1
|
Bryll AR, Peterson CL. The circular logic of mRNA homeostasis. Transcription 2023; 14:18-26. [PMID: 36843061 PMCID: PMC10353332 DOI: 10.1080/21541264.2023.2183684] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/28/2023] Open
Abstract
Eukaryotic cells rely upon dynamic, multifaceted regulation at each step of RNA biogenesis to maintain mRNA pools and ensure normal protein synthesis. Studies in budding yeast indicate a buffering phenomenon that preserves global mRNA levels through the reciprocal balancing of RNA synthesis rates and mRNA decay. In short, changes in transcription impact the efficiency of mRNA degradation and defects in either nuclear or cytoplasmic mRNA degradation are somehow sensed and relayed to control a compensatory change in mRNA transcription rates. Here, we review current views on molecular mechanisms that might explain this apparent bidirectional sensing process that ensures homeostasis of the stable mRNA pool.
Collapse
Affiliation(s)
- Alysia R. Bryll
- Program of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester
- Medical Scientist Training Program, University of Massachusetts Chan Medical School, Worcester
| | - Craig L. Peterson
- Program of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester
| |
Collapse
|
2
|
Cheng Z, Brar GA. Global translation inhibition yields condition-dependent de-repression of ribosome biogenesis mRNAs. Nucleic Acids Res 2019; 47:5061-5073. [PMID: 30937450 PMCID: PMC6547411 DOI: 10.1093/nar/gkz231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 11/15/2022] Open
Abstract
Ribosome biogenesis (RiBi) is an extremely energy intensive process that is critical for gene expression. It is thus highly regulated, including through the tightly coordinated expression of over 200 RiBi genes by positive and negative transcriptional regulators. We investigated RiBi regulation as cells initiated meiosis in budding yeast and noted early transcriptional activation of RiBi genes, followed by their apparent translational repression 1 hour (h) after stimulation to enter meiosis. Surprisingly, in the representative genes examined, measured translational repression depended on their promoters rather than mRNA regions. Further investigation revealed that the signature of this regulation in our data depended on pre-treating cells with the translation inhibitor, cycloheximide (CHX). This treatment, at 1 h in meiosis, but not earlier, rapidly resulted in accumulation of RiBi mRNAs that were not translated. This effect was also seen in with CHX pre-treatment of cells grown in media lacking amino acids. For NSR1, this effect depended on the -150 to -101 region of the promoter, as well as the RiBi transcriptional repressors Dot6 and Tod6. Condition-specific RiBi mRNA accumulation was also seen with translation inhibitors that are dissimilar from CHX, suggesting that this phenomenon might represent a feedback response to global translation inhibition.
Collapse
Affiliation(s)
- Ze Cheng
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Gloria Ann Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Dronamraju R, Hepperla AJ, Shibata Y, Adams AT, Magnuson T, Davis IJ, Strahl BD. Spt6 Association with RNA Polymerase II Directs mRNA Turnover During Transcription. Mol Cell 2019; 70:1054-1066.e4. [PMID: 29932900 DOI: 10.1016/j.molcel.2018.05.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/23/2018] [Accepted: 05/17/2018] [Indexed: 10/28/2022]
Abstract
Spt6 is an essential histone chaperone that mediates nucleosome reassembly during gene transcription. Spt6 also associates with RNA polymerase II (RNAPII) via a tandem Src2 homology domain. However, the significance of Spt6-RNAPII interaction is not well understood. Here, we show that Spt6 recruitment to genes and the nucleosome reassembly functions of Spt6 can still occur in the absence of its association with RNAPII. Surprisingly, we found that Spt6-RNAPII association is required for efficient recruitment of the Ccr4-Not de-adenylation complex to transcribed genes for essential degradation of a range of mRNAs, including mRNAs required for cell-cycle progression. These findings reveal an unexpected control mechanism for mRNA turnover during transcription facilitated by a histone chaperone.
Collapse
Affiliation(s)
- Raghuvar Dronamraju
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Austin J Hepperla
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yoichiro Shibata
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexander T Adams
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Terry Magnuson
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, The Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, The Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA; Departments of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Yamada T, Akimitsu N. Contributions of regulated transcription and mRNA decay to the dynamics of gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1508. [PMID: 30276972 DOI: 10.1002/wrna.1508] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022]
Abstract
Organisms have acquired sophisticated regulatory networks that control gene expression in response to cellular perturbations. Understanding of the mechanisms underlying the coordinated changes in gene expression in response to external and internal stimuli is a fundamental issue in biology. Recent advances in high-throughput technologies have enabled the measurement of diverse biological information, including gene expression levels, kinetics of gene expression, and interactions among gene expression regulatory molecules. By coupling these technologies with quantitative modeling, we can now uncover the biological roles and mechanisms of gene regulation at the system level. This review consists of two parts. First, we focus on the methods using uridine analogs that measure synthesis and decay rates of RNAs, which demonstrate how cells dynamically change the regulation of gene expression in response to both internal and external cues. Second, we discuss the underlying mechanisms of these changes in kinetics, including the functions of transcription factors and RNA-binding proteins. Overall, this review will help to clarify a system-level view of gene expression programs in cells. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Turnover and Surveillance > Regulation of RNA Stability RNA Methods > RNA Analyses in vitro and In Silico.
Collapse
Affiliation(s)
- Toshimichi Yamada
- Department of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | | |
Collapse
|
5
|
Brown T, Howe FS, Murray SC, Wouters M, Lorenz P, Seward E, Rata S, Angel A, Mellor J. Antisense transcription-dependent chromatin signature modulates sense transcript dynamics. Mol Syst Biol 2018; 14:e8007. [PMID: 29440389 PMCID: PMC5810148 DOI: 10.15252/msb.20178007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
Antisense transcription is widespread in genomes. Despite large differences in gene size and architecture, we find that yeast and human genes share a unique, antisense transcription-associated chromatin signature. We asked whether this signature is related to a biological function for antisense transcription. Using quantitative RNA-FISH, we observed changes in sense transcript distributions in nuclei and cytoplasm as antisense transcript levels were altered. To determine the mechanistic differences underlying these distributions, we developed a mathematical framework describing transcription from initiation to transcript degradation. At GAL1, high levels of antisense transcription alter sense transcription dynamics, reducing rates of transcript production and processing, while increasing transcript stability. This relationship with transcript stability is also observed as a genome-wide association. Establishing the antisense transcription-associated chromatin signature through disruption of the Set3C histone deacetylase activity is sufficient to similarly change these rates even in the absence of antisense transcription. Thus, antisense transcription alters sense transcription dynamics in a chromatin-dependent manner.
Collapse
Affiliation(s)
- Thomas Brown
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Struan C Murray
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Philipp Lorenz
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Emily Seward
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Scott Rata
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Andrew Angel
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Abstract
Cellular mRNA levels are determined by the rates of mRNA synthesis and mRNA decay. Typically, mRNA degradation kinetics are measured on a population of cells that are either chemically treated or genetically engineered to inhibit transcription. However, these manipulations can affect the mRNA decay process itself by inhibiting regulatory mechanisms that govern mRNA degradation, especially if they occur on short time-scales. Recently, single molecule fluorescent in situ hybridization (smFISH) approaches have been implemented to quantify mRNA decay rates in single, unperturbed cells. Here, we provide a step-by-step protocol that allows quantification of mRNA decay in single Saccharomyces cerevisiae using smFISH. Our approach relies on fluorescent labeling of single cytoplasmic mRNAs and nascent mRNAs found at active sites of transcription, coupled with mathematical modeling to derive mRNA half-lives. Commercially available, single-stranded smFISH DNA oligonucleotides (smFISH probes) are used to fluorescently label mRNAs followed by the quantification of cellular and nascent mRNAs using freely available spot detection algorithms. Our method enables quantification of mRNA decay of any mRNA in single, unperturbed yeast cells and can be implemented to quantify mRNA turnover in a variety of cell types as well as tissues.
