1
|
Corcionivoschi N, Balta I, McCleery D, Bundurus I, Pet I, Calaway T, Nichita I, Stef L, Morariu S. Mechanisms of Pathogenic Escherichia coli Attachment to Meat. Foodborne Pathog Dis 2025; 22:339-349. [PMID: 38593459 DOI: 10.1089/fpd.2023.0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Escherichia coli are present in the human and animal microbiome as facultative anaerobes and are viewed as an integral part of the whole gastrointestinal environment. In certain circumstances, some species can also become opportunistic pathogens responsible for severe infections in humans. These infections are caused by the enterotoxinogenic E. coli, enteroinvasive E. coli, enteropathogenic E. coli and the enterohemorrhagic E. coli species, frequently present in food products and on food matrices. Severe human infections can be caused by consumption of meat contaminated upon exposure to animal feces, and as such, farm animals are considered to be a natural reservoir. The mechanisms by which these four major species of E. coli adhere and persist in meat postslaughter are of major interest to public health and food processors given their frequent involvement in foodborne outbreaks. This review aims to structure and provide an update on the mechanistic roles of environmental factors, curli, type I and type IV pili on E. coli adherence/interaction with meat postslaughter. Furthermore, we emphasize on the importance of bacterial surface structures, which can be used in designing interventions to enhance food safety and protect public health by reducing the burden of foodborne illnesses.
Collapse
Affiliation(s)
- Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - David McCleery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Iulia Bundurus
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - Todd Calaway
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Ileana Nichita
- Faculty of Veterinary Medicine, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - Sorin Morariu
- Faculty of Veterinary Medicine, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| |
Collapse
|
2
|
Silmon de Monerri NC, Che Y, Lees JA, Jasti J, Wu H, Griffor MC, Kodali S, Hawkins JC, Lypowy J, Ponce C, Curley K, Esadze A, Carcamo J, McLellan T, Keeney D, Illenberger A, Matsuka YV, Shanker S, Chorro L, Gribenko AV, Han S, Anderson AS, Donald RGK. Structure-based design of an immunogenic, conformationally stabilized FimH antigen for a urinary tract infection vaccine. PLoS Pathog 2025; 21:e1012325. [PMID: 39970181 DOI: 10.1371/journal.ppat.1012325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/26/2025] [Indexed: 02/21/2025] Open
Abstract
Adhesion of E. coli to the urinary tract epithelium is a critical step in establishing urinary tract infections. FimH is an adhesin positioned on the fimbrial tip which binds to mannosylated proteins on the urinary tract epithelium via its lectin domain (FimHLD). FimH is of interest as a target of vaccines to prevent urinary tract infections (UTI). Previously, difficulties in obtaining purified recombinant FimH from E. coli along with the poor inherent immunogenicity of FimH have hindered the development of effective FimH vaccine candidates. To overcome these challenges, we have devised a novel production method using mammalian cells to produce high yields of homogeneous FimH protein with comparable biochemical and immunogenic properties to FimH produced in E. coli. Next, to optimize conformational stability and immunogenicity of FimH, we used a computational approach to design improved FimH mutants and evaluated their biophysical and biochemical properties, and murine immunogenicity using a bacterial adhesion inhibition assay. This approach identified an immunogenic FimH variant (FimH-donor-strand complemented with FimG peptide 'triple mutant', FimH-DSG TM) capable of blocking bacterial adhesion that is produced at high yields in mammalian cells. By x-ray crystallography, we confirmed that the stabilized structure of the FimHLD in FimH-DSG TM is similar to native FimH on the fimbrial tip. Characterization of monoclonal antibodies elicited by FimH-DSG TM that can block bacterial binding to mannosylated surfaces identified 4 non-overlapping binding sites whose epitopes were mapped via a combinatorial cryogenic electron microscopy approach. Novel inhibitory epitopes in the lectin binding FimH were identified, revealing diverse functional mechanisms of FimH-directed antibodies with relevance to FimH-targeted UTI vaccines.
Collapse
Affiliation(s)
| | - Ye Che
- Discovery Sciences, Pfizer Inc, Groton, Connecticut, United States of America
| | - Joshua A Lees
- Discovery Sciences, Pfizer Inc, Groton, Connecticut, United States of America
| | - Jayasankar Jasti
- Discovery Sciences, Pfizer Inc, Groton, Connecticut, United States of America
| | - Huixian Wu
- Discovery Sciences, Pfizer Inc, Groton, Connecticut, United States of America
| | - Matthew C Griffor
- Discovery Sciences, Pfizer Inc, Groton, Connecticut, United States of America
| | - Srinivas Kodali
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, New York, United States of America
| | - Julio Cesar Hawkins
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, New York, United States of America
| | - Jacqueline Lypowy
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, New York, United States of America
| | - Christopher Ponce
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, New York, United States of America
| | - Kieran Curley
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, New York, United States of America
| | - Alexandre Esadze
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, New York, United States of America
| | - Juan Carcamo
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, New York, United States of America
| | - Thomas McLellan
- Discovery Sciences, Pfizer Inc, Groton, Connecticut, United States of America
| | - David Keeney
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, New York, United States of America
| | - Arthur Illenberger
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, New York, United States of America
| | - Yury V Matsuka
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, New York, United States of America
| | - Suman Shanker
- Discovery Sciences, Pfizer Inc, Groton, Connecticut, United States of America
| | - Laurent Chorro
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, New York, United States of America
| | - Alexey V Gribenko
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, New York, United States of America
| | - Seungil Han
- Discovery Sciences, Pfizer Inc, Groton, Connecticut, United States of America
| | - Annaliesa S Anderson
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, New York, United States of America
| | - Robert G K Donald
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, New York, United States of America
| |
Collapse
|
3
|
Meng J, Wang W, Ding J, Gu B, Zhou F, Wu D, Fu X, Qiao M, Liu J. The synergy effect of matrine and berberine hydrochloride on treating colibacillosis caused by an avian highly pathogenic multidrug-resistant Escherichia coli. Poult Sci 2024; 103:104151. [PMID: 39137499 PMCID: PMC11372597 DOI: 10.1016/j.psj.2024.104151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024] Open
Abstract
Infection by multidrug-resistant avian pathogenic Escherichia coli (APEC) in chickens always leads to the uselessness of antibiotics, highlighting the need for alternative antibacterial agents. Sophora flavescens and Coptis chinensis have been a classical combination used together in Traditional Chinese Medicine (TCM) formulas to treat diseases with similar symptoms to colibacillosis for an extended period, but the effect of their active ingredients' combination on APEC infection remains unstudied. The objective of this study was to explore the synergistic effect of matrine and berberine hydrochloride on colibacillosis caused by an isolated multidrug-resistant APEC. In this study, a highly pathogenic E. coli was isolated from the liver of a diseased chicken in a farm suspected of colibacillosis, and it was resistant to multiple antibiotics. The LD50 of the strain was approximately 3.759×108 CFU/mL. The strain harbored several antibiotic resistance genes and virulence genes. Matrine and berberine hydrochloride have synergistic antibacterial effect against the isolated strain in vitro. The combined use of matrine and berberine hydrochloride exhibited synergistic effects in the treatment of APEC infection by regulating the organ indices, improving the pathological situation, decreasing the bacterial load, and regulating the inflammatory factors to enhance the survival rate of chickens in vivo. These results provided a foundation for revealing the effective effects and possible mechanisms of matrine and berberine hydrochloride as potential antimicrobial agents on diseases caused by multidrug-resistant APEC in chickens.
Collapse
Affiliation(s)
- Jinwu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Weiran Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jinxue Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Bolin Gu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fanting Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Desheng Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiang Fu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingyu Qiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaguo Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
4
|
Meng J, Ding J, Wang W, Gu B, Zhou F, Wu D, Fu X, Liu J. Reversal of gentamicin sulfate resistance in avian pathogenic Escherichia coli by matrine combined with berberine hydrochloride. Arch Microbiol 2024; 206:292. [PMID: 38849633 DOI: 10.1007/s00203-024-04021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024]
Abstract
In recent years, the evolution of antibiotic resistance has led to the inefficacy of several antibiotics, and the reverse of resistance was a novel method to solve this problem. We previously demonstrated that matrine (Mat) and berberine hydrochloride (Ber) had a synergistic effect against multidrug-resistant Escherichia coli (MDREC). This study aimed to demonstrate the effect of Mat combined with Ber in reversing the resistance of MDREC. The MDREC was sequenced passaged in the presence of Mat, Ber, and a combination of Mat and Ber, which did not affect its growth. The reverse rate was up to 39.67% after MDREC exposed to Mat + Ber for 15 days. The strain that reversed resistance was named drug resistance reversed E. coli (DRREC) and its resistance to ampicillin, streptomycin, gentamicin, and tetracycline was reversed. The MIC of Gentamicin Sulfate (GS) against DRREC decreased 128-fold to 0.63 µg/mL, and it was stable within 20 generations. Furthermore, the susceptible phenotype of DRREC remained stable within 20 generations, as well. The LD50 of DRREC for chickens was 8.69 × 109 CFU/mL. qRT-PCR assays revealed that the transcript levels of antibiotic-resistant genes and virulence genes in the DRREC strain were significantly lower than that in the MDREC strain (P < 0.05). In addition, GS decreased the death, decreased the bacterial loading in organs, alleviated the injury of the spleen and liver, and decreased the cytokine levels in the chickens infected by the DRREC strain. In contrast, the therapeutic effect of GS in chickens infected with MDREC was not as evident. These findings suggest that the combination of Mat and Ber has potential for reversing resistance to MDREC.
