1
|
Mirceta M, Shum N, Schmidt MHM, Pearson CE. Fragile sites, chromosomal lesions, tandem repeats, and disease. Front Genet 2022; 13:985975. [PMID: 36468036 PMCID: PMC9714581 DOI: 10.3389/fgene.2022.985975] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/02/2022] [Indexed: 09/16/2023] Open
Abstract
Expanded tandem repeat DNAs are associated with various unusual chromosomal lesions, despiralizations, multi-branched inter-chromosomal associations, and fragile sites. Fragile sites cytogenetically manifest as localized gaps or discontinuities in chromosome structure and are an important genetic, biological, and health-related phenomena. Common fragile sites (∼230), present in most individuals, are induced by aphidicolin and can be associated with cancer; of the 27 molecularly-mapped common sites, none are associated with a particular DNA sequence motif. Rare fragile sites ( ≳ 40 known), ≤ 5% of the population (may be as few as a single individual), can be associated with neurodevelopmental disease. All 10 molecularly-mapped folate-sensitive fragile sites, the largest category of rare fragile sites, are caused by gene-specific CGG/CCG tandem repeat expansions that are aberrantly CpG methylated and include FRAXA, FRAXE, FRAXF, FRA2A, FRA7A, FRA10A, FRA11A, FRA11B, FRA12A, and FRA16A. The minisatellite-associated rare fragile sites, FRA10B, FRA16B, can be induced by AT-rich DNA-ligands or nucleotide analogs. Despiralized lesions and multi-branched inter-chromosomal associations at the heterochromatic satellite repeats of chromosomes 1, 9, 16 are inducible by de-methylating agents like 5-azadeoxycytidine and can spontaneously arise in patients with ICF syndrome (Immunodeficiency Centromeric instability and Facial anomalies) with mutations in genes regulating DNA methylation. ICF individuals have hypomethylated satellites I-III, alpha-satellites, and subtelomeric repeats. Ribosomal repeats and subtelomeric D4Z4 megasatellites/macrosatellites, are associated with chromosome location, fragility, and disease. Telomere repeats can also assume fragile sites. Dietary deficiencies of folate or vitamin B12, or drug insults are associated with megaloblastic and/or pernicious anemia, that display chromosomes with fragile sites. The recent discovery of many new tandem repeat expansion loci, with varied repeat motifs, where motif lengths can range from mono-nucleotides to megabase units, could be the molecular cause of new fragile sites, or other chromosomal lesions. This review focuses on repeat-associated fragility, covering their induction, cytogenetics, epigenetics, cell type specificity, genetic instability (repeat instability, micronuclei, deletions/rearrangements, and sister chromatid exchange), unusual heritability, disease association, and penetrance. Understanding tandem repeat-associated chromosomal fragile sites provides insight to chromosome structure, genome packaging, genetic instability, and disease.
Collapse
Affiliation(s)
- Mila Mirceta
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Natalie Shum
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Monika H. M. Schmidt
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
The role of spatiotemporal organization and dynamics of clock complexes in circadian regulation. Curr Opin Cell Biol 2022; 78:102129. [PMID: 36126370 DOI: 10.1016/j.ceb.2022.102129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 08/19/2022] [Indexed: 01/31/2023]
Abstract
Circadian clocks are cell autonomous timekeepers that regulate ∼24-h oscillations in the expression of many genes and control rhythms in nearly all our behavior and physiology. Almost every cell in the human body has a molecular clock and networks of cells containing clock proteins orchestrate daily rhythms in many physiological processes, from sleep-wake cycles to metabolism to immunity. All eukaryotic circadian clocks are based on transcription-translation delayed negative feedback loops in which activation of core clock genes is negatively regulated by their cognate protein products. Our current understanding of circadian clocks has been accumulated from decades of genetic and biochemical experiments, however, what remains poorly understood is how clock proteins, genes, and mRNAs are spatiotemporally organized within live clock cells and how such subcellular organization affects circadian rhythms at the single cell level. Here, we review recent progress in understanding how clock proteins and genes are spatially organized within clock cells over the circadian cycle and the role of such organization in generating circadian rhythms and highlight open questions for future studies.
Collapse
|
3
|
Xiao Y, Yuan Y, Jimenez M, Soni N, Yadlapalli S. Clock proteins regulate spatiotemporal organization of clock genes to control circadian rhythms. Proc Natl Acad Sci U S A 2021; 118:e2019756118. [PMID: 34234015 PMCID: PMC8285898 DOI: 10.1073/pnas.2019756118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Circadian clocks regulate ∼24-h oscillations in gene expression, behavior, and physiology. While the genetic and molecular mechanisms of circadian rhythms are well characterized, what remains poorly understood are the intracellular dynamics of circadian clock components and how they affect circadian rhythms. Here, we elucidate how spatiotemporal organization and dynamics of core clock proteins and genes affect circadian rhythms in Drosophila clock neurons. Using high-resolution imaging and DNA-fluorescence in situ hybridization techniques, we demonstrate that Drosophila clock proteins (PERIOD and CLOCK) are organized into a few discrete foci at the nuclear envelope during the circadian repression phase and play an important role in the subnuclear localization of core clock genes to control circadian rhythms. Specifically, we show that core clock genes, period and timeless, are positioned close to the nuclear periphery by the PERIOD protein specifically during the repression phase, suggesting that subnuclear localization of core clock genes might play a key role in their rhythmic gene expression. Finally, we show that loss of Lamin B receptor, a nuclear envelope protein, leads to disruption of PER foci and per gene peripheral localization and results in circadian rhythm defects. These results demonstrate that clock proteins play a hitherto unexpected role in the subnuclear reorganization of core clock genes to control circadian rhythms, revealing how clocks function at the subcellular level. Our results further suggest that clock protein foci might regulate dynamic clustering and spatial reorganization of clock-regulated genes over the repression phase to control circadian rhythms in behavior and physiology.
Collapse
Affiliation(s)
- Yangbo Xiao
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ye Yuan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Mariana Jimenez
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Neeraj Soni
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Swathi Yadlapalli
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109;
| |
Collapse
|
4
|
Hesson LB, Pritchard AL. Genetics and Epigenetics: A Historical Overview. Clin Epigenetics 2019. [DOI: 10.1007/978-981-13-8958-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
5
|
Bonora G, Disteche CM. Structural aspects of the inactive X chromosome. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0357. [PMID: 28947656 PMCID: PMC5627159 DOI: 10.1098/rstb.2016.0357] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2017] [Indexed: 12/20/2022] Open
Abstract
A striking difference between male and female nuclei was recognized early on by the presence of a condensed chromatin body only in female cells. Mary Lyon proposed that X inactivation or silencing of one X chromosome at random in females caused this structural difference. Subsequent studies have shown that the inactive X chromosome (Xi) does indeed have a very distinctive structure compared to its active counterpart and all autosomes in female mammals. In this review, we will recap the discovery of this fascinating biological phenomenon and seminal studies in the field. We will summarize imaging studies using traditional microscopy and super-resolution technology, which revealed uneven compaction of the Xi. We will then discuss recent findings based on high-throughput sequencing techniques, which uncovered the distinct three-dimensional bipartite configuration of the Xi and the role of specific long non-coding RNAs in eliciting and maintaining this structure. The relative position of specific genomic elements, including genes that escape X inactivation, repeat elements and chromatin features, will be reviewed. Finally, we will discuss the position of the Xi, either near the nuclear periphery or the nucleolus, and the elements implicated in this positioning. This article is part of the themed issue ‘X-chromosome inactivation: a tribute to Mary Lyon’.
Collapse
Affiliation(s)
- Giancarlo Bonora
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christine M Disteche
- Department of Pathology, University of Washington, Seattle, WA 98195, USA .,Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Chen CK, Blanco M, Jackson C, Aznauryan E, Ollikainen N, Surka C, Chow A, Cerase A, McDonel P, Guttman M. Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science 2016; 354:468-472. [PMID: 27492478 DOI: 10.1126/science.aae0047] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 07/25/2016] [Indexed: 12/12/2022]
Abstract
The Xist long noncoding RNA orchestrates X chromosome inactivation, a process that entails chromosome-wide silencing and remodeling of the three-dimensional (3D) structure of the X chromosome. Yet, it remains unclear whether these changes in nuclear structure are mediated by Xist and whether they are required for silencing. Here, we show that Xist directly interacts with the Lamin B receptor, an integral component of the nuclear lamina, and that this interaction is required for Xist-mediated silencing by recruiting the inactive X to the nuclear lamina and by doing so enables Xist to spread to actively transcribed genes across the X. Our results demonstrate that lamina recruitment changes the 3D structure of DNA, enabling Xist and its silencing proteins to spread across the X to silence transcription.