Collapse
Affiliation(s)
- Tatjana Trcek
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY, USA.
| | - Samir Rahman
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Daniel Zenklusen
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
7
|
Das S, Sarkar D, Das B. The interplay between transcription and mRNA degradation in Saccharomyces cerevisiae. MICROBIAL CELL 2017; 4:212-228. [PMID: 28706937 PMCID: PMC5507684 DOI: 10.15698/mic2017.07.580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The cellular transcriptome is shaped by both the rates of mRNA synthesis in the nucleus and mRNA degradation in the cytoplasm under a specified condition. The last decade witnessed an exciting development in the field of post-transcriptional regulation of gene expression which underscored a strong functional coupling between the transcription and mRNA degradation. The functional integration is principally mediated by a group of specialized promoters and transcription factors that govern the stability of their cognate transcripts by “marking” them with a specific factor termed “coordinator.” The “mark” carried by the message is later decoded in the cytoplasm which involves the stimulation of one or more mRNA-decay factors, either directly by the “coordinator” itself or in an indirect manner. Activation of the decay factor(s), in turn, leads to the alteration of the stability of the marked message in a selective fashion. Thus, the integration between mRNA synthesis and decay plays a potentially significant role to shape appropriate gene expression profiles during cell cycle progression, cell division, cellular differentiation and proliferation, stress, immune and inflammatory responses, and may enhance the rate of biological evolution.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Debasish Sarkar
- Present Address: Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201-2002, USA
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| |
Collapse
|
8
|
Sanchez G, Bondy-Chorney E, Laframboise J, Paris G, Didillon A, Jasmin BJ, Côté J. A novel role for CARM1 in promoting nonsense-mediated mRNA decay: potential implications for spinal muscular atrophy. Nucleic Acids Res 2015; 44:2661-76. [PMID: 26656492 PMCID: PMC4824080 DOI: 10.1093/nar/gkv1334] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/16/2015] [Indexed: 01/09/2023] Open
Abstract
Loss of ‘Survival of Motor Neurons’ (SMN) leads to spinal muscular atrophy (SMA), a disease characterized by degeneration of spinal cord alpha motor neurons, resulting in muscle weakness, paralysis and death during early childhood. SMN is required for assembly of the core splicing machinery, and splicing defects were documented in SMA. We previously uncovered that Coactivator-Associated Methyltransferase-1 (CARM1) is abnormally up-regulated in SMA, leading to mis-regulation of a number of transcriptional and alternative splicing events. We report here that CARM1 can promote decay of a premature terminating codon (PTC)-containing mRNA reporter, suggesting it can act as a mediator of nonsense-mediated mRNA decay (NMD). Interestingly, this pathway, while originally perceived as solely a surveillance mechanism preventing expression of potentially detrimental proteins, is now emerging as a highly regulated RNA decay pathway also acting on a subset of normal mRNAs. We further show that CARM1 associates with major NMD factor UPF1 and promotes its occupancy on PTC-containing transcripts. Finally, we identify a specific subset of NMD targets that are dependent on CARM1 for degradation and that are also misregulated in SMA, potentially adding exacerbated targeting of PTC-containing mRNAs to the already complex array of molecular defects associated with this disease.
Collapse
Affiliation(s)
- Gabriel Sanchez
- Centre for Neuromuscular Disease, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Emma Bondy-Chorney
- Centre for Neuromuscular Disease, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Janik Laframboise
- Centre for Neuromuscular Disease, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Geneviève Paris
- Centre for Neuromuscular Disease, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Andréanne Didillon
- Centre for Neuromuscular Disease, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bernard J Jasmin
- Centre for Neuromuscular Disease, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jocelyn Côté
- Centre for Neuromuscular Disease, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
9
|
Montenegro-Montero A, Larrondo LF. In the Driver's Seat: The Case for Transcriptional Regulation and Coupling as Relevant Determinants of the Circadian Transcriptome and Proteome in Eukaryotes. J Biol Rhythms 2015; 31:37-47. [PMID: 26446874 DOI: 10.1177/0748730415607321] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Circadian clocks drive daily oscillations in a variety of biological processes through the coordinate orchestration of precise gene expression programs. Global expression profiling experiments have suggested that a significant fraction of the transcriptome and proteome is under circadian control, and such output rhythms have historically been assumed to rely on the rhythmic transcription of these genes. Recent genome-wide studies, however, have challenged this long-held view and pointed to a major contribution of posttranscriptional regulation in driving oscillations at the messenger RNA (mRNA) level, while others have highlighted extensive clock translational regulation, regardless of mRNA rhythms. There are various examples of genes that are uniformly transcribed throughout the day but that exhibit rhythmic mRNA levels, and of flat mRNAs, with oscillating protein levels, and such observations have largely been considered to result from independent regulation at each step. These studies have thereby obviated any connections, or coupling, that might exist between the different steps of gene expression and the impact that any of them could have on subsequent ones. Here, we argue that due to both biological and technical reasons, the jury is still out on the determination of the relative contributions of each of the different stages of gene expression in regulating output molecular rhythms. In addition, we propose that through a variety of coupling mechanisms, gene transcription (even when apparently arrhythmic) might play a much relevant role in determining oscillations in gene expression than currently estimated, regulating rhythms at downstream steps. Furthermore, we posit that eukaryotic genomes regulate daily RNA polymerase II (RNAPII) recruitment and histone modifications genome-wide, setting the stage for global nascent transcription, but that tissue-specific mechanisms locally specify the different processes under clock control.
Collapse
Affiliation(s)
- Alejandro Montenegro-Montero
- Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis F Larrondo
- Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Oeffinger M, Montpetit B. Emerging properties of nuclear RNP biogenesis and export. Curr Opin Cell Biol 2015; 34:46-53. [PMID: 25938908 DOI: 10.1016/j.ceb.2015.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/23/2015] [Accepted: 04/14/2015] [Indexed: 01/02/2023]
Abstract
RNA biology has recently seen an explosion of data due to advances in RNA sequencing, proteomic, and RNA imaging technologies. In this review, we highlight progress that has been made using these approaches in the area of nuclear RNP biogenesis and export. Excitingly, the ability to collect quantitative data at the 'omics' scale combined with measurements of transcription, decay, and transport kinetics is providing the information needed to address RNP biogenesis at a systems level. We believe this to be a necessary and critical next step that will lead to a better understanding of how RNP quality, diversity, and fate emerge from a defined set of nuclear RNP assembly and maturation steps.
Collapse
Affiliation(s)
- Marlene Oeffinger
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7; Département de biochimie et médicine moléculaire, Université de Montréal, Montréal, Québec, Canada H3T 1J4; Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada H3A 1A3.
| | - Ben Montpetit
- Department of Cell Biology, University of Alberta, 5-14 Medical Sciences Building, Edmonton, Alberta, Canada T6G 2H7.
| |
Collapse
|
11
|
Regulation of CTR2 mRNA by the nonsense-mediated mRNA decay pathway. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1283-94. [DOI: 10.1016/j.bbagrm.2014.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 11/20/2022]
|
12
|
Abstract
What has been will be again, what has been done will be done again; there is nothing new under the sun. -Ecclesiastes 1:9 (New International Version) Posttranscriptional regulation of gene expression has an important role in defining the phenotypic characteristics of an organism. Well-defined steps in mRNA metabolism that occur in the nucleus-capping, splicing, and polyadenylation-are mechanistically linked to the process of transcription. Recent evidence suggests another link between RNA polymerase II (Pol II) and a posttranscriptional process that occurs in the cytoplasm-mRNA decay. This conclusion appears to represent a conundrum. How could mRNA synthesis in the nucleus and mRNA decay in the cytoplasm be mechanistically linked? After a brief overview of mRNA processing, we will review the recent evidence for transcription-coupled mRNA decay and the possible involvement of Snf1, the Saccharomyces cerevisiae ortholog of AMP-activated protein kinase, in this process.
Collapse
|
13
|
Kirmizitas A, Gillis WQ, Zhu H, Thomsen GH. Gtpbp2 is required for BMP signaling and mesoderm patterning in Xenopus embryos. Dev Biol 2014; 392:358-67. [PMID: 24858484 DOI: 10.1016/j.ydbio.2014.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/27/2014] [Accepted: 05/07/2014] [Indexed: 12/26/2022]
Abstract
Smad proteins convey canonical intracellular signals for activated receptors in the TGFβ superfamily, but the activity of Smads and their impact on target genes are further regulated by a wide variety of cofactors and partner proteins. We have identified a new Smad1 partner, a GTPase named Gtpbp2 that is a distant relative of the translation factor eEf1a. Gtpbp2 affects canonical signaling in the BMP branch of the TGFβ superfamily, as morpholino knockdown of Gtpbp2 decreases, and overexpression of Gtpbp2 enhances, animal cap responses to BMP4. During Xenopus development, gtpbp2 transcripts are maternally expressed and localized to the egg animal pole, and partitioned into the nascent ectodermal and mesodermal cells during cleavage and early gastrulation stages. Subsequently, gtpbp2 is expressed in the neural folds, and in early tadpoles undergoing organogenesis gtpbp2 is expressed prominently in the brain, eyes, somites, ventral blood island and branchial arches. Consistent with its expression, morpholino knockdown of Gtpbp2 causes defects in ventral-posterior germ layer patterning, gastrulation and tadpole morphology. Overexpressed Gtpbp2 can induce ventral-posterior marker genes and localize to cell nuclei in Xenopus animal caps, highlighting its role in regulating BMP signaling in the early embryo. Here, we introduce this large GTPase as a novel factor in BMP signaling and ventral-posterior patterning.