Collapse
Affiliation(s)
- Jinwu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P R China
| | - Jinxue Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P R China
| | - Weiran Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P R China
| | - Bolin Gu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P R China
| | - Fanting Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P R China
| | - Desheng Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P R China
| | - Xiang Fu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P R China
| | - Jiaguo Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P R China.
| |
Collapse
|
5
|
Jiang X, Long J, Song Y, Qi X, Li P, Pan K, Yan C, Xu H, Liu H. The effect of triclosan on intergeneric horizontal transmission of plasmid-mediated tigecycline resistance gene tet(X4) from Citrobacter freundii isolated from grass carp gut. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123658. [PMID: 38432343 DOI: 10.1016/j.envpol.2024.123658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/26/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
The transmission of antibiotic resistance genes (ARGs) in pathogenic bacteria affects culture animal health, endangers food safety, and thus gravely threatens public health. However, information about the effect of disinfectants - triclosan (TCS) on ARGs dissemination of bacterial pathogens in aquatic animals is still limited. One Citrobacter freundii (C. freundii) strain harboring tet(X4)-resistant plasmid was isolated from farmed grass carp guts, and subsequently conjugative transfer frequency from C. freundii to Escherichia coli C600 (E. coli C600) was analyzed under different mating time, temperature, and ratio. The effect of different concentrations of TCS (0.02, 0.2, 2, 20, 200 and 2000 μg/L) on the conjugative transfer was detected. The optimum conditions for conjugative transfer were at 37 °C for 8h with mating ratio of 2:1 or 1:1 (C. freundii: E. coli C600). The conjugative transfer frequency was significantly promoted under TCS treatment and reached the maximum value under 2.00 μg/L TCS with 18.39 times that of the control group. Reactive oxygen species (ROS), superoxide dismutase (SOD) and catalase (CAT) activities, cell membrane permeability of C. freundii and E. coli C600 were obviously increased under TCS stress. Scanning electron microscope showed that the cell membrane surface of the conjugative strains was wrinkled and pitted, even broken at 2.00 μg/L TCS, while lysed or even ruptured at 200.00 μg/L TCS. In addition, TCS up-regulated expression levels of oxidative stress genes (katE, hemF, bcp, hemA, katG, ahpF, and ahpC) and cell membrane-related genes (fimC, bamE and ompA) of donor and recipient bacteria. Gene Ontology (GO) enrichment demonstrated significant changes in categories relevant to pilus, porin activity, transmembrane transporter activity, transferase activity, hydrolase activity, material transport and metabolism. Taken together, a tet(X4)-resistant plasmid could horizontal transmission among different pathogens, while TCS can promote the propagation of the resistant plasmid.
Collapse
Affiliation(s)
- Xinxin Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingfei Long
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanzhen Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoyu Qi
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ping Li
- Powerchina Northwest Engineering Corporation Limited, Xi'an, 710065, China
| | - Kuiquan Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chenyang Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongzhou Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haixia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Corcionivoschi N, Balta I, Butucel E, McCleery D, Pet I, Iamandei M, Stef L, Morariu S. Natural Antimicrobial Mixtures Disrupt Attachment and Survival of E. coli and C. jejuni to Non-Organic and Organic Surfaces. Foods 2023; 12:3863. [PMID: 37893756 PMCID: PMC10606629 DOI: 10.3390/foods12203863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The contact and adherence of bacteria to various surfaces has significant consequences on biofilm formation through changes in bacterial surface structures or gene expression with potential ramifications on plant and animal health. Therefore, this study aimed to investigate the effect of organic acid-based mixtures (Ac) on the ability Campylobacter jejuni and Escherichia coli to attach and form biofilm on various surfaces, including plastic, chicken carcass skins, straw bedding, and eggshells. Moreover, we aimed to explore the effect of Ac on the expression of E. coli (luxS, fimC, csgD) and C. jejuni (luxS, flaA, flaB) bacterial genes involved in the attachment and biofilm formation via changes in bacterial surface polysaccharidic structures. Our results show that Ac had a significant effect on the expression of these genes in bacteria either attached to these surfaces or in planktonic cells. Moreover, the significant decrease in bacterial adhesion was coupled with structural changes in bacterial surface polysaccharide profiles, impacting their adhesion and biofilm-forming ability. Essentially, our findings accentuate the potential of natural antimicrobials, such as Ac, in reducing bacterial attachment and biofilm formation across various environments, suggesting promising potential applications in sectors like poultry production and healthcare.
Collapse
Affiliation(s)
- Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (N.C.); (E.B.); (D.M.)
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.B.); (I.P.); (L.S.)
- Academy of Romanian Scientists, Ilfov Street, No. 3, 050044 Bucharest, Romania
| | - Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.B.); (I.P.); (L.S.)
| | - Eugenia Butucel
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (N.C.); (E.B.); (D.M.)
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.B.); (I.P.); (L.S.)
| | - David McCleery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (N.C.); (E.B.); (D.M.)
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.B.); (I.P.); (L.S.)
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.B.); (I.P.); (L.S.)
| | - Maria Iamandei
- Research Development Institute for Plant Protection, 013813 Bucharest, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania; (I.B.); (I.P.); (L.S.)
| | - Sorin Morariu
- Faculty of Veterinary Medicine, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| |
Collapse
|
7
|
Jia T, Wu P, Liu B, Liu M, Mu H, Liu D, Huang M, Li L, Wei Y, Wang L, Yang Q, Liu Y, Yang B, Huang D, Yang L, Liu B. The phosphate-induced small RNA EsrL promotes E. coli virulence, biofilm formation, and intestinal colonization. Sci Signal 2023; 16:eabm0488. [PMID: 36626577 DOI: 10.1126/scisignal.abm0488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/08/2022] [Indexed: 01/12/2023]
Abstract
Escherichia coli are part of the normal intestinal microbiome, but some enterohemorrhagic E. coli (EHEC) and enteropathogenic E. coli (EPEC) strains can cause potentially life-threatening gastroenteritis. Virulence factors underlying the ability of EHEC and EPEC to cause disease include those encoded in the locus of the enterocyte effacement (LEE) pathogenicity island. Here, we demonstrated that EsrL, a small RNA present in many E. coli strains, promoted pathogenicity, adhesion, and biofilm formation in EHEC and EPEC. PhoB, the response regulator of the two-component system that controls cellular responses to phosphate, directly repressed esrL expression under low-phosphate conditions. A phosphate-rich environment, similar to that of the human intestine, relieved PhoB-mediated repression of esrL. EsrL interacted with and stabilized the LEE-encoded regulator (ler) transcript, which encodes a transcription factor for LEE genes, leading to increased bacterial adhesion to cultured cells and colonization of the rabbit colon. EsrL also bound to and stabilized the fimC transcript, which encodes a chaperone that is required for the assembly of type 1 pili, resulting in enhanced cell adhesion in pathogenic E. coli and enhanced biofilm formation in pathogenic and nonpathogenic E. coli. Our findings demonstrate that EsrL stimulates the expression of virulence genes in both EHEC and EPEC under phosphate-rich conditions, thus promoting the pathogenicity of EHEC and EPEC in the nutrient-rich gut environment.
Collapse
Affiliation(s)
- Tianyuan Jia
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Pan Wu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Bin Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
| | - Miaomiao Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Huiqian Mu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Dan Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Min Huang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Linxing Li
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Yi Wei
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Lu Wang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Qian Yang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Yutao Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
| | - Bin Yang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
| | - Di Huang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
- Nankai International Advanced Research Institute, Shenzhen, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Bin Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
- Nankai International Advanced Research Institute, Shenzhen, China
| |
Collapse
|
8
|
Wang X, Zhang X, Lu BH, Gao J. The periplasmic chaperone protein Psg_2795 contributes to the virulence of Pseudomonas savastanoi pv. glycinea: the causal agent of bacterial blight of soybean. J Microbiol 2022; 60:478-487. [PMID: 35246805 DOI: 10.1007/s12275-022-1469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Abstract
Pseudomonas savastanoi pv. glycinea (Psg also named P. syringae pv. glycinea and P. amygdali pv. glycinea) is the causative agent of bacterial blight in soybean. The identification of virulence factors is essential for understanding the pathogenesis of Psg. In this study, a mini-Tn5 transposon mutant library of Psg strain PsgNC12 was screened on soybean, and one low-virulent mini-Tn5 mutant, designated as 4573, was identified. Sequence analysis of the 4573-mutant revealed that the mini-Tn5 transposon was inserted in the Psg_2795 gene. Psg_2795 encodes a FimC-domain protein that is highly conserved in Pseudomonas. Further analysis revealed that the mutation and knockout of Psg_2795 results in a reduced virulence phenotype on soybean, decreased motility, weakened bacterial attachment to a glass surface and delayed the population growth within soybean leaves. The phenotype of the 4573-mutant could be complemented nearly to wild-type levels using an intact Psg_2795 gene. Collectively, our results demonstrate that Psg_2795 plays an important role in the virulence, motility, attachment and the population growth of PsgNC12 in soybean. This finding provides a new insight into the function of periplasmic chaperone proteins in a type I pilus and provides reference information for identifying Psg_2795 homologues in P. savastanoi and other bacteria.
Collapse
Affiliation(s)
- Xiuhua Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Xiaoyan Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Bao-Hui Lu
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, P. R. China.
| | - Jie Gao
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, P. R. China.
| |
Collapse
|
9
|
Lopez P, Guaimas F, Czibener C, Ugalde JE. A genomic island in Brucella involved in the adhesion to host cells: Identification of a new adhesin and a translocation factor. Cell Microbiol 2020; 22:e13245. [PMID: 32657513 DOI: 10.1111/cmi.13245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
Adhesion to host cells is the first step in the virulence cycle of any pathogen. In Gram-negative bacteria, adhesion is mediated, among other virulence factors such as the lipopolysaccharides, by specific outer-membrane proteins generally termed adhesins that belong to a wide variety of families and have different evolutionary origins. In Brucella, a widespread zoonotic pathogen of animal and human health concern, adhesion is central as it may determine the intracellular fate of the bacterium, an essential stage in its pathogenesis. In the present paper, we further characterised a genomic locus that we have previously reported encodes an adhesin (BigA) with a bacterial immunoglobulin-like domain (BIg-like). We found that this region encodes a second adhesin, which we have named BigB; and PalA, a periplasmic protein necessary for the proper display in the outer membrane of BigA and BigB. Deletion of bigB or palA diminishes the adhesion of the bacterium and overexpression of BigB dramatically increases it. Incubation of cells with the recombinant BIg-like domain of BigB induced important cytoskeletal rearrangements and affected the focal adhesion sites indicating that the adhesin targets cell-cell or cell-matrix proteins. We additionally show that PalA has a periplasmic localisation and is completely necessary for the proper display of BigA and BigB, probably avoiding their aggregation and facilitating their transport to the outer membrane. Our results indicate that this genomic island is entirely devoted to the adhesion of Brucella to host cells.