Collapse
Affiliation(s)
- Chun-Kan Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mario Blanco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Constanza Jackson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Erik Aznauryan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Noah Ollikainen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christine Surka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Amy Chow
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrea Cerase
- European Molecular Biology Laboratory-Monterotondo, Via Ramarini 32, 00015 Monterotondo (RM), Italy
| | - Patrick McDonel
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
7
|
Banday S, Farooq Z, Rashid R, Abdullah E, Altaf M. Role of Inner Nuclear Membrane Protein Complex Lem2-Nur1 in Heterochromatic Gene Silencing. J Biol Chem 2016; 291:20021-9. [PMID: 27451393 DOI: 10.1074/jbc.m116.743211] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Indexed: 11/06/2022] Open
Abstract
Heterochromatin in the fission yeast Schizosaccharomyces pombe is clustered at the nuclear periphery and interacts with a number of nuclear membrane proteins. However, the significance and the factors that sequester heterochromatin at the nuclear periphery are not fully known. Here, we report that an inner nuclear membrane protein complex Lem2-Nur1 is essential for heterochromatin-mediated gene silencing. We found that Lem2 is physically associated with another inner nuclear membrane protein, Nur1, and deletion of either lem2 or nur1 causes silencing defect at centromeres, telomeres, and rDNA loci. We analyzed the genome-wide association of Lem2 using ChIP sequencing and we found that it binds to the central core region of centromeres, in striking contrast to Chp1, a component of pericentromeric heterochromatin, which binds H3K9me-rich chromatin in neighboring sequences. The recruitment of Lem2 and Nur1 to silent regions of the genome is dependent on H3K9 methyltransferase, Clr4. Finally, we show that the Lem2-Nur1 complex regulates the local balance between the underln]Snf2/HDAC-containing repressor complex (SHREC) histone deacetylase complex and the anti-silencing protein Epe1. These findings uncover a novel role for Lem2-Nur1 as a key functional link between localization at the nuclear periphery and heterochromatin-mediated gene silencing.
Collapse
Affiliation(s)
- Shahid Banday
- From the Chromatin and Epigenetics Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Zeenat Farooq
- From the Chromatin and Epigenetics Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Romana Rashid
- From the Chromatin and Epigenetics Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Ehsaan Abdullah
- From the Chromatin and Epigenetics Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Mohammad Altaf
- From the Chromatin and Epigenetics Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| |
Collapse
|
8
|
Deng X, Ma W, Ramani V, Hill A, Yang F, Ay F, Berletch JB, Blau CA, Shendure J, Duan Z, Noble WS, Disteche CM. Bipartite structure of the inactive mouse X chromosome. Genome Biol 2015; 16:152. [PMID: 26248554 PMCID: PMC4539712 DOI: 10.1186/s13059-015-0728-8] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/20/2015] [Indexed: 12/24/2022] Open
Abstract
Background In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate structural changes associated with allelic silencing, we have applied a recently developed Hi-C assay that uses DNase I for chromatin fragmentation to mouse F1 hybrid systems. Results We find radically different conformations for the two female mouse X chromosomes. The inactive X has two superdomains of frequent intrachromosomal contacts separated by a boundary region. Comparison with the recently reported two-superdomain structure of the human inactive X shows that the genomic content of the superdomains differs between species, but part of the boundary region is conserved and located near the Dxz4/DXZ4 locus. In mouse, the boundary region also contains a minisatellite, Ds-TR, and both Dxz4 and Ds-TR appear to be anchored to the nucleolus. Genes that escape X inactivation do not cluster but are located near the periphery of the 3D structure, as are regions enriched in CTCF or RNA polymerase. Fewer short-range intrachromosomal contacts are detected for the inactive alleles of genes subject to X inactivation compared with the active alleles and with genes that escape X inactivation. This pattern is also evident for imprinted genes, in which more chromatin contacts are detected for the expressed allele. Conclusions By applying a novel Hi-C method to map allelic chromatin contacts, we discover a specific bipartite organization of the mouse inactive X chromosome that probably plays an important role in maintenance of gene silencing. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0728-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinxian Deng
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Wenxiu Ma
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Vijay Ramani
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Andrew Hill
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Fan Yang
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Ferhat Ay
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Joel B Berletch
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Carl Anthony Blau
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Division of Hematology, University of Washington, Seattle, Washington, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA. .,Division of Hematology, University of Washington, Seattle, Washington, USA.
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA. .,Department of Computer Science and Engineering, University of Washington, Seattle, Washington, USA.
| | - Christine M Disteche
- Department of Pathology, University of Washington, Seattle, Washington, USA. .,Department of Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
9
|
Kumar Y, Yang J, Hu T, Chen L, Xu Z, Xu L, Hu XX, Tang G, Wang JM, Li Y, Poon WS, Wan W, Zhang L, Mat WK, Pun FW, Lee P, Cheong THY, Ding X, Ng SK, Tsang SY, Chen JF, Zhang P, Li S, Wang HY, Xue H. Massive interstitial copy-neutral loss-of-heterozygosity as evidence for cancer being a disease of the DNA-damage response. BMC Med Genomics 2015. [PMID: 26208496 PMCID: PMC4515014 DOI: 10.1186/s12920-015-0104-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background The presence of loss-of-heterozygosity (LOH) mutations in cancer cell genomes is commonly encountered. Moreover, the occurrences of LOHs in tumor suppressor genes play important roles in oncogenesis. However, because the causative mechanisms underlying LOH mutations in cancer cells yet remain to be elucidated, enquiry into the nature of these mechanisms based on a comprehensive examination of the characteristics of LOHs in multiple types of cancers has become a necessity. Methods We performed next-generation sequencing on inter-Alu sequences of five different types of solid tumors and acute myeloid leukemias, employing the AluScan platform which entailed amplification of such sequences using multiple PCR primers based on the consensus sequences of Alu elements; as well as the whole genome sequences of a lung-to-liver metastatic cancer and a primary liver cancer. Paired-end sequencing reads were aligned to the reference human genome to identify major and minor alleles so that the partition of LOH products between homozygous-major vs. homozygous-minor alleles could be determined at single-base resolution. Strict filtering conditions were employed to avoid false positives. Measurements of LOH occurrences in copy number variation (CNV)-neutral regions were obtained through removal of CNV-associated LOHs. Results We found: (a) average occurrence of copy-neutral LOHs amounting to 6.9 % of heterologous loci in the various cancers; (b) the mainly interstitial nature of the LOHs; and (c) preference for formation of homozygous-major over homozygous-minor, and transitional over transversional, LOHs. Conclusions The characteristics of the cancer LOHs, observed in both AluScan and whole genome sequencings, point to the formation of LOHs through repair of double-strand breaks by interhomolog recombination, or gene conversion, as the consequence of a defective DNA-damage response, leading to a unified mechanism for generating the mutations required for oncogenesis as well as the progression of cancer cells. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0104-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yogesh Kumar
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| | - Jianfeng Yang
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| | - Taobo Hu
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| | - Lei Chen
- Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China.
| | - Zhi Xu
- Department of Oncology, Nanjing First Hospital, and Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Lin Xu
- Jiangsu Key Laboratory of Cancer Molecular Biology and Translational Medicine, Jiangsu Cancer Hospital, Nanjing, China.
| | - Xiao-Xia Hu
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Gusheng Tang
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Jian-Min Wang
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Yi Li
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China.
| | - Wai-Sang Poon
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China.
| | - Weiqing Wan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China.
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China.
| | - Wai-Kin Mat
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| | - Frank W Pun
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| | - Peggy Lee
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| | - Timothy H Y Cheong
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| | - Xiaofan Ding
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| | - Siu-Kin Ng
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| | - Shui-Ying Tsang
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| | - Jin-Fei Chen
- Department of Oncology, Nanjing First Hospital, and Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Peng Zhang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, and Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Shao Li
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, and Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Hong-Yang Wang
- Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China.
| | - Hong Xue
- Division of Life Science, Applied Genomics Centre and Centre for Statistical Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| |
Collapse
|
10
|
Sehgal N, Fritz AJ, Morris K, Torres I, Chen Z, Xu J, Berezney R. Gene density and chromosome territory shape. Chromosoma 2014; 123:499-513. [PMID: 25106753 DOI: 10.1007/s00412-014-0480-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 12/16/2022]
Abstract
Despite decades of study of chromosome territories (CT) in the interphase nucleus of mammalian cells, our understanding of the global shape and 3-D organization of the individual CT remains very limited. Past microscopic analysis of CT suggested that while many of the CT appear to be very regular ellipsoid-like shapes, there were also those with more irregular shapes. We have undertaken a comprehensive analysis to determine the degree of shape regularity of different CT. To be representative of the whole human genome, 12 different CT (~41 % of the genome) were selected that ranged from the largest (CT 1) to the smallest (CT 21) in size and from the highest (CT 19) to lowest (CT Y) in gene density. Using both visual inspection and algorithms that measure the degree of shape ellipticity and regularity, we demonstrate a strong inverse correlation between the degree of regular CT shape and gene density for those CT that are most gene-rich (19, 17, 11) and gene-poor (18, 13, Y). CT more intermediate in gene density showed a strong negative correlation with shape regularity, but not with ellipticity. An even more striking correlation between gene density and CT shape was determined for the nucleolar-associated NOR-CT. Correspondingly, striking differences in shape between the X active and inactive CT implied that aside from gene density, the overall global level of gene transcription on individual CT is also an important determinant of chromosome territory shape.
