcriptomic expression (RNAseq) analysis on liver samples of male rats fed either the SPI or a control casein (CAS)-based diet (n = 8 per group) for 16 weeks. Liver transcriptomics were analyzed using an Ilumina HiSeq system with 2 × 100 base pair paired-end reads method. Bioinformatics was conducted using Ingenuity Pathway Analysis (IPA) software (Qiagen, CA) with P < 0.05 and 1.3-fold differential expression cutoff values. Regression analysis between RNAseq data and targeted mRNA expression analysis of 12 top differentially expressed genes (from the IPA program) using quantitative PCR (qPCR) revealed a significant regression analysis (r2 = 0.69, P = 0.0008). In addition, all qPCR values had qualitatively similar direction of up- or down-regulation compared to the RNAseq transcriptomic data. Diseases and function analyses that were based on differentially expressed target molecules in the dataset predicted that lipid metabolism would be enhanced whereas inflammation was predicted to be inhibited in SPI-fed compared to CAS-fed rats at 16 weeks. Combining upstream regulator and regulator effects functions in IPA facilitates the prediction of upstream regulators (e.g., transcription regulators) that could play important roles in attenuating or promoting liver steatosis due to SPI or CAS diets. Upstream regulators that were predicted to be activated (from expression of down-stream targets) linked to increased conversion of lipid and transport of lipid in SPI-fed rats included hepatocyte nuclear factor 4 alpha (HNF4A) and aryl hydrocarbon receptor (AHR). Upstream regulators that were predicted to be activated in CAS-fed rats linked to activation of phagocytosis and neutrophil chemotaxis included colony stimulating factor 2 and tumor necrosis factor. The results provide clear indication that long-term SPI-fed rats exhibited diminished inflammatory response and increased lipid transport in liver compared to CAS-fed rats that likely would contribute to reduced liver steatosis in this obese Zucker rat model.
Collapse
Affiliation(s)
- Melisa Kozaczek
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Poultry Science & The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Walter Bottje
- Department of Poultry Science & The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Byungwhi Kong
- Department of Poultry Science & The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Department of Poultry Science & The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Diyana Albataineh
- Department of Poultry Science & The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Kentu Lassiter
- Department of Poultry Science & The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Reza Hakkak
- Department of Poultry Science & The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| |
Collapse
|
16
|
Hosio M, Jaks V, Lagus H, Vuola J, Ogawa R, Kankuri E. Primary Ciliary Signaling in the Skin-Contribution to Wound Healing and Scarring. Front Cell Dev Biol 2020; 8:578384. [PMID: 33282860 PMCID: PMC7691485 DOI: 10.3389/fcell.2020.578384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Primary cilia (PC) are solitary, post-mitotic, microtubule-based, and membrane-covered protrusions that are found on almost every mammalian cell. PC are specialized cellular sensory organelles that transmit environmental information to the cell. Signaling through PC is involved in the regulation of a variety of cellular processes, including proliferation, differentiation, and migration. Conversely, defective, or abnormal PC signaling can contribute to the development of various pathological conditions. Our knowledge of the role of PC in organ development and function is largely based on ciliopathies, a family of genetic disorders with mutations affecting the structure and function of PC. In this review, we focus on the role of PC in their major signaling pathways active in skin cells, and their contribution to wound healing and scarring. To provide comprehensive insights into the current understanding of PC functions, we have collected data available in the literature, including evidence across cell types, tissues, and animal species. We conclude that PC are underappreciated subcellular organelles that significantly contribute to both physiological and pathological processes of the skin development and wound healing. Thus, PC assembly and disassembly and PC signaling may serve as attractive targets for antifibrotic and antiscarring therapies.
Collapse
Affiliation(s)
- Mayu Hosio
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jyrki Vuola
- Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Park CH, Min SY, Yu HW, Kim K, Kim S, Lee HJ, Kim JH, Park YJ. Effects of Apigenin on RBL-2H3, RAW264.7, and HaCaT Cells: Anti-Allergic, Anti-Inflammatory, and Skin-Protective Activities. Int J Mol Sci 2020; 21:ijms21134620. [PMID: 32610574 PMCID: PMC7370139 DOI: 10.3390/ijms21134620] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 12/31/2022] Open
Abstract
Apigenin (4',5,7-trihydroxyflavone, flavonoid) is a phenolic compound that is known to reduce the risk of chronic disease owing to its low toxicity. The first study on apigenin analyzed its effect on histamine release in the 1950s. Since then, anti-mutation and antitumor properties of apigenin have been widely reported. In the present study, we evaluated the apigenin-mediated amelioration of skin disease and investigated its applicability as a functional ingredient, especially in cosmetics. The effect of apigenin on RAW264.7 (murine macrophage), RBL-2H3 (rat basophilic leukemia), and HaCaT (human immortalized keratinocyte) cells were analyzed. Apigenin (100 μM) significantly inhibited nitric oxide (NO) production, cytokine expression (interleukin (IL)-1β, IL6, cyclooxygenase (COX)-2, and inducible nitric oxide synthase [iNOS]), and phosphorylation of mitogen-activated protein kinase (MAPK) signal molecules, including extracellular signal-regulated kinase (ERK) and c-Jun N-terminal protein kinase (JNK) in RAW264.7 cells. Apigenin (30 M) also inhibited the phosphorylation of signaling molecules (Lyn, Syk, phospholipase Cγ1, ERK, and JNK) and the expression of high-affinity IgE receptor FcεRIα and cytokines (tumor necrosis factor (TNF)-α, IL-4, IL-5, IL-6, IL-13, and COX-2) that are known to induce inflammation and allergic responses in RBL-2H3 cells. Further, apigenin (20 μM) significantly induced the expression of filaggrin, loricrin, aquaporin-3, hyaluronic acid, hyaluronic acid synthase (HAS)-1, HAS-2, and HAS-3 in HaCaT cells that are the main components of the physical barrier of the skin. Moreover, it promoted the expression of human β-defensin (HBD)-1, HBD-2, HBD-3, and cathelicidin (LL-37) in HaCaT cells. These antimicrobial peptides are known to play an important role in the skin as chemical barriers. Apigenin significantly suppressed the inflammatory and allergic responses of RAW264.7 and RBL cells, respectively, and would, therefore, serve as a potential prophylactic and therapeutic agent for immune-related diseases. Apigenin could also be used to improve the functions of the physical and chemical skin barriers and to alleviate psoriasis, acne, and atopic dermatitis.
Collapse
Affiliation(s)
- Che-Hwon Park
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea; (C.-H.P.); (S.-Y.M.); (H.-W.Y.)
| | - Seon-Young Min
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea; (C.-H.P.); (S.-Y.M.); (H.-W.Y.)
| | - Hye-Won Yu
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea; (C.-H.P.); (S.-Y.M.); (H.-W.Y.)
| | - Kyungmin Kim
- Jeju R&D Center, AMI Cosmetics Co., Ltd., 16, Sancheondandong-gil, Jeju-si 63359, Korea; (K.K.); (S.K.)
| | - Suyeong Kim
- Jeju R&D Center, AMI Cosmetics Co., Ltd., 16, Sancheondandong-gil, Jeju-si 63359, Korea; (K.K.); (S.K.)
| | - Hye-Ja Lee
- Natural Products Laboratory, DAEBONG Life Science Co., Ltd., 213-4, Chumdan-Ro, Jeju-si 63309, Korea; (H.-J.L.); (J.-H.K.)
| | - Ji-Hye Kim
- Natural Products Laboratory, DAEBONG Life Science Co., Ltd., 213-4, Chumdan-Ro, Jeju-si 63309, Korea; (H.-J.L.); (J.-H.K.)
| | - Young-Jin Park
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea; (C.-H.P.); (S.-Y.M.); (H.-W.Y.)