Collapse
Affiliation(s)
- Paula Lopez
- Instituto de Investigaciones Biotecnológicas 'Dr. Rodolfo A. Ugalde', IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Francisco Guaimas
- Instituto de Investigaciones Biotecnológicas 'Dr. Rodolfo A. Ugalde', IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Cecilia Czibener
- Instituto de Investigaciones Biotecnológicas 'Dr. Rodolfo A. Ugalde', IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Juan E Ugalde
- Instituto de Investigaciones Biotecnológicas 'Dr. Rodolfo A. Ugalde', IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, Buenos Aires, Argentina
| |
Collapse
|
10
|
Ambite I, Butler DSC, Stork C, Grönberg-Hernández J, Köves B, Zdziarski J, Pinkner J, Hultgren SJ, Dobrindt U, Wullt B, Svanborg C. Fimbriae reprogram host gene expression - Divergent effects of P and type 1 fimbriae. PLoS Pathog 2019; 15:e1007671. [PMID: 31181116 PMCID: PMC6557620 DOI: 10.1371/journal.ppat.1007671] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/01/2019] [Indexed: 01/03/2023] Open
Abstract
Pathogens rely on a complex virulence gene repertoire to successfully attack their hosts. We were therefore surprised to find that a single fimbrial gene reconstitution can return the virulence-attenuated commensal strain Escherichia coli 83972 to virulence, defined by a disease phenotype in human hosts. E. coli 83972pap stably reprogrammed host gene expression, by activating an acute pyelonephritis-associated, IRF7-dependent gene network. The PapG protein was internalized by human kidney cells and served as a transcriptional agonist of IRF-7, IFN-β and MYC, suggesting direct involvement of the fimbrial adhesin in this process. IRF-7 was further identified as a potent upstream regulator (-log (p-value) = 61), consistent with the effects in inoculated patients. In contrast, E. coli 83972fim transiently attenuated overall gene expression in human hosts, enhancing the effects of E. coli 83972. The inhibition of RNA processing and ribosomal assembly indicated a homeostatic rather than a pathogenic end-point. In parallel, the expression of specific ion channels and neuropeptide gene networks was transiently enhanced, in a FimH-dependent manner. The studies were performed to establish protective asymptomatic bacteriuria in human hosts and the reconstituted E. coli 83972 variants were developed to improve bacterial fitness for the human urinary tract. Unexpectedly, P fimbriae were able to drive a disease response, suggesting that like oncogene addiction in cancer, pathogens may be addicted to single super-virulence factors. Urinary tract infections affect millions of individuals annually, and many patients suffer from recurring infections several times a year. Antibiotic resistance is increasing rapidly and new strategies are needed to treat even these common bacterial infections. One approach is to use the protective power of asymptomatic bacterial carriage, which has been shown to protect the host against symptomatic urinary tract infection. Instilling “nice” bacteria in the urinary bladder is therefore a promising alternative approach to antibiotic therapy. In an effort to increase the therapeutic use of asymptomatic bacteriuria, we reintroduced bacterial adhesion molecules into the therapeutic Escherichia coli strain 83972 and inoculated patients who are in need of alternative therapy. To our great surprise, the P fimbriated variant caused symptoms, despite lacking other virulence factors commonly thought to be necessary to cause disease. In contrast, type 1 fimbriae, did not provoke symptoms but enhanced the beneficial properties of the wild-type strain. This is explained by a divergent effect of these fimbrial types on host gene expression, where P fimbriae activate the IRF-7 transcription factor that regulates pathology in infected kidneys, suggesting that a single, potent virulence gene may be sufficient to create virulence in human hosts.
Collapse
Affiliation(s)
- Ines Ambite
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Klinikgatan, Lund, Sweden
| | - Daniel S. C. Butler
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Klinikgatan, Lund, Sweden
| | - Christoph Stork
- Institute of Hygiene, University of Münster, Mendelstr, Münster, Germany
| | - Jenny Grönberg-Hernández
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Klinikgatan, Lund, Sweden
| | - Bela Köves
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Klinikgatan, Lund, Sweden
| | - Jaroslaw Zdziarski
- Institute for Molecular Biology of Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Jerome Pinkner
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
- Center for Women's Infectious Disease Research (CWIDR), Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
- Center for Women's Infectious Disease Research (CWIDR), Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Mendelstr, Münster, Germany
- Institute for Molecular Biology of Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Björn Wullt
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Klinikgatan, Lund, Sweden
| | - Catharina Svanborg
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Klinikgatan, Lund, Sweden
- * E-mail:
| |
Collapse
|
11
|
Schwan WR, Beck MT, Hung CS, Hultgren SJ. Differential Regulation of Escherichia coli fim Genes following Binding to Mannose Receptors. J Pathog 2018; 2018:2897581. [PMID: 29951317 PMCID: PMC5987248 DOI: 10.1155/2018/2897581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/12/2018] [Indexed: 01/17/2023] Open
Abstract
Regulation of the uropathogenic Escherichia coli (UPEC) fimB and fimE genes was examined following type 1 pili binding to mannose-coated Sepharose beads. Within 25 min after mannose attachment, fimE expression dropped eightfold, whereas fimB transcription increased about two- to fourfold. Because both fim genes encode site-specific recombinases that affect the position of the fimS element containing the fimA promoter, the positioning of fimS was also examined. The fimS element changed to slightly more Phase-OFF in bacteria mixed with plain beads, whereas UPEC cells interacting with mannose-coated beads had significantly less Phase-OFF orientation of fimS under pH 7 conditions. On the other hand, Phase-OFF oriented fimS increased fourfold when UPEC cells were mixed with plain beads in a pH 5.5 environment. Positioning of fimS was also affected by fimH mutations, demonstrating that the FimH ligand binding to its receptor facilitates the changes. Moreover, enzyme immunoassays showed that UPEC cells had greater type 1 pili expression when mixed with mannose-coated beads versus plain beads. These results indicate that, after type 1 pilus binding to tethered mannose receptors, the physiology of the E. coli cells changes to maintain the expression of type 1 pili even when awash in an acidic environment.
Collapse
Affiliation(s)
| | | | - Chia S. Hung
- Center for Women's Infectious Disease Research, Washington University, St. Louis, MO 63110, USA
| | - Scott J. Hultgren
- Center for Women's Infectious Disease Research, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Abstract
Escherichia coli bacterial cells produce multiple types of adhesion pili that mediate cell-cell and cell-host attachments. These pili (also called 'fimbriae') are large biopolymers that are comprised of subunits assembled via a sophisticated micro-machinery into helix-like structures that are anchored in the bacterial outer membrane. They are commonly essential for initiation of disease and thus provide a potential target for antibacterial prevention and treatment. To develop new therapeutics for disease prevention and treatment we need to understand the molecular mechanisms and the direct role of adhesion pili during pathogenesis. These helix-like pilus structures possess fascinating and unique biomechanical properties that have been thoroughly investigated using high-resolution imaging techniques, force spectroscopy and fluid flow chambers. In this chapter, we first discuss the structure of pili and the micro-machinery responsible for the assembly process. Thereafter, we present methods for measurement of the biomechanics of adhesion pili, including optical tweezers. Data demonstrate unique biomechanical properties of pili that allow bacteria to sustain binding during in vivo fluid shear forces. We thereafter summarize the current biomechanical findings related to adhesion pili and show that pili biomechanical properties are niche-specific. That is, the data suggest that there is an organ-specific adaptation of pili that facilitates infection of the bacteria's target tissue. Thus, pilus biophysical properties are an important part of Escherichia coli pathogenesis, allowing bacteria to overcome hydrodynamic challenges in diverse environments.
Collapse
Affiliation(s)
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA.
| | | |
Collapse
|
13
|
Role of outer membrane protein T in pathogenicity of avian pathogenic Escherichia coli. Res Vet Sci 2017; 115:109-116. [DOI: 10.1016/j.rvsc.2017.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/18/2017] [Accepted: 01/26/2017] [Indexed: 11/19/2022]
|
14
|
Mamipour M, Yousefi M, Hasanzadeh M. An overview on molecular chaperones enhancing solubility of expressed recombinant proteins with correct folding. Int J Biol Macromol 2017; 102:367-375. [PMID: 28412337 PMCID: PMC7185796 DOI: 10.1016/j.ijbiomac.2017.04.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023]
Abstract
The majority of research topics declared that most of the recombinant proteins have been expressed by Escherichia coli in basic investigations. But the majority of high expressed proteins formed as inactive recombinant proteins that are called inclusion body. To overcome this problem, several methods have been used including suitable promoter, environmental factors, ladder tag to secretion of proteins into the periplasm, gene protein optimization, chemical chaperones and molecular chaperones sets. Co-expression of the interest protein with molecular chaperones is one of the common methods The chaperones are a group of proteins, which are involved in making correct folding of recombinant proteins. Chaperones are divided two groups including; cytoplasmic and periplasmic chaperones. Moreover, periplasmic chaperones and proteases can be manipulated to increase the yields of secreted proteins. In this article, we attempted to review cytoplasmic chaperones such as Hsp families and periplasmic chaperones including; generic chaperones, specialized chaperones, PPIases, and proteins involved in disulfide bond formation.
Collapse
Affiliation(s)
- Mina Mamipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Mayer K, Eris D, Schwardt O, Sager CP, Rabbani S, Kleeb S, Ernst B. Urinary Tract Infection: Which Conformation of the Bacterial Lectin FimH Is Therapeutically Relevant? J Med Chem 2017; 60:5646-5662. [PMID: 28471659 DOI: 10.1021/acs.jmedchem.7b00342] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Frequent antibiotic treatment of urinary tract infections has resulted in the emergence of antimicrobial resistance, necessitating alternative treatment options. One such approach centers around FimH antagonists that block the bacterial adhesin FimH, which would otherwise mediate binding of uropathogenic Escherichia coli to the host urothelium to trigger the infection. Although the FimH lectin can adopt three distinct conformations, the evaluation of FimH antagonists has mainly been performed with a truncated construct of FimH locked in one particular conformation. For a successful therapeutic application, however, FimH antagonists should be efficacious against all physiologically relevant conformations. Therefore, FimH constructs with the capacity to adopt various conformations were applied. By examining the binding properties of a series of FimH antagonists in terms of binding affinity and thermodynamics, we demonstrate that depending on the FimH construct, affinities may be overestimated by a constant factor of 2 orders of magnitude. In addition, we report several antagonists with excellent affinities for all FimH conformations.