Collapse
Affiliation(s)
- Nitasha Sehgal
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Arib G, Akhtar A. Multiple facets of nuclear periphery in gene expression control. Curr Opin Cell Biol 2011; 23:346-53. [PMID: 21242077 DOI: 10.1016/j.ceb.2010.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 01/26/2023]
Abstract
Nuclear pore complexes play a central role in controlling the traffic between the nucleus and the cytoplasm. Progress during the last decade has highlighted nuclear periphery components as novel players in chromatin organization, gene regulation, and genome stability. For instance, lamins associate with repressive chromatin while nuclear pores tend to associate with active chromatin. Interestingly, nucleoporins (Nups) act not only at the nuclear periphery but also in the nucleoplasm. Here we provide an overview of the latest findings and discuss the functional importance of nucleoporin association with specific genes, their role in transcriptional memory, the coupling of transcription and mRNA export, and genome integrity.
Collapse
Affiliation(s)
- Ghislaine Arib
- Max-Planck-Institute of Immunobiology und Epigenetics, Stübeweg 51,79108 Freiburg im Breisgau, Germany
| | | |
Collapse
|
12
|
Lissoni S, Baronchelli S, Villa N, Lucchini V, Betri E, Cavalli P, Dalprà L. Chromosome territories, X;Y translocation and Premature Ovarian Failure: is there a relationship? Mol Cytogenet 2009; 2:19. [PMID: 19781104 PMCID: PMC2761935 DOI: 10.1186/1755-8166-2-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 09/27/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Premature ovarian failure (POF) is a secondary hypergonadotrophic amenorrhea occurring before the age of 40 and affecting 1-3% of females. Chromosome anomalies account for 6-8% of POF cases, but only few cases are associated with translocations involving X and Y chromosomes.This study shows the cytogenetic and molecular analysis of a POF patient came to our attention as she developed a left ovary choriocarcinoma at the age of 10 and at 14 years of age she presented secondary amenorrhea with elevated levels of gonadotropins. RESULTS Breakpoint position on X and Y chromosomes was investigated using Fluorescent In Situ Hybridisation (FISH) with a panel of specific BAC probes, microsatellite analysis and evaluation of copy number changes and loss of heterozigosity by Affymetrix(R) GeneChip platform (Santa Clara, CA, USA). Patient's karyotype resulted 46, X, der(Y)t(X;Y)(q13.1;q11.223). X inactivation study was assessed by RBA banding and showed preferential inactivation of derivative chromosome. The reciprocal spatial disposition of sexual chromosome territories was investigated using whole chromosome painting and centromeres probes: patient's results didn't show a significant difference in comparison to normal controls. CONCLUSION The peculiar clinical case come to our attention highlighted the complexity of POF aetiology and of the translocation event, even if our results seem to exclude any effect on nuclear organisation. POF phenotype could be partially explained by skewed X chromosome inactivation that influences gene expression.
Collapse
Affiliation(s)
- Sara Lissoni
- Department of Neuroscience and Biomedical Technologies, University of Milan-Bicocca, via Cadore 48, 20052, Monza, Italy.
| | | | | | | | | | | | | |
Collapse
|
13
|
Kalverda B, Röling MD, Fornerod M. Chromatin organization in relation to the nuclear periphery. FEBS Lett 2008; 582:2017-22. [PMID: 18435921 DOI: 10.1016/j.febslet.2008.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 04/11/2008] [Indexed: 11/15/2022]
Abstract
In the limited space of the nucleus, chromatin is organized in a dynamic and non-random manner. Three ways of chromatin organization are compaction, formation of loops and localization within the nucleus. To study chromatin localization it is most convenient to use the nuclear envelope as a fixed viewpoint. Peripheral chromatin has both been described as silent chromatin, interacting with the nuclear lamina, and active chromatin, interacting with nuclear pore proteins. Current data indicate that the nuclear envelope is a reader as well as a writer of chromatin state, and that its influence is not limited to the nuclear periphery.
Collapse
Affiliation(s)
- Bernike Kalverda
- Department of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
14
|
Solov'eva L, Svetlova M, Bodinski D, Zalensky AO. Nature of telomere dimers and chromosome looping in human spermatozoa. Chromosome Res 2005; 12:817-823. [PMID: 15702420 PMCID: PMC1405914 DOI: 10.1007/s10577-005-5513-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 09/30/2004] [Indexed: 01/17/2023]
Abstract
Specific and well-organized chromosome architecture in human sperm cells is supported by the prominent interactions between centromeres and between telomeres. The telomere-telomere interactions result in telomere dimers that are positioned at the nuclear periphery. It is unknown whether composition of sperm telomere dimers is random or specific. We now report that telomere dimers result from specific interactions between the two ends of each chromosome. FISH using pairs of subtelomeric DNA probes that correspond to the small and long arms of seven human chromosomes demonstrates that subtelomeres of one chromosome are brought together. Statistical analysis confirmed that telomere associations could not result from the random proximity of DNA sequences. Therefore, chromosomes in human sperm nuclei adopt a looped conformation. This higher-order chromosome structure is most likely required for chromosome withdrawal/decondensation during the early fertilization events leading to zygote formation.
Collapse
Affiliation(s)
- Lyudmila Solov'eva
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk VA 23507, USA
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia, 194064
| | - Maria Svetlova
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk VA 23507, USA
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia, 194064
| | - Dawn Bodinski
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk VA 23507, USA
| | - Andrei O Zalensky
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk VA 23507, USA
| |
Collapse
|
15
|
Cohen HR, Royce-Tolland ME, Worringer KA, Panning B. Chromatin modifications on the inactive X chromosome. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 38:91-122. [PMID: 15881892 DOI: 10.1007/3-540-27310-7_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In female mammals, one X chromosome is transcriptionally silenced to achieve dosage compensation between XX females and XY males. This process, known as X-inactivation, occurs early in development, such that one X chromosome is silenced in every cell. Once X-inactivation has occurred, the inactive X chromosome is marked by a unique set of epigenetic features that distinguishes it from the active X chromosome and autosomes. These modifications appear sequentially during the transition from a transcriptionally active to an inactive state and, once established, act redundantly to maintain transcriptional silencing. In this review, we survey the unique epigenetic features that characterize the inactive X chromosome, describe the mechanisms by which these marks are established and maintained, and discuss how each contributes to silencing the inactive X chromosome.
Collapse
Affiliation(s)
- Hannah R Cohen
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
16
|
Hall LL, Lawrence JB. The cell biology of a novel chromosomal RNA: chromosome painting by XIST/Xist RNA initiates a remodeling cascade. Semin Cell Dev Biol 2004; 14:369-78. [PMID: 15015744 DOI: 10.1016/j.semcdb.2003.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
X chromosome inactivation begins when a novel chromosomal RNA (cRNA) from the imprinted mouse Xist or human XIST locus coats or "paints" one X chromosome in cis and initiates a cascade of chromosome remodeling events. Molecular cytological studies have proven invaluable for understanding the distinctive cellular behavior of this singular RNA involved in chromosome structure and regulation. While the detailed mechanism of XIST/Xist (X-inactivation Specific Transcript) RNA function remains largely unknown, recent advances provide new insights into the complex cellular factors which impact the RNA's localization to the chromosome, as well as the early events of chromosome remodeling that follow painting by Xist RNA. Because chromatin changes can be directly visualized on a silenced chromosome, X chromosome inactivation provides an advantageous model to investigate genome-wide heterochromatin formation and maintenance, with wide-ranging implications for normal cells and disease.
Collapse
Affiliation(s)
- Lisa L Hall
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | |
Collapse
|
17
|
Chadwick BP, Willard HF. Barring gene expression after XIST: maintaining facultative heterochromatin on the inactive X. Semin Cell Dev Biol 2003; 14:359-67. [PMID: 15015743 DOI: 10.1016/j.semcdb.2003.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
X chromosome inactivation refers to the developmentally regulated process of silencing gene expression from all but one X chromosome per cell in female mammals in order to equalize the levels of X chromosome derived gene expression between the sexes. While much attention has focused on the genetic and epigenetic events early in development that initiate the inactivation process, it is also important to understand the events that ensure maintenance of the inactive state through subsequent cell divisions. Gene silencing at the inactive X chromosome is irreversible in somatic cells and is achieved through the formation of facultative heterochromatin (visible as the Barr body) that is remarkably stable and faithfully preserved. Here we review the many features of inactive X chromatin in terminally differentiated cells and address the highly redundant mechanisms of maintaining the inactive X chromatin.
