1
|
Geng J, Li H, Huang C, Chai J, Zheng R, Li F, Jiang S. Functional analysis of HSPA1A and HSPA8 in parturition. Biochem Biophys Res Commun 2017; 483:371-379. [DOI: 10.1016/j.bbrc.2016.12.136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 12/20/2016] [Indexed: 10/20/2022]
|
2
|
Mazaira GI, Camisay MF, De Leo S, Erlejman AG, Galigniana MD. Biological relevance of Hsp90-binding immunophilins in cancer development and treatment. Int J Cancer 2015; 138:797-808. [PMID: 25754838 DOI: 10.1002/ijc.29509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/17/2015] [Indexed: 12/14/2022]
Abstract
Immunophilins are a family of intracellular receptors for immunosuppressive drugs. Those immunophilins that are related to immunosuppression are the smallest proteins of the family, i.e., FKBP12 and CyPA, whereas the other members of the family have higher molecular weight because the show additional domains to the drug-binding site. Among these extra domains, the TPR-domain is perhaps the most relevant because it permits the interaction of high molecular weight immunophilins with the 90-kDa heat-shock protein, Hsp90. This essential molecular chaperone regulates the biological function of several protein-kinases, oncogenes, protein phosphatases, transcription factors and cofactors . Hsp90-binding immunophilins where first characterized due to their association with steroid receptors. They regulate the cytoplasmic transport and the subcellular localization of these and other Hsp90 client proteins, as well as transcriptional activity, cell proliferation, cell differentiation and apoptosis. Hsp90-binding immunophilins are frequently overexpressed in several types of cancers and play a key role in cell survival. In this article we analyze the most important biological actions of the best characterized Hsp90-binding immunophilins in both steroid receptor function and cancer development and discuss the potential use of these immunophilins for therapeutic purposes as potential targets of specific small molecules.
Collapse
Affiliation(s)
- Gisela I Mazaira
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - María F Camisay
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Sonia De Leo
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Alejandra G Erlejman
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Mario D Galigniana
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina.,Instituto De Biología Y Medicina Experimental-CONICET, Buenos Aires, Argentina
| |
Collapse
|
3
|
Chaiworapongsa T, Erez O, Kusanovic JP, Vaisbuch E, Mazaki-Tovi S, Gotsch F, Than NG, Mittal P, Kim YM, Camacho N, Edwin S, Gomez R, Hassan SS, Romero R. Amniotic fluid heat shock protein 70 concentration in histologic chorioamnionitis, term and preterm parturition. J Matern Fetal Neonatal Med 2008; 21:449-61. [PMID: 18570125 PMCID: PMC2517420 DOI: 10.1080/14767050802054550] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Heat shock protein (HSP) 70, a conserved member of the stress protein family, is produced in almost all cell types in response to a wide range of stressful stimuli, and its production has a survival value. Evidence suggests that extracellular HSP70 is involved in the activation of the innate and adaptive immune response. Furthermore, increased mRNA expression of HSP70 has been observed in human fetal membranes following endotoxin stimulation. This study was conducted to determine the changes in amniotic fluid HSP70 concentrations during pregnancy, term and preterm parturition, intra-amniotic infection (IAI), and histologic chorioamnionitis. STUDY DESIGN A cross-sectional study was conducted in 376 pregnant women in the following groups: (1) women with a normal pregnancy who were classified into the following categories: (a) women in the mid-trimester (14-18 weeks) who underwent amniocentesis for genetic indications and delivered normal infants at term (n=72); (b) women at term not in labor (n = 23); and (c) those at term in labor (n = 48). (2) Women with spontaneous preterm labor and intact membranes who were subdivided into the following categories: (a) preterm labor who delivered at term without IAI (n = 42); (b) preterm labor who delivered preterm without IAI (n = 57); and (c) preterm labor and delivery with IAI (n = 30). (3) Women with preterm prelabor rupture of membranes (PROM) with (n = 50) and without (n = 54) IAI. Among patients with preterm labor with intact membranes and preterm PROM who delivered within 72 hours of amniocentesis, placenta, umbilical cord, and chorioamniotic membranes were collected and assessed for the presence or absence of acute inflammatory lesions in the extraplacental membranes (histologic chorioamnionitis) and/or umbilical cords (funisitis). HSP70 concentrations in amniotic fluid were determined using a sensitive and specific immunoassay. Non-parametric statistics were used for analysis. A p value of <0.05 was