1
|
Alkailani MI, Gibbings D. The Regulation and Immune Signature of Retrotransposons in Cancer. Cancers (Basel) 2023; 15:4340. [PMID: 37686616 PMCID: PMC10486412 DOI: 10.3390/cancers15174340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Advances in sequencing technologies and the bioinformatic analysis of big data facilitate the study of jumping genes' activity in the human genome in cancer from a broad perspective. Retrotransposons, which move from one genomic site to another by a copy-and-paste mechanism, are regulated by various molecular pathways that may be disrupted during tumorigenesis. Active retrotransposons can stimulate type I IFN responses. Although accumulated evidence suggests that retrotransposons can induce inflammation, the research investigating the exact mechanism of triggering these responses is ongoing. Understanding these mechanisms could improve the therapeutic management of cancer through the use of retrotransposon-induced inflammation as a tool to instigate immune responses to tumors.
Collapse
Affiliation(s)
- Maisa I. Alkailani
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Derrick Gibbings
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| |
Collapse
|
2
|
Freeman B, White T, Kaul T, Stow EC, Baddoo M, Ungerleider N, Morales M, Yang H, Deharo D, Deininger P, Belancio V. Analysis of epigenetic features characteristic of L1 loci expressed in human cells. Nucleic Acids Res 2022; 50:1888-1907. [PMID: 35100410 PMCID: PMC8887483 DOI: 10.1093/nar/gkac013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/27/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022] Open
Abstract
Only a select few L1 loci in the human genome are expressed in any given cell line or organ, likely to minimize damage done to the genome. The epigenetic features and requirements of expressed L1 loci are currently unknown. Using human cells and comprehensive epigenetic analysis of individual expressed and unexpressed L1 loci, we determined that endogenous L1 transcription depends on a combination of epigenetic factors, including open chromatin, activating histone modifications, and hypomethylation at the L1 promoter. We demonstrate that the L1 promoter seems to require interaction with enhancer elements for optimal function. We utilize epigenetic context to predict the expression status of L1Hs loci that are poorly mappable with RNA-Seq. Our analysis identified a population of ‘transitional’ L1 loci that likely have greater potential to be activated during the epigenetic dysregulation seen in tumors and during aging because they are the most responsive to targeted CRISPR-mediated delivery of trans-activating domains. We demonstrate that an engineered increase in endogenous L1 mRNA expression increases Alu mobilization. Overall, our findings present the first global and comprehensive analysis of epigenetic status of individual L1 loci based on their expression status and demonstrate the importance of epigenetic context for L1 expression heterogeneity.
Collapse
Affiliation(s)
- Benjamin Freeman
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Travis White
- Sloan Kettering Institute for Cancer Research, NY, NY 10065, USA
| | - Tiffany Kaul
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Emily C Stow
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Melody Baddoo
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Nathan Ungerleider
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Maria Morales
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Hanlin Yang
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Dawn Deharo
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Prescott Deininger
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Victoria P Belancio
- To whom correspondence should be addressed. Tel: +1 504 988 4506; Fax: +1 504 988 1687;
| |
Collapse
|
3
|
Abstract
Long interspersed element-1s (L1s) encode 2 proteins (ORF1p and ORF2p) that preferentially mobilize (i.e., retrotranspose) their encoding messenger RNA (mRNA) transcript. ORF1p and/or ORF2p can also mobilize other cellular RNAs, including short interspersed elements (SINEs), U6 small nuclear RNA (snRNA), and mRNAs. Here, we demonstrate the RNA ligase RtcB can join U6 snRNA to L1 or other cellular RNAs to create chimeric RNAs; retrotransposition of the resultant chimeric RNAs leads to chimeric pseudogene formation; and chimeric U6/L1 RNAs are part of the transcriptome in multiple human cells. These data suggest RNA ligation contributes to the plasticity of the transcriptome and that the retrotransposition of chimeric RNAs can generate genetic variation in the human genome. Long interspersed element-1 (LINE-1 or L1) amplifies via retrotransposition. Active L1s encode 2 proteins (ORF1p and ORF2p) that bind their encoding transcript to promote retrotransposition in cis. The L1-encoded proteins also promote the retrotransposition of small-interspersed element RNAs, noncoding RNAs, and messenger RNAs in trans. Some L1-mediated retrotransposition events consist of a copy of U6 RNA conjoined to a variably 5′-truncated L1, but how U6/L1 chimeras are formed requires elucidation. Here, we report the following: The RNA ligase RtcB can join U6 RNAs ending in a 2′,3′-cyclic phosphate to L1 RNAs containing a 5′-OH in vitro; depletion of endogenous RtcB in HeLa cell extracts reduces U6/L1 RNA ligation efficiency; retrotransposition of U6/L1 RNAs leads to U6/L1 pseudogene formation; and a unique cohort of U6/L1 chimeric RNAs are present in multiple human cell lines. Thus, these data suggest that U6 small nuclear RNA (snRNA) and RtcB participate in the formation of chimeric RNAs and that retrotransposition of chimeric RNA contributes to interindividual genetic variation.