Collapse
Affiliation(s)
- Katharina Mayer
- Institute of Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel , Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Deniz Eris
- Institute of Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel , Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Oliver Schwardt
- Institute of Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel , Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Christoph P Sager
- Institute of Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel , Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Said Rabbani
- Institute of Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel , Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Simon Kleeb
- Institute of Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel , Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Beat Ernst
- Institute of Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel , Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
16
|
Hejair HMA, Zhu Y, Ma J, Zhang Y, Pan Z, Zhang W, Yao H. Functional role of ompF and ompC porins in pathogenesis of avian pathogenic Escherichia coli. Microb Pathog 2017; 107:29-37. [PMID: 28315387 DOI: 10.1016/j.micpath.2017.02.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
Abstract
Avian pathogenic Escherichia coli is an important pathogen causes systemic infections in avian species and large economic losses in poultry industry worldwide. The functional role of porins during the infection and their mechanisms of interaction with host tissues for adhesion to and invasion are poorly understood. However, whether porins play a role in infection remains unclear. In this study we evaluated the potential of ompF and ompC outer membrane porins in the pathogenesis of avian pathogenic E. coli (APEC) strain TW-XM. The ompF and ompC were deleted to generate a series of mutants. We found that, ΔompF and ΔompC reduced significantly the adherence by 41.3% and 46.1% and invasion capabilities of APEC to mouse brain microvascular endothelial cell (BMEC) bEnd.3 cells in vitro by 51.9% and 49.7% respectively, compared with the wild strain TW-XM. In vivo experiment based on the measurement of the LD50 have also shown that, ΔompF and ΔompC reduced the bacterial virulence by 9.8-fold, 12.3-fold in ducklings and 9-fold, 10.2-fold in mouse models. Animal infection experiments further revealed that, loss of ompF and ompC reduced TW-XM colonization and invasion capacity in brains, lungs and blood compared to wild-type strain TW-XM (P > 0.01). These virulence-related phenotypes were partially recoverable by genetic complementation. The results of the quantitative real-time reverse transcription-PCR (qRT-PCR) indicated that, the loss of ompF and ompC significantly decreased the expression levels of ompA, fimC and iBeA genes in the mutant strains, compared to wild-type strainTW-XM (P < 0.01). Collectively, our data demonstrate that inactivation of these two porins decreased adhesion, invasion, colonization, proliferation capacities, possibly by reduced expression levels of ompA, fimC and iBeA, which may indicate the involvement of ompF and ompC in APEC pathogenesis.
Collapse
Affiliation(s)
- Hassan M A Hejair
- College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; College of Veterinary Sciences, University of Nyala, Nyala, Sudan
| | - Yinchu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
| | - Yue Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China.
| |
Collapse
|
17
|
Abstract
Urinary tract infections (UTI) are among the most common bacterial infections in humans, affecting millions of people every year. UTI cause significant morbidity in women throughout their lifespan, in infant boys, in older men, in individuals with underlying urinary tract abnormalities, and in those that require long-term urethral catheterization, such as patients with spinal cord injuries or incapacitated individuals living in nursing homes. Serious sequelae include frequent recurrences, pyelonephritis with sepsis, renal damage in young children, pre-term birth, and complications of frequent antimicrobial use including high-level antibiotic resistance and Clostridium difficile colitis. Uropathogenic E. coli (UPEC) cause the vast majority of UTI, but less common pathogens such as Enterococcus faecalis and other enterococci frequently take advantage of an abnormal or catheterized urinary tract to cause opportunistic infections. While antibiotic therapy has historically been very successful in controlling UTI, the high rate of recurrence remains a major problem, and many individuals suffer from chronically recurring UTI, requiring long-term prophylactic antibiotic regimens to prevent recurrent UTI. Furthermore, the global emergence of multi-drug resistant UPEC in the past ten years spotlights the need for alternative therapeutic and preventative strategies to combat UTI, including anti-infective drug therapies and vaccines. In this chapter, we review recent advances in the field of UTI pathogenesis, with an emphasis on the identification of promising drug and vaccine targets. We then discuss the development of new UTI drugs and vaccines, highlighting the challenges these approaches face and the need for a greater understanding of urinary tract mucosal immunity.
Collapse
|
18
|
Sarowar S, Hu OJ, Werneburg GT, Thanassi DG, Li H. The Escherichia coli P and Type 1 Pilus Assembly Chaperones PapD and FimC Are Monomeric in Solution. J Bacteriol 2016; 198:2360-9. [PMID: 27353649 PMCID: PMC4984555 DOI: 10.1128/jb.00366-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/19/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The chaperone/usher pathway is used by Gram-negative bacteria to assemble adhesive surface structures known as pili or fimbriae. Uropathogenic strains of Escherichia coli use this pathway to assemble P and type 1 pili, which facilitate colonization of the kidney and bladder, respectively. Pilus assembly requires a periplasmic chaperone and outer membrane protein termed the usher. The chaperone allows folding of pilus subunits and escorts the subunits to the usher for polymerization into pili and secretion to the cell surface. Based on previous structures of mutant versions of the P pilus chaperone PapD, it was suggested that the chaperone dimerizes in the periplasm as a self-capping mechanism. Such dimerization is counterintuitive because the chaperone G1 strand, important for chaperone-subunit interaction, is buried at the dimer interface. Here, we show that the wild-type PapD chaperone also forms a dimer in the crystal lattice; however, the dimer interface is different from the previously solved structures. In contrast to the crystal structures, we found that both PapD and the type 1 pilus chaperone, FimC, are monomeric in solution. Our findings indicate that pilus chaperones do not sequester their G1 β-strand by forming a dimer. Instead, the chaperones may expose their G1 strand for facile interaction with pilus subunits. We also found that the type 1 pilus adhesin, FimH, is flexible in solution while in complex with its chaperone, whereas the P pilus adhesin, PapGII, is rigid. Our study clarifies a crucial step in pilus biogenesis and reveals pilus-specific differences that may relate to biological function. IMPORTANCE Pili are critical virulence factors for many bacterial pathogens. Uropathogenic E. coli relies on P and type 1 pili assembled by the chaperone/usher pathway to adhere to the urinary tract and establish infection. Studying pilus assembly is important for understanding mechanisms of protein secretion, as well as for identifying points for therapeutic intervention. Pilus biogenesis is a multistep process. This work investigates the oligomeric state of the pilus chaperone in the periplasm, which is important for understanding early assembly events. Our work unambiguously demonstrates that both PapD and FimC chaperones are monomeric in solution. We further demonstrate that the solution behavior of the FimH and PapGII adhesins differ, which may be related to functional differences between the two pilus systems.
Collapse
Affiliation(s)
- Samema Sarowar
- Department of Biochemistry and Cell Biology, Stony Brook University, Stonybrook, New York, USA Biology Department, Brookhaven National Laboratory, Stonybrook, New York, USA
| | - Olivia J Hu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stonybrook, New York, USA Biology Department, Brookhaven National Laboratory, Stonybrook, New York, USA
| | - Glenn T Werneburg
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stonybrook, New York, USA Center for Infectious Diseases, Stony Brook University, Stonybrook, New York, USA
| | - David G Thanassi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stonybrook, New York, USA Center for Infectious Diseases, Stony Brook University, Stonybrook, New York, USA
| | - Huilin Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stonybrook, New York, USA Biology Department, Brookhaven National Laboratory, Stonybrook, New York, USA
| |
Collapse
|
19
|
Abstract
Proteinaceous, nonflagellar surface appendages constitute a variety of structures, including those known variably as fimbriae or pili. Constructed by distinct assembly pathways resulting in diverse morphologies, fimbriae have been described to mediate functions including adhesion, motility, and DNA transfer. As these structures can represent major diversifying elements among Escherichia and Salmonella isolates, multiple fimbrial classification schemes have been proposed and a number of mechanistic insights into fimbrial assembly and function have been made. Herein we describe the classifications and biochemistry of fimbriae assembled by the chaperone/usher, curli, and type IV pathways.
Collapse
|
20
|
Abstract
Chaperone-usher pathway (CUP) pili are extracellular organelles produced by Gram-negative bacteria that mediate bacterial pathogenesis. Small-molecule inhibitors of CUP pili, termed pilicides, were rationally designed and shown to inhibit type 1 or P piliation. Here, we show that pilicide ec240 decreased the levels of type 1, P, and S piliation. Transcriptomic and proteomic analyses using the cystitis isolate UTI89 revealed that ec240 dysregulated CUP pili and decreased motility. Paradoxically, the transcript levels of P and S pilus genes were increased during growth in ec240, even though the level of P and S piliation decreased. In contrast, the most downregulated transcripts after growth in ec240 were from the type 1 pilus genes. Type 1 pilus expression is controlled by inversion of the fimS promoter element, which can oscillate between phase on and phase off orientations. ec240 induced the fimS phase off orientation, and this effect was necessary for the majority of ec240’s inhibition of type 1 piliation. ec240 increased levels of the transcriptional regulators SfaB and PapB, which were shown to induce the fimS promoter phase off orientation. Furthermore, the effect of ec240 on motility was abolished in the absence of the SfaB, PapB, SfaX, and PapX regulators. In contrast to the effects of ec240, deletion of the type 1 pilus operon led to increased S and P piliation and motility. Thus, ec240 dysregulated several uropathogenic Escherichia coli (UPEC) virulence factors through different mechanisms and independent of its effects on type 1 pilus biogenesis and may have potential as an antivirulence compound. CUP pili and flagella play active roles in the pathogenesis of a variety of Gram-negative bacterial infections, including urinary tract infections mediated by UPEC. These are extremely common infections that are often recurrent and increasingly caused by antibiotic-resistant organisms. Preventing piliation and motility through altered regulation and assembly of these important virulence factors could aid in the development of novel therapeutics. This study increases our understanding of the regulation of these virulence factors, providing new avenues by which to target their expression.
Collapse
|
21
|
Steadman D, Lo A, Waksman G, Remaut H. Bacterial surface appendages as targets for novel antibacterial therapeutics. Future Microbiol 2014; 9:887-900. [DOI: 10.2217/fmb.14.46] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The rise of multidrug resistant bacteria is a major worldwide health concern. There is currently an unmet need for the development of new and selective antibacterial drugs. Therapies that target and disarm the crucial virulence factors of pathogenic bacteria, while not actually killing the cells themselves, could prove to be vital for the treatment of numerous diseases. This article discusses the main surface architectures of pathogenic Gram-negative bacteria and the small molecules that have been discovered, which target their specific biogenesis pathways and/or actively block their virulence. The future perspective for the use of antivirulence compounds is also assessed.
Collapse
Affiliation(s)
- David Steadman
- Institute of Structural & Molecular Biology, Birkbeck & University College London, Malet Street, London, WC1E 7HX, UK
| | - Alvin Lo
- Structural & Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Gabriel Waksman
- Institute of Structural & Molecular Biology, Birkbeck & University College London, Malet Street, London, WC1E 7HX, UK
| | - Han Remaut
- Structural & Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
22
|
Abstract
To examine the genetic background of avian pathogenic Escherichia coli (APEC) that affects virulence of this microorganism, we characterized the virulence genes of 101 APEC strains isolated from infected chickens between 1985~2005. Serotypes were determined with available anti-sera and median lethal doses were determined in subcutaneously inoculated chicks. The virulence genes we tested included ones encoding type 1 fimbriae (fimC), iron uptake-related (iroN, irp2, iucD, and fyuA), toxins (lt, st, stx1, stx2, and vat), and other factors (tsh, hlyF, ompT, and iss). Twenty-eight strains were found to be O1 (2.0%), O18 (3.0%), O20 (1.0%), O78 (19.8%), and O115 (2.0%) serotypes. The iroN (100%) gene was observed most frequently followed by ompT (94.1%), fimC (90.1%), hlyF (87.1%), iss (78.2%), iucD (73.3%), tsh (61.4%), fyuA (44.6%), and irp2 (43.6%). The strains were negative for all toxin genes except for vat (10.9%). All the strains were classified into 27 molecular pathotypes (MPs). The MP25, MP19, and MP10 pathotypes possessing iroN-fimC-ompT-hlyF-iucD-tsh-iss-irp2-fyuA (22.8%), iroN-fimC-ompT-hlyF-iucD-tsh-iss (21.8%), and iroN-fimC-ompT-hlyF-iss (11.9%) genotypes, respectively, were predominant. Redundancy of iron uptake-related genes was clearly observed and some strains were associated with higher mortality than others. Therefore, strains with the predominant genotypes can be used for diagnosis and vaccine.