considered statistically significant. RESULTS Immunoreactive HSP70 was detected in 88% (332/376) of amniotic fluid samples. The median amniotic fluid HSP70 concentration was significantly higher in women at term without labor than in those in the mid-trimester (term no labor: median 34.9 ng/mL, range 0-78.1 ng/mL vs. mid-trimester; median 6.6 ng/mL, range 0-20.8 ng/mL; p<0.001). Among patients with spontaneous preterm labor and preterm PROM, those with IAI had a significantly higher median amniotic fluid HSP70 concentration than those without IAI (preterm labor with IAI: median 82.9 ng/mL, range 0-500 ng/mL vs. preterm labor without IAI: median 41.7 ng/mL, range 0-244 ng/mL; p = 0.001; preterm PROM with IAI: median 86.5 ng/mL, range 0-428 ng/mL vs. preterm PROM without IAI: median 55.9 ng/mL, range 14.9-299.9 ng/mL; p = 0.007). There was no significant difference in the median amniotic fluid HSP70 concentration between patients with preterm labor who delivered preterm without IAI and those who delivered at term (p = 0.6). However, among patients with preterm labor without IAI, there was an inverse relationship between amniotic fluid concentration of HSP70 and the amniocentesis-to-spontaneous delivery interval (Spearman's Rho = -0.26; p = 0.02). Patients with histologic chorioamnionitis/funisitis had a significantly higher median amniotic fluid HSP70 concentration than those without inflammation (inflammation: median 108.7 ng/mL, range 0-500 ng/mL vs. without inflammation: median 67.9 ng/mL, range 7.1-299.9 ng/mL; p = 0.02). Women at term in labor had a median amniotic fluid concentration of HSP70 significantly higher than those not in labor (term in labor: median 60.7 ng/mL, range 0-359.9 ng/mL vs. term not in labor: median 34.9 ng/mL, range 0-78.1 ng/mL; p = 0.02). CONCLUSIONS Intra-amniotic infection, histologic chorioamnionitis, and term parturition are associated with elevated amniotic fluid HSP70 concentrations. HSP70 plays a role in the host defense mechanism by activating the innate arm of the immune response in women with intrauterine infection. The mechanisms of preterm and term parturition in humans may involve extracellular HSP70.
Collapse
Affiliation(s)
- Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Edi Vaisbuch
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
| | - Shali Mazaki-Tovi
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
| | - Nandor Gabor Than
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
| | - Pooja Mittal
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yeon Mee Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Natalia Camacho
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Samuel Edwin
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
| | - Ricardo Gomez
- Center for Perinatal Diagnosis and Research (CEDIP), Sótero del Río Hospital, P. Universidad Católica de Chile, Puente Alto, Chile and
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
4
|
Tash JS, Chakrasali R, Jakkaraj SR, Hughes J, Smith SK, Hornbaker K, Heckert LL, Ozturk SB, Hadden MK, Kinzy TG, Blagg BS, Georg GI. Gamendazole, an Orally Active Indazole Carboxylic Acid Male Contraceptive Agent, Targets HSP90AB1 (HSP90BETA) and EEF1A1 (eEF1A), and Stimulates Il1a Transcription in Rat Sertoli Cells1. Biol Reprod 2008; 78:1139-52. [DOI: 10.1095/biolreprod.107.062679] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
5
|
Belova L, Brickley DR, Ky B, Sharma SK, Conzen SD. Hsp90 regulates the phosphorylation and activity of serum- and glucocorticoid-regulated kinase-1. J Biol Chem 2008; 283:18821-31. [PMID: 18456663 DOI: 10.1074/jbc.m803289200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
SGK-1 (serum- and glucocorticoid-regulated kinase-1), a member of the AGC protein kinase family, plays an important role in regulating ion channel expression and contributes to malignant epithelial cell proliferation and survival. SGK-1 activity is regulated on three levels: transcriptional induction following a variety of environmental and intracellular stresses, proteasomal degradation, and phosphorylation. Here we report that phosphoinositide 3-kinase (PI3K)-dependent phosphorylation of SGK-1 requires formation of a complex between SGK-1 and heat-shock protein 90 (Hsp90). Inactivation of Hsp90 by geldanamycin led to decreased SGK-1 phosphorylation independently of increased proteasomal protein degradation, and inhibition of PI3K activity by LY294002 appeared to eliminate SGK-1 phosphorylation at the same residues as those affected by geldanamycin treatment. Interestingly, geldanamycin-targeted phosphorylation sites were not limited to the known conserved PI3K-dependent sites Thr-256 and Ser-422 in SGK-1 but included additional unknown PI3K-dependent residues. Inhibition of Hsp90 also resulted in a complete loss of SGK-1 kinase activity, suggesting that Hsp90 activity is essential for regulating the PI3K/SGK-1 pathway.