- Correspondence: ; Tel.: +82-43-840-3601
| |
Collapse
|
18
|
Martínez Pallás I, Conejero del Mazo R, Lezcano Biosca V. Pigmented Purpuric Dermatosis: A Review of the Literature. ACTAS DERMO-SIFILIOGRAFICAS 2020. [DOI: 10.1016/j.adengl.2020.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Dermatosis purpúricas pigmentadas. Revisión de la literatura científica. ACTAS DERMO-SIFILIOGRAFICAS 2020; 111:196-204. [DOI: 10.1016/j.ad.2019.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/18/2019] [Accepted: 02/24/2019] [Indexed: 11/18/2022] Open
|
20
|
Kim MJ, Choi YA, Lee S, Choi JK, Kim YY, Kim EN, Jeong GS, Shin TY, Jang YH, Kim SH. Prunus serrulata var. spontanea inhibits mast cell activation and mast cell-mediated anaphylaxis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112484. [PMID: 31843576 DOI: 10.1016/j.jep.2019.112484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/19/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A promising approach to treat a variety of diseases are considered as complementary and alternative herbal medicines. Prunus serrulata var. spontanea L. (Rosaceae) is used as herbal medicine to treat allergic diseases according to the Donguibogam, a tradition medical book of the Joseon Dynasty in Korea. AIM OF THE STUDY We prepared the aqueous extract of the bark of P. serrulata (AEBPS) and aimed to investigate the effects in mouse anaphylaxis models and various types of mast cells, including RBL-2H3, primary cultured peritoneal and bone marrow-derived mast cells. MATERIALS AND METHODS We used ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) and immunoglobulin (Ig) E-mediated passive cutaneous anaphylaxis (PCA) models, in vivo. The control drug dexamethasone (10 mg/kg) was used to compare the effectiveness of AEBPS (1-100 mg/kg). In vitro, IgE-stimulated mast cells were used to confirm the role of AEBPS (1-100 μg/mL). For statistical analyses, p values less than 0.05 were considered to be significant. RESULTS In ASA model, oral administration of AEBPS suppressed the hypothermia and increased level of serum histamine in a dose-dependent manner. AEBPS attenuated the serum IgE, OVA-specific IgE, and interleukin (IL)-4. Oral administration of AEBPS also blocked mast cell-dependent PCA. AEBPS suppressed degranulation of mast cells by reducing intracellular calcium level in mast cells. AEBPS inhibited tumor necrosis factor-α and IL-4 expression and secretion in a concentration-dependent manner through the reduction of nuclear factor-κB. CONCLUSIONS On the basis of these findings, AEBPS could serve as a potential therapeutic target for the management of mast cell-mediated allergic inflammation and as a regulator of mast cell activation.
Collapse
Affiliation(s)
- Min-Jong Kim
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Ae Choi
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Jin Kyeong Choi
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yeon-Yong Kim
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Eun-Nam Kim
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Tae-Yong Shin
- College of Pharmacy, Woosuk University, Jeonju, Republic of Korea
| | - Yong Hyun Jang
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Sang-Hyun Kim
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
21
|
Correlation of pterygium severity with IQ-domain GTPase-activating protein 1 (IQGAP1) and mast cells. Exp Eye Res 2019; 190:107896. [PMID: 31836492 DOI: 10.1016/j.exer.2019.107896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 11/23/2022]
Abstract
IQ-domain GTPase-activating protein 1 (IQGAP1) is a multidomain scaffold protein that is involved in cytoskeleton dynamics and tumor metastasis. Although the role of IQGAP1 in various cancers had been reported, the function of IQGAP1 in pterygium has not been studied. In this study, surgically excised pterygium and control conjunctival tissue from cataract patients were analysed by immunohistochemistry, confocal microscopy, and Western blot for IQGAP1 expression, mast cell counts, and microvascular count. Pterygium was clinically divided into mild and severe types according to Tan's classification and Kim's criteria based on translucency and vascularity of the tissue. Greater clinical severity of pterygium was associated with higher expression of IQGAP1 expression. Compared to normal conjunctival tissue, severe pterygium had significantly higher IQGAP1 expression (P = 0.005), which strongly correlated to the number of microvessels (P = 0.003) and mast cells (P = 0.01). Confocal microscopy revealed IQGAP1 colocalization with mast cell and CD31. IQGAP1 expression was higher in the pterygium body compared to the head. In conclusion, the level of IQGAP1 expression was found to be correlated to the clinical severity of pterygium. Mast cells were identified in pterygium and is suspected to be involved in promoting fibrovascular invasion.
Collapse
|
22
|
Kouhkheil R, Fridoni M, Abdollhifar MA, Amini A, Bayat S, Ghoreishi SK, Chien S, Kazemi M, Bayat M. Impact of Photobiomodulation and Condition Medium on Mast Cell Counts, Degranulation, and Wound Strength in Infected Skin Wound Healing of Diabetic Rats. Photobiomodul Photomed Laser Surg 2019; 37:706-714. [PMID: 31589095 DOI: 10.1089/photob.2019.4691] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Numerous people suffer from diabetes mellitus (DM) and resultant diabetic foot ulcers (DFU), which lack effective treatment. Photobiomodulation (PBM) has accelerated wound healing in diabetic animals and patients in some studies. However, there is scant information on the number and activation state of skin mast cells (MCs) in PBM-treated diabetic wounds. Objective: We intend to assess the influence of the number of MCs and degranulation in the remodeling step of an infected wound model on wound strength and its microbial flora in a type 1 DM (T1DM) rat model by administration of PBM, condition medium (CM) derived from human bone marrow mesenchymal stem cells (hBMMSCs), and the combination of PBM+CM. Methods: We prepared CM by culturing hBMMSCs. T1DM was induced in 72 rats and, after 1 month, we created one excisional wound in each rat. All wounds were infected with methicillin-resistant Staphylococcus aureus (MRSA). We divided the rats into four groups: (n = 18): (i) control; (ii) PBM; (iii) CM, and (iv) PBM+CM. On days 4, 7, and 15, we conducted microbiological, tensiometrical, and stereological analyses. The type of MCs (T1MCs, T2MCs, or T3MCs) and total number of MCs (TOMCs) were counted by light microscopy. Results: On day 15, the PBM+CM, PBM, and CM groups had significantly increased wound strength compared with the control group. There was a significant decrease in colony-forming units (CFU) at all time points in the PBM+CM and PBM groups. The PBM+CM and PBM groups had more stable MCs (T1MCs), less significant degranulated MCs (T2MCs), less significant disintegrated MCs (T3MCs), and less significant TOMCs compared with the control group at all time points. Conclusions: PBM+CM and PBM treatments significantly increased the healing process in an ischemic and MRSA-infected wound model of T1DM rats. PBM+CM and PBM significantly decreased both TOMCs and their degranulation, and significantly decreased CFU.
Collapse
Affiliation(s)
- Reza Kouhkheil
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammadjavad Fridoni
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad-Amin Abdollhifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Sahar Bayat
- Illinois Institute of Technology, Chicago, Illinois
| | | | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, Louisville, Kentucky
- Noveratech LLC of Louisville, Louisville, Kentucky
| | - Mahsa Kazemi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, Louisville, Kentucky
- Noveratech LLC of Louisville, Louisville, Kentucky
| |
Collapse
|
23
|
Puxeddu I, Petrelli F, Angelotti F, Croia C, Migliorini P. Biomarkers In Chronic Spontaneous Urticaria: Current Targets And Clinical Implications. J Asthma Allergy 2019; 12:285-295. [PMID: 31571935 PMCID: PMC6759208 DOI: 10.2147/jaa.s184986] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/05/2019] [Indexed: 01/02/2023] Open
Abstract
Chronic urticaria (CU) is a mast cell-driven disease characterized by the development of wheals, angioedema, or both for more than 6 weeks. The two major sub-types are chronic spontaneous urticaria (CSU) and inducible urticaria. In the last decade different pathophysiological mechanisms, potentially responsible for the development of the disease, have been described. It is likely that the activation of mast cells and basophils in CSU can be the results of immune system dysregulation, activation of the inflammatory cascade, and of the extrinsic coagulation pathway. Some of the mediators involved in the pathophysiological mechanisms of CSU have recently been identified as potential biomarkers useful for the diagnosis, follow-up, and management of the disease, even if they are not yet available in clinical practice. Thus, in this review we discuss new insights in the mediators involved in the pathogenesis of CSU, highlighting their potential role as biomarkers in the activity and progression of the disease and response to therapies.
Collapse
Affiliation(s)
- Ilaria Puxeddu
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - Fiorella Petrelli
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - Francesca Angelotti
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - Cristina Croia
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| |
Collapse
|
24
|
Ribatti D, Tamma R, Vacca A. Mast Cells and Angiogenesis in Human Plasma Cell Malignancies. Int J Mol Sci 2019; 20:ijms20030481. [PMID: 30678047 PMCID: PMC6386864 DOI: 10.3390/ijms20030481] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
Bone marrow angiogenesis plays an important role in the pathogenesis and progression of hematological malignancies. It is well known that tumor microenvironment promotes tumor angiogenesis, proliferation, invasion, and metastasis, and also mediates mechanisms of therapeutic resistance. An increased number of mast cells has been demonstrated in angiogenesis associated with hematological tumors. In this review we focused on the role of mast cells in angiogenesis in human plasma cell malignancies. In this context, mast cells might act as a new target for the adjuvant treatment of these tumors through the selective inhibition of angiogenesis, tissue remodeling and tumor-promoting molecules, permitting the secretion of cytotoxic cytokines and preventing mast cell-mediated immune suppression.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy.