Collapse
Affiliation(s)
- Yong-Wun Jeong
- Laboratory of Avian Diseases, College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
23
|
Han X, Bai H, Liu L, Dong H, Liu R, Song J, Ding C, Qi K, Liu H, Yu S. The luxS gene functions in the pathogenesis of avian pathogenic Escherichia coli. Microb Pathog 2012; 55:21-7. [PMID: 23046700 DOI: 10.1016/j.micpath.2012.09.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/25/2012] [Accepted: 09/26/2012] [Indexed: 11/24/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) causes avian colibacillosis, the most significant infectious bacterial disease of poultry worldwide. LuxS, the product of the luxS gene, mediates the quorum sensing (QS) mechanism. This involves the production of autoinducer-2 (AI-2), which regulates important physiological traits and a variety of adaptive processes in different bacteria. In this study, a luxS gene deleted APEC mutant strain, ΔDE17, was constructed using strain DE17. Analysis of bioluminescence indicated that deletion of the luxS gene abolished the production of the QS signal AI-2 in the bacteria. Further studies showed that deletion of the luxS gene in DE17 reduced the bacterial virulence by 31.5-fold in ducklings, based on the measurement of the 50% lethal dose. The mutant strain reduced significantly the abilities of adherence and invasion, by 50.0% and 40.7% respectively, compared with the wild strain DE17. The mutant strain also showed reduced survival in vivo: the bacterial loads of the mutant strain in infected liver, spleen and blood were 46.4-fold, 5.2-fold, and 3.7-fold reduced, respectively, compared with the wild-type strain DE17. Real-time polymerase chain reaction (PCR) demonstrated further that the mRNA levels of the virulence-related genes iucD, fyuA, vat, ompA, iss, fimC and tsh were significantly decreased in the mutant strain ΔDE17, when compared with DE17 (p < 0.05). In addition, the deletion of the luxS gene reduced the motility of the bacterium. This study suggests that the luxS gene functions in the pathogenesis of diseases caused by avian pathogenic E. coli.
Collapse
Affiliation(s)
- Xiangan Han
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Crespo MD, Puorger C, Schärer MA, Eidam O, Grütter MG, Capitani G, Glockshuber R. Quality control of disulfide bond formation in pilus subunits by the chaperone FimC. Nat Chem Biol 2012; 8:707-13. [DOI: 10.1038/nchembio.1019] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/05/2012] [Indexed: 11/09/2022]
|
25
|
Asadi KMR, Oloomi M, Habibi M, Bouzari S. Cloning of fimH and fliC and expression of the fusion protein FimH/FliC from Uropathogenic Escherichia coli (UPEC) isolated in Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2012; 4:55-62. [PMID: 22973470 PMCID: PMC3434642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Urinary tract infection (UTI) is one of the most common infections in the world. The majority of UTIs are caused by Uropathogenic Escherichia coli (UPEC) strains. FimH and FliC are the most important virulence factors of UPEC. To date, any ideal vaccine against UTI has not been approved for human use and we need to test new targets to develop an ideal vaccine against UTI. In this study, we constructed fusion fimH/fliC of UPEC as a novel vaccine candidate against UTI. MATERIAL AND METHODS PCR amplification of fimH and fliC genes of the UPEC isolates was performed by specific primers designed for this purpose. Construction of fimH/fliC hybrid gene was performed by overlap PCR. The fimH, fliC and fimH/fliC were cloned in pET28a vector. The confirmation of expression of the proteins was done by SDS-PAGE and Western blot. RESULTS The fliC and fimH genes were amplified in all of the UPEC isolates tested. The fimH showed significant homology with the sequences in GenBank. We generated a fusion consisting of the fimH linked to the N-terminal end of fliC. Sequencing of the fusion fimH/fliC showed that fusion was constructed correctly. SDS-PAGE and western blot confirmed the expression of the proteins in optimized condition. CONCLUSION Urinary tract infection is a huge burden on healthcare system in many countries. UPEC is isolated in around 80% of UTI cases. Antibiotic therapy resulted in the emergence of antibiotic resistance in UPEC strains. This is the major cause for an increasing requirement for a vaccine to prevent UTI. This work describes for the first time the construction of a novel fusion protein from Iranian UPEC isolates. Further immunological studies are required for evaluation of this protein as a novel and safe vaccine candidate against UTI caused by UPEC.
Collapse
Affiliation(s)
| | | | | | - S Bouzari
- Corresponding author: Saeid Bouzari Ph.D., Address: Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran, Iran. Tel: +98-21-66953311-8. Fax: +98-21-66492619. E-mail:
| |
Collapse
|
26
|
Klinth JE, Pinkner JS, Hultgren SJ, Almqvist F, Uhlin BE, Axner O. Impairment of the biomechanical compliance of P pili: a novel means of inhibiting uropathogenic bacterial infections? EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:285-95. [PMID: 22237603 PMCID: PMC3281203 DOI: 10.1007/s00249-011-0784-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 11/25/2011] [Accepted: 12/06/2011] [Indexed: 12/28/2022]
Abstract
Gram-negative bacteria often initiate their colonization by use of extended attachment organelles, so called pili. When exposed to force, the rod of helix-like pili has been found to be highly extendable, mainly attributed to uncoiling and recoiling of its quaternary structure. This provides the bacteria with the ability to redistribute an external force among a multitude of pili, which enables them to withstand strong rinsing flows, which, in turn, facilitates adherence and colonization processes critical to virulence. Thus, pili fibers are possible targets for novel antibacterial agents. By use of a substance that compromises compliance of the pili, the ability of bacteria to redistribute external forces can be impaired, so they will no longer be able to resist strong urine flow and thus be removed from the host. It is possible such a substance can serve as an alternative to existing antibiotics in the future or be a part of a multi-drug. In this work we investigated whether it is possible to achieve this by targeting the recoiling process. The test substance was purified PapD. The effect of PapD on the compliance of P pili was assessed at the single organelle level by use of force-measuring optical tweezers. We showed that the recoiling process, and thus the biomechanical compliance, in particular the recoiling process, can be impaired by the presence of PapD. This leads to a new concept in the search for novel drug candidates combating uropathogenic bacterial infections--"coilicides", targeting the subunits of which the pilus rod is composed.
Collapse
Affiliation(s)
- Jeanna E Klinth
- Department of Physics, Umeå University, 901 87 Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections in women, causing significant morbidity and mortality in this population. Adherence to host epithelial cells is a pivotal step in the pathogenesis of UPEC. One of the most important virulence factors involved in mediating this attachment is the type 1 pilus (type 1 fimbria) encoded by a set of fim genes arranged in an operon. The expression of type 1 pili is controlled by a phenomenon known as phase variation, which reversibly switches between the expression of type 1 pili (Phase-ON) and loss of expression (Phase-OFF). Phase-ON cells have the promoter for the fimA structural gene on an invertible DNA element called fimS, which lines up to allow transcription, whereas transcription of the structural gene is silenced in Phase-OFF cells. The orientation of the fimS invertible element is controlled by two site-specific recombinases, FimB and FimE. Environmental conditions cause transcriptional and post-transcriptional changes in UPEC cells that affect the level of regulatory proteins, which in turn play vital roles in modulating this phase switching ability. The role of fim gene regulation in UPEC pathogenesis will be discussed.
Collapse
|
28
|
Leney AC, Phan G, Allen W, Verger D, Waksman G, Radford SE, Ashcroft AE. Second order rate constants of donor-strand exchange reveal individual amino acid residues important in determining the subunit specificity of pilus biogenesis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1214-1223. [PMID: 21953104 PMCID: PMC3252035 DOI: 10.1007/s13361-011-0146-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/28/2011] [Accepted: 04/01/2011] [Indexed: 05/31/2023]
Abstract
P pili are hair-like adhesive structures that are assembled on the outer membrane (OM) of uropathogenic Escherichia coli by the chaperone-usher pathway. In this pathway, chaperone-subunit complexes are formed in the periplasm and targeted to an OM assembly platform, the usher. Pilus subunits display a large groove caused by a missing β-strand which, in the chaperone-subunit complex, is provided by the chaperone. At the usher, pilus subunits are assembled in a mechanism termed "donor-strand exchange (DSE)" whereby the β-strand provided by the chaperone is exchanged by the incoming subunit's N-terminal extension (Nte). This occurs in a zip-in-zip-out fashion, starting with a defined residue, P5, in the Nte inserting into a defined site in the groove, the P5 pocket. Here, electrospray ionization-mass spectrometry (ESI-MS) has been used to measure DSE rates in vitro. Second order rate constants between the chaperone-subunit complex and a range of Nte peptides substituted at different residues confirmed the importance of the P5 residue of the Nte in determining the rate of DSE. In addition, residues either side of the P5 residue (P5 + 1 and P5 - 1), the side-chains of which are directed away from the subunit groove, also modulate the rates of DSE, most likely by aiding the docking of the Nte into the P5 pocket on the accepting subunit prior to DSE. The ESI-MS approach developed is applicable to the measurement of rates of DSE in pilus biogenesis in general and demonstrates the scope of ESI-MS in determining biomolecular processes in molecular detail.
Collapse
Affiliation(s)
- Aneika C. Leney
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT UK
| | - Gilles Phan
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London, WC1E 7HX UK
| | - William Allen
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London, WC1E 7HX UK
| | - Denis Verger
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London, WC1E 7HX UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London, WC1E 7HX UK
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT UK
| | - Alison E. Ashcroft
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT UK
| |
Collapse
|
29
|
Kline KA, Dodson KW, Caparon MG, Hultgren SJ. A tale of two pili: assembly and function of pili in bacteria. Trends Microbiol 2010; 18:224-32. [PMID: 20378353 DOI: 10.1016/j.tim.2010.03.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 11/25/2009] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
Abstract
Bacterial pili have long been recognized as mediators of initial host-pathogen interactions important for the progression of Gram-negative bacterial diseases. An appreciation of the role of pili on virulence in Gram-positive bacteria and the unique properties of their biogenesis is a rapidly emerging area of research. In this review, we focus on recent advances in one of the longest-studied Gram-negative pilus systems, the chaperone/usher assembled pili, along with the newcomer to the field, the sortase-assembled pili of Gram-positive bacteria. In both systems, a wealth of new structural and molecular details has emerged recently. In light of this, we explore similarities between chaperone/usher and sortase-assembled pilus biogenesis and highlight paradigms unique to each, with the goal of using knowledge of each system to raise new questions and inform future studies of the other.