Collapse
Affiliation(s)
- Brian P Chadwick
- Department of Molecular Genetics & Microbiology, Institute for Genome Sciences and Policy, 103 Research Drive, Box 3382, Duke University Medical Center Durham, NC 27710, USA.
| | | |
Collapse
|
18
|
Steidl U, Kronenwett R, Martin S, Haas R. Molecular biology of hematopoietic stem cells. VITAMINS AND HORMONES 2003; 66:1-28. [PMID: 12852251 DOI: 10.1016/s0083-6729(03)01001-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human CD34+ hematopoietic stem and progenitor cells are capable of maintaining a life-long supply of the entire spectrum of blood cells dependent on systemic needs. Recent studies suggest that hematopoietic stem cells are, beyond their hematopoietic potential, able to differentiate into nonhematopoietic cell types, which could open novel avenues in the field of cellular therapy. Here, we concentrate on the molecular biology underlying basic features of hematopoietic stem cells. Immunofluorescence analyses, culture assays, and transplantation models permit an extensive immunological as well as functional characterization of human hematopoietic stem and progenitor cells. New methods such as cDNA array technology have demonstrated that distinct gene expression patterns of transcription factors and cell cycle genes molecularly control self-renewal, differentiation, and proliferation. Furthermore, several adhesion molecules have been shown to play an important role in the regulation of hematopoiesis and stem cell trafficking. Progress has also been made in elucidating molecular mechanisms of stem cell aging that limit replicative potential. Finally, more recent data provide the first molecular basis for a better understanding of transdifferentiation and developmental plasticity of hematopoietic stem cells. These findings could be helpful for non-hematopoietic cell therapeutic approaches.
Collapse
Affiliation(s)
- Ulrich Steidl
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich Heine University of Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
19
|
Thornley I, Freedman MH. Telomeres, X-inactivation ratios, and hematopoietic stem cell transplantation in humans: a review. Stem Cells 2002; 20:198-204. [PMID: 12004078 DOI: 10.1634/stemcells.20-3-198] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The marrow repopulating hematopoietic stem cells (HSCs) in an auto- or allograft represent a small fraction of the normal complement of HSCs, yet are required to reconstitute hematopoiesis and sustain it for the lifetime of the recipient. Such a burden imposes a "replicative stress" upon hematopoietic stem/progenitor cells. The finding of accelerated telomere shortening in hematopoietic stem cell transplant (HSCT) recipients raised the specter of accelerated hematopoietic aging. Here, we review the HSCT telomere literature and other studies of surrogate markers of HSC behavior conducted in human HSCT recipients. We present a paradigm for posttransplant hematopoietic reconstitution and speculate on the fate of HSCs in the human transplant setting.
Collapse
Affiliation(s)
- Ian Thornley
- Division of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
20
|
Falk M, Lukásová E, Kozubek S, Kozubek M. Topography of genetic elements of X-chromosome relative to the cell nucleus and to the chromosome X territory determined for human lymphocytes. Gene 2002; 292:13-24. [PMID: 12119095 DOI: 10.1016/s0378-1119(02)00667-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Topography of three genetic elements--dystrophin (dmd) exons 5-7 (E(1)), 46-47 (E(2)), and centromere of chromosome X (N(X)) were studied relative to cell nuclei and to chromosome X territories of spatially fixed human lymphocytes. Repeated three-dimensional (3D) dual color fluorescence in situ hybridization combined with high-resolution cytometry was used. In addition, the nuclear location of fluorescence weight centers (FWC), spatial volume, and maximal area per one section of chromosome-X territories were investigated. The larger (X(L)) and smaller (X(S)) homologous X-chromosomes were distinguished for each nucleus according to the 3D volume of their territories. The distributions of the [center of nucleus]-to-[genetic element] distances (radial distributions) of dmd exons E(1), E(2), centromere N(X) and FWC were very similar for both homologous X-chromosomes of female lymphocytes as well as for the chromosome X of the human male. On the other hand, larger average mutual distances between all pairs of signals (E(1), E(2), N(X), FWC) and larger average maximal area were observed for the larger chromosome (X(L)) in comparison with the smaller one (X(S)). The territory of the larger homologue showed also more irregular surface. The most significant differences between homologous X-chromosomes were found for N(X)-E(1), N(X)-E(2) and E(1)-E(2) distances that were in average about twice longer for X(L) as compared with X(S). These parameters correlate to each other and can be used for the reliable determination of more (de)condensed X-chromosome territory. The longer E(1)-E(2) distances for X(L) indicate more open chromatin structure of the dystrophin gene on this chromosome in contrary to closed structure on X(S). Substantially shorter distances of the dystrophin exons from the centromeric heterochromatin in X(S) as compared to X(L) can be explained by silencing effect of centromeres as described in Nature 1 (2000) 137.
Collapse
Affiliation(s)
- Martin Falk
- Laboratory of Molecular Cytology and Cytometry, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | | | | | | |
Collapse
|
21
|
Hong B, Reeves P, Panning B, Swanson MS, Yang TP. Identification of an autoimmune serum containing antibodies against the Barr body. Proc Natl Acad Sci U S A 2001; 98:8703-8. [PMID: 11438711 PMCID: PMC37499 DOI: 10.1073/pnas.151259598] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcriptional inactivation of one X chromosome in mammalian female somatic cells leads to condensation of the inactive X chromosome into the heterochromatic sex chromatin, or Barr body. Little is known about the molecular composition and structure of the Barr body or the mechanisms leading to its formation in female nuclei. Because human sera from patients with autoimmune diseases often contain antibodies against a variety of cellular components, we reasoned that some autoimmune sera may contain antibodies against proteins associated with the Barr body. Therefore, we screened autoimmune sera by immunofluorescence of human fibroblasts and identified one serum that immunostained a distinct nuclear structure with a size and nuclear localization consistent with the Barr body. The number of these structures was consistent with the number of Barr bodies expected in diploid female fibroblasts containing two to five X chromosomes. Immunostaining with the serum followed by fluorescence in situ hybridization with a probe against XIST RNA demonstrated that the major fluorescent signal from the autoantibody colocalized with XIST RNA. Further analysis of the serum showed that it stains human metaphase chromosomes and a nuclear structure consistent with the inactive X in female mouse fibroblasts. However, it does not exhibit localization to a Barr body-like structure in female mouse embryonic stem cells or in cells from female mouse E7.5 embryos. The lack of staining of the inactive X in cells from female E7.5 embryos suggests the antigen(s) may be involved in X inactivation at a stage subsequent to initiation of X inactivation. This demonstration of an autoantibody recognizing an antigen(s) associated with the Barr body presents a strategy for identifying molecular components of the Barr body and examining the molecular basis of X inactivation.
Collapse
Affiliation(s)
- B Hong
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
22
|
Plaja A, Miró R, Fuster C, Perez C, Sarret E, Esteve P, Egozcue J. Bends in human mitotic metaphase chromosomes revisited: 15q11-13 is the most frequent non-random autosomal bend in blood cultures. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 101:106-13. [PMID: 11391652 DOI: 10.1002/1096-8628(20010615)101:2<106::aid-ajmg1339>3.0.co;2-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have investigated the preferential bending of some chromosome sites in blood cultures from normal and chromosomally abnormal subjects. A total of 2,262 centromeric and 2,718 non-centromeric bends were recorded, and 69 non-centromeric sites were found not to bend at random. 15q11-13 bending was found to be the most frequent non-random autosomal bend. Bends on chromosomes may be remnants of a folded chromosome state in the nucleus, and may facilitate the preferential involvement of some chromosomal bands in structural reorganizations such as the isoacentric fragments, or contribute to the high frequency of interstitial deletions and isodicentric inversion duplications involving the 15q11-13 region.
Collapse
Affiliation(s)
- A Plaja
- Unitat de Genètica, H. Materno-Infantil Vall d'Hebron, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
23
|
Migeon BR, Ausems M, Giltay J, Hasley-Royster C, Kazi E, Lydon TJ, Engelen JJ, Raymond GV. Severe phenotypes associated with inactive ring X chromosomes. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/1096-8628(20000703)93:1<52::aid-ajmg9>3.0.co;2-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Abstract
We previously reported that overexpression of SopB, an Escherichia coli F plasmid-encoded partition protein, led to silencing of genes linked to, but well-separated from, a cluster of SopB-binding sites termed sopC. We show here that in this SopB-mediated repression of sopC-linked genes, all but the N-terminal 82 amino acids of SopB can be replaced by the DNA-binding domain of a sequence-specific DNA-binding protein, provided that the sopC locus is also replaced by the recognition sequence of the DNA-binding domain. These results, together with our previous finding that the N-terminal fragment of SopB is responsible for its polar localization in cells, suggest a mechanism of gene silencing: patches of closely packed DNA-binding domains are formed if a sequence-specific DNA-binding protein is localized to specific cellular sites; such a patch can capture a DNA carrying the recognition site of the DNA-binding domain and sequestrate genes adjacent to the recognition site through nonspecific binding of DNA. The generalization of this model to gene silencing in eukaryotes is discussed.