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy.
| | - Angelo Vacca
- Department of Biomedical Sciences, and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, 70124 Bari, Italy.
| |
Collapse
|
25
|
Abstract
Fibrosis is a medical condition characterized by an excessive deposition of extracellular matrix compounds such as collagen in tissues. Fibrotic lesions are present in many diseases and can affect all organs. The excessive extracellular matrix accumulation in these conditions can often have serious consequences and in many cases be life-threatening. A typical event seen in many fibrotic conditions is a profound accumulation of mast cells (MCs), suggesting that these cells can contribute to the pathology. Indeed, there is now substantialv evidence pointing to an important role of MCs in fibrotic disease. However, investigations from various clinical settings and different animal models have arrived at partly contradictory conclusions as to how MCs affect fibrosis, with many studies suggesting a detrimental role of MCs whereas others suggest that MCs can be protective. Here, we review the current knowledge of how MCs can affect fibrosis.
Collapse
Affiliation(s)
- Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
26
|
Mukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev 2019; 282:121-150. [PMID: 29431212 DOI: 10.1111/imr.12634] [Citation(s) in RCA: 499] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mast cells are hematopoietic cells that reside in virtually all vascularized tissues and that represent potential sources of a wide variety of biologically active secreted products, including diverse cytokines and growth factors. There is strong evidence for important non-redundant roles of mast cells in many types of innate or adaptive immune responses, including making important contributions to immediate and chronic IgE-associated allergic disorders and enhancing host resistance to certain venoms and parasites. However, mast cells have been proposed to influence many other biological processes, including responses to bacteria and virus, angiogenesis, wound healing, fibrosis, autoimmune and metabolic disorders, and cancer. The potential functions of mast cells in many of these settings is thought to reflect their ability to secrete, upon appropriate activation by a range of immune or non-immune stimuli, a broad spectrum of cytokines (including many chemokines) and growth factors, with potential autocrine, paracrine, local, and systemic effects. In this review, we summarize the evidence indicating which cytokines and growth factors can be produced by various populations of rodent and human mast cells in response to particular immune or non-immune stimuli, and comment on the proven or potential roles of such mast cell products in health and disease.
Collapse
Affiliation(s)
- Kaori Mukai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health & Development, Tokyo, Japan
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
27
|
Zhao F, Liu W, Yu Y, Liu X, Yin H, Liu L, Yi G. Effect of small molecular weight soybean protein-derived peptide supplementation on attenuating burn injury-induced inflammation and accelerating wound healing in a rat model. RSC Adv 2019; 9:1247-1259. [PMID: 35518054 PMCID: PMC9059567 DOI: 10.1039/c8ra09036j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022] Open
Abstract
The populations most afflicted by burn injuries have limited abilities to support the significant specialized requirements and costs for acute and long-term burn injury care. This article describes the results of optimizing the use of readily absorbed small molecular weight soybean protein enzymolysis-derived peptide to attenuate rat burn injury-induced inflammation and accelerate wound healing. A major full-thickness 30% total body surface area burn-injury rat model was utilized and the systemic white blood cell (WBC) counts, the relative level of stimulation index of respiratory burst, and the inflammatory markers procalcitonin (PCT), tumor necrosis factor-α (TNF-α), chemokine (C–C motif) ligand 3 (CCL-3), chemokine (C–C motif) ligand 11 (CCL-11) and interleukin-10 (IL-10) were assessed. The burn injury-induced neutrophil and macrophage immune cell infiltration of the cutaneous tissues was detected by immunohistochemical analysis of the protein markers myeloperoxidase (MPO) and cluster of differentiation 68 (CD-68). The local induction of the burn injury-induced toll-like receptor 4/nuclear factor kappa-light-chain-enhancer of activated B (TLR4/NF-κB) signaling pathway in the effected cutaneous tissues was determined by the quantification of the protein expression of TLR4 and phosphorylated NF-κB/p65 using Western blots. In addition, burn wound size and healing rate were assessed biweekly for 8 weeks by imaging and measuring the burn wound surface area, and the angiogenesis protein marker of cluster of differentiation 31 (CD-31) expression in cutaneous tissues was also detected by immunohistochemical analysis. The results showed that nutrient supplementation with optimized readily absorbed small molecular weight soybean protein-derived peptide resulted in a dramatic anti-inflammatory effect as evidenced by the significant increase in the burn injury-induced systemic white blood cell counts and their relative level of stimulation index of respiratory burst, reduction in the burn injury-induced activation of NF-κB transcriptional signaling pathways, significant reduction in the local burn injury-induced cutaneous infiltration of neutrophils and macrophages at all measured time points, reduction in wound size and improved rate of burn injury wound healing with increased CD-31 protein expression. These results indicated that dietary supplementation with small molecular weight soybean-derived peptides could be used as an adjunct therapy in burn injury management to reduce inflammation and improve overall patient outcomes. The populations most afflicted by burn injuries have limited abilities to support the significant specialized requirements and costs for acute and long-term burn injury care.![]()
Collapse
Affiliation(s)
- Fen Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Wei Liu
- Burn Institute
- The First Affiliated Hospital of PLA General Hospital
- Beijing 100048
- China
| | - Yonghui Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Huinan Yin
- Burn Institute
- The First Affiliated Hospital of PLA General Hospital
- Beijing 100048
- China
| | - Lingying Liu
- Burn Institute
- The First Affiliated Hospital of PLA General Hospital
- Beijing 100048
- China
| | - Guofu Yi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University
- Beijing 100048
- China
| |
Collapse
|
28
|
Smolková B, Uzhytchak M, Lynnyk A, Kubinová Š, Dejneka A, Lunov O. A Critical Review on Selected External Physical Cues and Modulation of Cell Behavior: Magnetic Nanoparticles, Non-thermal Plasma and Lasers. J Funct Biomater 2018; 10:jfb10010002. [PMID: 30586923 PMCID: PMC6463085 DOI: 10.3390/jfb10010002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
Physics-based biomedical approaches have proved their importance for the advancement of medical sciences and especially in medical diagnostics and treatments. Thus, the expectations regarding development of novel promising physics-based technologies and tools are very high. This review describes the latest research advances in biomedical applications of external physical cues. We overview three distinct topics: using high-gradient magnetic fields in nanoparticle-mediated cell responses; non-thermal plasma as a novel bactericidal agent; highlights in understanding of cellular mechanisms of laser irradiation. Furthermore, we summarize the progress, challenges and opportunities in those directions. We also discuss some of the fundamental physical principles involved in the application of each cue. Considerable technological success has been achieved in those fields. However, for the successful clinical translation we have to understand the limitations of technologies. Importantly, we identify the misconceptions pervasive in the discussed fields.
Collapse
Affiliation(s)
- Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Anna Lynnyk
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Šárka Kubinová
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
- Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic.
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
29
|
Vollesen LH, Guo S, Andersen MR, Ashina M. Effect of the H1-antihistamine clemastine on PACAP38 induced migraine. Cephalalgia 2018; 39:597-607. [DOI: 10.1177/0333102418798611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective To investigate the effect of the H1-antihistamine clemastine on the migraine-inducing abilities of pituitary adenylate cyclase activating peptide-38. Methods We conducted a double-blind, randomized, placebo controlled two-way cross-over study. Twenty migraine without aura patients were randomly allocated to receive bolus clemastine 2 mg (1 mg/ml) or bolus saline 2 ml intravenously over 2 min on two study days. Following each bolus injection, 10 pmol/kg/min of pituitary adenylate cyclase activating peptide-38 was administered intravenously over 20 min. We recorded migraine/headache characteristics every 10 min until 90 min after the start of infusion, and collected blood to investigate mast cell degranulation and the inflammation markers tryptase and tumor necrosis factor-alpha before and after infusion of pituitary adenylate cyclase activating peptide-38. Results After clemastine pretreatment, five out of 20 participants developed a migraine-like attack in response to a pituitary adenylate cyclase activating peptide-38 infusion compared to nine out of 20 after placebo pretreatment ( p = 0.288). Following clemastine pretreatment, 15 out of 20 participants reported headache in response to a pituitary adenylate cyclase activating peptide-38 infusion, whereas 19 out of 20 participants did so following placebo pretreatment ( p = 0.221). We found no difference in area under the curve 12 h for headache intensity between the two experimental days ( p = 0.481). We found no difference in area under the curve 180 min for tryptase ( p = 0.525) or tumor necrosis factor-alpha ( p = 0.487) between clemastine and placebo pretreatment days. Conclusion H1-antihistamine, clemastine, failed to prevent migraine or headache after pituitary adenylate cyclase activating peptide-38 infusion, thus making a role for histamine release or mast cell degranulation in pituitary adenylate cyclase activating peptide-38-induced migraine less likely.