Collapse
Affiliation(s)
- Kimberly A Kline
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
30
|
Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding. Proc Natl Acad Sci U S A 2009; 106:22439-44. [PMID: 20018753 DOI: 10.1073/pnas.0902179106] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
FimH, the type 1 pilus adhesin of uropathogenic Escherichia coli (UPEC), contains a receptor-binding domain with an acidic binding pocket specific for mannose. The fim operon, and thus type 1 pilus production, is under transcriptional control via phase variation of an invertible promoter element. FimH is critical during urinary tract infection for mediating colonization and invasion of the bladder epithelium and establishment of intracellular bacterial communities (IBCs). In silico analysis of FimH gene sequences from 279 E. coli strains identified specific amino acids evolving under positive selection outside of its mannose-binding pocket. Mutating two of these residues (A27V/V163A) had no effect on phase variation, pilus assembly, or mannose binding in vitro. However, compared to wild-type, this double mutant strain exhibited a 10,000-fold reduction in mouse bladder colonization 24 h after inoculation and was unable to form IBCs even though it bound normally to mannosylated receptors in the urothelium. In contrast, the single A62S mutation altered phase variation, reducing the proportion of piliated cells, reduced mannose binding 8-fold, and decreased bladder colonization 30-fold in vivo compared to wild-type. A phase-locked ON A62S mutant restored virulence to wild-type levels even though in vitro mannose binding remained impaired. Thus, positive selection analysis of FimH has separated mannose binding from in vivo fitness, suggesting that IBC formation is critical for successful infection of the mammalian bladder, providing support for more general use of in silico positive selection analysis to define the molecular underpinnings of bacterial pathogenesis.
Collapse
|
31
|
Antão EM, Wieler LH, Ewers C. Adhesive threads of extraintestinal pathogenic Escherichia coli. Gut Pathog 2009; 1:22. [PMID: 20003270 PMCID: PMC2797515 DOI: 10.1186/1757-4749-1-22] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 12/10/2009] [Indexed: 12/25/2022] Open
Abstract
The ability to adhere to host surfaces is by far the most vital step in the successful colonization by microbial pathogens. Colonization begins with the attachment of the bacterium to receptors expressed by cells forming the lining of the mucosa. Long hair like extracellular appendages called fimbriae, produced by most Gram-negative pathogens, mediate specific attachment to the epithelial cell surface. Associated with the fimbriae is a protein called an adhesin, which directs high-affinity binding to specific cell surface components. In the last couple of years, an enormous amount of research has been undertaken that deals with understanding how bacterial pathogens adhere to host cells. E. coli in all probability is one of the best studied free-living organisms. A group of E. coli called Extraintestinal pathogenic E. coli (ExPEC) including both human and animal pathogens like Uropathogenic E. coli (UPEC), Newborn meningitic E. coli (NMEC) and Avian pathogenic E. coli (APEC), have been found to harbour many fimbriae including Type 1 fimbriae, P fimbriae, curli fibres, S fimbriae, F1C fimbriae, Dr fimbriae, afimbrial adhesins, temperature-sensitive haemagglutinin and many novel adhesin gene clusters that have not yet been characterized. Each of these adhesins is unique due to the recognition of an adhesin-specific receptor, though as a group these adhesins share common genomic organization. A newly identified putative adhesin temporarily termed ExPEC Adhesin I, encoded by gene yqi, has been recently found to play a significant role in the pathogenesis of APEC infection, thus making it an interesting candidate for future research. The aim of this review is to describe the role of ExPEC adhesins during extraintestinal infections known till date, and to suggest the idea of investigating their potential role in the colonization of the host gut which is said to be a reservoir for ExPEC.
Collapse
Affiliation(s)
- Esther-Maria Antão
- Institut für Mikrobiologie und Tierseuchen, Freie Universität Berlin, Philippstr, 13, 10115 Berlin, Germany.
| | | | | |
Collapse
|
32
|
Zav'yalov V, Zavialov A, Zav'yalova G, Korpela T. Adhesive organelles of Gram-negative pathogens assembled with the classical chaperone/usher machinery: structure and function from a clinical standpoint. FEMS Microbiol Rev 2009; 34:317-78. [PMID: 20070375 DOI: 10.1111/j.1574-6976.2009.00201.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This review summarizes current knowledge on the structure, function, assembly and biomedical applications of the superfamily of adhesive fimbrial organelles exposed on the surface of Gram-negative pathogens with the classical chaperone/usher machinery. High-resolution three-dimensional (3D) structure studies of the minifibers assembling with the FGL (having a long F1-G1 loop) and FGS (having a short F1-G1 loop) chaperones show that they exploit the same principle of donor-strand complementation for polymerization of subunits. The 3D structure of adhesive subunits bound to host-cell receptors and the final architecture of adhesive fimbrial organelles reveal two functional families of the organelles, respectively, possessing polyadhesive and monoadhesive binding. The FGL and FGS chaperone-assembled polyadhesins are encoded exclusively by the gene clusters of the γ3- and κ-monophyletic groups, respectively, while gene clusters belonging to the γ1-, γ2-, γ4-, and π-fimbrial clades exclusively encode FGS chaperone-assembled monoadhesins. Novel approaches are suggested for a rational design of antimicrobials inhibiting the organelle assembly or inhibiting their binding to host-cell receptors. Vaccines are currently under development based on the recombinant subunits of adhesins.
Collapse
|
33
|
Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol 2009; 5:913-9. [PMID: 19915538 DOI: 10.1038/nchembio.242] [Citation(s) in RCA: 317] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 08/28/2009] [Indexed: 01/16/2023]
Abstract
Curli are functional extracellular amyloid fibers produced by uropathogenic Escherichia coli (UPEC) and other Enterobacteriaceae. Ring-fused 2-pyridones, such as FN075 and BibC6, inhibited curli biogenesis in UPEC and prevented the in vitro polymerization of the major curli subunit protein CsgA. The curlicides FN075 and BibC6 share a common chemical lineage with other ring-fused 2-pyridones termed pilicides. Pilicides inhibit the assembly of type 1 pili, which are required for pathogenesis during urinary tract infection. Notably, the curlicides retained pilicide activities and inhibited both curli-dependent and type 1-dependent biofilms. Furthermore, pretreatment of UPEC with FN075 significantly attenuated virulence in a mouse model of urinary tract infection. Curli and type 1 pili exhibited exclusive and independent roles in promoting UPEC biofilms, and curli provided a fitness advantage in vivo. Thus, the ability of FN075 to block the biogenesis of both curli and type 1 pili endows unique anti-biofilm and anti-virulence activities on these compounds.
Collapse
|
34
|
Abstract
The urinary tract is among the most common sites of bacterial infection, and Escherichia coli is by far the most common species infecting this site. Individuals at high risk for symptomatic urinary tract infection (UTI) include neonates, preschool girls, sexually active women, and elderly women and men. E. coli that cause the majority of UTIs are thought to represent only a subset of the strains that colonize the colon. E. coli strains that cause UTIs are termed uropathogenic E. coli (UPEC). In general, UPEC strains differ from commensal E. coli strains in that the former possess extragenetic material, often on pathogenicity-associated islands (PAIs), which code for gene products that may contribute to bacterial pathogenesis. Some of these genes allow UPEC to express determinants that are proposed to play roles in disease. These factors include hemolysins, secreted proteins, specific lipopolysaccharide and capsule types, iron acquisition systems, and fimbrial adhesions. The current dogma of bacterial pathogenesis identifies adherence, colonization, avoidance of host defenses, and damage to host tissues as events vital for achieving bacterial virulence. These considerations, along with analysis of the E. coli CFT073, UTI89, and 536 genomes and efforts to identify novel virulence genes should advance the field significantly and allow for the development of a comprehensive model of pathogenesis for uropathogenic E. coli.Further study of the adaptive immune response to UTI will be especially critical to refine our understanding and treatment of recurrent infections and to develop vaccines.
Collapse
|
35
|
Wang H, Min G, Glockshuber R, Sun TT, Kong XP. Uropathogenic E. coli adhesin-induced host cell receptor conformational changes: implications in transmembrane signaling transduction. J Mol Biol 2009; 392:352-61. [PMID: 19577575 DOI: 10.1016/j.jmb.2009.06.077] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/22/2009] [Accepted: 06/29/2009] [Indexed: 01/02/2023]
Abstract
Urinary tract infection is the second most common infectious disease and is caused predominantly by type 1-fimbriated uropathogenic Escherichia coli (UPEC). UPEC initiates infection by attaching to uroplakin (UP) Ia, its urothelial surface receptor, via the FimH adhesins capping the distal end of its fimbriae. UP Ia, together with UP Ib, UP II, and UP IIIa, forms a 16-nm receptor complex that is assembled into hexagonally packed, two-dimensional crystals (urothelial plaques) covering >90% of the urothelial apical surface. Recent studies indicate that FimH is the invasin of UPEC as its attachment to the urothelial surface can induce cellular signaling events including calcium elevation and the phosphorylation of the UP IIIa cytoplasmic tail, leading to cytoskeletal rearrangements and bacterial invasion. However, it remains unknown how the binding of FimH to the UP receptor triggers a signal that can be transmitted through the highly impermeable urothelial apical membrane. We show here by cryo-electron microscopy that FimH binding to the extracellular domain of UP Ia induces global conformational changes in the entire UP receptor complex, including a coordinated movement of the tightly bundled transmembrane helices. This movement of the transmembrane helix bundles can cause a corresponding lateral translocation of the UP cytoplasmic tails, which can be sufficient to trigger downstream signaling events. Our results suggest a novel pathogen-induced transmembrane signal transduction mechanism that plays a key role in the initial stages of UPEC invasion and receptor-mediated bacterial invasion in general.
Collapse
Affiliation(s)
- Huaibin Wang
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Bacterial urinary tract infections represent the most common type of nosocomial infection. In many cases, the ability of bacteria to both establish and maintain these infections is directly related to biofilm formation on indwelling devices or within the urinary tract itself. This chapter will focus on the role of biofilm formation in urinary tract infections with an emphasis on Gram-negative bacteria. The clinical implications of biofilm formation will be presented along with potential strategies for prevention. In addition, the role of specific pathogen-encoded functions in biofilm development will be discussed.