Collapse
Affiliation(s)
- Larissa Belova
- Department of Medicine, Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
6
|
Picard D. Chaperoning steroid hormone action. Trends Endocrinol Metab 2006; 17:229-35. [PMID: 16806964 DOI: 10.1016/j.tem.2006.06.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/30/2006] [Accepted: 06/14/2006] [Indexed: 01/08/2023]
Abstract
Those that efface themselves in the action tend to be forgotten. But molecular chaperones are always there, often serving as equal partners. Because of their intrinsic functional frailty, a large number of signaling molecules have come to depend on molecular chaperones, notably the Hsp90 chaperone machine. This applies to the subset of nuclear receptors that converts steroid hormone signals to transcriptional outputs. Steroid receptors appear to rely on the Hsp90 machine for folding, regulation of the allosteric switch and recycling. This review discusses the complexities of the chaperone machinery and the diversity of regulatory options afforded by this assistance for hormone action.
Collapse
Affiliation(s)
- Didier Picard
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, CH 1211 Genève 4, Switzerland.
| |
Collapse
|
7
|
Manninen T, Purmonen S, Ylikomi T. Interaction of nuclear receptors with hsp90 in living cells. J Steroid Biochem Mol Biol 2005; 96:13-8. [PMID: 15908199 DOI: 10.1016/j.jsbmb.2004.12.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 12/27/2004] [Indexed: 11/20/2022]
Abstract
The ubiquitous heat shock protein 90 (hsp90) has been shown to participate directly in the function of a wide variety of cellular signal transduction components, including steroid receptors (SRs). However, there is still no direct evidence for an in vivo association of SRs with hsp90. This study utilizes the mammalian two-hybrid system to study the ability of hsp90 to interact with various (non)liganded nuclear receptors (NRs) in vivo in mammalian cells. As bait, we used ligand-binding domain (LBD) of various NRs fused with the GAL4-DBD. hsp90/Receptor interactions were monitored in COS cells. When NR-LBDs were co-transfected along with hsp90/VP16, none (RxR(2)-LBD) or only minimal (SR-LBDs) transcription inductions were observed (1.9-4.7-fold) in the absence of ligand. Addition of ligand further abolished the observed minimal induction. As a positive control for interaction we used TIF-2, which interacts with SRs in a ligand inducible manner. When co-transfected with NR-LBDs in the absence of ligand TIF-2/VP16 induced minimal activation of transcription (1.6-4.5-fold) that was comparable to the activation induced by the NR-LBDs. In contrast, in the presence of the ligand, the activation ranged between 62- and 134-fold depending on the receptor. The results suggest that the interaction of SRs with the hsp90 is minimal when compared to a bona fide type of interaction with the co-factors.
Collapse
Affiliation(s)
- Tommi Manninen
- Department of Cell Biology, Tampere Graduate School in Biomedicine, Medical School, University of Tampere, 33014 Tampere, Finland.
| | | | | |
Collapse
|
8
|
Jacobsen BM, Schittone SA, Richer JK, Horwitz KB. Progesterone-independent effects of human progesterone receptors (PRs) in estrogen receptor-positive breast cancer: PR isoform-specific gene regulation and tumor biology. Mol Endocrinol 2004; 19:574-87. [PMID: 15563544 DOI: 10.1210/me.2004-0287] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Progesterone receptors (PRs) are prognostic markers in breast cancers irrespective of the patient's progestational status. However, there are two PR isoforms, PR-A and PR-B, that are equimolar in the normal breast but dysregulated in advanced disease. Postmenopausal, tamoxifen-treated patients with estrogen receptor (ER)-positive, PR-A-rich tumors have much faster disease recurrence than patients with PR-B-rich tumors. To study the mechanisms we engineered ER+ breast cancer cells that express each PR isoform under control of an inducible promoter. We identified 79 genes regulated by progesterone (P), mainly by PR-B, and 51 genes regulated without progesterone, mainly by PR-A. Only nine genes were regulated with and without ligand, leading to definition of three classes: I) genes regulated only by liganded PR; II) genes regulated only by unliganded PR; III) genes regulated by both. Unliganded PR-A and PR-B differentially regulate genes that coordinate extracellular signaling pathways and influence tumor cell biology. Indeed, in the absence of P, compared with ER+/PR-B+ or PR- cells, ER+, PR-A+ cells exhibit an aggressive phenotype, are more adhesive to an extracellular matrix, and are more migratory. Additionally, unliganded PR-A and PR-B both inhibit cell growth and provoke resistance to Taxol-induced apoptosis. We propose that PR-A:PR-B ratios, even in the absence of P, influence the biology and treatment response of ER+ tumors, that PR-A isoforms are functionally dominant in P-deficient states, and that PR-A rich tumors are especially aggressive.