Collapse
Affiliation(s)
- Luise Haulund Vollesen
- Danish Headache Centre and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Song Guo
- Danish Headache Centre and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Malene Rohr Andersen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Hellerup, Denmark
| | - Messoud Ashina
- Danish Headache Centre and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
30
|
The inhibition of 5-Lipoxygenase (5-LO) products leukotriene B4 (LTB 4 ) and cysteinyl leukotrienes (cysLTs) modulates the inflammatory response and improves cutaneous wound healing. Clin Immunol 2018; 190:74-83. [DOI: 10.1016/j.clim.2017.08.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022]
|
31
|
E Ribeiro LSF, Dos Santos JN, Rocha CAG, Cury PR. Association Between Mast Cells and Collagen Maturation in Chronic Periodontitis in Humans. J Histochem Cytochem 2018; 66:467-475. [PMID: 29553869 DOI: 10.1369/0022155418765131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mast cells (MCs) can influence the maturation of collagen fibers. This study evaluated the relationship between the distribution and degranulation of MCs and collagen maturation in human gingival tissue in chronic periodontitis. A total of 16 specimens of patients clinically diagnosed as periodontitis and 18 controls clinically diagnosed as healthy or gingivitis were included. Immunohistochemistry and Picrosirius staining were performed to identify MCs and assess collagen fibers, respectively. Chi-square, t test, and Pearson's correlation test ( p<0.05) were used. In control specimens, there was a positive association between MCs in the connective tissue and the presence of immature collagen ( p=0.001); in periodontitis samples, this association was not confirmed ( p≥0.12). There was no significant relationship between periodontal diagnosis and collagen maturation or MC degranulation ( p≥0.35). MC density was significantly higher ( p=0.04) in periodontitis tissue (339.01 ± 188.94 MCs/mm2) than in control tissue (211.14 ± 131.13 MCs/mm2) in the area of connective tissue containing inflammatory infiltrate. There was a correlation between the number of MCs and probing depth ( r = 0.34, p=0.04). MCs are involved in the pathogenesis of periodontal diseases and might be associated with collagen maturation in periodontal tissue during the early stages of periodontal disease pathogenesis.
Collapse
Affiliation(s)
- Lívia S F E Ribeiro
- Master's degree student at the Postgraduate Program in Health and Dentistry, School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Jean N Dos Santos
- Department of Oral Pathology, School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Clarissa A G Rocha
- Department of Oral Pathology, School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Patricia R Cury
- Department of Periodontics, School of Dentistry, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
32
|
Steinhoff M, Buddenkotte J, Lerner EA. Role of mast cells and basophils in pruritus. Immunol Rev 2018; 282:248-264. [DOI: 10.1111/imr.12635] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Venereology; Hamad Medical Corporation; Doha Qatar
- Translational Research Institute; Hamad Medical Corporation; Doha Qatar
- Weill Cornell Medicine-Qatar; Doha Qatar
- Medical School; Qatar University; Doha Qatar
- Department Of Dermatology and UCD Charles Institute for Translational Dermatology; University College Dublin; Dublin Ireland
| | - Jörg Buddenkotte
- Department of Dermatology and Venereology; Hamad Medical Corporation; Doha Qatar
- Translational Research Institute; Hamad Medical Corporation; Doha Qatar
| | - Ethan A. Lerner
- Cutaneous Biology Research Center; Department of Dermatology; Massachusetts General Hospital/Harvard Medical School; Charlestown MA USA
| |
Collapse
|
33
|
Pampena MB, Barrio MM, Juliá EP, Blanco PA, von Euw EM, Mordoh J, Levy EM. Early Events of the Reaction Elicited by CSF-470 Melanoma Vaccine Plus Adjuvants: An In Vitro Analysis of Immune Recruitment and Cytokine Release. Front Immunol 2017; 8:1342. [PMID: 29109725 PMCID: PMC5660290 DOI: 10.3389/fimmu.2017.01342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/03/2017] [Indexed: 11/13/2022] Open
Abstract
In a previous work, we showed that CSF-470 vaccine plus bacillus Calmette–Guerin (BCG) and granulocyte macrophage colony-stimulating factor (GM-CSF) as adjuvants resulted in a significant benefit in the distant metastasis-free survival when comparing vaccinated vs. IFN-α2b-treated high-risk cutaneous melanoma patients in a Phase II study. Immune monitoring demonstrated an increase in anti-tumor innate and adaptive immunities of vaccinated patients, with a striking increase in IFN-γ secreting lymphocytes specific for melanoma antigens (Ags). In an effort to dissect the first steps of the immune response elicited by CSF-470 vaccine plus adjuvants, we evaluated, in an in vitro model, leukocyte migration, cytokine production, and monocyte phagocytosis of vaccine cells. Our results demonstrate that leukocytes recruitment, mostly from the innate immune system, is an early event after CSF-470 vaccine plus BCG plus GM-CSF interaction with immune cells, possibly explained by the high expression of CCL2/MCP-1 and other chemokines by vaccine cells. Early release of TNF-α and IL-1β pro-inflammatory cytokines and efficient tumor Ags phagocytosis by monocytes take place and would probably create a favorable context for Ag processing and presentation. Although the presence of the vaccine cells hampered cytokines production stimulated by BCG in a mechanism partially mediated by TGF-β and IL-10, still significant levels of TNF-α and IL-1β could be detected. Thus, BCG was required to induce local inflammation in the presence of CSF-470 vaccine cells.
Collapse
Affiliation(s)
- María B Pampena
- Centro de Investigaciones Oncológicas-Fundación Cáncer, Buenos Aires, Argentina
| | - María M Barrio
- Centro de Investigaciones Oncológicas-Fundación Cáncer, Buenos Aires, Argentina
| | - Estefanía P Juliá
- Centro de Investigaciones Oncológicas-Fundación Cáncer, Buenos Aires, Argentina
| | - Paula A Blanco
- Centro de Investigaciones Oncológicas-Fundación Cáncer, Buenos Aires, Argentina
| | - Erika M von Euw
- UCLA JCCC-Translational Oncology Research Labs, Los Angeles, CA, United States
| | - José Mordoh
- Centro de Investigaciones Oncológicas-Fundación Cáncer, Buenos Aires, Argentina.,Instituto Médico Especializado Alexander Fleming, Buenos Aires, Argentina.,Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | | |
Collapse
|
34
|
Lovelock DF, Deak T. Repeated exposure to two stressors in sequence demonstrates that corticosterone and paraventricular nucleus of the hypothalamus interleukin-1β responses habituate independently. J Neuroendocrinol 2017; 29:10.1111/jne.12514. [PMID: 28803453 PMCID: PMC5617797 DOI: 10.1111/jne.12514] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 01/09/2023]
Abstract
A wide range of stress-related pathologies such as post-traumatic stress disorder are considered to arise from aberrant or maladaptive forms of stress adaptation. The hypothalamic-pituitary-adrenal (HPA) axis readily adapts to repeated stressor exposure, yet little is known about adaptation in neuroimmune responses to repeated or sequential stress challenges. In Experiment 1, rats were exposed to 10 days of restraint alone (60 minutes daily), forced swim alone (30 minutes daily) or daily sequential exposure to restraint (60 minutes) followed immediately by forced swim (30 minutes), termed sequential stress exposure. Habituation of the corticosterone (CORT) response occurred to restraint by 5 days and swim at 10 days, whereas rats exposed to sequential stress exposure failed to display habituation to the combined challenge. Experiment 2 compared 1 or 5 days of forced swim with sequential stress exposure and examined how each affected expression of several neuroimmune and cellular activation genes in the paraventricular nucleus of the hypothalamus (PVN), prefrontal cortex (PFC) and hippocampus (HPC). Sequential exposure to restraint and swim increased interleukin (IL)-1β in the PVN, an effect that was attenuated after 5 days. Sequential stress exposure also elicited IL-6 and tumour necrosis factor-α responses in the HPC and PFC, respectively, which did not habituate after 5 days. Experiment 3 tested whether prior habituation to restraint (5 days) would alter the IL-1β response evoked by swim exposure imposed immediately after the sixth day of restraint. Surprisingly, a history of repeated exposure to restraint attenuated the PVN IL-1β response after swim in comparison to acutely-exposed subjects despite an equivalent CORT response. Overall, these findings suggest that habituation of neuroimmune responses to stress proceeds: (i) independent of HPA axis habituation; (ii) likely requires more daily sessions of stress to develop; and (iii) IL-1β displays a greater tendency to habituate after repeated stress challenges compared to other stress-reactive cytokines.