Collapse
|
4
|
Miyoshi T, Makino T, Moran JV. Poly(ADP-Ribose) Polymerase 2 Recruits Replication Protein A to Sites of LINE-1 Integration to Facilitate Retrotransposition. Mol Cell 2019; 75:1286-1298.e12. [PMID: 31473101 PMCID: PMC6754305 DOI: 10.1016/j.molcel.2019.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/23/2019] [Accepted: 07/12/2019] [Indexed: 10/26/2022]
Abstract
Long interspersed element-1 (LINE-1 or L1) retrotransposition poses a threat to genome integrity, and cells have evolved mechanisms to restrict retrotransposition. However, how cellular proteins facilitate L1 retrotransposition requires elucidation. Here, we demonstrate that single-strand DNA breaks induced by the L1 endonuclease trigger the recruitment of poly(ADP-ribose) polymerase 2 (PARP2) to L1 integration sites and that PARP2 activation leads to the subsequent recruitment of the replication protein A (RPA) complex to facilitate retrotransposition. We further demonstrate that RPA directly binds activated PARP2 through poly(ADP-ribosyl)ation and can protect single-strand L1 integration intermediates from APOBEC3-mediated cytidine deamination in vitro. Paradoxically, we provide evidence that RPA can guide APOBEC3A, and perhaps other APOBEC3 proteins, to sites of L1 integration. Thus, the interplay of L1-encoded and evolutionarily conserved cellular proteins is required for efficient retrotransposition; however, these interactions also may be exploited to restrict L1 retrotransposition in the human genome.
Collapse
Affiliation(s)
- Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Department of Stress Response, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA.
| | - Takeshi Makino
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Department of Stress Response, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA.
| |
Collapse
|
5
|
Freeman BT, Sokolowski M, Roy-Engel AM, Smither ME, Belancio VP. Identification of charged amino acids required for nuclear localization of human L1 ORF1 protein. Mob DNA 2019; 10:20. [PMID: 31080522 PMCID: PMC6501352 DOI: 10.1186/s13100-019-0159-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/10/2019] [Indexed: 01/10/2023] Open
Abstract
Background Long Interspersed Element 1 (LINE-1) is a retrotransposon that is present in 500,000 copies in the human genome. Along with Alu and SVA elements, these three retrotransposons account for more than a third of the human genome sequence. These mobile elements are able to copy themselves within the genome via an RNA intermediate, a process that can promote genome instability. LINE-1 encodes two proteins, ORF1p and ORF2p. Association of ORF1p, ORF2p and a full-length L1 mRNA in a ribonucleoprotein (RNP) particle, L1 RNP, is required for L1 retrotransposition. Previous studies have suggested that fusion of a tag to L1 proteins can interfere with L1 retrotransposition. Results Using antibodies detecting untagged human ORF1p, western blot analysis and manipulation of ORF1 sequence and length, we have identified a set of charged amino acids in the C-terminal region of ORF1p that are important in determining its subcellular localization. Mutation of 7 non-identical lysine residues is sufficient to make the resulting ORF1p to be predominantly cytoplasmic, demonstrating intrinsic redundancy of this requirement. These residues are also necessary for ORF1p to retain its association with KPNA2 nuclear pore protein. We demonstrate that this interaction is significantly reduced by RNase treatment. Using co-IP, we have also determined that human ORF1p associates with all members of the KPNA subfamily. Conclusions The prediction of NLS sequences suggested that specific sequences within ORF1p could be responsible for its subcellular localization by interacting with nuclear binding proteins. We have found that multiple charged amino acids in the C-terminus of ORF1p are involved in ORF1 subcellular localization and interaction with KPNA2 nuclear pore protein. Our data demonstrate that different amino acids can be mutated to have the same phenotypic effect on ORF1p subcellular localization, demonstrating that the net number of charged residues or protein structure, rather than their specific location, is important for the ORF1p nuclear localization. We also identified that human ORF1p interacts with all members of the KPNA family of proteins and that multiple KPNA family genes are expressed in human cell lines. Electronic supplementary material The online version of this article (10.1186/s13100-019-0159-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- B T Freeman
- 1Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| | - M Sokolowski