Collapse
Affiliation(s)
- Arif Kirmizitas
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - William Q Gillis
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Haitao Zhu
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Gerald H Thomsen
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
14
|
Xu G, Jiang X, Jaffrey SR. A mental retardation-linked nonsense mutation in cereblon is rescued by proteasome inhibition. J Biol Chem 2013; 288:29573-85. [PMID: 23983124 DOI: 10.1074/jbc.m113.472092] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A nonsense mutation in cereblon (CRBN) causes autosomal recessive nonsyndromic mental retardation. Cereblon is a substrate receptor for the Cullin-RING E3 ligase complex and couples the ubiquitin ligase to specific ubiquitination targets. The CRBN nonsense mutation (R419X) results in a protein lacking 24 amino acids at its C terminus. Although this mutation has been linked to mild mental retardation, the mechanism by which the mutation affects CRBN function is unknown. Here, we used biochemical and mass spectrometric approaches to explore the function of this mutant. We show that the protein retains its ability to assemble into a Cullin-RING E3 ligase complex and catalyzes the ubiquitination of CRBN-target proteins. However, we find that this mutant exhibits markedly increased levels of autoubiquitination and is more readily degraded by the proteasome than the wild type protein. We also show that the level of the mutant protein can be restored by a treatment of cells with a clinically utilized proteasome inhibitor, suggesting that this agent may be useful for the treatment of mental retardation associated with the CRBN R419X mutation. These data demonstrate that enhanced autoubiquitination and degradation account for the defect in CRBN activity that leads to mental retardation.
Collapse
Affiliation(s)
- Guoqiang Xu
- From the Department of Pharmacology, College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Translational Research for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu 215123, China and
| | | | | |
Collapse
|
15
|
|
16
|
Trcek T, Sato H, Singer RH, Maquat LE. Temporal and spatial characterization of nonsense-mediated mRNA decay. Genes Dev 2013; 27:541-51. [PMID: 23431032 PMCID: PMC3605467 DOI: 10.1101/gad.209635.112] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/29/2013] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control mechanism responsible for "surveying" mRNAs during translation and degrading those that harbor a premature termination codon (PTC). Currently the intracellular spatial location of NMD and the kinetics of its decay step in mammalian cells are under debate. To address these issues, we used single-RNA fluorescent in situ hybridization (FISH) and measured the NMD of PTC-containing β-globin mRNA in intact single cells after the induction of β-globin gene transcription. This approach preserves temporal and spatial information of the NMD process, both of which would be lost in an ensemble study. We determined that decay of the majority of PTC-containing β-globin mRNA occurs soon after its export into the cytoplasm, with a half-life of <1 min; the remainder is degraded with a half-life of >12 h, similar to the half-life of normal PTC-free β-globin mRNA, indicating that it had evaded NMD. Importantly, NMD does not occur within the nucleoplasm, thus countering the long-debated idea of nuclear degradation of PTC-containing transcripts. We provide a spatial and temporal model for the biphasic decay of NMD targets.
Collapse
Affiliation(s)
- Tatjana Trcek
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Hanae Sato
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Robert H. Singer
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Lynne E. Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
17
|
The fate of the messenger is pre-determined: a new model for regulation of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:643-53. [PMID: 23337853 DOI: 10.1016/j.bbagrm.2013.01.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 02/08/2023]
Abstract
Recent years have seen a rise in publications demonstrating coupling between transcription and mRNA decay. This coupling most often accompanies cellular processes that involve transitions in gene expression patterns, for example during mitotic division and cellular differentiation and in response to cellular stress. Transcription can affect the mRNA fate by multiple mechanisms. The most novel finding is the process of co-transcriptional imprinting of mRNAs with proteins, which in turn regulate cytoplasmic mRNA stability. Transcription therefore is not only a catalyst of mRNA synthesis but also provides a platform that enables imprinting, which coordinates between transcription and mRNA decay. Here we present an overview of the literature, which provides the evidence of coupling between transcription and decay, review the mechanisms and regulators by which the two processes are coupled, discuss why such coupling is beneficial and present a new model for regulation of gene expression. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
18
|
Dori-Bachash M, Shalem O, Manor YS, Pilpel Y, Tirosh I. Widespread promoter-mediated coordination of transcription and mRNA degradation. Genome Biol 2012; 13:R114. [PMID: 23237624 PMCID: PMC4056365 DOI: 10.1186/gb-2012-13-12-r114] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 12/13/2012] [Indexed: 12/16/2022] Open
Abstract
Background Previous work showed that mRNA degradation is coordinated with transcription in yeast, and in several genes the control of mRNA degradation was linked to promoter elements through two different mechanisms. Here we show at the genomic scale that the coordination of transcription and mRNA degradation is promoter-dependent in yeast and is also observed in humans. Results We first demonstrate that swapping upstream cis-regulatory sequences between two yeast species affects both transcription and mRNA degradation and suggest that while some cis-regulatory elements control either transcription or degradation, multiple other elements enhance both processes. Second, we show that adjacent yeast genes that share a promoter (through divergent orientation) have increased similarity in their patterns of mRNA degradation, providing independent evidence for the promoter-mediated coupling of transcription to mRNA degradation. Finally, analysis of the differences in mRNA degradation rates between mammalian cell types or mammalian species suggests a similar coordination between transcription and mRNA degradation in humans. Conclusions Our results extend previous studies and suggest a pervasive promoter-mediated coordination between transcription and mRNA degradation in yeast. The diverse genes and regulatory elements associated with this coordination suggest that it is generated by a global mechanism of gene regulation and modulated by gene-specific mechanisms. The observation of a similar coupling in mammals raises the possibility that coupling of transcription and mRNA degradation may reflect an evolutionarily conserved phenomenon in gene regulation.
Collapse
|
19
|
Dahan N, Choder M. The eukaryotic transcriptional machinery regulates mRNA translation and decay in the cytoplasm. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:169-73. [PMID: 22982191 DOI: 10.1016/j.bbagrm.2012.08.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/28/2012] [Accepted: 08/29/2012] [Indexed: 11/29/2022]
Abstract
In eukaryotes, nuclear mRNA synthesis is physically separated from its cytoplasmic translation and degradation. Recent unexpected findings have revealed that, despite this separation, the transcriptional machinery can remotely control the cytoplasmic stages. Key to this coupling is the capacity of the transcriptional machinery to "imprint" the transcript with factors that escort it to the cytoplasm and regulate its localization, translation and decay. Some of these factors are known transcriptional regulators that also function in mRNA decay and are hence named "synthegradases". Imprinting can be carried out and/or regulated by RNA polymerase II or by promoter cis- and trans-acting elements. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Nili Dahan
- Department of Molecular Microbiology, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
20
|
Morgado A, Almeida F, Teixeira A, Silva AL, Romão L. Unspliced precursors of NMD-sensitive β-globin transcripts exhibit decreased steady-state levels in erythroid cells. PLoS One 2012; 7:e38505. [PMID: 22675570 PMCID: PMC3366927 DOI: 10.1371/journal.pone.0038505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/07/2012] [Indexed: 11/19/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that detects and rapidly degrades mRNAs carrying premature translation-termination codons (PTCs). Mammalian NMD depends on both splicing and translation, and requires recognition of the premature stop codon by the cytoplasmic ribosomes. Surprisingly, some published data have suggested that nonsense codons may also affect the nuclear metabolism of the nonsense-mutated transcripts. To determine if nonsense codons could influence nuclear events, we have directly assessed the steady-state levels of the unspliced transcripts of wild-type and PTC-containing human β-globin genes stably transfected in mouse erythroleukemia (MEL) cells, after erythroid differentiation induction, or in HeLa cells. Our analyses by ribonuclease protection assays and reverse transcription-coupled quantitative PCR show that β-globin pre-mRNAs carrying NMD-competent PTCs, but not those containing a NMD-resistant PTC, exhibit a significant decrease in their steady-state levels relatively to the wild-type or to a missense-mutated β-globin pre-mRNA. On the contrary, in HeLa cells, human β-globin pre-mRNAs carrying NMD-competent PTCs accumulate at normal levels. Functional analyses of these pre-mRNAs in MEL cells demonstrate that their low steady-state levels do not reflect significantly lower pre-mRNA stabilities when compared to the normal control. Furthermore, our results also provide evidence that the relative splicing efficiencies of intron 1 and 2 are unaffected. This set of data highlights potential nuclear pathways that might be promoter- and/or cell line-specific, which recognize the NMD-sensitive transcripts as abnormal. These specialized nuclear pathway(s) may be superimposed on the general NMD mechanism.
Collapse
Affiliation(s)
- Ana Morgado
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioFIG–Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Fátima Almeida
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Alexandre Teixeira
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- Centro de Investigação em Genética Molecular Humana, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ana Luísa Silva
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioFIG–Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luísa Romão
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioFIG–Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
21
|
Abstract
The level of an mRNA within a cell depends on both its rate of synthesis and rate of decay. Now, independent studies by Bregman et al. and Trcek et al. provide evidence that these two processes are integrated. They show that transcription factors and DNA promoters can directly influence the relative stability of transcripts that they produce.