Collapse
Affiliation(s)
- Dennis F. Lovelock
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University—SUNY, Binghamton NY 13902-6000
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University—SUNY, Binghamton NY 13902-6000
| |
Collapse
|
35
|
Park JH, Lee B, Kim HK, Kim EY, Kim JH, Min JH, Kim S, Sohn Y, Jung HS. Peimine Inhibits the Production of Proinflammatory Cytokines Through Regulation of the Phosphorylation of NF-κB and MAPKs in HMC-1 Cells. Pharmacogn Mag 2017; 13:S359-S364. [PMID: 28808406 PMCID: PMC5538180 DOI: 10.4103/0973-1296.210173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/24/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Peimine is a major biologically active component of Fritillaria ussuriensis. Peimine was investigated in chronic inflammation response, but it has not been studied in mast cell-related immediate allergic reaction. The present study aimed to evaluate anti-allergic effect of peimine in human mast cell (HMC-1). MATERIALS AND METHODS The effect of peimine on cell viability was measured by MTS assay in HMC-1. Histamine release was investigated in rat peritoneal mast cells (RPMCs). Interleukin (IL)-6, IL-8, and tumor necrosis factor-α (TNF-α) expressions were measured by ELISA assay and reverse transcription-polymerase chain reaction. Mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-κB) were examined by Western blot. Passive cutaneous anaphylaxis (PCA) reactions were evaluated using Sprague-Dawley (SD) rats. RESULTS Peimine inhibited the production of pro-inflammatory cytokines, such as IL-6, IL-8, and TNF-α. Moreover, peimine reduced MAPKs phosphorylation and the nuclear NF-κB expression in PMACI-induced HMC-1. Peimine decreased PCA reactions in rats as well. CONCLUSION Our study proved that peimine might be suitable for the treatment of mast cell-derived allergic inflammatory reactions. SUMMARY Peimine inhibited the production of pro-inflammatory cytokines, such as IL-6, IL-8, and TNF-αPeimine reduced MAPKs phosphorylation and the nuclear NF-κB expression in PMACI-induced HMC-1Peimine decreased PCA reactions in ratsPeimine has anti-allergic effect through regulation of pro-inflammatory mechanism on mast cell. Abbreviations used: HMC-1: Human mast cell, MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, RPMCs: Rat peritoneal mast cells. IL-6: Interleukin 6, IL-8: Interleukin 8, TNF-α: Tumor necrosis factor-α, MAPKs: Mitogen-activated protein kinases; NF-κB: Nuclear factor-kappaB, PCA: Passive cutaneous anaphylaxis reactions, SD: Sprague-Dawley.
Collapse
Affiliation(s)
- Ji Hye Park
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul, Korea
| | - Bina Lee
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul, Korea
| | - Hyun Kab Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul, Korea
| | - Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul, Korea
| | - Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul, Korea
| | - Ju-Hee Min
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul, Korea
| | - Sunkook Kim
- Multi-Functional Nano/Bio Electronics Laboratory, Kyung Hee University, Gyeonggi-do, Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul, Korea
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul, Korea
| |
Collapse
|
36
|
El Gammal ZH, Zaher AM, El-Badri N. Effect of low-level laser-treated mesenchymal stem cells on myocardial infarction. Lasers Med Sci 2017; 32:1637-1646. [PMID: 28681086 DOI: 10.1007/s10103-017-2271-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Although cardiac transplantation is considered the most effective therapy for end-stage cardiac diseases, it is limited by the availability of matching donors and the complications of the immune suppressive regimen used to prevent graft rejection. Application of stem cell therapy in experimental animal models was shown to reverse cardiac remodeling, attenuate cardiac fibrosis, improve heart functions, and stimulate angiogenesis. The efficacy of stem cell therapy can be amplified by low-level laser radiation. It is well established that the bio-stimulatory effect of low-level laser is influenced by the following parameters: wavelength, power density, duration, energy density, delivery time, and the type of irradiated target. In this review, we evaluate the available experimental data on treatment of myocardial infarction using low-level laser. Eligible papers were characterized as in vivo experimental studies that evaluated the use of low-level laser therapy on stem cells in order to attenuate myocardial infarction. The following descriptors were used separately and in combination: laser therapy, low-level laser, low-power laser, stem cell, and myocardial infarction. The assessed low-level laser parameters were wavelength (635-804 nm), power density (6-50 mW/cm2), duration (20-150 s), energy density (0.96-1 J/cm2), delivery time (20 min-3 weeks after myocardial infarction), and the type of irradiated target (bone marrow or in vitro-cultured bone marrow mesenchymal stem cells). The analysis focused on the cardioprotective effect of this form of therapy, the attenuation of scar tissue, and the enhancement of angiogenesis as primary targets. Other effects such as cell survival, cell differentiation, and homing are also included. Among the evaluated protocols using different parameters, the best outcome for treating myocardial infarction was achieved by treating the bone marrow by one dose of low-level laser with 804 nm wavelength and 1 J/cm2 energy density within 4 h of the infarction. This approach increased stem cell survival, proliferation, and homing. It has also decreased the infarct size and cell apoptosis, leading to enhanced heart functions. These effects were stable for 6 weeks. However, more studies are still required to assess the effects of low-level laser on the genetic makeup of the cell, the nuclei, and the mitochondria of mesenchymal stromal cells (MSCs).
Collapse
Affiliation(s)
- Zaynab H El Gammal
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Cairo, 12588, Egypt
| | - Amr M Zaher
- National Institute of Heart, Cairo, 12651, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Cairo, 12588, Egypt.
| |
Collapse
|
37
|
Bian N, Du G, Ip MF, Ding J, Chang Q, Li Z. Pituitary adenylate cyclase-activating polypeptide attenuates tumor necrosis factor-α-induced apoptosis in endothelial colony-forming cells. Biomed Rep 2017; 7:11-16. [PMID: 28685053 PMCID: PMC5492523 DOI: 10.3892/br.2017.917] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022] Open
Abstract
Endothelial colony-forming cells (ECFCs) are important in angiogenesis and vascular proliferation. Tumor necrosis factor (TNF)-α is a significant risk factor for the development of atherosclerosis and a key proinflammatory cytokine known to induce apoptosis in endothelial cells. Pituitary adenylate cyclase-activating polypeptide (PACAP) is one of the members of the vasoactive intestinal peptide/secretin/growth hormone-releasing hormone/glucagon superfamily and exists in two biological active forms, PACAP 38 and PACAP 27. PACAP has been reported to help prevent endothelial apoptosis via an anti-inflammatory mechanism. However, to the best of our knowledge, the anti-apoptotic potential of PACAP has not been investigated in ECFCs. The aim of the present study was to demonstrate the efficacy of PACAP for decreasing TNF-α-induced apoptosis in ECFCs. The results indicated that PACAP exerts a cytoprotective effect on ECFCs exposed to TNF-α. Furthermore, PACAP partially rescues the proliferation potential of ECFCs inhibited by prolonged TNF-α exposure. These findings support an anti-inflammatory role for PACAP in circulation diseases.
Collapse
Affiliation(s)
- Ning Bian
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Gang Du
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Man Fai Ip
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China.,Department of Cardiology, Macau Kernel Earl General Hospital, Macau 820200, P.R. China
| | - Juan Ding
- Department of Cardiology, North Branch, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Qing Chang
- Department of Histology and Embryology, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Zicheng Li
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
38
|
Gudiseva S, Santosh ABR, Chitturi R, Anumula V, Poosarla C, Baddam VRR. The role of mast cells in oral squamous cell carcinoma. Contemp Oncol (Pozn) 2017; 21:21-29. [PMID: 28435394 PMCID: PMC5385471 DOI: 10.5114/wo.2017.65157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/30/2016] [Indexed: 01/30/2023] Open
Abstract
The mast cells are initial effective lineage in both humoral and adaptive immunity. They are ubiquitous in skin, mucosa, and in function. They contain biologically essential and dynamic mediators in healthy and harmful conditions of tissue. Mast cell malfunctioning could be attributed to various chronic allergic diseases. Considerately, emerging evidence of mast cell involvement in various cancers shows them to have both positive and negative roles in tumour growth. It mostly indulges in tumour progression and metastasis via angiogenesis, extracellular matrix degradation, and mitogenic activity in the tumour microenvironment. The current paper reviewed research papers on mast cells in oral squamous cell carcinoma through the PubMed database from 1980 to the present date. The present paper is an attempt to summarise the research reports on the role of mast cells in oral squamous cell carcinoma. Further to this note, this paper also outlines the role of mast cells in normal physiological processes and tumour biology.