- 1Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| | - A M Roy-Engel
- 2Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane Cancer Center, Tulane University, New Orleans, Louisiana 70112 USA
| | - M E Smither
- 1Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| | - V P Belancio
- 1Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| |
Collapse
|
6
|
Schwertz H, Rowley JW, Schumann GG, Thorack U, Campbell RA, Manne BK, Zimmerman GA, Weyrich AS, Rondina MT. Endogenous LINE-1 (Long Interspersed Nuclear Element-1) Reverse Transcriptase Activity in Platelets Controls Translational Events Through RNA-DNA Hybrids. Arterioscler Thromb Vasc Biol 2018; 38:801-815. [PMID: 29301786 PMCID: PMC5864535 DOI: 10.1161/atvbaha.117.310552] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE One source of endogenous reverse transcriptase (eRT) activity in nucleated cells is the LINE-1/L1 (long interspersed nuclear element-1), a non-LTR retrotransposon that is implicated in the regulation of gene expression. Nevertheless, the presence and function of eRT activity and LINE-1 in human platelets, an anucleate cell, has not previously been determined. APPROACH AND RESULTS We demonstrate that human and murine platelets possess robust eRT activity and identify the source as being LINE-1 ribonucleoprotein particles. Inhibition of eRT in vitro in isolated platelets from healthy individuals or in people with HIV treated with RT inhibitors enhanced global protein synthesis and platelet activation. If HIV patients were treated with reverse transcriptase inhibitor, we found that platelets from these patients had increased basal activation. We next discovered that eRT activity in platelets controlled the generation of RNA-DNA hybrids, which serve as translational repressors. Inhibition of platelet eRT lifted this RNA-DNA hybrid-induced translational block and was sufficient to increase protein expression of target RNAs identified by RNA-DNA hybrid immunoprecipitation. CONCLUSIONS Thus, we provide the first evidence that platelets possess L1-encoded eRT activity. We also demonstrate that platelet eRT activity regulates platelet hyperreactivity and thrombosis and controls RNA-DNA hybrid formation and identify that RNA-DNA hybrids function as a novel translational control mechanism in human platelets.
Collapse
Affiliation(s)
- Hansjörg Schwertz
- From the Molecular Medicine Program (H.S., J.W.R., R.A.C., B.K.M., G.A.Z., A.S.W., M.T.R.), Department of Internal Medicine (H.S., J.W.R., G.A.Z., A.S.W., M.T.R.), and Department of Surgery, Division of Vascular Surgery (H.S.), University of Utah, Salt Lake City; Department of Internal Medicine, George E. Wahlen Salt Lake City VAMC, UT (M.T.R.); Department of Immunology and Transfusion Medicine (U.T.) and Lichtenberg-Professor for Experimental Hemostasis (H.S.), University of Greifswald, Germany; and Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany (G.G.S.).
| | - Jesse W Rowley
- From the Molecular Medicine Program (H.S., J.W.R., R.A.C., B.K.M., G.A.Z., A.S.W., M.T.R.), Department of Internal Medicine (H.S., J.W.R., G.A.Z., A.S.W., M.T.R.), and Department of Surgery, Division of Vascular Surgery (H.S.), University of Utah, Salt Lake City; Department of Internal Medicine, George E. Wahlen Salt Lake City VAMC, UT (M.T.R.); Department of Immunology and Transfusion Medicine (U.T.) and Lichtenberg-Professor for Experimental Hemostasis (H.S.), University of Greifswald, Germany; and Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany (G.G.S.)
| | - Gerald G Schumann
- From the Molecular Medicine Program (H.S., J.W.R., R.A.C., B.K.M., G.A.Z., A.S.W., M.T.R.), Department of Internal Medicine (H.S., J.W.R., G.A.Z., A.S.W., M.T.R.), and Department of Surgery, Division of Vascular Surgery (H.S.), University of Utah, Salt Lake City; Department of Internal Medicine, George E. Wahlen Salt Lake City VAMC, UT (M.T.R.); Department of Immunology and Transfusion Medicine (U.T.) and Lichtenberg-Professor for Experimental Hemostasis (H.S.), University of Greifswald, Germany; and Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany (G.G.S.)
| | - Ulrike Thorack
- From the Molecular Medicine Program (H.S., J.W.R., R.A.C., B.K.M., G.A.Z., A.S.W., M.T.R.), Department of Internal Medicine (H.S., J.W.R., G.A.Z., A.S.W., M.T.R.), and Department of Surgery, Division of Vascular Surgery (H.S.), University of Utah, Salt Lake City; Department of Internal Medicine, George E. Wahlen Salt Lake City VAMC, UT (M.T.R.); Department of Immunology and Transfusion Medicine (U.T.) and Lichtenberg-Professor for Experimental Hemostasis (H.S.), University of Greifswald, Germany; and Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany (G.G.S.)