Collapse
Affiliation(s)
- S K Kim
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
25
|
Wynn R, Thornley I, Freedman M, Saunders EF. Telomere shortening in leucocyte subsets of long-term survivors of allogeneic bone marrow transplantation. Br J Haematol 1999; 105:997-1001. [PMID: 10554813 DOI: 10.1046/j.1365-2141.1999.01450.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies have demonstrated excessive telomeric shortening in peripheral blood leucocytes of bone marrow transplant (BMT) recipients. This finding has raised concerns about accelerated haemopoietic ageing that might predispose to clonal disorders and late graft failure. We studied the peripheral blood neutrophils and T cells of 14 fully engrafted long-term survivors of BMT. We found that in both neutrophils and T cells there was significant telomere shortening in the recipient (0.6 and 0.5 kb, respectively; P < 0.001 and < 0.04, respectively). We found no relationship between degree of shortening and the nucleated cell dose given at the time of transplant. We also demonstrated significantly longer telomeres in T cells than neutrophils from the same individual (mean 11.6 kb and 10.6 kb, respectively; P=0.0001). We propose mechanisms to account for these observations. The replicative stress that causes this telomere shortening does not necessarily occur at the level of the most primitive haemopoietic stem cell.
Collapse
Affiliation(s)
- R Wynn
- Department of Paediatrics, Hospital for Sick Children, Toronto, Canada
| | | | | | | |
Collapse
|
26
|
Ansari A, Gartenberg MR. Persistence of an alternate chromatin structure at silenced loci in vitro. Proc Natl Acad Sci U S A 1999; 96:343-8. [PMID: 9892635 PMCID: PMC15138 DOI: 10.1073/pnas.96.2.343] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Saccharomyces cerevisiae, transcriptional repression at the HM mating-type loci and telomeres results from the formation of a heterochromatin-like structure. Silencing requires at least three Sir proteins (Sir2p-4p), which are recruited to chromatin by silencers at the HM loci and TG1-3 tracts at telomeres. Sir proteins and telomeres colocalize at the nuclear periphery, suggesting that this subnuclear position may also contribute to transcriptional repression. To evaluate the contribution of nuclear context to silencing, we developed methodology to isolate silent chromatin for analysis in vitro. Site-specific recombination was used in vivo to produce DNA rings from the silent HMR locus, and differential centrifugation was used to isolate the rings from whole-cell lysate. The partially purified rings retained many of the intracellular hallmarks of transcriptionally repressed domains. Specifically, rings from repressed strains were resistant to restriction endonuclease digestion, bore an altered DNA topology, and were associated with Sir3p. The recombination approach also was used to form rings from HMR that lacked silencers. Despite the uncoupling of these cis-acting regulatory elements, similar but nonidentical results were obtained. We conclude that an alternate chromatin structure at silent loci can persist in vitro in the absence of silencers and nuclear compartmentalization.
Collapse
Affiliation(s)
- A Ansari
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
27
|
Surrallés J, Natarajan AT. Radiosensitivity and repair of the inactive X-chromosome. Insights from FISH and immunocytogenetics. Mutat Res 1998; 414:117-24. [PMID: 9630558 DOI: 10.1016/s1383-5718(98)00046-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The inactive X-chromosome provides a unique opportunity to study the role of transcriptional activity and chromatin condensation in the repair of chromosome damage. We induced chromosome breakage in human lymphocytes with X-rays (1 or 2 Gy) in either G0 and G1 phase of the cell cycle, and in the presence or absence of an inhibitor of double strand break repair, adenine 9-beta-D-arabinofuranoside (Ara-A). Chromosomal aberrations involving the X-chromosome were detected by means of fluorescence in situ hybridization with an X-chromosome specific red painting probe. The activation status of the X-chromosomes involved in the chromosomal aberrations was determined by simultaneous immunocytogenetics with FITC-conjugated antibodies against BrdUrd incorporated at late S-phase to distinguish the late replicating inactive X-chromosome in green-yellow. This multicolor approach allowed us to study and compare breakage and the extent of repair in the active and inactive X-chromosome. Our data indicate that both chromosomes responded with a similar radiosensitivity. This observation was consistent at both X-ray doses and at the two stages of the cell cycle analyzed. However, the number of chromosomal aberrations involving the inactive X-chromosome was increased after repair inhibition with Ara-A. The differential sensitivity to repair inhibition was observed in G0 after 1 Gy and in G1 after 2 Gy. Thus, the activation status of the X-chromosome might be a source of heterogeneity in breakage and repair. These observations suggest that there is heterogeneous repair when the active and the inactive X-chromosomes are compared and that the observed fragility is the result of a compromise between the actual number of breaks induced in each chromosome and their differential processing.
Collapse
Affiliation(s)
- J Surrallés
- Department of Radiation Genetics and Chemical Mutagenesis, Leiden University, Leiden, Netherlands.
| | | |
Collapse
|
28
|
Dietzel S, Eils R, Sätzler K, Bornfleth H, Jauch A, Cremer C, Cremer T. Evidence against a looped structure of the inactive human X-chromosome territory. Exp Cell Res 1998; 240:187-96. [PMID: 9596991 DOI: 10.1006/excr.1998.3934] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multicolor fluorescence in situ hybridization with a whole chromosome composite probe for the X-chromosome and microdissection probes for the Xp and Xq arms, as well as for the Xp terminal, Xq terminal, and X centromer specific subregional probes, was applied to three-dimensional (3D) preserved human female amniotic fluid cell nuclei. Confocal laser scanning microscopy and three-dimensional image analysis demonstrated distinctly separated Xp arm and Xq arm domains. 3D distance measurements revealed a high variability of intrachromosomal distances between Xpter, Xcen, and Xqter specific probes within both X territories. A 3D distance measurement error of +/- 70 nm was found in control experiments using quartz glass microspheres labeled with different fluorochromes. Our data argue against the hypothesis of Walker et al. (1991, Proc. Natl. Acad. Sci. USA 88, 6191-6195) that a looped structure of the inactive X territory is formed by tight telomere-telomere associations.
Collapse
Affiliation(s)
- S Dietzel
- Institute of Human Genetics, University of Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The inactive X chromosome differs from the active X in a number of ways; some of these, such as allocyclic replication and altered histone acetylation, are associated with all types of epigenetic silencing, whereas others, such as DNA methylation, are of more restricted use. These features are acquired progressively by the inactive X after onset of initiation. Initiation of X-inactivation is controlled by the X-inactivation center (Xic) and influenced by the X chromosome controlling element (Xce), which causes primary nonrandom X-inactivation. Other examples of nonrandom X-inactivation are also presented in this review. The definition of a major role for Xist, a noncoding RNA, in X-inactivation has enabled investigation of the mechanism leading to establishment of the heterochromatinized X-chromosome and also of the interactions between X-inactivation and imprinting as well as between X-inactivation and developmental processes in the early embryo.
Collapse
Affiliation(s)
- E Heard
- Unité de Génétique Moléculaire Murine, URA CNRS 1968, Institut Pasteur, Paris, France.
| | | | | |
Collapse
|
30
|
Zalensky AO, Tomilin NV, Zalenskaya IA, Teplitz RL, Bradbury EM. Telomere-telomere interactions and candidate telomere binding protein(s) in mammalian sperm cells. Exp Cell Res 1997; 232:29-41. [PMID: 9141618 DOI: 10.1006/excr.1997.3482] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have used fluorescent in situ hybridization to localize telomeres within the nuclei of sperm from six mammals (human, rat, mouse, stallion, boar, and bull). In minimally swollen sperm of mouse and rat, most of the telomeres are clustered within a limited area in the posterior part of nuclei. In sperm of other species, telomeres associate into tetrameres and dimers. On swelling of sperm cells with heparin/dithiotriethol, telomere associations disperse, and hybridization signals become smaller in size and their numbers approach or correspond to the number of chromosome ends in a haploid genome. Quantitation of telomere loci indicates that dimeric associations are prominent features of mammalian sperm nuclear architecture. Higher order telomere-telomere interactions and organization develop during meiotic stages of human spermatogenesis. At this stage, telomeres also become associated with the nuclear membrane. In an attempt to elucidate the molecular mechanisms underlying telomere interactions in sperm, we have identified a novel protein activity that binds to the double-stranded telomeric repeat (TTAGGG)n. Sperm telomere binding protein(s) (STBP) was extracted from human and bull sperm by 0.5 M NaCl. STBP does not bind single-stranded telomeric DNA and is highly specific for single base substitutions in a duplex DNA sequence. Depending on the conditions of binding, we observed the formation of several nucleoprotein complexes. We have shown that there is a transition between complexes, which indicates that the slower migrating complex is a multimer of the higher mobility one. We propose that STBP participates in association between the telomere domains which were microscopically observed in mammalian spermatozoa.