Collapse
Affiliation(s)
- Britta M Jacobsen
- Department of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado 80045, USA.
| | | | | | | |
Collapse
|
9
|
Passinen S, Valkila J, Manninen T, Syvälä H, Ylikomi T. The C-terminal half of Hsp90 is responsible for its cytoplasmic localization. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5337-42. [PMID: 11606196 DOI: 10.1046/j.0014-2956.2001.02467.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
With some exceptions, research so far has shown heat shock protein (Hsp) 90 to be a cytoplasmic protein. Here, we studied the sequence determinants which dictate the subcellular localization of Hsp90. By constructing hybrid molecules between a nuclear protein, progesterone receptor (PR), and parts of Hsp90, we demonstrated that the C-terminal but not the N-terminal half of Hsp90 can prevent nuclear translocation of the PR. Studies with an antibody raised against a region which contains the major nuclear localization signal (NLS) of the PR suggest that the inhibition of nuclear localization is not due to steric hindrance of the NLS of the PR by Hsp90 sequences in hybrid molecules. In order to characterize further the cytoplasmic anchoring of Hsp90 we constructed four chimeric molecules between the C-terminal half of Hsp90 and estrogen receptor (ER) with different numbers of nuclear localization protosignals (proto-NLS). When the C-terminal half of Hsp90 was fused with ER containing no or one proto-NLS, the hybrid molecule was located exclusively in the cytoplasm. When the nuclear translocation signal was strengthened by adding two or three protosignals, the hybrid molecule was exclusively nuclear. These results suggest that the C-terminal half of Hsp90 contains a sequence which is responsible for the cytoplasmic localization of the protein. Further deletions of the molecule suggested that the cytoplasmic anchoring signal is located between amino acids 333 and 664.
Collapse
Affiliation(s)
- S Passinen
- Graduate School of Biomedicine, Department of Cell Biology, Medical School, University of Tampere, Finland
| | | | | | | | | |
Collapse
|
10
|
Haverinen M, Passinen S, Syvälä H, Pasanen S, Manninen T, Tuohimaa P, Ylikomi T. Heat shock protein 90 and the nuclear transport of progesterone receptor. Cell Stress Chaperones 2001; 6:256-62. [PMID: 11599567 PMCID: PMC434407 DOI: 10.1379/1466-1268(2001)006<0256:hspatn>2.0.co;2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Steroid receptors exist as large oligomeric complexes in hypotonic cell extracts. In the present work, we studied the nuclear transport of the 2 major components of the oligomeric complex, the receptor itself and the heat shock protein 90 (Hsp90), by using different in vitro transport systems: digitonin permeabilized cells and purified nuclei. We demonstrate that the stabilized oligomeric complex of progesterone receptor (PR) cannot be transported into the nucleus and that unliganded PR salt dissociated from Hsp90 is transported into the nucleus. When nonstabilized PR oligomer was introduced into the nuclear transport system, the complex dissociated and the PR but not the Hsp90 was transported into the nucleus. If PR exists as an oligomeric form after synthesis, as suggested by the experiments with reticulocyte lysate, the present results suggest that the complex is short-lived and is dissociated before or during nuclear transport. Thus, the role of Hsp90 in PR action is likely to reside in the Hsp90-assisted chaperoning process of PR preceding nuclear transport of the receptor.