Collapse
|
37
|
Salih O, Remaut H, Waksman G, Orlova EV. Structural analysis of the Saf pilus by electron microscopy and image processing. J Mol Biol 2008; 379:174-87. [PMID: 18448124 DOI: 10.1016/j.jmb.2008.03.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 03/13/2008] [Accepted: 03/18/2008] [Indexed: 11/17/2022]
Abstract
Bacterial pili are important virulence factors involved in host cell attachment and/or biofilm formation, key steps in establishing and maintaining successful infection. Here we studied Salmonella atypical fimbriae (or Saf pili), formed by the conserved chaperone/usher pathway. In contrast to the well-established quaternary structure of typical/FGS-chaperone assembled, rod-shaped, chaperone/usher pili, little is known about the supramolecular organisation in atypical/FGL-chaperone assembled fimbriae. In our study, we have used negative stain electron microscopy and single-particle image analysis to determine the three-dimensional structure of the Salmonella typhimurium Saf pilus. Our results show atypical/FGL-chaperone assembled fimbriae are composed of highly flexible linear multi-subunit fibres that are formed by globular subunits connected to each other by short links giving a "beads on a string"-like appearance. Quantitative fitting of the atomic structure of the SafA pilus subunit into the electron density maps, in combination with linker modelling and energy minimisation, has enabled analysis of subunit arrangement and intersubunit interactions in the Saf pilus. Short intersubunit linker regions provide the molecular basis for flexibility of the Saf pilus by acting as molecular hinges allowing a large range of movement between consecutive subunits in the fibre.
Collapse
Affiliation(s)
- Osman Salih
- Institute of Structural Molecular Biology at UCL/Birkbeck, London WC1E 7HX, UK
| | | | | | | |
Collapse
|
38
|
Puorger C, Eidam O, Capitani G, Erilov D, Grütter MG, Glockshuber R. Infinite Kinetic Stability against Dissociation of Supramolecular Protein Complexes through Donor Strand Complementation. Structure 2008; 16:631-42. [DOI: 10.1016/j.str.2008.01.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 12/03/2007] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
|
39
|
Klemm P, Hancock V, Kvist M, Schembri MA. Candidate targets for new antivirulence drugs: selected cases of bacterial adhesion and biofilm formation. Future Microbiol 2007; 2:643-53. [DOI: 10.2217/17460913.2.6.643] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Management of bacterial infections is becoming increasingly difficult due to the rising frequency of strains that are resistant to many current antibiotics. New types of antibiotics are, therefore, urgently needed. Virulence factors or virulence-associated phenotypes such as adhesins and biofilm formation are highly attractive targets for new drugs. Specific adhesion provides bacteria with target selection and prevents removal by hydrodynamic flow forces. Bacterial adhesion is of paramount importance for bacterial pathogenesis. Adhesion is also the first step in biofilm formation. Biofilm formation is particularly problematic in medical contexts because biofilm-associated bacteria are particularly hard to eradicate. Several promising candidate drugs that target bacterial adhesion and biofilm formation are being developed. Some of these might be valuable weapons for fighting infectious diseases in the future. Here we use illustrative examples, mainly from the enterics, to demonstrate the principles.
Collapse
Affiliation(s)
- Per Klemm
- Technical University of Denmark, Microbial Adhesin Group, BioCentrum-DTU, Bldg 301, DK-2800 Lyngby, Denmark
| | - Viktoria Hancock
- Technical University of Denmark, Microbial Adhesin Group, BioCentrum-DTU, Bldg 301, DK-2800 Lyngby, Denmark
| | - Malin Kvist
- Technical University of Denmark, Microbial Adhesin Group, BioCentrum-DTU, Bldg 301, DK-2800 Lyngby, Denmark
| | - Mark A Schembri
- The University of Queensland, Department of Microbiology & Parasitology, School of Molecular & Microbial Sciences, Brisbane, Qld 4072, Australia
| |
Collapse
|
40
|
Gossert AD, Bettendorff P, Puorger C, Vetsch M, Herrmann T, Glockshuber R, Wüthrich K. NMR structure of the Escherichia coli type 1 pilus subunit FimF and its interactions with other pilus subunits. J Mol Biol 2007; 375:752-63. [PMID: 18048056 DOI: 10.1016/j.jmb.2007.10.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/19/2007] [Accepted: 10/23/2007] [Indexed: 10/22/2022]
Abstract
Type 1 pili from uropathogenic Escherichia coli strains mediate bacterial attachment to target receptors on the host tissue. They are composed of up to 3000 copies of the subunit FimA, which form the stiff, helical pilus rod, and the subunits FimF, FimG, and FimH, which form the linear tip fibrillum. All subunits in the pilus interact via donor strand complementation, in which the incomplete immunoglobulin-like fold of each subunit is complemented by insertion of an N-terminal extension from the following subunit. We determined the NMR structure of a monomeric, self-complemented variant of FimF, FimF(F), which has a second FimF donor strand segment fused to its C-terminus that enables intramolecular complementation of the FimF fold. NMR studies on bimolecular complexes between FimF(F) and donor strand-depleted variants of FimF and FimG revealed that the relative orientations of neighboring domains in the tip fibrillum cover a wide range. The data provide strong support for the intrinsic flexibility of the tip fibrillum. They lend further support to the hypothesis that this flexibility would significantly increase the probability that the adhesin at the distal end of the fibrillum successfully targets host cell receptors.
Collapse
Affiliation(s)
- Alvar D Gossert
- Institut für Molekularbiologie und Biophysik, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
41
|
Aprikian P, Tchesnokova V, Kidd B, Yakovenko O, Yarov-Yarovoy V, Trinchina E, Vogel V, Thomas W, Sokurenko E. Interdomain Interaction in the FimH Adhesin of Escherichia coli Regulates the Affinity to Mannose. J Biol Chem 2007; 282:23437-46. [PMID: 17567583 DOI: 10.1074/jbc.m702037200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
FimH is a mannose-specific adhesin located on the tip of type 1 fimbriae of Escherichia coli that is capable of mediating shear-enhanced bacterial adhesion. FimH consists of a fimbria-associated pilin domain and a mannose-binding lectin domain, with the binding pocket positioned opposite the interdomain interface. By using the yeast two-hybrid system, purified lectin and pilin domains, and docking simulations, we show here that the FimH domains interact with one another. The affinity for mannose is greatly enhanced (up to 300-fold) in FimH variants in which the interdomain interaction is disrupted by structural mutations in either the pilin or lectin domains. Also, affinity to mannose is dramatically enhanced in isolated lectin domains or in FimH complexed with the chaperone molecule that is wedged between the domains. Furthermore, FimH with native structure mediates weak binding at low shear stress but shifts to strong binding at high shear, whereas FimH with disrupted interdomain contacts (or the isolated lectin domain) mediates strong binding to mannose-coated surfaces even under low shear. We propose that interactions between lectin and pilin domains decrease the affinity of the mannose-binding pocket via an allosteric mechanism. We further suggest that mechanical force at high shear stress separates the two domains, allowing the lectin domain to switch from a low affinity to a high affinity state. This shift provides a mechanism for FimH-mediated shear-enhanced adhesion by enabling the adhesin to form catch bond-like interactions that are longer lived at high tensile force.
Collapse
Affiliation(s)
- Pavel Aprikian
- Department of Microbiology, University of Washington, Seattle, Washington 98105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
In a time of emerging bacterial resistance there is a vital need for new targets and strategies in antibacterial therapy. Using uropathogenic Escherichia coli as a model pathogen we have developed a class of compounds, pilicides, which inhibit the formation of virulence-associated organelles termed pili. The pilicides interfere with a highly conserved bacterial assembly and secretion system called the chaperone-usher pathway, which is abundant in a vast number of Gram-negative pathogens and serves to assemble multi-protein surface fibers (pili/fimbriae). This class of compounds provides a platform to gain insight into important biological processes such as the molecular mechanisms of the chaperone-usher pathway and the sophisticated function of pili. Pili are primarily involved in bacterial adhesion, invasion and persistence to host defenses. On this basis, pilicides can aid the development of new antibacterial agents.
Collapse
Affiliation(s)
- Veronica Aberg
- Department of Chemistry, Umeå University, SE-90187, Umeå, Sweden.
| | | |
Collapse
|
43
|
Klumpp DJ, Rycyk MT, Chen MC, Thumbikat P, Sengupta S, Schaeffer AJ. Uropathogenic Escherichia coli induces extrinsic and intrinsic cascades to initiate urothelial apoptosis. Infect Immun 2006; 74:5106-13. [PMID: 16926402 PMCID: PMC1594819 DOI: 10.1128/iai.00376-06] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A murine model of urinary tract infection identified urothelial apoptosis as a key event in the pathogenesis mediated by uropathogenic Escherichia coli (UPEC), yet the mechanism of this important host response is not well characterized. We employed a culture model of UPEC-urothelium interactions to examine the biochemical events associated with urothelial apoptosis induced by the UPEC strain NU14. NU14 induced DNA cleavage within 5 h that was inhibited by the broad caspase inhibitor ZVAD, and urothelial caspase 3 activity was induced within 3 h of exposure to type 1 piliated NU14 and was dependent upon interactions mediated by the type 1 pilus adhesin FimH. Flow cytometry experiments using chloromethyl-X-rosamine and Indo-1 revealed FimH-dependent mitochondrial membrane depolarization and elevated [Ca(2+)](in), respectively, indicating activation of the intrinsic apoptotic pathway. Consistent with this possibility, overexpression of Bcl(XL) inhibited NU14 activation of caspase 3. Immunoblotting, caspase inhibitors, and caspase activity assays implicated both caspase 2 and caspase 8 in apoptosis, suggesting the involvement of the intrinsic and extrinsic apoptotic cascades. To reconcile the apparent activation of both extrinsic and intrinsic pathways, we examined Bid-green fluorescent protein localization and observed translocation from the cytosol to mitochondria in response to either NU14 or purified FimH. These data suggest that FimH acts as a tethered toxin of UPEC that activates caspase-dependent urothelial apoptosis via direct induction of the extrinsic pathway and that the intrinsic pathway is activated indirectly as a result of coupling by caspase 8-mediated Bid cleavage.