Collapse
Affiliation(s)
- Vivian Bellofatto
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA.
| | | |
Collapse
|
22
|
Bregman A, Avraham-Kelbert M, Barkai O, Duek L, Guterman A, Choder M. Promoter elements regulate cytoplasmic mRNA decay. Cell 2012; 147:1473-83. [PMID: 22196725 DOI: 10.1016/j.cell.2011.12.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 09/14/2011] [Accepted: 12/06/2011] [Indexed: 01/11/2023]
Abstract
Promoters are DNA elements that enable transcription and its regulation by trans-acting factors. Here, we demonstrate that yeast promoters can also regulate mRNA decay after the mRNA leaves the nucleus. A conventional yeast promoter consists of a core element and an upstream activating sequence (UAS). We find that changing UASs of a reporter gene without altering the transcript sequence affects the transcript's decay kinetics. A short cis element, comprising two Rap1p-binding sites, and Rap1p itself, are necessary and sufficient to induce enhanced decay of the reporter mRNA. Furthermore, Rap1p stimulates both the synthesis and the decay of a specific population of endogenous mRNAs. We propose that Rap1p association with target promoter in the nucleus affects the composition of the exported mRNP, which in turn regulates mRNA decay in the cytoplasm. Thus, promoters can play key roles in determining mRNA levels and have the capacity to coordinate rates of mRNA synthesis and decay.
Collapse
Affiliation(s)
- Almog Bregman
- Department of Molecular Microbiology, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | | | | | |
Collapse
|
23
|
Tsakiridis A, Tzouanacou E, Rahman A, Colby D, Axton R, Chambers I, Wilson V, Forrester L, Brickman JM. Expression-independent gene trap vectors for random and targeted mutagenesis in embryonic stem cells. Nucleic Acids Res 2009; 37:e129. [PMID: 19692586 PMCID: PMC2770648 DOI: 10.1093/nar/gkp640] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/13/2009] [Accepted: 07/17/2009] [Indexed: 12/04/2022] Open
Abstract
Promoterless gene trap vectors have been widely used for high-efficiency gene targeting and random mutagenesis in embryonic stem (ES) cells. Unfortunately, such vectors are only effective for genes expressed in ES cells and this has prompted the development of expression-independent vectors. These polyadenylation (poly A) trap vectors employ a splice donor to capture an endogenous gene's polyadenylation sequence and provide transcript stability. However, the spectrum of mutations generated by these vectors appears largely restricted to the last intron of target loci due to nonsense-mediated mRNA decay (NMD) making them unsuitable for gene targeting applications. Here, we present novel poly A trap vectors that overcome the effect of NMD and also employ RNA instability sequences to improve splicing efficiency. The set of random insertions generated with these vectors show a significantly reduced insertional bias and the vectors can be targeted directly to a 5' intron. We also show that this relative positional independence is linked to the human beta-actin promoter and is most likely a result of its transcriptional activity in ES cells. Taken together our data indicate that these vectors are an effective tool for insertional mutagenesis that can be used for either gene trapping or gene targeting.
Collapse
Affiliation(s)
- Anestis Tsakiridis
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Elena Tzouanacou
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Afifah Rahman
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Douglas Colby
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Richard Axton
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Lesley Forrester
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Joshua M. Brickman
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| |
Collapse
|
24
|
Gräub R, Lancero H, Pedersen A, Chu M, Padmanabhan K, Xu XQ, Spitz P, Chalkley R, Burlingame AL, Stokoe D, Bernstein HS. Cell cycle-dependent phosphorylation of human CDC5 regulates RNA processing. Cell Cycle 2008; 7:1795-803. [PMID: 18583928 PMCID: PMC2940709 DOI: 10.4161/cc.7.12.6017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
CDC5 proteins are components of the pre-mRNA splicing complex and essential for cell cycle progression in yeast, plants and mammals. Human CDC5 is phosphorylated in a mitogen-dependent manner, and its association with the spliceosome is ATP-dependent. Examination of the amino acid sequence suggests that CDC5L may be phosphorylated at up to 28 potential consensus recognition sequences for known kinases, however, the identity of actual phosphorylation sites, their role in regulating CDC5L activity, and the kinases responsible for their phosphorylation have not previously been determined. Using two-dimensional phosphopeptide mapping and nanoelectrospray mass spectrometry, we now show that CDC5L is phosphorylated on at least nine sites in vivo. We demonstrate that while CDC5L is capable of forming homodimers in vitro and in vivo, neither homodimerization nor nuclear localization is dependent on phosphorylation at these sites. Using an in vitro splicing assay, we show that phosphorylation of CDC5L at threonines 411 and 438 within recognition sequences for CDKs are required for CDC5L-mediated pre-mRNA splicing. We also demonstrate that a specific inhibitor of CDK2, CVT-313, inhibits CDC5L phosphorylation in both in vitro kinase assays and in vivo radiolabeling experiments in cycling cells. These studies represent the first demonstration of a regulatory role for phosphorylation of CDC5L, and suggest that targeting these sites or the implicated kinases may provide novel strategies for treating disorders of unguarded cellular proliferation, such as cancer.
Collapse
Affiliation(s)
- Remo Gräub
- Cardiovascular Research Institute, University of California, San Francisco, USA
| | - Hope Lancero
- Cardiovascular Research Institute, University of California, San Francisco, USA
| | - Anissa Pedersen
- Cardiovascular Research Institute, University of California, San Francisco, USA
| | - Meihua Chu
- Cardiovascular Research Institute, University of California, San Francisco, USA
| | | | - Xiao-Qin Xu
- Cardiovascular Research Institute, University of California, San Francisco, USA
| | - Paul Spitz
- Cardiovascular Research Institute, University of California, San Francisco, USA
| | - Robert Chalkley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, USA
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, USA
| | - David Stokoe
- Comprehensive Cancer Center, University of California, San Francisco, USA
| | - Harold S. Bernstein
- Cardiovascular Research Institute, University of California, San Francisco, USA
- Comprehensive Cancer Center, University of California, San Francisco, USA
- Department of Pediatrics, University of California, San Francisco, USA
- Institute for Regeneration Medicine, University of California, San Francisco, USA
| |
Collapse
|
25
|
Viegas MH, Gehring NH, Breit S, Hentze MW, Kulozik AE. The abundance of RNPS1, a protein component of the exon junction complex, can determine the variability in efficiency of the Nonsense Mediated Decay pathway. Nucleic Acids Res 2007; 35:4542-51. [PMID: 17586820 PMCID: PMC1935013 DOI: 10.1093/nar/gkm461] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a molecular pathway of mRNA surveillance that ensures rapid degradation of mRNAs containing premature translation termination codons (PTCs) in eukaryotes. NMD has been shown to also regulate normal gene expression and thus emerged as one of the key post-transcriptional mechanisms of gene regulation. Recently, NMD efficiency has been shown to vary between cell types and individuals thus implicating NMD as a modulator of genetic disease severity. We have now specifically analysed the molecular mechanism of variable NMD efficiency and first established an assay system for the quantification of NMD efficiency, which is based on carefully validated cellular NMD target transcripts. In a HeLa cell model system, NMD efficiency is shown to be remarkably variable and to represent a stable characteristic of different strains. In one of these strains, low NMD efficiency is shown to be functionally related to the reduced abundance of the exon junction component RNPS1. Furthermore, restoration of functional RNPS1 expression, but not of NMD-inactive mutant proteins, also restores efficient NMD in this model. We conclude that cellular concentrations of RNPS1 can modify NMD efficiency and propose that cell type specific co-factor availability represents a novel principle that controls NMD.