Collapse
Affiliation(s)
- Swetha Gudiseva
- Department of Oral Pathology and Microbiology, SIBAR Institute of Dental Sciences, Guntur, Andhra Pradesh, India
| | - Arvind Babu Rajendra Santosh
- Dentistry Programme, Faculty of Medical Sciences, The University of the West Indies, Mona campus, Kingston, Jamaica, West Indies
| | - Raviteja Chitturi
- School of Dentistry, University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies
| | - Vamsikrishna Anumula
- Department of Pedodontics and Preventive dentistry, Krishna devaraya Institute of Dental Sciences, Bangalore, Karnataka, India
| | - Chandrashekar Poosarla
- Department of Oral Pathology and Microbiology, SIBAR Institute of Dental Sciences, Guntur, Andhra Pradesh, India
| | - Venkat Ramana Reddy Baddam
- Department of Oral Pathology and Microbiology, SIBAR Institute of Dental Sciences, Guntur, Andhra Pradesh, India
| |
Collapse
|
39
|
Zachariassen LF, Krych L, Engkilde K, Nielsen DS, Kot W, Hansen CHF, Hansen AK. Sensitivity to oxazolone induced dermatitis is transferable with gut microbiota in mice. Sci Rep 2017; 7:44385. [PMID: 28290517 PMCID: PMC5349591 DOI: 10.1038/srep44385] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/07/2017] [Indexed: 12/15/2022] Open
Abstract
Atopic Dermatitis (AD) has been associated with gut microbiota (GM) dysbiosis in humans, indicating a causative role of GM in AD etiology. Furthermore, the GM strongly correlates to essential disease parameters in the well-known oxazolone-induced mouse model of AD. Here, we demonstrate that it is possible to transfer both a high-responding and a low-responding AD phenotype with GM from conventional mice to germ-free mice. The mice inoculated with the high-responding GM had significantly higher clinical score, increased ear thickness, and increased levels of IL-1β, TNFα, IL-4, IL-5, and IL-6 compared to the mice inoculated with the low-responding GM. The inter-individual variation was in general not affected by this increase in effect size. Germ-free mice induced with AD revealed a high disease response as well as high inter-individual variation indicating protective properties of certain microbial taxa in this model. This study underlines that the GM has a strong impact on AD in mouse models, and that the power of studies may be increased by the application of mice inoculated with a specific GM from high responders to increase the effect size.
Collapse
Affiliation(s)
- Line Fisker Zachariassen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, Denmark
| | - Kåre Engkilde
- The Bartholin Institute, Rigshospitalet, Copenhagen, Denmark
| | | | - Witold Kot
- Department of Environmental Science, Faculty of Science and Technology, Aarhus University, Denmark
| | - Camilla Hartmann Friis Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
40
|
Jalayer Naderi N, Semyari H, Hemmati R. The Effect of Smoking on Mast Cells Density and Angiogenesis in Chronic Periodontitis. IRANIAN JOURNAL OF PATHOLOGY 2017; 12:384-391. [PMID: 29563935 PMCID: PMC5844684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 01/29/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Gingival bleeding reduction in smokers has been associated with decreased blood vessel density. The mechanism of suppressive effect of cigarette smoking on blood vessel density is not precisely defined. The aim of this study was to evaluate the impact of smoking on angiogenesis by assessing mast cells density and VEGF expression in chronic periodontitis. MATERIALS& METHODS 52 paraffin embedded block of gingiva tissues with periodontitis obtained from 30 nonsmokers and 22 smokers undergoing flap surgery were examined immunohistochemically for VEGF expression. Mast cell counts was completed on toluidine blue stained slides. Exposure to cigarette smoking was calculated by the number of packs × year. Patients were classified into 4 groups based on the number of smoked cigarettes. The correlation between VEGF expression and mast cell counts was evaluated and compared in nonsmokers and smokers. RESULTS The mean number of mast cells (p=0.004) and average value of VEGF expression (p = 0.000) in nonsmokers was significantly higher than smokers. No correlation was noted between VEGF expression / mast cell counts and number of smoked cigarettes in four groups of smokers (p=0.29,0.12 , 0.20 and 0.11, respectively). CONCLUSION Mast cells and VEGF expression may account for suppressive effect of cigarette smoking on blood vessels in periodontitis.
Collapse
Affiliation(s)
- Noushin Jalayer Naderi
- Dept. of Oral and Maxillofacial Pathology, Faculty of Dentistry, Shahed University,Corresponding information: Drs. Noushin Jalayer Naderi, Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Shahed University, Tehran, Iran,
| | - Hasan Semyari
- Dept. of Periodontic, Faculty of Dentistry, Shahed University
| | | |
Collapse
|
41
|
Mast cell phenotype, TNFα expression and degranulation status in non-small cell lung cancer. Sci Rep 2016; 6:38352. [PMID: 27922077 PMCID: PMC5138591 DOI: 10.1038/srep38352] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/08/2016] [Indexed: 12/29/2022] Open
Abstract
Mast cell infiltration of tumour islets represents a survival advantage in non-small cell lung cancer (NSCLC). The phenotype and activation status of these mast cells is unknown. We investigated the mast cell phenotype in terms of protease content (tryptase-only [MCT], tryptase + chymase [MCTC]) and tumour necrosis factor-alpha (TNFα) expression, and extent of degranulation, in NSCLC tumour stroma and islets. Surgically resected tumours from 24 patients with extended survival (ES; mean survival 86.5 months) were compared with 25 patients with poor survival (PS; mean survival 8.0 months) by immunohistochemistry. Both MCT and MCTC in tumour islets were higher in ES (20.0 and 5.6 cells/mm2 respectively) compared to PS patients (0.0 cells/mm2) (p < 0.0001). Both phenotypes expressed TNFα in the islets and stroma. In ES 44% of MCT and 37% of MCTC expressed TNFα in the tumour islets. MCT in the ES stroma were more degranulated than in those with PS (median degranulation index = 2.24 versus 1.73 respectively) (p = 0.0022), and ES islet mast cells (2.24 compared to 1.71, p < 0.0001). Since both MCT and MCTC infiltrating tumour islets in ES NSCLC patients express TNFα, the cytotoxic activity of this cytokine may confer improved survival in these patients. Manipulating mast cell microlocalisation and functional responses in NSCLC may offer a novel approach to the treatment of this disease.
Collapse
|
42
|
Lorenz TK, Demas GE, Heiman JR. Partnered sexual activity moderates menstrual cycle-related changes in inflammation markers in healthy women: an exploratory observational study. Fertil Steril 2016; 107:763-773.e3. [PMID: 27919440 DOI: 10.1016/j.fertnstert.2016.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To examine differences in inflammation markers in sexually active versus abstinent women and observe changes in inflammation markers across the menstrual cycle. Cycle-related immune fluctuations may have evolved to reduce interference with conception. If so, reproductively active (i.e., sexually active) women should show the most variability in cytokine expression. DESIGN Participants provided serum samples at menses and ovulation (from which cytokines were assayed) and saliva samples at menses and during follicular, ovulation, and luteal phases (from which C-reactive protein [CRP] was assayed). Participants self-reported intercourse frequency during the study. SETTING Academic research laboratory. PATIENT(S) Thirty-two healthy, naturally cycling premenopausal women (sexually active, n = 15; abstinent, n = 17). INTERVENTION(S) Observational study. MAIN OUTCOME MEASURE(S) Levels of proinflammatory cytokines (interleukin-6 [IL-6], interferon γ [IFN-γ], tumor necrosis factor-α [TNF-α]), an anti-inflammatory cytokine (interleukin-4 [IL-4]), and a marker of total inflammation (CRP). RESULT(S) Sexually active women had higher levels of all of the immune markers measured, including both pro- and anti-inflammatory cytokines, than abstinent women. Relative to sexually active women, abstinent women had less change across the menstrual cycle in levels of CRP. Among sexually active women, higher intercourse frequency predicted greater midcycle decreases in CRP, IL-6, and IFN-γ and midcycle increases in IL-4. CONCLUSION(S) Sexual activity may stimulate a complex interaction between pro- and anti-inflammatory cytokines that subsequently drives midcycle declines in inflammation.