| | - Robert A Campbell
- From the Molecular Medicine Program (H.S., J.W.R., R.A.C., B.K.M., G.A.Z., A.S.W., M.T.R.), Department of Internal Medicine (H.S., J.W.R., G.A.Z., A.S.W., M.T.R.), and Department of Surgery, Division of Vascular Surgery (H.S.), University of Utah, Salt Lake City; Department of Internal Medicine, George E. Wahlen Salt Lake City VAMC, UT (M.T.R.); Department of Immunology and Transfusion Medicine (U.T.) and Lichtenberg-Professor for Experimental Hemostasis (H.S.), University of Greifswald, Germany; and Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany (G.G.S.)
| | - Bhanu Kanth Manne
- From the Molecular Medicine Program (H.S., J.W.R., R.A.C., B.K.M., G.A.Z., A.S.W., M.T.R.), Department of Internal Medicine (H.S., J.W.R., G.A.Z., A.S.W., M.T.R.), and Department of Surgery, Division of Vascular Surgery (H.S.), University of Utah, Salt Lake City; Department of Internal Medicine, George E. Wahlen Salt Lake City VAMC, UT (M.T.R.); Department of Immunology and Transfusion Medicine (U.T.) and Lichtenberg-Professor for Experimental Hemostasis (H.S.), University of Greifswald, Germany; and Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany (G.G.S.)
| | - Guy A Zimmerman
- From the Molecular Medicine Program (H.S., J.W.R., R.A.C., B.K.M., G.A.Z., A.S.W., M.T.R.), Department of Internal Medicine (H.S., J.W.R., G.A.Z., A.S.W., M.T.R.), and Department of Surgery, Division of Vascular Surgery (H.S.), University of Utah, Salt Lake City; Department of Internal Medicine, George E. Wahlen Salt Lake City VAMC, UT (M.T.R.); Department of Immunology and Transfusion Medicine (U.T.) and Lichtenberg-Professor for Experimental Hemostasis (H.S.), University of Greifswald, Germany; and Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany (G.G.S.)
| | - Andrew S Weyrich
- From the Molecular Medicine Program (H.S., J.W.R., R.A.C., B.K.M., G.A.Z., A.S.W., M.T.R.), Department of Internal Medicine (H.S., J.W.R., G.A.Z., A.S.W., M.T.R.), and Department of Surgery, Division of Vascular Surgery (H.S.), University of Utah, Salt Lake City; Department of Internal Medicine, George E. Wahlen Salt Lake City VAMC, UT (M.T.R.); Department of Immunology and Transfusion Medicine (U.T.) and Lichtenberg-Professor for Experimental Hemostasis (H.S.), University of Greifswald, Germany; and Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany (G.G.S.)
| | - Matthew T Rondina
- From the Molecular Medicine Program (H.S., J.W.R., R.A.C., B.K.M., G.A.Z., A.S.W., M.T.R.), Department of Internal Medicine (H.S., J.W.R., G.A.Z., A.S.W., M.T.R.), and Department of Surgery, Division of Vascular Surgery (H.S.), University of Utah, Salt Lake City; Department of Internal Medicine, George E. Wahlen Salt Lake City VAMC, UT (M.T.R.); Department of Immunology and Transfusion Medicine (U.T.) and Lichtenberg-Professor for Experimental Hemostasis (H.S.), University of Greifswald, Germany; and Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany (G.G.S.)