Collapse
Affiliation(s)
- Marcelo H. Viegas
- Department of Pediatric Oncology, Hematology and Immunology, Children's Hospital, University of Heidelberg, Im Neuenheimer Feld 150, 69120 Heidelberg, Germany, Molecular Medicine Partnership Unit (University of Heidelberg and European Molecular Biology Laboratory) and European Molecular Biology Laboratory, Gene Expression Unit, Meyerhofstr 1, 69117 Heidelberg, Germany
| | - Niels H. Gehring
- Department of Pediatric Oncology, Hematology and Immunology, Children's Hospital, University of Heidelberg, Im Neuenheimer Feld 150, 69120 Heidelberg, Germany, Molecular Medicine Partnership Unit (University of Heidelberg and European Molecular Biology Laboratory) and European Molecular Biology Laboratory, Gene Expression Unit, Meyerhofstr 1, 69117 Heidelberg, Germany
| | - Stephen Breit
- Department of Pediatric Oncology, Hematology and Immunology, Children's Hospital, University of Heidelberg, Im Neuenheimer Feld 150, 69120 Heidelberg, Germany, Molecular Medicine Partnership Unit (University of Heidelberg and European Molecular Biology Laboratory) and European Molecular Biology Laboratory, Gene Expression Unit, Meyerhofstr 1, 69117 Heidelberg, Germany
| | - Matthias W. Hentze
- Department of Pediatric Oncology, Hematology and Immunology, Children's Hospital, University of Heidelberg, Im Neuenheimer Feld 150, 69120 Heidelberg, Germany, Molecular Medicine Partnership Unit (University of Heidelberg and European Molecular Biology Laboratory) and European Molecular Biology Laboratory, Gene Expression Unit, Meyerhofstr 1, 69117 Heidelberg, Germany
| | - Andreas E. Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, Children's Hospital, University of Heidelberg, Im Neuenheimer Feld 150, 69120 Heidelberg, Germany, Molecular Medicine Partnership Unit (University of Heidelberg and European Molecular Biology Laboratory) and European Molecular Biology Laboratory, Gene Expression Unit, Meyerhofstr 1, 69117 Heidelberg, Germany
- *To whom correspondence should be addressed. +49 6221 56 2303+49 6221 56 4559 Correspondence may also be addressed to Matthias W. Hentze. +49 6221 387 501+49 6221 387 518
| |
Collapse
|
26
|
Holbrook JA, Neu-Yilik G, Gehring NH, Kulozik AE, Hentze MW. Internal ribosome entry sequence-mediated translation initiation triggers nonsense-mediated decay. EMBO Rep 2006; 7:722-6. [PMID: 16799467 PMCID: PMC1500827 DOI: 10.1038/sj.embor.7400721] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 05/08/2006] [Accepted: 05/10/2006] [Indexed: 11/09/2022] Open
Abstract
In eukaryotes, a surveillance pathway known as nonsense-mediated decay (NMD) regulates the abundance of messenger RNAs containing premature termination codons (PTCs). In mammalian cells, it has been asserted that the NMD-relevant first round of translation is special and involves initiation by a specific protein heterodimer, the nuclear cap-binding complex (CBC). Arguing against a requirement for CBC-mediated translation initiation, we show that ribosomal recruitment by the internal ribosomal entry sequence of the encephalomyocarditis virus triggers NMD of a PTC-containing transcript under conditions in which ribosome entry from the cap is prohibited. These data generalize the previous model and suggest that translation per se, irrespective of how it is initiated, can mediate NMD.
Collapse
Affiliation(s)
- Jill A Holbrook
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
| | - Gabriele Neu-Yilik
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
| | - Niels H Gehring
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
| | - Andreas E Kulozik
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Tel: +49 6221 56 2303; Fax: +49 6221 56 4559; E-mail:
| | - Matthias W Hentze
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Gene Expression Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
- Tel: +49 6221 387 501; Fax: +49 6221 387 518; E-mail:
| |
Collapse
|
27
|
Weil JE, Beemon KL. A 3' UTR sequence stabilizes termination codons in the unspliced RNA of Rous sarcoma virus. RNA (NEW YORK, N.Y.) 2006; 12:102-10. [PMID: 16301601 PMCID: PMC1370890 DOI: 10.1261/rna.2129806] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Eukaryotic cells target mRNAs to the nonsense-mediated mRNA decay (NMD) pathway when translation terminates within the coding region. In mammalian cells, this is presumably due to a downstream signal deposited during pre-mRNA splicing. In contrast, unspliced retroviral RNA undergoes NMD in chicken cells when premature termination codons (PTCs) are present in the gag gene. Surprisingly, deletion of a 401-nt 3' UTR sequence immediately downstream of the normal gag termination codon caused this termination event to be recognized as premature. We termed this 3' UTR region the Rous sarcoma virus (RSV) stability element (RSE). The RSE also stabilized the viral RNA when placed immediately downstream of a PTC in the gag gene. Deletion analysis of the RSE indicated a smaller functional element. We conclude that this 3' UTR sequence stabilizes termination codons in the RSV RNA, and termination codons not associated with such an RSE sequence undergo NMD.
Collapse
Affiliation(s)
- Jason E Weil
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|
28
|
Yamashita A, Kashima I, Ohno S. The role of SMG-1 in nonsense-mediated mRNA decay. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:305-15. [PMID: 16289965 DOI: 10.1016/j.bbapap.2005.10.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 10/09/2005] [Accepted: 10/10/2005] [Indexed: 01/20/2023]
Abstract
SMG-1, a member of the PIKK (phosphoinositide 3-kinase related kinases) family, plays a critical role in the mRNA quality control system termed nonsense-mediated mRNA decay (NMD). NMD protects the cells from the accumulation of aberrant mRNAs with premature termination codons (PTCs) that encode nonfunctional or potentially harmful truncated proteins. SMG-1 directly phosphorylates Upf1, another key component of NMD, and this phosphorylation occurs upon recognition of PTC on post-spliced mRNA during the initial round of translation. At present, a variety of tools are available that can specifically suppress NMD, and it is possible to examine the contribution of NMD in a variety of physiological and pathological conditions.
Collapse
Affiliation(s)
- Akio Yamashita
- Department of Molecular Biology, Yokohama City University School of Medicine and Graduate School of Medical Science, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | |
Collapse
|
29
|
Bühler M, Paillusson A, Mühlemann O. Efficient downregulation of immunoglobulin mu mRNA with premature translation-termination codons requires the 5'-half of the VDJ exon. Nucleic Acids Res 2004; 32:3304-15. [PMID: 15210863 PMCID: PMC443527 DOI: 10.1093/nar/gkh651] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Premature translation-termination codons (PTCs) elicit rapid degradation of the mRNA by a process called nonsense-mediated mRNA decay (NMD). NMD appears to be significantly more efficient for mRNAs of genes belonging to the immunoglobulin superfamily, which frequently acquire PTCs during VDJ rearrangment, than for mRNAs of other genes. To identify determinants for efficient NMD, we developed a minigene system derived from a mouse immunoglobulin micro gene (Ig-micro) and measured the effect of PTCs at different positions on the mRNA level. This revealed that PTCs located downstream of the V-D junction in the VDJ exon of Ig-micro minigenes and of endogenous Ig-micro genes elicit very strong mRNA downregulation, whereas NMD efficiency decreases gradually further upstream in the V segment where a PTC was inserted. Interestingly, two PTCs are in positions where they usually do not trigger NMD (<50 nt from the 3'-most 5' splice site) still resulted in reduced mRNA levels. Using a set of hybrid constructs comprised of Ig-micro and an inefficient substrate for NMD, we identified a 177 nt long element in the V segment that is necessary for efficient downregulation of PTC-containing hybrid transcripts. Moreover, deletion of this NMD-promoting element from the Ig-micro minigene results in loss of strong NMD.
Collapse
Affiliation(s)
- Marc Bühler
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | | | | |
Collapse
|
30
|
Zhang XHF, Chasin LA. Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev 2004; 18:1241-50. [PMID: 15145827 PMCID: PMC420350 DOI: 10.1101/gad.1195304] [Citation(s) in RCA: 342] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 04/09/2004] [Indexed: 12/23/2022]
Abstract
We have searched for sequence motifs that contribute to the recognition of human pre-mRNA splice sites by comparing the frequency of 8-mers in internal noncoding exons versus unspliced pseudo exons and 5' untranslated regions (5' untranslated regions [UTRs]) of transcripts of intronless genes. This type of comparison avoids the isolation of sequences that are distinguished by their protein-coding information. We classified sequence families comprising 2069 putative exonic enhancers and 974 putative exonic silencers. Representatives of each class functioned as enhancers or silencers when inserted into a test exon and assayed in transfected mammalian cells. As a class, the enhancer sequencers were more prevalent and the silencer elements less prevalent in all exons compared with introns. A survey of 58 reported exonic splicing mutations showed good agreement between the splicing phenotype and the effect of the mutation on the motifs defined here. The large number of effective sequences implied by these results suggests that sequences that influence splicing may be very abundant in pre-mRNA.
Collapse
Affiliation(s)
- Xiang H-F Zhang
- Department of Biological Sciences, MC2433, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
31
|
Ozcan R, Jarolim P, Lux SE, Ungewickell E, Eber SW. Simultaneous (AC)n microsatellite polymorphism analysis and single-stranded conformation polymorphism screening is an efficient strategy for detecting ankyrin-1 mutations in dominant hereditary spherocytosis. Br J Haematol 2003; 122:669-77. [PMID: 12899723 DOI: 10.1046/j.1365-2141.2003.04479.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nonsense/stop mutations in the ankyrin-1 gene (ANK1) are a major cause of dominant HS (dHS) (frequency of 23% in German dHS patients). To date, no common mutation has been found and therefore a simple mutation screening is not feasible. The reduced expression of one cDNA allele in the (AC)n microsatellite polymorphism of the ankyrin-1 gene, as seen in about 20% of Czech patients with dHS, may identify candidates with a possible frameshift/nonsense mutation. In order to verify the efficiency of this screening we screened the ankyrin-1 gene of 22 Czech dHS patients for both the reduced cDNA allele expression in the frequent (AC)n and the common exonic 26/39 polymorphisms, as well as for polymerase chain reaction (PCR) single-stranded conformation polymorphisms in any one of the 42 exons of ANK1. Anomalous PCR products were sequenced. We found seven new ANK1 frameshift/nonsense mutations in nine patients with, but in none of six patients without, a reduced cDNA allele expression (efficiency of 78%). We conclude that screening of dHS patients for such a reduced allele expression in common ANK1 polymorphisms is an efficient procedure for the identification of candidates for frameshift/nonsense mutations in the ankyrin-1 gene.