Collapse
Affiliation(s)
- A O Zalensky
- Department of Biological Chemistry, School of Medicine, University of California at Davis, 95616, USA.
| | | | | | | | | |
Collapse
|
31
|
Subramanian PS, Chinault AC. Replication timing properties of the human HPRT locus on active, inactive and reactivated X chromosomes. SOMATIC CELL AND MOLECULAR GENETICS 1997; 23:97-109. [PMID: 9330638 DOI: 10.1007/bf02679969] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
X chromosome inactivation is associated with a highly asynchronous pattern of DNA replication at most X-linked loci in females. We studied the human HPRT locus, which is subject to X inactivation and expressed from only the active homolog, with the goal of comparing replication properties between the active and inactive homologs in this region using a fluorescence in situ hybridization approach. We found that in normal female lymphoblasts this locus is replicated in a highly asynchronous manner across a broad, discrete 500-600 kb zone with earliest replication appearing at the gene coding sequence. This general timing profile is maintained in normal male lymphoblasts, as well as in hamster x human hybrid cells containing the active human X chromosome. However, the inactive human X chromosome in the hamster cell background does not appear to function in a fully equivalent manner to the normal inactive X chromosome in female cells. Furthermore, reactivation of the inactive human X chromosome in a hamster x human hybrid system by 5-azacytidine treatment and HAT selection restores early replication at the HPRT gene itself, but does not change the overall domain behavior.
Collapse
Affiliation(s)
- P S Subramanian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
32
|
Abstract
Fluorescent in situ hybridization technology is one of the most exciting and versatile research tools to be developed in recent years. It has enabled research to progress at a phenomenal rate in diverse areas of basic research as well as in clinical medicine. Fluorescent in situ hybridization has applications in physical mapping, the study of nuclear architecture and chromatin packaging, and the investigation of fundamental principles of biology such as DNA replication, RNA processing, gene amplification, gene integration and chromatin elimination. This review highlights some of these areas and provides source material for the reader who seeks more information on a specific field.
Collapse
Affiliation(s)
- H H Heng
- Department of Biology, York University, Downsview, Ontario, Canada
| | | | | |
Collapse
|
33
|
Eils R, Dietzel S, Bertin E, Schröck E, Speicher MR, Ried T, Robert-Nicoud M, Cremer C, Cremer T. Three-dimensional reconstruction of painted human interphase chromosomes: active and inactive X chromosome territories have similar volumes but differ in shape and surface structure. J Biophys Biochem Cytol 1996; 135:1427-40. [PMID: 8978813 PMCID: PMC2133958 DOI: 10.1083/jcb.135.6.1427] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This study provides a three-dimensional (3D) analysis of differences between the 3D morphology of active and inactive human X interphase chromosomes (Xa and Xi territories). Chromosome territories were painted in formaldehyde-fixed, three-dimensionally intact human diploid female amniotic fluid cell nuclei (46, XX) with X-specific whole chromosome compositive probes. The colocalization of a 4,6-diamidino-2-phenylindole dihydrochloride-stained Barr body with one of the two painted X territories allowed the unequivocal discrimination of the inactive X from its active counterpart. Light optical serial sections were obtained with a confocal laser scanning microscope. 3D-reconstructed Xa territories revealed a flatter shape and exhibited a larger and more irregular surface when compared to the apparently smoother surface and rounder shape of Xi territories. The relationship between territory surface and volume was quantified by the determination of a dimensionless roundness factor (RF). RF and surface area measurements showed a highly significant difference between Xa and Xi territories (P < 0.001) in contrast to volume differences (P > 0.1). For comparison with an autosome of similar DNA content, chromosome 7 territories were additionally painted. The 3D morphology of the chromosome 7 territories was similar to the Xa territory but differed strongly from the Xi territory with respect to RF and surface area (P < 0.001).
Collapse
Affiliation(s)
- R Eils
- Interdisciplinary Center of Scientific Computing (IWR), University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gotta M, Laroche T, Formenton A, Maillet L, Scherthan H, Gasser SM. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J Cell Biol 1996; 134:1349-63. [PMID: 8830766 PMCID: PMC2121006 DOI: 10.1083/jcb.134.6.1349] [Citation(s) in RCA: 360] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have developed a novel technique for combined immunofluorescence/in situ hybridization on fixed budding yeast cells that maintains the three-dimensional structure of the nucleus as monitored by focal sections of cells labeled with fluorescent probes and by staining with a nuclear pore antibody. Within the resolution of these immunodetection techniques, we show that proteins encoded by the SIR3, SIR4, and RAP1 genes colocalize in a statistically significant manner with Y' telomere-associated DNA sequences. In wild-type cells the Y' in situ hybridization signals can be resolved by light microscopy into fewer than ten foci per diploid nucleus. This suggests that telomeres are clustered in vegetatively growing cells, and that proteins essential for telomeric silencing are concentrated at their sites of action, i.e., at telomeres and/or subtelomeric regions. As observed for Rap1, the Sir4p staining is diffuse in a sir3- strain, and similarly, Sir3p staining is no longer punctate in a sir4- strain, although the derivatized Y' probe continues to label discrete sites in these strains. Nonetheless, the Y' FISH is altered in a qualitative manner in sir3 and sir4 mutant strains, consistent with the previously reported phenotypes of shortened telomeric repeats and loss of telomeric silencing.
Collapse
Affiliation(s)
- M Gotta
- Swiss Institute for Experimental Cancer Research, Epalinges/Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
35
|
Maraschio P, Tupler R, Barbierato L, Dainotti E, Larizza D, Bernardi F, Hoeller H, Garau A, Tiepolo L. An analysis of Xq deletions. Hum Genet 1996; 97:375-81. [PMID: 8786087 DOI: 10.1007/bf02185777] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We characterized by fluorescence in situ hybridization and Southern blotting 14 partial Xq monosomies, 11 due to terminal deletions and 3 secondary to X/autosome translocations. Three cases were mosaics with a XO cell line. In view of the possible role played by telomeres in chromosome segregation, we hypothesize a relationship between the loss of telomeric sequences in terminal deletions and the presence of 45,X cells. A correlation between phenotype and extent of deletion reveal that there is no correspondence between the size of the deletion and impairment of gonadal function. Turner stigmata are absent in patients without an XO cell line, when the breakpoint is distal to Xq24. A low birthweight is present whenever the breakpoint is at q22 or more proximal.
Collapse
Affiliation(s)
- P Maraschio
- Biologia Generale e Genetica Medica, Università di Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Clemson CM, McNeil JA, Willard HF, Lawrence JB. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 1996; 132:259-75. [PMID: 8636206 PMCID: PMC2120729 DOI: 10.1083/jcb.132.3.259] [Citation(s) in RCA: 601] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The XIST gene is implicated in X chromosome inactivation, yet the RNA contains no apparent open reading frame. An accumulation of XIST RNA is observed near its site of transcription, the inactive X chromosome (Xi). A series of molecular cytogenetic studies comparing properties of XIST RNA to other protein coding RNAs, support a critical distinction for XIST RNA; XIST does not concentrate at Xi simply because it is transcribed and processed there. Most notably, morphometric and 3-D analysis reveals that XIST RNA and Xi are coincident in 2- and 3-D space; hence, the XIST RNA essentially paints Xi. Several results indicate that the XIST RNA accumulation has two components, a minor one associated with transcription and processing, and a spliced major component, which stably associates with Xi. Upon transcriptional inhibition the major spliced component remains in the nucleus and often encircles the extra-prominent heterochromatic Barr body. The continually transcribed XIST gene and its polyadenylated RNA consistently localize to a nuclear region devoid of splicing factor/poly A RNA rich domains. XIST RNA remains with the nuclear matrix fraction after removal of chromosomal DNA. XIST RNA is released from its association with Xi during mitosis, but shows a unique highly particulate distribution. Collective results indicate that XIST RNA may be an architectural element of the interphase chromosome territory, possibly a component of nonchromatin nuclear structure that specifically associates with Xi. XIST RNA is a novel nuclear RNA which potentially provides a specific precedent for RNA involvement in nuclear structure and cis-limited gene regulation via higher-order chromatin packaging.
Collapse
Affiliation(s)
- C M Clemson
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | |
Collapse
|
37
|
Molecular genetics of X-chromosome inactivation. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1067-5701(96)80006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
38
|
Abstract
Telomeres are the protein-DNA structures at the ends of eukaryotic chromosomes. In yeast, and probably most other eukaryotes, telomeres are essential. They allow the cell to distinguish intact from broken chromosomes, protect chromosomes from degradation, and are substrates for novel replication mechanisms. Telomeres are usually replicated by telomerase, a telomere-specific reverse transcriptase, although telomerase-independent mechanisms of telomere maintenance exist. Telomere replication is both cell cycle- and developmentally regulated, and its control is likely to be complex. Because telomere loss causes the kinds of chromosomal changes associated with cancer and aging, an understanding of telomere biology has medical relevance.