| |
Collapse
|
7
|
Spliced integrated retrotransposed element (SpIRE) formation in the human genome. PLoS Biol 2018; 16:e2003067. [PMID: 29505568 PMCID: PMC5860796 DOI: 10.1371/journal.pbio.2003067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 03/20/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022] Open
Abstract
Human Long interspersed element-1 (L1) retrotransposons contain an internal RNA polymerase II promoter within their 5′ untranslated region (UTR) and encode two proteins, (ORF1p and ORF2p) required for their mobilization (i.e., retrotransposition). The evolutionary success of L1 relies on the continuous retrotransposition of full-length L1 mRNAs. Previous studies identified functional splice donor (SD), splice acceptor (SA), and polyadenylation sequences in L1 mRNA and provided evidence that a small number of spliced L1 mRNAs retrotransposed in the human genome. Here, we demonstrate that the retrotransposition of intra-5′UTR or 5′UTR/ORF1 spliced L1 mRNAs leads to the generation of spliced integrated retrotransposed elements (SpIREs). We identified a new intra-5′UTR SpIRE that is ten times more abundant than previously identified SpIREs. Functional analyses demonstrated that both intra-5′UTR and 5′UTR/ORF1 SpIREs lack Cis-acting transcription factor binding sites and exhibit reduced promoter activity. The 5′UTR/ORF1 SpIREs also produce nonfunctional ORF1p variants. Finally, we demonstrate that sequence changes within the L1 5′UTR over evolutionary time, which permitted L1 to evade the repressive effects of a host protein, can lead to the generation of new L1 splicing events, which, upon retrotransposition, generates a new SpIRE subfamily. We conclude that splicing inhibits L1 retrotransposition, SpIREs generally represent evolutionary “dead-ends” in the L1 retrotransposition process, mutations within the L1 5′UTR alter L1 splicing dynamics, and that retrotransposition of the resultant spliced transcripts can generate interindividual genomic variation. Long interspersed element-1 (L1) sequences comprise about 17% of the human genome reference sequence. The average human genome contains about 100 active L1s that mobilize throughout the genome by a “copy and paste” process termed retrotransposition. Active L1s encode two proteins (ORF1p and ORF2p). ORF1p and ORF2p preferentially bind to their encoding RNA, forming a ribonucleoprotein particle (RNP). During retrotransposition, the L1 RNP translocates to the nucleus, where the ORF2p endonuclease makes a single-strand nick in target site DNA that exposes a 3′ hydroxyl group in genomic DNA. The 3′ hydroxyl group then is used as a primer by the ORF2p reverse transcriptase to copy the L1 RNA into cDNA, leading to the integration of an L1 copy at a new genomic location. The evolutionary success of L1 requires the faithful retrotransposition of full-length L1 mRNAs; thus, it was surprising to find that a small number of L1 retrotransposition events are derived from spliced L1 mRNAs. By using genetic, biochemical, and computational approaches, we demonstrate that spliced L1 mRNAs can undergo an initial round of retrotransposition, leading to the generation of spliced integrated retrotransposed elements (SpIREs). SpIREs represent about 2% of previously annotated full-length primate-specific L1s in the human genome reference sequence. However, because splicing leads to intra-L1 deletions that remove critical sequences required for L1 expression, SpIREs generally cannot undergo subsequent rounds of retrotransposition and can be considered “dead on arrival” insertions. Our data further highlight how genetic conflict between L1 and its host has influenced L1 expression, L1 retrotransposition, and L1 splicing dynamics over evolutionary time.
Collapse
|
8
|
Condensin II and GAIT complexes cooperate to restrict LINE-1 retrotransposition in epithelial cells. PLoS Genet 2017; 13:e1007051. [PMID: 29028794 PMCID: PMC5656329 DOI: 10.1371/journal.pgen.1007051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/25/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022] Open
Abstract
LINE-1 (L1) retrotransposons can mobilize (retrotranspose) within the human genome, and mutagenic de novo L1 insertions can lead to human diseases, including cancers. As a result, cells are actively engaged in preventing L1 retrotransposition. This work reveals that the human Condensin II complex restricts L1 retrotransposition in both non-transformed and transformed cell lines through inhibition of L1 transcription and translation. Condensin II subunits, CAP-D3 and CAP-H2, interact with members of the Gamma-Interferon Activated Inhibitor of Translation (GAIT) complex including the glutamyl-prolyl-tRNA synthetase (EPRS), the ribosomal protein L13a, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and NS1 associated protein 1 (NSAP1). GAIT has been shown to inhibit translation of mRNAs encoding inflammatory proteins in myeloid cells by preventing the binding of the translation initiation complex, in response to Interferon gamma (IFN-γ). Excitingly, our data show that Condensin II promotes complexation of GAIT subunits. Furthermore, RNA-Immunoprecipitation experiments in epithelial cells demonstrate that Condensin II and GAIT subunits associate with L1 RNA in a co-dependent manner, independent of IFN-γ. These findings suggest that cooperation between the Condensin II and GAIT complexes may facilitate a novel mechanism of L1 repression, thus contributing to the maintenance of genome stability in somatic cells.