Collapse
Affiliation(s)
- Refik Ozcan
- Universitäts-Kinderklinik, Goettingen, Germany
| | | | | | | | | |
Collapse
|
32
|
Flint SJ, Gonzalez RA. Regulation of mRNA production by the adenoviral E1B 55-kDa and E4 Orf6 proteins. Curr Top Microbiol Immunol 2003; 272:287-330. [PMID: 12747554 DOI: 10.1007/978-3-662-05597-7_10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The E1B 55-kDa and E4 Orf6 proteins of human subgroup C adenoviruses both counter host cell defenses mediated by the cellular p53 protein and regulate viral late gene expression. A complex containing the two proteins has been implicated in induction of selective export of viral late mRNAs from the nucleus to the cytoplasm, with concomitant inhibition of export of the majority of newly synthesized cellular mRNAs. The molecular mechanisms by which these viral proteins subvert cellular pathways of nuclear export are not yet clear. Here, we review recent efforts to identify molecular and biochemical functions of the E1B 55-kDa and E4 Orf6 proteins required for regulation of mRNA export, the several difficulties and discrepancies that have been encountered in studies of these viral proteins, and evidence indicating that the reorganization of the infected cell nucleus and production of viral late mRNA at specific intra-nuclear sites are important determinants of selective mRNA export in infected cells. In our view, it is not yet possible to propose a coherent molecular model for regulation of mRNA export by the E1B 55-kDa and E4 Orf6 proteins. However, it should now be possible to address specific questions about the roles of potentially relevant properties of these viral proteins.
Collapse
Affiliation(s)
- S J Flint
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08844, USA.
| | | |
Collapse
|
33
|
Gudikote JP, Wilkinson MF. T-cell receptor sequences that elicit strong down-regulation of premature termination codon-bearing transcripts. EMBO J 2002; 21:125-34. [PMID: 11782432 PMCID: PMC125808 DOI: 10.1093/emboj/21.1.125] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The nonsense-mediated decay (NMD) RNA surveillance pathway detects and degrades mRNAs containing premature termination codons (PTCs). T-cell receptor (TCR) and immunoglobulin transcripts, which commonly harbor PTCs as a result of programmed DNA rearrangement during normal development, are down-regulated much more than other known mammalian gene transcripts in response to nonsense codons. Here, we demonstrate that this is not because of promoter or cell type but instead is directed by regulatory sequences within the rearranging VDJ exon and immediately flanking intron sequences of a Vbeta8.1 TCR-beta gene. Insertion of these sequences into a heterologous gene elicited strong down-regulation (>30-fold) in response to PTCs, indicating that this region is sufficient to trigger robust down-regulation. The rearranging Vbeta5.1 exon and the flanking intron sequences from another member of the TCR-beta family also triggered strong down-regulation, suggesting that down-regulatory-promoting elements are a conserved feature of TCR genes. Importantly, we found that the Vbeta8.1 down-regulatory-promoting element was position dependent, such that it failed to function when positioned downstream of a PTC. To our knowledge, this is the first class of down-regulatory elements identified that act upstream of nonsense codons.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Codon, Nonsense/genetics
- Codon, Terminator/genetics
- Down-Regulation
- Exons
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- HeLa Cells
- Humans
- Mice
- Models, Biological
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
Collapse
Affiliation(s)
| | - Miles F. Wilkinson
- Department of Immunology, The University of Texas M.D.Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
Corresponding author e-mail:
| |
Collapse
|
34
|
Lykke-Andersen J, Shu MD, Steitz JA. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 2000; 103:1121-31. [PMID: 11163187 DOI: 10.1016/s0092-8674(00)00214-2] [Citation(s) in RCA: 453] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Nonsense-mediated decay (NMD) rids eukaryotic cells of aberrant mRNAs containing premature termination codons. These are discriminated from true termination codons by downstream cis-elements, such as exon-exon junctions. We describe three novel human proteins involved in NMD, hUpf2, hUpf3a, and hUpf3b. While in HeLa cell extracts these proteins are complexed with hUpf1, in intact cells hUpf3a and hUpf3b are nucleocytoplasmic shuttling proteins, hUpf2 is perinuclear, and hUpf1 cytoplasmic. hUpf3a and hUpf3b associate selectively with spliced beta-globin mRNA in vivo, and tethering of any hUpf protein to the 3'UTR of beta-globin mRNA elicits NMD. These data suggest that assembly of a dynamic hUpf complex initiates in the nucleus at mRNA exon-exon junctions and triggers NMD in the cytoplasm when recognized downstream of a translation termination site.
Collapse
Affiliation(s)
- J Lykke-Andersen
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | | | | |
Collapse
|
35
|
Abstract
Generally, nonsense codons 50 bp or more upstream of the 3′-most intron of the human β-globin gene reduce mRNA abundance. In contrast, dominantly inherited β-thalassemia is frequently associated with nonsense mutations in the last exon. In this work, murine erythroleukemia (MEL) cells were stably transfected with human β-globin genes mutated within each of the 3 exons, namely at codons 15 (TGG→TGA), 39 (C→T), or 127 (C→T). Primer extension analysis after erythroid differentiation induction showed codon 127 (C→T) mRNA accumulated in the cytoplasm at approximately 20% of the normal mRNA level. Codon 39 (C→T) mutation did not result in significant mRNA accumulation. Unexpectedly, codon 15 (TGG→TGA) mRNA accumulated at approximately 90%. Concordant results were obtained when reticulocyte mRNA from 2 carriers for this mutation was studied. High mRNA accumulation of codon 15 nonsense-mutated gene was revealed to be independent of the type of nonsense mutation and the genomic background in which this mutation occurs. To investigate the effects of other nonsense mutations located in the first exon on the mRNA level, nonsense mutations at codons 5, 17, and 26 were also cloned and stably transfected into MEL cells. After erythroid differentiation induction, mRNAs with a mutation at codon 5 or 17 were detected at high levels, whereas the mutation at codon 26 led to low mRNA levels. These findings suggest that nonsense-mediated mRNA decay is not exclusively dependent on the localization of mutations relative to the 3′-most intron. Other factors may also contribute to determine the cytoplasmic nonsense-mutated mRNA level in erythroid cells.
Collapse
|
36
|
Nonsense mutations in the human β-globin gene lead to unexpected levels of cytoplasmic mRNA accumulation. Blood 2000. [DOI: 10.1182/blood.v96.8.2895] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Generally, nonsense codons 50 bp or more upstream of the 3′-most intron of the human β-globin gene reduce mRNA abundance. In contrast, dominantly inherited β-thalassemia is frequently associated with nonsense mutations in the last exon. In this work, murine erythroleukemia (MEL) cells were stably transfected with human β-globin genes mutated within each of the 3 exons, namely at codons 15 (TGG→TGA), 39 (C→T), or 127 (C→T). Primer extension analysis after erythroid differentiation induction showed codon 127 (C→T) mRNA accumulated in the cytoplasm at approximately 20% of the normal mRNA level. Codon 39 (C→T) mutation did not result in significant mRNA accumulation. Unexpectedly, codon 15 (TGG→TGA) mRNA accumulated at approximately 90%. Concordant results were obtained when reticulocyte mRNA from 2 carriers for this mutation was studied. High mRNA accumulation of codon 15 nonsense-mutated gene was revealed to be independent of the type of nonsense mutation and the genomic background in which this mutation occurs. To investigate the effects of other nonsense mutations located in the first exon on the mRNA level, nonsense mutations at codons 5, 17, and 26 were also cloned and stably transfected into MEL cells. After erythroid differentiation induction, mRNAs with a mutation at codon 5 or 17 were detected at high levels, whereas the mutation at codon 26 led to low mRNA levels. These findings suggest that nonsense-mediated mRNA decay is not exclusively dependent on the localization of mutations relative to the 3′-most intron. Other factors may also contribute to determine the cytoplasmic nonsense-mutated mRNA level in erythroid cells.