Collapse
Affiliation(s)
- V A Zakian
- Department of Molecular Biology, Princeton University, NJ 08544, USA
| |
Collapse
|
39
|
Qumsiyeh MB. Impact of rearrangements on function and position of chromosomes in the interphase nucleus and on human genetic disorders. Chromosome Res 1995; 3:455-65. [PMID: 8581297 DOI: 10.1007/bf00713959] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A synthesis of numerous published data and my own observations reveal that chromatin structure in interphase is functional, dynamic and complex. I hypothesize that: (1) chromosome regions organize nuclear structures and thus their own environment (address themselves in sites and condensation patterns most appropriate for their functional state in the particular cell); (2) chromosome rearrangement could alter nuclear architecture and thus function; and (3) these ideas can explain the contribution of chromosome rearrangements, even in a balanced form, to human pathologic conditions.
Collapse
Affiliation(s)
- M B Qumsiyeh
- Duke University Medical Center, Cytogenetics Laboratory, Durham, NC 27710, USA
| |
Collapse
|
40
|
Zalensky AO, Allen MJ, Kobayashi A, Zalenskaya IA, Balhórn R, Bradbury EM. Well-defined genome architecture in the human sperm nucleus. Chromosoma 1995; 103:577-90. [PMID: 7587580 DOI: 10.1007/bf00357684] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Using fluorescence in situ hybridization, conventional epifluorescence microscopy, and laser scanning confocal microscopy followed by three-dimensional reconstruction we describe a well-defined higher order packaging of the human genome in the sperm cell nucleus. This was determined by the spatial localization of centromere and telomere regions of all chromosomes and supported by localization of subtelomere sequences of chromosome 3 and the entire chromosome 2. The nuclear architecture in the human sperm is characterized by the clustering of the 23 centromeres into a compact chromocenter positioned well inside the nucleus. The ends of the chromosomes are exposed to the nuclear periphery where both the subtelomere and the telomere sequences of the chromosome arms are joined into dimers. Thus chromosomes in the human sperm nucleus are looped into a hairpin-like configuration. The biological implications of this nuclear architecture in spermatogenesis and male pronuclear formation following fertilization are discussed.
Collapse
MESH Headings
- Cell Nucleus/ultrastructure
- Centromere/ultrastructure
- Chromosomes, Human/ultrastructure
- Chromosomes, Human, Pair 2/ultrastructure
- Chromosomes, Human, Pair 3/ultrastructure
- Humans
- Image Processing, Computer-Assisted
- In Situ Hybridization, Fluorescence/methods
- Male
- Microscopy, Atomic Force
- Microscopy, Confocal
- Microscopy, Fluorescence
- Nuclear Envelope/chemistry
- Spermatozoa/chemistry
- Spermatozoa/ultrastructure
- Telomere/ultrastructure
Collapse
Affiliation(s)
- A O Zalensky
- Department of Biological Chemistry, University of California at Davis 95616, USA
| | | | | | | | | | | |
Collapse
|
41
|
Eils R, Bertin E, Saracoglu K, Rinke B, Schröck E, Parazza F, Usson Y, Robert-Nicoud M, Stelzer EH, Chassery JM. Application of confocal laser microscopy and three-dimensional Voronoi diagrams for volume and surface estimates of interphase chromosomes. J Microsc 1995; 177:150-61. [PMID: 7714892 DOI: 10.1111/j.1365-2818.1995.tb03545.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study demonstrates the use of Voronoi tessellation procedures to obtain quantitative morphological data for chromosome territories in the cell nucleus. As a model system, chromosomes 7 and X were visualized in human female amniotic fluid cell nuclei by chromosomal in situ suppression hybridization with chromosome-specific composite probes. Light optical serial sections of 18 nuclei were obtained with a confocal scanning laser fluorescence microscope. A three-dimensional (3-D) tessellation of the image volumes defined by the stack of serial sections was then performed. For this purpose a Voronoi diagram, which consists of convex polyhedra structured in a graph environment, was built for each nucleus. The chromosome territories were extracted by applying the Delaunay graph, the dual of the Voronoi diagram, which describes the neighbourhood in the Voronoi diagram. The chromosome territories were then described by three morphological parameters, i.e. volume, surface area and a roundness factor (shape factor). The complete evaluation of a nucleus, including the calculation of the Voronoi diagram, 3-D visualization of extracted territories using computer graphic methods and parameterization was carried out on a Silicon Graphics workstation and was generally completed within 5 min. The geometric information obtained by this procedure revealed that both X- and 7-chromosome territories were similar in volume. Roundness factors indicated a pronounced variability in interphase shape for both pairs of chromosomes. Surface estimates showed a significant difference between the two X-territories but not between chromosome 7-territories.
Collapse
Affiliation(s)
- R Eils
- Interdisciplinary Centre for Scientific Computing (IWR), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Richler C, Ast G, Goitein R, Wahrman J, Sperling R, Sperling J. Splicing components are excluded from the transcriptionally inactive XY body in male meiotic nuclei. Mol Biol Cell 1994; 5:1341-52. [PMID: 7696714 PMCID: PMC301162 DOI: 10.1091/mbc.5.12.1341] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The study of the effect of programmed cessation of transcription in a large nuclear domain, on the distribution of elements of the pre-mRNA splicing machinery, is the main aim of this paper. To this end, we took advantage of the nuclear partitioning of mouse spermatocytes early in meiosis into autosomal transcribing and XY nontranscribing compartments. This system also allows to extend this study to stages in sperm differentiation that are accompanied by reduction and eventual cessation of transcription. We show by indirect immunofluorescence in spermatogenetic cells that 1) fluorescent signals of the pre-mRNA splicing factors SF53/4 and SC35, of the Sm antigens, and of RNA polymerase II, are largely absent from the nontranscribing, X-inactivated compartment, but are abundantly present in the transcribing autosomal compartment and 2) the presence, gradual reduction, and absence of transcriptive activity in nuclei undergoing the sperm formation sequence are positively correlated with the fluorescence patterns of the antibodies against SF53/4, SC35, and the Sm antigens. These data suggest that cessation of transcription during spermatogenesis is accompanied by exclusion of the splicing machinery from nontranscribing chromatin to its vicinity.
Collapse
Affiliation(s)
- C Richler
- Department of Genetics, Hebrew University of Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
43
|
Armstrong SJ, Kirkham AJ, Hultén MA. XY chromosome behaviour in the germ-line of the human male: a FISH analysis of spatial orientation, chromatin condensation and pairing. Chromosome Res 1994; 2:445-52. [PMID: 7834221 DOI: 10.1007/bf01552867] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have used multicolour fluorescence in situ hybridization to study the behaviour of the X and Y chromosomes in relation to a representative autosome, chromosome 1, on air-dried testicular preparations from normal fertile human males. In a proportion of Sertoli cells at interphase as well as spermatogonial metaphases there is an apparent selective undercondensation of the heterochromatic block of the long arm of the Y, which may be of functional significance with respect to Y-specific gene activity, initiating and maintaining spermatogenesis; we suggest that this may involve a mechanism similar to heterochromatin position-effect variegation in Drosophila. In the supporting Sertoli as well as pre-meiotic and leptotene cells the X and Y occupy relatively restricted domains at opposite poles of the nuclear membrane, while the chromosome 1 centromere regions are located interstitially and appear prealigned. The XY pairing and 'sex vesicle' formation comprises a complex series of spatial movement and differential condensation patterns. On the basis of these observations we propose that: the XIST/Xist gene, known to be involved in somatic X inactivation, imposes a chromatin reorganization leading to bending at the X-inactivation centre both at first meiotic prophase in males and in the soma in females; and the differential X and Y segments are protected from potentially deleterious meiotic exchanges by their separate spatial orientation. In addition, there is an indication that the timing of pairing and first meiotic segregation of the sex chromosomes is different, and precocious in comparison to the pairing and segregation of the autosomes, which may explain the high incidence of sex chromosome aneuploidy in sperm.
Collapse
Affiliation(s)
- S J Armstrong
- LFS Research Unit, West Midlands Regional Genetic Services, Birmingham Heartlands Hospital, UK
| | | | | |
Collapse
|
44
|
Migeon BR, Luo S, Stasiowski BA, Jani M, Axelman J, Van Dyke DL, Weiss L, Jacobs PA, Yang-Feng TL, Wiley JE. Deficient transcription of XIST from tiny ring X chromosomes in females with severe phenotypes. Proc Natl Acad Sci U S A 1993; 90:12025-9. [PMID: 8265665 PMCID: PMC48118 DOI: 10.1073/pnas.90.24.12025] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The severe phenotype of human females whose karyotype includes tiny ring X chromosomes has been attributed to the inability of the small ring X chromosome to inactivate. The XIST locus is expressed only from the inactive X chromosome, resides at the putative X inactivation center, and is considered a prime player in the initiation of mammalian X dosage compensation. Using PCR, Southern blot analysis, and in situ hybridization, we have looked for the presence of the XIST locus in tiny ring X chromosomes from eight females who have multiple congenital malformations and severe mental retardation. Our studies reveal heterogeneity within this group; some rings lack the XIST locus, while others have sequences homologous to probes for XIST. However, in the latter, the locus is either not expressed or negligibly expressed, based on reverse transcription-PCR analysis. Therefore, what these tiny ring chromosomes have in common is a level of XIST transcription comparable to an active X. As XIST transcription is an indicator of X chromosome inactivity, the absence of XIST transcription strongly suggests that tiny ring X chromosomes in females with severe phenotypes are mutants in the X chromosome inactivation pathway and that the inability of these rings to inactivate is responsible for the severe phenotypes.