Collapse
|
9
|
Reyes-Reyes EM, Ramos IN, Tavera-Garcia MA, Ramos KS. The aryl hydrocarbon receptor agonist benzo(a)pyrene reactivates LINE-1 in HepG2 cells through canonical TGF-β1 signaling: implications in hepatocellular carcinogenesis. Am J Cancer Res 2016; 6:1066-1077. [PMID: 27293999 PMCID: PMC4889720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 06/06/2023] Open
Abstract
Long interspersed nuclear element-1 (L1) is a genetic element that mobilizes throughout the mammalian genome via retrotransposition and damages host DNA via mutational insertions, chromosomal rearrangements, and reprogramming of gene expression. The cellular mechanisms responsible for aberrant L1 expression during cancer pathogenesis are unclear. Previously, we have shown that L1 reactivation in several human cell lines is dependent upon the activation of aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor member of the PAS superfamily of proteins. We also showed that ectopic expression of L1 reprograms the HepG2 genome leading to epithelial-to-mesenchymal transition (EMT). Here we present evidence that reactivation of L1 and modulation of EMT in HepG2 cells by the AhR ligand benzo(a)pyrene (BaP) is effected through the canonical TGF-β1 signaling pathway. BaP increased TGF-β1 mRNA, SMAD2 phosphorylation and decreased expression of E-Cadherin. The functional relevance of these interactions and the involvement of TGFBR1/ALK5 and SMAD2/3 were confirmed by siRNA interference. Furthermore, expression of L1-encoded ORF1p was positively correlated with the activation of TGF-β1 signaling in human hepatocarcinoma samples at various stages of malignant progression. These results indicate that ligand-mediated AhR activation regulates L1 via canonical TGF-β1 signaling and raise important questions about the molecular etiology of human hepatocarcinomas.
Collapse
Affiliation(s)
- Elsa M Reyes-Reyes
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine Tucson, Arizona 85721, USA
| | - Irma N Ramos
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine Tucson, Arizona 85721, USA
| | - Marco A Tavera-Garcia
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine Tucson, Arizona 85721, USA
| | - Kenneth S Ramos
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine Tucson, Arizona 85721, USA
| |
Collapse
|
10
|
A 3' Poly(A) Tract Is Required for LINE-1 Retrotransposition. Mol Cell 2015; 60:728-741. [PMID: 26585388 DOI: 10.1016/j.molcel.2015.10.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 11/22/2022]
Abstract
L1 retrotransposons express proteins (ORF1p and ORF2p) that preferentially mobilize their encoding RNA in cis, but they also can mobilize Alu RNA and, more rarely, cellular mRNAs in trans. Although these RNAs differ in sequence, each ends in a 3' polyadenosine (poly(A)) tract. Here, we replace the L1 polyadenylation signal with sequences derived from a non-polyadenylated long non-coding RNA (MALAT1), which can form a stabilizing triple helix at the 3' end of an RNA. L1/MALAT RNAs accumulate in cells, lack poly(A) tails, and are translated; however, they cannot retrotranspose in cis. Remarkably, the addition of a 16 or 40 base poly(A) tract downstream of the L1/MALAT triple helix restores retrotransposition in cis. The presence of a poly(A) tract also allows ORF2p to bind and mobilize RNAs in trans. Thus, a 3' poly(A) tract is critical for the retrotransposition of sequences that comprise approximately one billion base pairs of human DNA.
Collapse
|
11
|
Moldovan JB, Moran JV. The Zinc-Finger Antiviral Protein ZAP Inhibits LINE and Alu Retrotransposition. PLoS Genet 2015; 11:e1005121. [PMID: 25951186 PMCID: PMC4423928 DOI: 10.1371/journal.pgen.1005121] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/03/2015] [Indexed: 11/30/2022] Open
Abstract
Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous retrotransposon in the human genome. To investigate the interplay between the L1 retrotransposition machinery and the host cell, we used co-immunoprecipitation in conjunction with liquid chromatography and tandem mass spectrometry to identify cellular proteins that interact with the L1 first open reading frame-encoded protein, ORF1p. We identified 39 ORF1p-interacting candidate proteins including the zinc-finger antiviral protein (ZAP or ZC3HAV1). Here we show that the interaction between ZAP and ORF1p requires RNA and that ZAP overexpression in HeLa cells inhibits the retrotransposition of engineered human L1 and Alu elements, an engineered mouse L1, and an engineered zebrafish LINE-2 element. Consistently, siRNA-mediated depletion of endogenous ZAP in HeLa cells led to a ~2-fold increase in human L1 retrotransposition. Fluorescence microscopy in cultured human cells demonstrated that ZAP co-localizes with L1 RNA, ORF1p, and stress granule associated proteins in cytoplasmic foci. Finally, molecular genetic and biochemical analyses indicate that ZAP reduces the accumulation of full-length L1 RNA and the L1-encoded proteins, yielding mechanistic insight about how ZAP may inhibit L1 retrotransposition. Together, these data suggest that ZAP inhibits the retrotransposition of LINE and Alu elements. Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous retrotransposon in the human genome. L1s comprise ~17% of human DNA and it is estimated that an average human genome has ~80–100 active L1s. L1 moves throughout the genome via a “copy-and-paste” mechanism known as retrotransposition. L1 retrotransposition is known to cause mutations; thus, it stands to reason that the host cell has evolved mechanisms to protect the cell from unabated retrotransposition. Here, we demonstrate that the zinc-finger antiviral protein (ZAP) inhibits the retrotransposition of human L1 and Alu retrotransposons, as well as related retrotransposons from mice and zebrafish. Biochemical and genetic data suggest that ZAP interacts with L1 RNA. Fluorescent microscopy demonstrates that ZAP associates with L1 in cytoplasmic foci that co-localize with stress granule proteins. Mechanistic analyses suggest that ZAP reduces the expression of full-length L1 RNA and the L1-encoded proteins, thereby providing mechanistic insight for how ZAP may restricts retrotransposition. Importantly, these data suggest that ZAP initially may have evolved to combat endogenous retrotransposons and subsequently was co-opted as a viral restriction factor.