Collapse
|
37
|
Jackson DA, Pombo A, Iborra F. The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells. FASEB J 2000. [DOI: 10.1096/fasebj.14.2.242] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dean A. Jackson
- Sir William Dunn School of PathologyUniversity of Oxford Oxford OX1 3RE United Kingdom
| | - Ana Pombo
- Sir William Dunn School of PathologyUniversity of Oxford Oxford OX1 3RE United Kingdom
| | - Francisco Iborra
- Sir William Dunn School of PathologyUniversity of Oxford Oxford OX1 3RE United Kingdom
| |
Collapse
|
38
|
Thein SL. Is it dominantly inherited beta thalassaemia or just a beta-chain variant that is highly unstable? Br J Haematol 1999; 107:12-21. [PMID: 10520021 DOI: 10.1046/j.1365-2141.1999.01492.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- S L Thein
- MRC Molecular Haematology Unit, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford.
| |
Collapse
|
39
|
Grundhoff AT, Kremmer E, Türeci O, Glieden A, Gindorf C, Atz J, Mueller-Lantzsch N, Schubach WH, Grässer FA. Characterization of DP103, a novel DEAD box protein that binds to the Epstein-Barr virus nuclear proteins EBNA2 and EBNA3C. J Biol Chem 1999; 274:19136-44. [PMID: 10383418 DOI: 10.1074/jbc.274.27.19136] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Epstein-Barr virus-encoded nuclear antigens EBNA2 and EBNA3C both interact with the cellular transcription factor RBP-Jkappa and modulate the expression of several shared target genes, suggesting a tight cooperation in latently infected cells. In a survey for additional cellular factors that bind to EBNA2 as well as EBNA3C, we have isolated and characterized DP103, a novel human member of the DEAD box family of putative ATP-dependent RNA helicases. The interaction with DP103 is mediated by amino acids (aa) 121-213 of EBNA2 and aa 534-778 of EBNA3C, regions that are not involved in binding of the viral proteins to RBP-Jkappa. The DP103-cDNA encodes a protein of 824 aa that harbors all of the common DEAD box motifs. Monoclonal antibodies raised against DP103 detect a protein of 103 kDa in mammalian cells that resides in high molecular weight complexes in vivo. We have detected an ATPase activity intrinsic to or closely associated with DP103. By subcellular fractionation, we find DP103 in both a soluble nuclear fraction as well as in the insoluble skeletal fraction. Whereas the protein and its mRNA are uniformly expressed in all tested cell lines, we observed differential expression of the mRNA in normal human tissues.
Collapse
Affiliation(s)
- A T Grundhoff
- Institut für Medizinische Mikrobiologie und Hygiene, Abteilung Virologie, Universitätskliniken des Saarlandes, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Thermann R, Neu-Yilik G, Deters A, Frede U, Wehr K, Hagemeier C, Hentze MW, Kulozik AE. Binary specification of nonsense codons by splicing and cytoplasmic translation. EMBO J 1998; 17:3484-94. [PMID: 9628884 PMCID: PMC1170685 DOI: 10.1093/emboj/17.12.3484] [Citation(s) in RCA: 341] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Premature translation termination codons resulting from nonsense or frameshift mutations are common causes of genetic disorders. Complications arising from the synthesis of C-terminally truncated polypeptides can be avoided by 'nonsense-mediated decay' of the mutant mRNAs. Premature termination codons in the beta-globin mRNA cause the common recessive form of beta-thalassemia when the affected mRNA is degraded, but the more severe dominant form when the mRNA escapes nonsense-mediated decay. We demonstrate that cells distinguish a premature termination codon within the beta-globin mRNA from the physiological translation termination codon by a two-step specification mechanism. According to the binary specification model proposed here, the positions of splice junctions are first tagged during splicing in the nucleus, defining a stop codon operationally as a premature termination codon by the presence of a 3' splicing tag. In the second step, cytoplasmic translation is required to validate the 3' splicing tag for decay of the mRNA. This model explains nonsense-mediated decay on the basis of conventional molecular mechanisms and allows us to propose a common principle for nonsense-mediated decay from yeast to man.
Collapse
Affiliation(s)
- R Thermann
- Department of Pediatrics, Charité-Virchow Medical Center, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Matsumoto K, Wassarman KM, Wolffe AP. Nuclear history of a pre-mRNA determines the translational activity of cytoplasmic mRNA. EMBO J 1998; 17:2107-21. [PMID: 9524132 PMCID: PMC1170555 DOI: 10.1093/emboj/17.7.2107] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathways of synthesis and maturation of pre-messenger RNA in the nucleus have a direct effect on the translational efficiency of mRNA in the cytoplasm. The transcription of intron-less mRNA in vivo directs this mRNA towards translational silencing. The presence of an intron at the 5' end of the transcript relieves this silencing, whereas an intron at the 3' end further represses translation. These regulatory events are strongly dependent on the transcription of pre-mRNA in the nucleus. The impact of nuclear history on regulatory events in the cytoplasm provides a novel mechanism for the control of gene expression.
Collapse
Affiliation(s)
- K Matsumoto
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, NIH, Building 18T, Room 106, Bethesda, MD 20892-5431, USA
| | | | | |
Collapse
|
42
|
Affiliation(s)
- S Li
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | |
Collapse
|
43
|
Ladomery M. Multifunctional proteins suggest connections between transcriptional and post-transcriptional processes. Bioessays 1997; 19:903-9. [PMID: 9363684 DOI: 10.1002/bies.950191010] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent findings indicate that substantial cross-talk may exist between transcriptional and post-transcriptional processes. Firstly, there are suggestions that specific promoters influence the post-transcriptional fate of transcripts, pointing to communication between protein complexes assembled on DNA and nascent pre-mRNA. Secondly, an increasing number of proteins appear to be multifunctional, participating in transcriptional and post-transcriptional events. The classic example is TFIIIA, required for both the transcription of 5S rRNA genes and the packaging of 5S rRNA. TFIIIA is now joined by the Y-box proteins, which bind DNA (transcription activation and repression) and RNA (mRNA packaging). Furthermore, the tumour suppressor WT1, at first thought to be a typical transcription factor, may also be involved in splicing; conversely, hnRNP K, a bona fide pre-mRNA-binding protein, appears to be a transcription factor. Other examples of multifunctional proteins are mentioned: notably PTB, Sxl, La and PU.1. It is now reasonable to assert that some proteins, which were first identified as transcription factors, could just as easily have been identified as splicing factors, hnRNP, mRNP proteins and vice versa. It is no longer appropriate to view gene expression as a series of compartmentalised processes; instead, multifunctional proteins are likely to co-ordinate different steps of gene expression.
Collapse
Affiliation(s)
- M Ladomery
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, Scotland.
| |
Collapse
|
44
|
Smetanina NS, Molchanova TP, Huisman TH. Analysis of mRNA from red cells of patients with thalassemia and hemoglobin variants. Hemoglobin 1997; 21:437-67. [PMID: 9322078 DOI: 10.3109/03630269708993129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During the past decade new procedures have been developed for the isolation of RNA from a few mL of freshly collected blood. This material is reverse transcribed and the resulting cDNA can be used for the determination of the ratios between different types of globin mRNA, namely alpha 2/alpha 1, alpha/zeta, alpha/beta, gamma/beta, beta A/beta X, delta beta Lep/beta, and G gamma/A gamma. Details about these polymerase chain reaction-based methods are reviewed, and information about their usefulness in studying alpha-thalassemia, beta-thalassemia, sickle cell anemia and other beta-globin gene abnormalities, Hb Lepore heterozygosity, and heterozygosity for alpha 2- or alpha 1-globin gene mutations will be provided. The methods are also most useful in characterizing the mRNA types in single, in vitro cultured, BFU-E colonies; in colonies derived from cells of a Hb S heterozygote; for instance, the beta A- and beta(S)-mRNAs were present in all colonies and in about equal quantities, while many of those cells from a subject with a somatic cell mutant (Hb Costa Rica) contained beta A-mRNA and no beta-Costa Rica mRNA, and only a few had both types. The techniques described have considerable diagnostic value and offer a rather simple approach to the study of some of the listed diseases.
Collapse
|
45
|
Carter MS, Li S, Wilkinson MF. A splicing-dependent regulatory mechanism that detects translation signals. EMBO J 1996; 15:5965-75. [PMID: 8918474 PMCID: PMC452383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Premature termination codons (PTCs) can cause the decay of mRNAs in the nuclear fraction of mammalian cells. This enigmatic nuclear response is of interest because it suggests that translation signals do not restrict their effect to the cytoplasm, where fully assembled ribosomes reside. Here we examined the molecular mechanism for this putative nuclear response by using the T-cell receptor-beta (TCR-beta) gene, which acquires PTCs as a result of programmed rearrangements that occur during normal thymic ontogeny. We found that PTCs had little or no measurable effect on TCR-beta pre-mRNA levels, but they sharply depressed TCR-beta mature mRNA levels in the nuclear fraction of stably transfected cells. A PTC split by an intron was able to trigger the down-regulatory response, implying that PTC recognition occurs after an mRNA is at least partially spliced. However, intron deletion and addition studies demonstrated that a PTC must be followed by at least one functional (spliceable) intron to depress mRNA levels. One explanation for this downstream intron-dependence is that cytoplasmic ribosomes adjacent to nuclear pores scan mRNAs still undergoing splicing as they emerge from the nucleus. We found this explanation to be unlikely because PTCs only 8 or 10 nt upstream of a terminal intron down-regulated mRNA levels, even though this distance is too short to permit PTC recognition in the cytoplasm prior to the splicing of the downstream intron in the nucleus. Collectively, the results suggest that nonsense codon recognition may occur in the nucleus.