Collapse
Affiliation(s)
- M Haverinen
- Department of Cell Biology, Graduate School of Biosciences, University of Tampere, Finland
| | | | | | | | | | | | | |
Collapse
|
11
|
Yamashita S. Histochemistry and cytochemistry of nuclear receptors. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 2001; 36:91-176. [PMID: 11213555 DOI: 10.1016/s0079-6336(01)80004-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Receptors of steroid hormones, thyroid hormones and several kinds of vitamins have been shown to act as nuclear transcription factors and to form a nuclear receptor (NR) family. Histochemical techniques including autoradiography using radio-labeled ligands, immunohistochemistry and in situ hybridization histochemistry, have displayed that target cells of these receptors are distributed not only in the classical target organs but also widely in a variety of tissues; these techniques can demonstrate the presence of receptor proteins and mRNAs, even though they are expressed in a small cell population of tissues. On the other hand, many studies have been performed to demonstrate the interaction between NRs and nuclear and cytoplasmic proteins, and to clarify the mechanism of transcriptional regulation through NRs in artificial conditions which are created in gene transfer experiments or under cell-free conditions. Some data coincide with those obtained from histochemical techniques, however, some histochemical data do not support the results of studies in vitro. This review focuses on the following topics: histochemical methodologies to detect NRs, the distribution and function of NRs in the tissues, the intracellular and intranuclear localization of NRs, roles of gonadal steroid receptors and their ligands on developing tissues including cell communications such as mesenchymal-stromal interaction, and the interaction between other cellular components and NRs. In addition, the agreement and disagreement between the results of histochemical studies and those from the experiments in the model systems or in vitro are discussed.
Collapse
MESH Headings
- Animals
- Female
- Green Fluorescent Proteins
- Histocytochemistry
- Humans
- Immunohistochemistry
- Luminescent Proteins
- Male
- Microscopy, Immunoelectron
- Receptors, Androgen/analysis
- Receptors, Androgen/physiology
- Receptors, Cytoplasmic and Nuclear/analysis
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Estrogen/analysis
- Receptors, Estrogen/physiology
- Receptors, Glucocorticoid/analysis
- Receptors, Glucocorticoid/physiology
- Receptors, Progesterone/analysis
- Receptors, Progesterone/physiology
- Receptors, Steroid/analysis
- Receptors, Steroid/physiology
Collapse
Affiliation(s)
- S Yamashita
- Keio Junior College of Nursing, 35-Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
12
|
Passinen S, Haverinen M, Pekki A, Rauta J, Paranko J, Syv�l� H, Tuohimaa P, Ylikomi T. Only a small portion of the cytoplasmic progesterone receptor is associated with Hsp90 in vivo. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990901)74:3<458::aid-jcb13>3.0.co;2-m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Logie C, Nichols M, Myles K, Funder JW, Stewart AF. Positive and negative discrimination of estrogen receptor agonists and antagonists using site-specific DNA recombinase fusion proteins. Mol Endocrinol 1998; 12:1120-32. [PMID: 9717838 DOI: 10.1210/mend.12.8.0155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Activation of the estrogen receptor (ER) by hormone involves at least two steps. First, hormone binding initially relieves repression, a property imposed on ER in cis by its ligand-binding domain (EBD). Subsequently, the derepressed ER binds specific genomic sites and regulates transcription. In addition to the natural hormone, ER binds a broad range of ligands that evoke a spectrum of responses ranging from full ER activation by agonists to partial activation and inhibition by partial or complete antagonists. How these different ligands evoke different ER responses remains unclear. To address this issue, we have developed a nontranscriptional assay for ER ligand responsiveness based on Flp recombinase/human EBD protein chimeras. These fusion proteins transduce the transient event of ligand binding into a permanent DNA change in a human cell line system. A fusion protein including ER D, E, and F domains was activated by all the ER ligands tested, demonstrating that both agonists and antagonists serve to relieve initial repression, and that differences between them lie downstream in the activation pathway. Mutant variants of the Flp-ER protein that distinguish between agonists and antagonists, and a mutant EBD that selectively lost the ability to respond to 17beta,-estradiol but not to other ligands, were also identified. Thus, agonists and antagonists can be functionally distinguished in a nontranscriptional assay.