Collapse
Affiliation(s)
- David J Klumpp
- Department of Urology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Capitani G, Eidam O, Glockshuber R, Grütter MG. Structural and functional insights into the assembly of type 1 pili from Escherichia coli. Microbes Infect 2006; 8:2284-90. [PMID: 16793308 DOI: 10.1016/j.micinf.2006.03.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2006] [Accepted: 03/06/2006] [Indexed: 01/13/2023]
Abstract
Type 1 pili are filamentous protein complexes that are anchored to the outer membrane of uropathogenic Escherichia coli and mediate bacterial adhesion to the surface of urinary epithelium cells. We review here the current status of structural and functional studies on the assembly of type 1 pili.
Collapse
Affiliation(s)
- Guido Capitani
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | | | | | |
Collapse
|
45
|
So SSK, Thanassi DG. Analysis of the requirements for pilus biogenesis at the outer membrane usher and the function of the usher C-terminus. Mol Microbiol 2006; 60:364-75. [PMID: 16573686 DOI: 10.1111/j.1365-2958.2006.05111.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Uropathogenic strains of Escherichia coli assemble type 1 and P pili to colonize the bladder and kidney respectively. These pili are prototype structures assembled by the chaperone/usher secretion pathway. In this pathway, a periplasmic chaperone works together with an outer membrane (OM) usher to control the folding of pilus subunits, their assembly into a pilus fibre and secretion of the fibre to the cell surface. The usher serves as the assembly and secretion platform in the OM. The usher has distinct functional domains, with the N-terminus providing the initial targeting site for chaperone-subunit complexes and the C-terminus required for subsequent stages of pilus biogenesis. In this study, we investigated the molecular interactions occurring at the usher during pilus biogenesis and the function of the usher C-terminus. We provide genetic and biochemical evidence that the usher functions as a complex in the OM and that interaction of the pilus adhesin with the usher is critical to prime the usher for pilus biogenesis. Analysis of C-terminal truncation and substitution mutants of the P pilus usher PapC demonstrated that the C-terminus is required for proper binding of chaperone-subunit complexes to the usher and plays an important role in assembly of complete pili.
Collapse
Affiliation(s)
- Stephane Shu Kin So
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5120, USA
| | | |
Collapse
|
46
|
Hedenström M, Emtenäs H, Pemberton N, Aberg V, Hultgren SJ, Pinkner JS, Tegman V, Almqvist F, Sethson I, Kihlberg J. NMR studies of interactions between periplasmic chaperones from uropathogenic E. coli and pilicides that interfere with chaperone function and pilus assembly. Org Biomol Chem 2005; 3:4193-200. [PMID: 16294247 DOI: 10.1039/b511857c] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adherence of uropathogenic Escherichia coli to host tissue is mediated by pili, which are hair-like protein structures extending from the outer cell membrane of the bacterium. The chaperones FimC and PapD are key components in pilus assembly since they catalyse folding of subunits that are incorporated in type 1 and P pili, respectively, and also transport the subunits across the periplasmic space. Recently, compounds that inhibit pilus biogenesis and interfere with chaperone-subunit interactions have been discovered and termed pilicides. In this paper NMR spectroscopy was used to study the interaction of different pilicides with PapD and FimC in order to gain structural knowledge that would explain the effect that some pilicides have on pilus assembly. First relaxation-edited NMR experiments revealed that the pilicides bound to the PapD chaperone with mM affinity. Then the pilicide-chaperone interaction surface was investigated through chemical shift mapping using 15N-labelled FimC. Principal component analysis performed on the chemical shift perturbation data revealed the presence of three binding sites on the surface of FimC, which interacted with three different classes of pilicides. Analysis of structure-activity relationships suggested that pilicides reduce pilus assembly in E. coli either by binding in the cleft of the chaperone, or by influencing the orientation of the flexible F1-G1 loop, both of which are part of the surface by which the chaperone forms complexes with pilus subunits. It is suggested that binding to either of these sites interferes with folding of the pilus subunits, which occurs during formation of the chaperone-subunit complexes. In addition, pilicides that influence the F1-G1 loop also appear to reduce pilus formation by their ability to dissociate chaperone-subunit complexes.
Collapse
Affiliation(s)
- Mattias Hedenström
- Organic Chemistry, Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Aberg V, Hedenström M, Pinkner JS, Hultgren SJ, Almqvist F. C-Terminal properties are important for ring-fused 2-pyridones that interfere with the chaperone function in uropathogenic E. coli. Org Biomol Chem 2005; 3:3886-92. [PMID: 16240004 DOI: 10.1039/b509376g] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Virulence-associated organelles, termed pili or fimbriae, are assembled via the highly conserved chaperone-usher pathway in a vast number of pathogenic bacteria. Substituted bicyclic 2-pyridones, pilicides, inhibit pilus formation, possibly by interfering with the active site residues Arg8 and Lys112 of chaperones in uropathogenic E. coli. In this article we describe the synthesis and evaluation of nine analogues of a biologically active pilicide. Derivatization was performed with respect to its C-terminal features and the affinities for the chaperone PapD were studied with 1H relaxation-edited NMR spectroscopy. It could be concluded that the carboxylic acid functionality and also its spatial location was important for binding. In all cases, binding was significantly reduced or even abolished when the carboxylic acid was replaced by other substituents. In addition, in vivo results from a hemagglutination assay are presented where the derivatives have been evaluated for their ability to inhibit pilus formation in uropathogenic E. coli.
Collapse
Affiliation(s)
- Veronica Aberg
- Organic Chemistry, Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | | | | | | | | |
Collapse
|
48
|
Nishiyama M, Horst R, Eidam O, Herrmann T, Ignatov O, Vetsch M, Bettendorff P, Jelesarov I, Grütter MG, Wüthrich K, Glockshuber R, Capitani G. Structural basis of chaperone-subunit complex recognition by the type 1 pilus assembly platform FimD. EMBO J 2005; 24:2075-86. [PMID: 15920478 PMCID: PMC1150887 DOI: 10.1038/sj.emboj.7600693] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Accepted: 05/03/2005] [Indexed: 01/01/2023] Open
Abstract
Adhesive type 1 pili from uropathogenic Escherichia coli are filamentous protein complexes that are attached to the assembly platform FimD in the outer membrane. During pilus assembly, FimD binds complexes between the chaperone FimC and type 1 pilus subunits in the periplasm and mediates subunit translocation to the cell surface. Here we report nuclear magnetic resonance and X-ray protein structures of the N-terminal substrate recognition domain of FimD (FimD(N)) before and after binding of a chaperone-subunit complex. FimD(N) consists of a flexible N-terminal segment of 24 residues, a structured core with a novel fold, and a C-terminal hinge segment. In the ternary complex, residues 1-24 of FimD(N) specifically interact with both FimC and the subunit, acting as a sensor for loaded FimC molecules. Together with in vivo complementation studies, we show how this mechanism enables recognition and discrimination of different chaperone-subunit complexes by bacterial pilus assembly platforms.
Collapse
Affiliation(s)
- Mireille Nishiyama
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, Zürich, Switzerland
| | - Reto Horst
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, Zürich, Switzerland
| | - Oliv Eidam
- Biochemisches Institut, Universität Zürich, Zürich, Switzerland
| | - Torsten Herrmann
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, Zürich, Switzerland
| | - Oleksandr Ignatov
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, Zürich, Switzerland
| | - Michael Vetsch
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, Zürich, Switzerland
| | - Pascal Bettendorff
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, Zürich, Switzerland
| | - Ilian Jelesarov
- Biochemisches Institut, Universität Zürich, Zürich, Switzerland
| | | | - Kurt Wüthrich
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, Zürich, Switzerland
| | - Rudi Glockshuber
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, Zürich, Switzerland
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, 8093 Zürich, Switzerland. Tel.: +41 1 633 6819; Fax: +41 1 633 1036; E-mail:
| | - Guido Capitani
- Biochemisches Institut, Universität Zürich, Zürich, Switzerland
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland. Tel.: +41 1 635 5587; Fax: +41 1 635 6834; E-mail:
| |
Collapse
|
49
|
Schwan WR, Beck MT, Hultgren SJ, Pinkner J, Woolever NL, Larson T. Down-regulation of the kps region 1 capsular assembly operon following attachment of Escherichia coli type 1 fimbriae to D-mannose receptors. Infect Immun 2005; 73:1226-31. [PMID: 15664970 PMCID: PMC547067 DOI: 10.1128/iai.73.2.1226-1231.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 09/17/2004] [Accepted: 09/30/2004] [Indexed: 11/20/2022] Open
Abstract
A differential-display PCR procedure identified the capsular assembly gene kpsD after Escherichia coli type 1 fimbrial binding to mannose-coated Sepharose beads. Limiting-dilution reverse-transcribed PCRs confirmed down-regulation of the kpsD gene, and Northern blot and lacZ fusion analyses showed down-regulation of the kpsFEDUCS region 1 operon. KpsD protein levels fell, and an agglutination test showed less K capsular antigen on the surface following the bacterial ligand-receptor interaction. These data show that binding of type 1 fimbriae (pili) to d-mannose receptors triggers a cross talk that leads to down-regulation of the capsule assembly region 1 operon in uropathogenic E. coli.
Collapse
Affiliation(s)
- William R Schwan
- Department of Microbiology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI 54601, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Roland K, Karaca K, Sizemore D. Expression of Escherichia coli antigens in Salmonella typhimurium as a vaccine to prevent airsacculitis in chickens. Avian Dis 2005; 48:595-605. [PMID: 15529982 DOI: 10.1637/7178-031004r1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Avian pathogenic Escherichia coli strains are associated with a variety of extraintestinal poultry diseases, including airsacculitis, colisepticemia, and cellulitis. A number of E. coli serotypes are associated with these diseases, although the most prevalent serotype is O78. Fimbrial proteins expressed by these strains appear to be important virulence factors, including type 1 fimbriae, P fimbriae, and curli. We have been working to develop an effective vaccine to protect chickens against these diseases. We have previously shown that an attenuated Salmonella typhimurium strain expressing O78 lipopolysaccharide provides protection against challenge with an O78 avian pathogenic E. coli strain. In this work, we have constructed an attenuated S. typhimurium that expresses both the O78 lipopolysaccharide and E. coli-derived type 1 fimbriae. In these studies, chickens were vaccinated at day of hatch and again at 2 wk of age. Birds were challenged at 4 wk of age. We found that the vaccine candidate provided significant protection against airsacculitis as compared to untreated controls or birds vaccinated with an attenuated S. typhimurium that did not express any E. coli antigens. In a separate experiment, challenged vaccinates showed significant weight gain compared to challenged nonvaccinates. We were not able to demonstrate protection against E. coli O1 or O2 serotype challenge, nor against challenge with wild-type S. typhimurium.
Collapse
Affiliation(s)
- Kenneth Roland
- AVANT Immunotherapeutics, Inc., 8620 Pennell Drive, Overland, MO 63114, USA
| | | | | |
Collapse
|