Collapse
Affiliation(s)
- John B. Moldovan
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (JBM); (JVM)
| | - John V. Moran
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Departments of Human Genetics and Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (JBM); (JVM)
| |
Collapse
|
12
|
Bojang P, Anderton MJ, Roberts RA, Ramos KS. De novo LINE-1 retrotransposition in HepG2 cells preferentially targets gene poor regions of chromosome 13. Genomics 2014; 104:96-104. [PMID: 25043885 PMCID: PMC4157570 DOI: 10.1016/j.ygeno.2014.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 07/01/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
Abstract
Long interspersed nuclear elements (Line-1 or L1s) account for ~17% of the human genome. While the majority of human L1s are inactive, ~80-100 elements remain retrotransposition competent and mobilize through RNA intermediates to different locations within the genome. De novo insertions of L1s account for polymorphic variation of the human genome and disruption of target loci at their new location. In the present study, fluorescence in situ hybridization and DNA sequencing were used to characterize retrotransposition profiles of L1(RP) in cultured human HepG2 cells. While expression of synthetic L1(RP) was associated with full-length and truncated insertions throughout the entire genome, a strong preference for gene-poor regions, such as those found in chromosome 13 was observed for full-length insertions. These findings shed light into L1 targeting mechanisms within the human genome and question the putative randomness of L1 retrotransposition.
Collapse
Affiliation(s)
- Pasano Bojang
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Mark J Anderton
- Department of Toxicology Sciences, Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - Ruth A Roberts
- Department of Toxicology Sciences, Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - Kenneth S Ramos
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, USA; Center for Environmental Genomics and Integrative Biology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
13
|
Peddigari S, Li PWL, Rabe JL, Martin SL. hnRNPL and nucleolin bind LINE-1 RNA and function as host factors to modulate retrotransposition. Nucleic Acids Res 2013; 41:575-85. [PMID: 23161687 PMCID: PMC3592465 DOI: 10.1093/nar/gks1075] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 10/09/2012] [Accepted: 10/13/2012] [Indexed: 12/18/2022] Open
Abstract
Long INterspersed Element one (LINE-1, or L1), is a widely distributed, autonomous retrotransposon in mammalian genomes. During retrotransposition, L1 RNA functions first as a dicistronic mRNA and then as a template for cDNA synthesis. Previously, we defined internal ribosome entry sequences (IRESs) upstream of both ORFs (ORF1 and ORF2) in the dicistronic mRNA encoded by mouse L1. Here, RNA affinity chromatography was used to isolate cellular proteins that bind these regions of L1 RNA. Four proteins, the heterogeneous nuclear ribonucleoproteins (hnRNPs) R, Q and L, and nucleolin (NCL), appeared to interact specifically with the ORF2 IRES. These were depleted from HeLa cells to examine their effects on L1 IRES-mediated translation and L1 retrotransposition. NCL knockdown specifically reduced the ORF2 IRES activity, L1 and L1-assisted Alu retrotransposition without altering L1 RNA or protein abundance. These findings are consistent with NCL acting as an IRES trans-acting factor (ITAF) for ORF2 translation and hence a positive host factor for L1 retrotransposition. In contrast, hnRNPL knockdown dramatically increased L1 retrotransposition as well as L1 RNA and ORF1 protein, indicating that this cellular protein normally interferes with retrotransposition. Thus, hnRNPL joins a small, but growing list of cellular proteins that are potent negative regulators of L1 retrotransposition.
Collapse
Affiliation(s)
- Suresh Peddigari
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, PO Box 6511, MS 8108, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
14
|
Beck CR, Garcia-Perez JL, Badge RM, Moran JV. LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet 2011; 12:187-215. [PMID: 21801021 DOI: 10.1146/annurev-genom-082509-141802] [Citation(s) in RCA: 425] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The completion of the human genome reference sequence ushered in a new era for the study and discovery of human transposable elements. It now is undeniable that transposable elements, historically dismissed as junk DNA, have had an instrumental role in sculpting the structure and function of our genomes. In particular, long interspersed element-1 (LINE-1 or L1) and short interspersed elements (SINEs) continue to affect our genome, and their movement can lead to sporadic cases of disease. Here, we briefly review the types of transposable elements present in the human genome and their mechanisms of mobility. We next highlight how advances in DNA sequencing and genomic technologies have enabled the discovery of novel retrotransposons in individual genomes. Finally, we discuss how L1-mediated retrotransposition events impact human genomes.