Collapse
Affiliation(s)
- C Logie
- Gene Expression Program, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
14
|
Abstract
We have provided a historical perspective on a body of steroid receptor research dealing with the structure and physiological significance of the untransformed 9S receptor that has often confused both novice and expert investigators. The frequent controversies and equivocations of earlier studies were due to the fact that the native, hormone-free state of these receptors is a large multiprotein complex that resisted description for many years because of its unstable and dynamic nature. The untransformed 9S state of the steroid and dioxin receptors has provided a unique system for studying the function of the ubiquitous, abundant, and conserved heat shock protein, hsp90. The hormonal control of receptor association with hsp90 provided a method of manipulating the receptor heterocomplex in a manner that was physiologically meaningful. For several steroid receptors, binding to hsp90 was required for the receptor to be in a native hormone-binding state, and for all of the receptors, hormone binding promoted dissociation of the receptor from hsp90 and conversion of the receptor to the DNA-binding state. Although the complexes between tyrosine kinases and hsp90 were discovered earlier, the hormonal regulation or steroid receptor association with hsp90 permitted much more rapid and facile study of hsp90 function. The observations that hsp90 binds to the receptors through their HBDs and that these domains can be fused to structurally different proteins bringing their function under hormonal control provided a powerful linkage between the hormonal regulation of receptor binding to hsp90 and the initial step in steroid hormone action. Because the 9S receptor hsp90 heterocomplexes could be physically stabilized by molybdate, their protein composition could be readily studied, and it became clear that these complexes are multiprotein structures containing a number of unique proteins, such as FKBP51, FKBP52, CyP-40, and p23, that were discovered because of their presence in these structures. Further analysis showed that hsp90 itself exists in a variety of native multiprotein heterocomplexes independent of steroid receptors and other 'substrate' proteins. Cell-free systems can now be used to study the formation of receptor heterocomplexes. As we outlined in the scheme of Fig. 1, the multicomponent receptor-hsp90 heterocomplex assembly system is being reconstituted, and the importance of individual proteins, such as hsp70, p60, and p23, in the assembly process is becoming recognized. It should be noted that our understanding of the mechanism and purpose of steroid receptor heterocomplex assembly is still at an early stage. We can now speculate on the roles of receptor-associated proteins in receptor action, both as individuals and as a group, but their actual functions are still vague or unknown. We can make realistic models about the chaperoning and trafficking of steroid receptors, but we don't yet know how these processes occur, we don't know where chaperoning occurs in the cell (e.g. Is it limited to the cytoplasm? Is it a diffuse process or does chaperoning occur in association with structural elements?), and, with the exception of the requirement for hormone binding, we don't know the extent to which the hsp90-based chaperone system impacts on steroid hormone action. It is not yet clear how far the discovery of this hsp90 heterocomplex assembly system will be extended to the development of a general understanding of protein processing in the cell. Because this assembly system is apparently present in all eukaryotic cells, it probably performs an essential function for many proteins. The bacterial homolog of hsp90 is not an essential protein, but hsp90 is essential in eukaryotes, and recent studies indicate that the development of the cell nucleus from prokaryotic progenitors was accompanied by the duplication of genes for hsp90 and hsp70 (698). (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- W B Pratt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor 48109, USA
| | | |
Collapse
|
15
|
Affiliation(s)
- M Beato
- Institut für Molekularbiologie and Tumorforschung, I.M.T., University of Marburg, Germany
| | | | | |
Collapse
|
16
|
Pekki A, Ylikomi T, Syvälä H, Tuohimaa P. Progesterone receptor does not form oligomeric (8S), non-DNA-binding complex in intact cell nuclei. J Cell Biochem 1995; 58:95-104. [PMID: 7543904 DOI: 10.1002/jcb.240580112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We raised a polyclonal antibody, alpha D, against a synthetic peptide (amino acids 522-535) of chicken progesterone receptor (PR). The sequence is located between the DNA-binding domain and the hormone-binding domain in the region within the sequences required for stability of the oligomeric form of PR. In the immunoblot, alpha D reacted with both A and B forms of PR. In the sucrose gradient and dot-blot the antibody did not recognize the so-called 8S form of PR, which is an oligomeric complex of PR and other proteins. When the oligomeric complex was dissociated by salt treatment, the antibody recognized the resulting 4S form of PR. This would suggest that the epitope is masked in the 8S form of PR and exposed in the 4S form. To study whether a similar complex exists in vivo, we used the antibody for immunohistochemistry. Two different fixation techniques were employed, freeze-drying-vapor fixation and liquid fixation. In the animals not treated with progesterone, intensive nuclear staining was detected independent of the fixation technique. When receptor from similarly treated animals was analyzed by sucrose gradient, all of the receptor molecules were in the oligomeric complex (8S). Ligand binding is known to promote a dissociation of this complex. Thus progesterone treatment should lead to an increased immunodetection of the epitope; however, progesterone treatment decreased the intensity of PR immunostaining. These results suggest that the oligomeric complex (8S), present in tissue extracts, does not exist in intact cell nuclei. They also call into question the proposed role of hsp90 in regulating progesterone receptor function.