Collapse
Affiliation(s)
- M S Carter
- Department of Immunology, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | |
Collapse
|
46
|
Ruiz-Echevarria MJ, Peltz SW. Utilizing the GCN4 leader region to investigate the role of the sequence determinants in nonsense-mediated mRNA decay. EMBO J 1996; 15:2810-9. [PMID: 8654378 PMCID: PMC450218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, premature translation termination promotes rapid degradation of mRNAs. Accelerated decay requires the presence of specific cis-acting sequences which have been defined as downstream elements. It has been proposed that the role of the downstream element may be to promote translational reinitiation or ribosomal pausing. The GCN4 gene produces an mRNA that contains four short upstream open reading frames (uORFs) preceding the GCN4 protein-coding region in which translational initiation and reinitiation events occur. It was anticipated that these uORFs would function in a manner analogous to nonsense codons, promoting rapid degradation of the mRNA. However, the GCN4 transcript was not degraded by the nonsense-mediated mRNA decay pathway. We have investigated the role of the leader region of the GCN4 transcript in an effort to identify possible sequence elements that inactivate this decay pathway. We show that the GCN4 leader region does not harbor a downstream element needed to promote mRNA decay. In addition, using hybrid GCN4-PGK1 transcripts, we demonstrate that if a translational reinitiation signal precedes a downstream element, the mRNA will no longer be sensitive to nonsense-mediated decay. Furthermore, we demonstrate that the downstream element is functional only after a translational initiation and termination cycle has been completed but is unable to promote nonsense-mediated mRNA decay if it is situated 5' of a translational initiation site. Based on these results, the role of the downstream element will be discussed.
Collapse
Affiliation(s)
- M J Ruiz-Echevarria
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, NJ 08854, USA
| | | |
Collapse
|
47
|
Yang UC, Huang W, Flint SJ. mRNA export correlates with activation of transcription in human subgroup C adenovirus-infected cells. J Virol 1996; 70:4071-80. [PMID: 8648745 PMCID: PMC190288 DOI: 10.1128/jvi.70.6.4071-4080.1996] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To investigate the mechanisms by which viral mRNA species are distinguished from their cellular counterparts for export to the cytoplasm during the late phase of subgroup C adenovirus infection, we have examined the metabolism of several cellular and viral mRNAs in human cells productively infected by adenovirus type 5 (Ad5). Several cellular mRNAs that were refractory to, or could escape from, adenovirus-induced inhibition of export of mRNA from the nucleus have been identified. This group includes Hsp70 mRNAs synthesized upon heat shock of Ad5-infected 293 or HeLa cells during the late phase of infection. However, successful export in Ad5-infected cells is not a specific response to heat shock, for beta-tubulin and interferon-inducible mRNAs were also refractory to virus-induced export inhibition. The export of these cellular mRNAs, like that of viral late mRNAs, required the E1B 55-kDa protein. Export to the cytoplasm during the late phase of Ad5 infection of several cellular mRNAs, including members of the Hsp70 family whose export was inhibited under some, but not other, conditions, indicates that viral mRNA species cannot be selectively exported by virtue of specific sequence or structural features. Cellular and viral late mRNAs that can be exported from the nucleus to the cytoplasm were expressed from genes whose transcription was induced or activated during the late phase of Ad5 infection. Consistent with the possibility that successful export is governed by transcriptional activation in the late phase of adenovirus infection, newly synthesized viral early E1A mRNA was subject to export inhibition during the late phase of infection.
Collapse
Affiliation(s)
- U C Yang
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
48
|
Carter MS, Doskow J, Morris P, Li S, Nhim RP, Sandstedt S, Wilkinson MF. A regulatory mechanism that detects premature nonsense codons in T-cell receptor transcripts in vivo is reversed by protein synthesis inhibitors in vitro. J Biol Chem 1995; 270:28995-9003. [PMID: 7499432 DOI: 10.1074/jbc.270.48.28995] [Citation(s) in RCA: 251] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gene rearrangement during the ontogeny of T- and B-cells generates an enormous repertoire of T-cell receptor (TCR) and immunoglobulin (Ig) genes. Because of the error-prone nature of this rearrangement process, two-thirds of rearranged TCR and Ig genes are expected to be out-of-frame and thus contain premature terminations codons (ptcs). We performed sequence analysis of reverse transcriptase-polymerase chain reaction products from fetal and adult thymus and found that newly transcribed TCR-beta pre-mRNAs (intron-bearing) are frequently derived from ptc-bearing genes but such transcripts rarely accumulate as mature (fully spliced) TCR-beta transcripts. Transfection studies in the SL12.4 T-cell line showed that the presence of a ptc in any of several TCR-beta exons triggered a decrease in mRNA levels. Ptc-bearing TCR-beta transcripts were selectively depressed in levels in a cell clone that contained both an in-frame and an out-of-frame gene, thus demonstrating the allelic specificity of this down-regulatory response. Protein synthesis inhibitors with different mechanism of action (anisomysin, cycloheximide, emetine, pactamycin, puromycin, and polio virus) all reversed the down-regulatory response. Ptc-bearing transcripts were induced within 0.5 h after cycloheximide treatment. The reversal by protein synthesis inhibitors was not restricted to lymphoid cells, as shown with TCR-beta and beta-globin constructs transfected in HeLa cells. Collectively, the data suggest that the ptc-mediated mRNA decay pathway requires an unstable protein, a ribosome, or a ribosome-like entity. Protein synthesis inhibitors may be useful tools toward elucidating the molecular mechanism of ptc-mediated mRNA decay, an enigmatic response that can occur in the nuclear fraction of mammalian cells.
Collapse
Affiliation(s)
- M S Carter
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Cereghino GP, Atencio DP, Saghbini M, Beiner J, Scheffler IE. Glucose-dependent turnover of the mRNAs encoding succinate dehydrogenase peptides in Saccharomyces cerevisiae: sequence elements in the 5' untranslated region of the Ip mRNA play a dominant role. Mol Biol Cell 1995; 6:1125-43. [PMID: 8534911 PMCID: PMC301272 DOI: 10.1091/mbc.6.9.1125] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have demonstrated previously that glucose repression of mitochondrial biogenesis in Saccharomyces cerevisiae involves the control of the turnover of mRNAs for the iron protein (Ip) and flavoprotein (Fp) subunits of succinate dehydrogenase (SDH). Their half-lives are > 60 min in the presence of a nonfermentable carbon source (YPG medium) and < 5 min in glucose (YPD medium). This is a rare example in yeast in which the half-lives are > 60 min in the presence of a nonfermentable carbon source (YPG medium) and < 5 min in glucose (YPD medium). This is a rare example in yeast in which the half-life of an mRNA can be controlled by manipulating external conditions. In our current studies, a series of Ip transcripts with internal deletions as well as chimeric transcripts with heterologous sequences (internally or at the ends) have been examined, and we established that the 5'-untranslated region (5' UTR) of the Ip mRNA contains a major determinant controlling its differential turnover in YPG and YPD. Furthermore, the 5' exonuclease encoded by the XRN1 gene is required for the rapid degradation of the Ip and Fp mRNAs upon the addition of glucose. In the presence of cycloheximide the nucleolytic degradation of the Ip mRNA can be slowed down by stalled ribosomes to allow the identification of intermediates. Such intermediates have lost their 5' ends but still retain their 3' UTRs. If protein synthesis is inhibited at an early initiation step by the use of a prt1 mutation (affecting the initiation factor eIF3), the Ip and Fp mRNAs are very rapidly degraded even in YPG. Significantly, the arrest of translation by the introduction of a stable hairpin loop just upstream of the initiation codon does not alter the differential stability of the transcript in YPG and YPD. These observations suggest that a signaling pathway exists in which the external carbon source can control the turnover of mRNAs of specific mitochondrial proteins. Factors must be present that control either the activity or more likely the access of a nuclease to the select mRNAs. As a result, we propose that a competition between initiation of translation and nuclease action at the 5' end of the transcript determines the half-life of the Ip mRNA.
Collapse
Affiliation(s)
- G P Cereghino
- Department of Biology 0322, University of California, San Diego, La Jolla 92093, USA
| | | | | | | | | |
Collapse
|
50
|
Maquat LE. When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells. RNA (NEW YORK, N.Y.) 1995; 1:453-465. [PMID: 7489507 PMCID: PMC1482424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
It appears that no organism is immune to the effects of nonsense codons on mRNA abundance. The study of how nonsense codons alter RNA metabolism is still at an early stage, and our current understanding derives more from incidental vignettes than from experimental undertakings that address molecular mechanisms. Challenges for the future include identifying the gene products and RNA sequences that function in nonsense mediated RNA loss, resolving the cause and consequences of there apparently being more than one cellular site and mechanism for nonsense-mediated RNA loss, and understanding how these sites and mechanisms are related to both constitutive and specialized pathways of pre-mRNA processing and mRNA decay.
Collapse
Affiliation(s)
- L E Maquat
- Department of Human Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| |
Collapse
|