Collapse
Affiliation(s)
- Tierney K Lorenz
- Kinsey Institute, Indiana University, Bloomington, Indiana; Center for Integrative Study for Animal Behavior, Indiana University, Bloomington, Indiana; Department of Psychology, University of North Carolina at Charlotte, Charlotte, North Carolina.
| | - Gregory E Demas
- Center for Integrative Study for Animal Behavior, Indiana University, Bloomington, Indiana; Department of Biology, Indiana University, Bloomington, Indiana
| | - Julia R Heiman
- Kinsey Institute, Indiana University, Bloomington, Indiana; Center for Integrative Study for Animal Behavior, Indiana University, Bloomington, Indiana; Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| |
Collapse
|
43
|
Kim SH, Choi CH, Kim SY, Eun JS, Shin TY. Anti-Allergic Effects of Artemisia iwayomogi on Mast Cell-Mediated Allergy Model. Exp Biol Med (Maywood) 2016; 230:82-8. [PMID: 15618130 DOI: 10.1177/153537020523000111] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The discovery of drugs for the treatment of allergic disease is an important subject in human health. The Artemisia iwayomogi (Compositae) (AIE) has been used as a traditional medicine in Korea and is known to have an anti-inflammatory effect. However, its specific mechanism of action is still unknown. In this report, we investigated the effect of AIE on the mast cell-mediated allergy model and studied the possible mechanism of action. AIE inhibited compound 48/80–induced systemic reactions and plasma histamine release in mice. AIE decreased immunoglobulin E (lgE)–mediated local allergic reaction, passive cutaneous anaphylaxis (PCA) reaction. AIE dose dependency attenuated histamine release from rat peritoneal mast cells activated by compound 48/80 or IgE. AIE decreased the compound 48/80-induced intracellular Ca2+. Furthermore, AIE decreased the phorbol 12-myristate 13-acetate (PMA) plus calcium lonophore A23187-stimulated tumor necrosis factor-α and interleukin-6 gene expression and production in human mast cells. The inhibitory effect of AIE on the proinflammatory cytokine was p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) dependent. AIE attenuated PMA plus A23187-lnduced degradation of licBa and nuclear translocation of NF-κB and specifically blocked activation of p38 MAPK but not that of c-jun N-terminal kinase and extracellular signal-regulated kinase. Our findings provide evidence that AIE inhibits mast cell-derived immediate-type allergic reactions and involvement of Intracellular Ca2+, proinflammatory cytokines, p38 MAPK, and NF-κB in these effects.
Collapse
Affiliation(s)
- Sang-Hyun Kim
- College of Pharmacy, Woosuk University, Jeonju, Jeonbuk, 565-701, South Korea
| | | | | | | | | |
Collapse
|
44
|
Abstract
Mast cells (MCs) play a central role in tissue homoeostasis, sensing the local environment through numerous innate cell surface receptors. This enables them to respond rapidly to perceived tissue insults with a view to initiating a co-ordinated programme of inflammation and repair. However, when the tissue insult is chronic, the ongoing release of multiple pro-inflammatory mediators, proteases, cytokines and chemokines leads to tissue damage and remodelling. In asthma, there is strong evidence of ongoing MC activation, and their mediators and cell-cell signals are capable of regulating many facets of asthma pathophysiology. This article reviews the evidence behind this.
Collapse
Affiliation(s)
- P Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - G Arthur
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| |
Collapse
|
45
|
Tamarov K, Xu W, Osminkina L, Zinovyev S, Soininen P, Kudryavtsev A, Gongalsky M, Gaydarova A, Närvänen A, Timoshenko V, Lehto VP. Temperature responsive porous silicon nanoparticles for cancer therapy - spatiotemporal triggering through infrared and radiofrequency electromagnetic heating. J Control Release 2016; 241:220-228. [PMID: 27686581 DOI: 10.1016/j.jconrel.2016.09.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 01/27/2023]
Abstract
One critical functionality of the carrier system utilized in targeted drug delivery is its ability to trigger the release of the therapeutic cargo once the carrier has reached its target. External triggering is an alluring approach as it can be applied in a precise spatiotemporal manner. In the present study, we achieved external triggering through the porous silicon (PSi) nanoparticles (NPs) by providing a pulse of infrared or radiofrequency radiation. The NPs were grafted with a temperature responsive polymer whose critical temperature was tailored to be slightly above 37°C. The polymer coating improved the biocompatibility of the NPs significantly in comparison with their uncoated counterparts. Radiation induced a rapid temperature rise, which resulted in the collapse of the polymer chains facilitating the cargo release. Both infrared and radiofrequency radiation were able to efficiently trigger the release of the encapsulated drug in vitro and induce significant cell death in comparison to the control groups. Radiofrequency radiation was found to be more efficient in vitro, and the treatment efficacy was verified in vivo in a lung carcinoma (3LL) mice model. After a single intratumoral administration of the carrier system combined with radiofrequency radiation, there was clear suppression of the growth of the carcinoma and a prolongation of the survival time of the animals. TOC IMAGE The temperature responsive (TR) polymer grafted on the surface of porous silicon nanoparticles (PSi NPs) changes its conformation in response to the heating induced by infrared or radiofrequency radiation. The conformation change allows the loaded doxorubicin to escape from the pores, achieving controlled drug release from TR PSi NPs, which displayed efficacy against malignant cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Konstantin Tamarov
- University of Eastern Finland, Department of Applied Physics, 70211, Kuopio, Finland; M.V. Lomonosov Moscow State University, Faculty of Physics, 119991, Moscow, Russia
| | - Wujun Xu
- University of Eastern Finland, Department of Applied Physics, 70211, Kuopio, Finland.
| | - Liubov Osminkina
- M.V. Lomonosov Moscow State University, Faculty of Physics, 119991, Moscow, Russia; National Research Nuclear University "MEPhI", 115409 Moscow, Russia
| | - Sergey Zinovyev
- National Research Nuclear University "MEPhI", 115409 Moscow, Russia; Russian Cancer Research Blokhin Center, 115478, Moscow, Russia
| | - Pasi Soininen
- University of Eastern Finland, School of Pharmacy, 70211, Kuopio, Finland
| | - Andrey Kudryavtsev
- Institute of Theoretical and Experimental Biophysics of RAS, 142290, Pushino, Russia
| | - Maxim Gongalsky
- M.V. Lomonosov Moscow State University, Faculty of Physics, 119991, Moscow, Russia
| | - Azha Gaydarova
- Russian Scientific Center of Medical Rehabilitation and Balneology, 121099, Moscow, Russia
| | - Ale Närvänen
- University of Eastern Finland, School of Pharmacy, 70211, Kuopio, Finland
| | - Victor Timoshenko
- M.V. Lomonosov Moscow State University, Faculty of Physics, 119991, Moscow, Russia; National Research Nuclear University "MEPhI", 115409 Moscow, Russia
| | - Vesa-Pekka Lehto
- University of Eastern Finland, Department of Applied Physics, 70211, Kuopio, Finland.
| |
Collapse
|
46
|
Guo S, Vollesen ALH, Hansen YBL, Frandsen E, Andersen MR, Amin FM, Fahrenkrug J, Olesen J, Ashina M. Part II: Biochemical changes after pituitary adenylate cyclase-activating polypeptide-38 infusion in migraine patients. Cephalalgia 2016; 37:136-147. [PMID: 26994298 DOI: 10.1177/0333102416639517] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Intravenous infusion of pituitary adenylate cyclase-activating polypeptide-38 (PACAP38) provokes migraine attacks in 65-70% of migraine without aura (MO) patients. We investigated whether PACAP38 infusion causes changes in the endogenous production of PACAP38, vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP), tumour necrosis factor alpha (TNFα), S100 calcium binding protein B (S100B), neuron-specific enolase and pituitary hormones in migraine patients. Methods We allocated 32 previously genotyped MO patients to receive intravenous infusion PACAP38 (10 pmol/kg/minute) for 20 minutes and recorded migraine-like attacks. Sixteen of the patients were carriers of the risk allele rs2274316 ( MEF2D), which confers increased risk of MO and may regulate PACAP38 expression, and 16 were non-carriers. We collected blood samples at baseline and 20, 30, 40, 60 and 90 minutes after the start of the infusion. A control group of six healthy volunteers received intravenous saline. Results PACAP38 infusion caused significant changes in plasma concentrations of VIP ( p = 0.026), prolactin ( p = 0.011), S100B ( p < 0.001) and thyroid-stimulating hormone (TSH; p = 0.015), but not CGRP ( p = 0.642) and TNFα ( p = 0.535). We found no difference in measured biochemical variables after PACAP38 infusion in patients who later developed migraine-like attacks compared to those who did not ( p > 0.05). There was no difference in the changes of biochemical variables between patients with and without the MEF2D-associated gene variant ( p > 0.05). Conclusion PACAP38 infusion elevated the plasma levels of VIP, prolactin, S100B and TSH, but not CGRP and TNFα. Development of delayed migraine-like attacks or the presence of the MEF2D gene variant was not associated with pre-ictal changes in plasma levels of neuropeptides, TNFα and pituitary hormones.