Collapse
Affiliation(s)
- B R Migeon
- Center for Medical Genetics, Johns Hopkins University, Baltimore, MD 21287-3914
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Philippe C, Nguyen VC, Slim R, Holvoet-Vermaut L, Hors-Cayla MC, Bernheim A. Rearrangements between irradiated chromosomes in three-species radiation hybrid cell lines revealed by two-color in situ hybridization. Hum Genet 1993; 92:11-7. [PMID: 8365721 DOI: 10.1007/bf00216138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A human-hamster hybrid cell line containing only the human X chromosome (GM06318B) was exposed to 6,000-7,000 rad of X-rays and fused with a mouse cell line (CL1D,TK-). Three radiation hybrids, LXKC40, LXKC50, and LXKC56, were selected among 39 independent clones containing human material. Two-color in situ hybridization with total genomic DNA probes (cot1 human DNA and hamster total genomic DNA) was used to analyse the irradiated chromosome rearrangements. With this three-species model system (human-hamster-mouse) and the chromosome painting process it was possible to determine the origin of each chromosomal fragment in metaphase and interphase. The results obtained indicate preferential rearrangement between irradiated human and hamster chromosomes. Whole, apparently intact hamster chromosomes were observed in all the mitoses. We suggest that these chromosomes could be neoformated from random fragments after irradiation. Hamster and human "minichromosomes" were also detected. While the integration of human material into the mouse genome was exceptional, the integration of hamster material into mouse chromosomes was more frequent. During interphase the irradiated chromosome domains were often at the periphery of the nucleus. Irradiated material protruded at the periphery of the nuclei. Micronuclei containing hamster material were detected in the vicinity of these protrusions.
Collapse
Affiliation(s)
- C Philippe
- Laboratorie de Cytogénétique et de Génétique Oncologiques, CNRS UA 1158, Institut Gustave-Roussy, Villejuif, France
| | | | | | | | | | | |
Collapse
|
46
|
Erickson RP, Zwingman T, Ao A. Gene expression, X-inactivation, and methylation during spermatogenesis: the case of Zfa, Zfx, and Zfy in mice. Mol Reprod Dev 1993; 35:114-20. [PMID: 8318216 DOI: 10.1002/mrd.1080350203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
While it has become clear that X-inactivation in the female soma is complete in mouse (in contrast to being "patchy" in man), the degree of X-inactivation in the testes has not been ascertained. We have compared autosomal and X-linked zinc finger homolog expression and X-linked and Y-linked zinc finger homolog methylation in an attempt to elucidate this question. Using RTPCR, we have extended earlier studies of Zfx and Zfa expression in developing testes and find that Zfa expression starts at the time of X-inactivation while Zfx expression is continuous. Cell separation studies did not preclude continued expression of Zfx in adult germ cells. The methylation status of four CCGG residues in the Zfx promoter was studied using PCR bridging this region before and after DNA digestion with the isoschizomers Msp I and Hpa II, the latter being methylation sensitive. Hpa II resistant Zfx promoter DNA was found in all female tissues, but not in male tissues, including the testes. Previous studies have shown that Zfy is expressed at meiosis (like Zfa and unlike Zfx). Despite its expression, the Zfy gene is adjacent to, or contains, highly methylated CCGG sites since hybridization after Msp I digestion detected multiple small fragments that were not released after DNA digestion with Hpa II. Thus, Zfx is not methylated in sperm, while Zfy is, in contrast to their apparent patterns of expression.
Collapse
Affiliation(s)
- R P Erickson
- Steele Memorial Children's Research Center, University of Arizona, Tucson
| | | | | |
Collapse
|
47
|
Bischoff A, Albers J, Kharboush I, Stelzer E, Cremer T, Cremer C. Differences of size and shape of active and inactive X-chromosome domains in human amniotic fluid cell nuclei. Microsc Res Tech 1993; 25:68-77. [PMID: 8353309 DOI: 10.1002/jemt.1070250110] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It is a widely held belief that the inactive X-chromosome (Xi) in female cell nuclei is strongly condensed as compared to the largely decondensed active X-chromosome (Xa). We have reconsidered this problem and painted X-chromosome domains in nuclei of subconfluent, female and male human amniotic fluid cell cultures (46,XX and 46,XY) by chromosomal in situ suppression (CISS) hybridization with biotinylated human X-chromosome specific library DNA. FITC-conjugated avidin was used for probe detection and nuclei were counterstained with propidium iodide (PI). The shape of these nuclei resembling flat ellipsoids or elliptical cylinders makes them suitable for both two-dimensional (2D) and three-dimensional (3D) analyses. 2D analyses of Xi- and Xa-domains were performed in 34 female cell nuclei by outlining of the painted domains using a camera lucida. Identification of the sex chromatin body in DAPI-stained nuclei prior to CISS-hybridization was confirmed by its colocalization with one of the two painted X-domains. In 31 of the 34 nuclei the area AXi for the inactive X-domain was smaller than the area AXa for the active domain (mean ratio AXa/AXi = 1.9 +/- 0.8 SD, range 1.0-4.3). The signed rank test showed a highly significant (P < .0001) difference both between AXa and AXi and between the ratios r(Xa) and r(Xi), calculated by dividing the maximum length L of each X-domain by its maximum width W. In most nuclei (26/34) we found r(Xa) > r(Xi) demonstrating a generally more elongated structure of Xa. For 3D analysis a confocal scanning laser fluorescence microscope (CSLFM) was used. Ten to 20 light optical sections (PI-image, FITC-image) were registered with equal spacings (approx. 0.4 microns). A thresholding procedure was applied to determine the PI-labeled nuclear and FITC-labeled X-domain areas in each section. Estimated slice volumes were used to compute total nuclear and X-domain volumes. In a series of 35 female nuclei most domains extended from the top to the bottom nuclear sections. The larger of the two X-chromosome domains comprised (3.7 +/- 1.7 S.D.)% of the nuclear volume. A mean ratio of 1.2 +/- 0.2 SD (range 1.1-2.3) was found for the volumes of the larger and the smaller X-domains in these female nuclei. In a series of 27 male amniotic fluid cell nuclei the relative X-chromosome domain volume comprised (4.0 +/- 2.6 S.D.)%.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A Bischoff
- Institute of Applied Physics, University of Heidelberg, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- J Singer-Sam
- Beckman Research Institute, City of Hope, Duarte, CA 91010
| | | |
Collapse
|
49
|
Molecular and Genetic Studies of Human X Chromosome Inactivation. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s1566-3116(08)60026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
50
|
Yeast telomere repeat sequence (TRS) improves circular plasmid segregation, and TRS plasmid segregation involves the RAP1 gene product. Mol Cell Biol 1992. [PMID: 1569937 DOI: 10.1128/mcb.12.5.1997] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telomere repeat sequences (TRSs) can dramatically improve the segregation of unstable circular autonomously replicating sequence (ARS) plasmids in Saccharomyces cerevisiae. Deletion analysis demonstrated that yeast TRSs, which conform to the general sequence (C(1-3)A)n, are able to stabilize circular ARS plasmids. A number of TRS clones of different primary sequence and C(1-3)A tract length confer the plasmid stabilization phenotype. TRS sequences do not appear to improve plasmid replication efficiency, as determined by plasmid copy number analysis and functional assays for ARS activity. Pedigree analysis confirms that TRS-containing plasmids are missegregated at low frequency and that missegregated TRS-containing plasmids, like ARS plasmids, are preferentially retained by the mother cell. Plasmids stabilized by TRSs have properties that distinguish them from centromere-containing plasmids and 2 microns-based recombinant plasmids. Linear ARS plasmids, which include two TRS tracts at their termini, segregate inefficiently, while circular plasmids with one or two TRS tracts segregate efficiently, suggesting that plasmid topology or TRS accessibility interferes with TRS segregation function on linear plasmids. In strains carrying the temperature-sensitive mutant alleles rap1grc4 and rap1-5, TRS plasmids are not stable at the semipermissive temperature, suggesting that RAP1 protein is involved in TRS plasmid stability. In Schizosaccharomyces pombe, an ARS plasmid was stabilized by the addition of S. pombe telomere sequence, suggesting that the ability to improve the segregation of ARS plasmids is a general property of telomere repeats.
Collapse
|