Collapse
Affiliation(s)
- A Pekki
- Department of Biomedical Sciences, University of Tampere, Finland
| | | | | | | |
Collapse
|
17
|
Defranco DB, Madan AP, Tang Y, Chandran UR, Xiao N, Yang J. Nucleocytoplasmic shuttling of steroid receptors. VITAMINS AND HORMONES 1995; 51:315-38. [PMID: 7483326 DOI: 10.1016/s0083-6729(08)61043-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- D B Defranco
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Kang KI, Devin J, Cadepond F, Jibard N, Guiochon-Mantel A, Baulieu EE, Catelli MG. In vivo functional protein-protein interaction: nuclear targeted hsp90 shifts cytoplasmic steroid receptor mutants into the nucleus. Proc Natl Acad Sci U S A 1994; 91:340-4. [PMID: 8278390 PMCID: PMC42943 DOI: 10.1073/pnas.91.1.340] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In target tissue extracts, heat shock protein hsp90 has been found associated to all unliganded steroid receptors. Modulation of important functions of these receptors, including prevention of DNA binding and optimization of transcriptional activity, has been attributed to hsp90. However no unequivocal in vivo demonstration of interaction between receptors and hsp90 has been presented. We targeted chicken hsp90, a mainly cytoplasmic protein, with the nucleoplasmin nuclear localization signal (90NLS). After transfection into COS-7 cells, 90NLS was found in the nucleus with specific immunofluorescence and confocal microscopy techniques. A human glucocorticosteroid receptor mutant devoid of NLS sequence was also expressed in COS-7 cells and found exclusively cytoplasmic. Coexpression of 90NLS and of the cytoplasmic human glucocorticosteroid receptor mutant led to complete nuclear localization of the receptor, indicating its piggyback transport by 90NLS and thus physical and functional interaction between the two proteins in the absence of hormone. The same nuclear localization was obtained after cotransfection of 90NLS and a cytoplasmic rabbit progesterone receptor mutant. Finally, coexpression of wild-type rabbit progesterone receptor (nuclear) and wildtype hsp90 (cytoplasmic) into COS-7 cells provoked partial relocalization of hsp90 into the nucleus. These experiments lay the groundwork on which to study hsp90 as a chaperone, regulating activities of steroid receptors and possibly participating in their nuclear-cytoplasmic shuttling.
Collapse
Affiliation(s)
- K I Kang
- Institut National de la Santé et de la Recherche Médicale U33, Lab Hormones, Le Kremlin-Bicêtre, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Bolander FF. Nuclear Receptors. Mol Endocrinol 1994. [DOI: 10.1016/b978-0-12-111231-8.50010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Pekki A, Koistinaho J, Ylikomi T, Vilja P, Westphal H, Touhimaa P. Subcellular location of unoccupied and occupied glucocorticoid receptor by a new immunohistochemical technique. J Steroid Biochem Mol Biol 1992; 41:753-6. [PMID: 1562549 DOI: 10.1016/0960-0760(92)90417-h] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent immunohistochemical studies suggest that the unoccupied glucocorticoid receptor (GR) is cytoplasmic and that the ligand causes its translocation into the target cell nucleus. The subcellular location of GR is especially interesting in that other members of the steroid receptor superfamily appear to be nuclear. The intracellular distribution of GR was studied immunohistochemically using a new freeze-drying and vapor fixation method which eliminates the protein diffusion and redistribution possibly caused by liquid fixation techniques. We used two monoclonal antibodies against rat liver GR. Dried samples of the adrenalectomized rat brain and uterus were fixed in p-benzoquinone vapor for 3 h at 60 degrees C and embedded in paraffin. Sections were stained with a biotinylated mouse monoclonal GR antibody using the avidin-biotin-peroxidase complex. Both unoccupied and occupied GR were found in the nucleus of the target cells, fibroblasts in the uterus and nerve cells in the cortex of the brain. The staining was saturated with the cytosol of cos cells transfected with GR. No cytoplasmic staining was seen even 2 days after adrenalectomy. In conclusion we propose that GR is also located in the nucleus independently of occupation.
Collapse
Affiliation(s)
- A Pekki
- Department of Biomedical Sciences, University of Tampere, Finland
| | | | | | | | | | | |
Collapse
|