Collapse
Affiliation(s)
- Song Guo
- 1 Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Luise Haulund Vollesen
- 1 Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Young Bae Lee Hansen
- 2 Department of Clinical Biochemistry, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik Frandsen
- 3 Department of Diagnostics, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malene Rohr Andersen
- 4 Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Gentofte, Denmark
| | - Faisal Mohammad Amin
- 1 Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Fahrenkrug
- 5 Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jes Olesen
- 1 Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- 1 Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Prisco AR, Hoffmann BR, Kaczorowski CC, McDermott-Roe C, Stodola TJ, Exner EC, Greene AS. Tumor Necrosis Factor α Regulates Endothelial Progenitor Cell Migration via CADM1 and NF-kB. Stem Cells 2016; 34:1922-33. [PMID: 26867147 PMCID: PMC4931961 DOI: 10.1002/stem.2339] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/28/2016] [Indexed: 02/06/2023]
Abstract
Shortly after the discovery of endothelial progenitor cells (EPCs) in 1997, many clinical trials were conducted using EPCs as a cellular based therapy with the goal of restoring damaged organ function by inducing growth of new blood vessels (angiogenesis). Results were disappointing, largely because the cellular and molecular mechanisms of EPC-induced angiogenesis were not clearly understood. Following injection, EPCs must migrate to the target tissue and engraft prior to induction of angiogenesis. In this study EPC migration was investigated in response to tumor necrosis factor α (TNFα), a pro-inflammatory cytokine, to test the hypothesis that organ damage observed in ischemic diseases induces an inflammatory signal that is important for EPC homing. In this study, EPC migration and incorporation were modeled in vitro using a coculture assay where TNFα treated EPCs were tracked while migrating toward vessel-like structures. It was found that TNFα treatment of EPCs increased migration and incorporation into vessel-like structures. Using a combination of genomic and proteomic approaches, NF-kB mediated upregulation of CADM1 was identified as a mechanism of TNFα induced migration. Inhibition of NF-kB or CADM1 significantly decreased migration of EPCs in vitro suggesting a role for TNFα signaling in EPC homing during tissue repair. Stem Cells 2016;34:1922-1933.
Collapse
Affiliation(s)
- Anthony R. Prisco
- Medical College of Wisconsin, Department of Physiology, Milwaukee, WI
- Medical College of Wisconsin, Biotechnology and Bioengineering Center, Milwaukee, WI
| | - Brian R. Hoffmann
- Medical College of Wisconsin, Biotechnology and Bioengineering Center, Milwaukee, WI
- Medical College of Wisconsin, Department of Medicine, Division of Cardiology, Cardiovascular Center, Milwaukee, WI
| | - Catherine C. Kaczorowski
- University of Tennessee Health Science Center, Department of Anatomy and Neurobiology, Memphis, TN
| | - Chris McDermott-Roe
- Medical College of Wisconsin, Department of Physiology, Milwaukee, WI
- Medical College of Wisconsin, Human and Molecular Genetics Center, Milwaukee, WI
| | - Timothy J. Stodola
- Medical College of Wisconsin, Department of Physiology, Milwaukee, WI
- Medical College of Wisconsin, Biotechnology and Bioengineering Center, Milwaukee, WI
| | - Eric C. Exner
- Medical College of Wisconsin, Department of Physiology, Milwaukee, WI
- Medical College of Wisconsin, Biotechnology and Bioengineering Center, Milwaukee, WI
| | - Andrew S. Greene
- Medical College of Wisconsin, Department of Physiology, Milwaukee, WI
- Medical College of Wisconsin, Biotechnology and Bioengineering Center, Milwaukee, WI
| |
Collapse
|
48
|
Mayerhofer M, Aichberger KJ, Florian S, Valent P. Recognition Sites for Microbes and Components of the Immune System on Human Mast Cells: Relationship to CD Antigens and Implications for Host Defense. Int J Immunopathol Pharmacol 2016; 20:421-34. [PMID: 17880756 DOI: 10.1177/039463200702000301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Traditionally, mast cells (MCs) have been considered to play an important role in allergic disorders and helminth infections. More recently, MCs have been implicated in a variety of different infectious diseases including life-threatening disorders caused by viruses and bacteria. Apart from recognition through specific IgE, MCs are considered to recognize such bacteria and viruses via specific cell surface binding sites. In addition, MCs interact with diverse components and cells of the immune system and thereby may facilitate the targeting and the elimination of invading microbes in the tissues. The current article provides an overview on MC antigens contributing to microbe recognition and targeting as an important element of natural host-defense.
Collapse
Affiliation(s)
- M Mayerhofer
- Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
49
|
Yoon SC, Je IG, Cui X, Park HR, Khang D, Park JS, Kim SH, Shin TY. Anti-allergic and anti-inflammatory effects of aqueous extract of Pogostemon cablin. Int J Mol Med 2015; 37:217-24. [PMID: 26531835 DOI: 10.3892/ijmm.2015.2401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/26/2015] [Indexed: 11/06/2022] Open
Abstract
Allergic disease is caused by exposure to normally innocuous substances that activate mast cells. Mast cell-mediated allergic inflammation is closely related to a number of allergic disorders, such as anaphylaxis, allergic rhinitis, asthma and atopic dermatitis. The discovery of drugs for treating allergic disease is an interesting subject and important to human health. The aim of the present study was to investigate the anti‑allergic and anti-inflammatory effects of the aqueous extract of Pogostemon cablin (Blanco) Benth (AEPC) (a member of the Labiatae family) using mast cells, and also to determine its possible mechanisms of action. An intraperitoneal injection of compound 48/80 or a serial injection of immunoglobulin E and antigen was used to induce anaphylaxis in mice. We found that AEPC inhibited compound 48/80‑induced systemic and immunoglobulin E-mediated cutaneous anaphylaxis in a dose-dependent manner. The release of histamine from mast cells was reduced by AEPC, and this suppressive effect was associated with the regulation of calcium influx. In addition, AEPC attenuated the phorbol 12-myristate 13-acetate plus calcium ionophore A23187 (PMACI)-stimulated expression of pro-inflammatory cytokines in mast cells. The inhibitory effects of AEPC on pro-inflammatory cytokines were dependent on the activation of nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK). AEPC blocked the PMACI-induced translocation of NF-κB into the nucleus by hindering the degradation of IκBα and the phosphorylation of p38 MAPK. Our results thus indicate that AEPC inhibits mast cell‑mediated allergic inflammation by suppressing mast cell degranulation and the expression of pro-inflammatory cytokines caused by reduced intracellular calcium levels and the activation of NF-κB and p38 MAPK.
Collapse
Affiliation(s)
- Seok Cheol Yoon
- College of Pharmacy, Woosuk University, Jeonju 565-701, Republic of Korea
| | - In-Gyu Je
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Xun Cui
- College of Pharmacy, Woosuk University, Jeonju 565-701, Republic of Korea
| | - Hae Ran Park
- College of Pharmacy, Woosuk University, Jeonju 565-701, Republic of Korea
| | - Dongwoo Khang
- Department of Molecular Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Jeong-Suk Park
- Department of Alternative Medicine, Nambu University, Gwangju 506-706, Republic of Korea
| | - Sang-Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Tae-Yong Shin
- College of Pharmacy, Woosuk University, Jeonju 565-701, Republic of Korea
| |
Collapse
|
50
|
Regulation of bitter taste responses by tumor necrosis factor. Brain Behav Immun 2015; 49:32-42. [PMID: 25911043 PMCID: PMC4567432 DOI: 10.1016/j.bbi.2015.04.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/23/2015] [Accepted: 04/01/2015] [Indexed: 12/22/2022] Open
Abstract
Inflammatory cytokines are important regulators of metabolism and food intake. Over production of inflammatory cytokines during bacterial and viral infections leads to anorexia and reduced food intake. However, it remains unclear whether any inflammatory cytokines are involved in the regulation of taste reception, the sensory mechanism governing food intake. Previously, we showed that tumor necrosis factor (TNF), a potent proinflammatory cytokine, is preferentially expressed in a subset of taste bud cells. The level of TNF in taste cells can be further induced by inflammatory stimuli. To investigate whether TNF plays a role in regulating taste responses, in this study, we performed taste behavioral tests and gustatory nerve recordings in TNF knockout mice. Behavioral tests showed that TNF-deficient mice are significantly less sensitive to the bitter compound quinine than wild-type mice, while their responses to sweet, umami, salty, and sour compounds are comparable to those of wild-type controls. Furthermore, nerve recording experiments showed that the chorda tympani nerve in TNF knockout mice is much less responsive to bitter compounds than that in wild-type mice. Chorda tympani nerve responses to sweet, umami, salty, and sour compounds are similar between TNF knockout and wild-type mice, consistent with the results from behavioral tests. We further showed that taste bud cells express the two known TNF receptors TNFR1 and TNFR2 and, therefore, are potential targets of TNF. Together, our results suggest that TNF signaling preferentially modulates bitter taste responses. This mechanism may contribute to taste dysfunction, particularly taste distortion, associated with infections and some chronic inflammatory diseases.
Collapse
|