Collapse
Affiliation(s)
- Christine R Beck
- Department of Human Genetics, University of MIchigan Medical School, Ann Arbor, Michigan 48109-5618, USA.
| | | | | | | |
Collapse
|
15
|
Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase. Proc Natl Acad Sci U S A 2011; 108:20345-50. [PMID: 21940498 DOI: 10.1073/pnas.1100275108] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Long interspersed element-1 (LINE-1 or L1) retrotransposons encode two proteins (ORF1p and ORF2p) that contain activities required for conventional retrotransposition by a mechanism termed target-site primed reverse transcription. Previous experiments in XRCC4 or DNA protein kinase catalytic subunit-deficient CHO cell lines, which are defective for the nonhomologous end-joining DNA repair pathway, revealed an alternative endonuclease-independent (ENi) pathway for L1 retrotransposition. Interestingly, some ENi retrotransposition events in DNA protein kinase catalytic subunit-deficient cells are targeted to dysfunctional telomeres. Here we used an in vitro assay to detect L1 reverse transcriptase activity to demonstrate that wild-type or endonuclease-defective L1 ribonucleoprotein particles can use oligonucleotide adapters that mimic telomeric ends as primers to initiate the reverse transcription of L1 mRNA. Importantly, these ribonucleoprotein particles also contain a nuclease activity that can process the oligonucleotide adapters before the initiation of reverse transcription. Finally, we demonstrate that ORF1p is not strictly required for ENi retrotransposition at dysfunctional telomeres. Thus, these data further highlight similarities between the mechanism of ENi L1 retrotransposition and telomerase.
Collapse
|
16
|
Wissing S, Montano M, Garcia-Perez JL, Moran JV, Greene WC. Endogenous APOBEC3B restricts LINE-1 retrotransposition in transformed cells and human embryonic stem cells. J Biol Chem 2011; 286:36427-37. [PMID: 21878639 DOI: 10.1074/jbc.m111.251058] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the APOBEC3 (A3) family of cytidine deaminase enzymes act as host defense mechanisms limiting both infections by exogenous retroviruses and mobilization of endogenous retrotransposons. Previous studies revealed that the overexpression of some A3 proteins could restrict engineered human Long INterspersed Element-1 (LINE-1 or L1) retrotransposition in HeLa cells. However, whether endogenous A3 proteins play a role in restricting L1 retrotransposition remains largely unexplored. Here, we show that HeLa cells express endogenous A3B and A3C, whereas human embryonic stem cells (hESCs) express A3B, A3C, A3DE, A3F, and A3G. To study the relative contribution of endogenous A3 proteins in restricting L1 retrotransposition, we first generated small hairpin RNAs (shRNAs) to suppress endogenous A3 mRNA expression, and then assessed L1 mobility using a cell-based L1 retrotransposition assay. We demonstrate that in both HeLa and hESCs, shRNA-based knockdown of A3B promotes a ∼2-3.7-fold increase in the retrotransposition efficiency of an engineered human L1. Knockdown of the other A3s produced no significant increase in L1 activity. Thus, A3B appears to restrict engineered L1 retrotransposition in a broad range of cell types, including pluripotent cells.
Collapse
Affiliation(s)
- Silke Wissing
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California 94158, USA
| | | | | | | | | |
Collapse
|
17
|
Hedges DJ, Belancio VP. Restless genomes humans as a model organism for understanding host-retrotransposable element dynamics. ADVANCES IN GENETICS 2011; 73:219-62. [PMID: 21310298 DOI: 10.1016/b978-0-12-380860-8.00006-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since their initial discovery in maize, there have been various attempts to categorize the relationship between transposable elements (TEs) and their host organisms. These have ranged from TEs being selfish parasites to their role as essential, functional components of organismal biology. Research over the past several decades has, in many respects, only served to complicate the issue even further. On the one hand, investigators have amassed substantial evidence concerning the negative effects that TE-mutagenic activity can have on host genomes and organismal fitness. On the other hand, we find an increasing number of examples, across several taxa, of TEs being incorporated into functional biological roles for their host organism. Some 45% of our own genomes are comprised of TE copies. While many of these copies are dormant, having lost their ability to mobilize, several lineages continue to actively proliferate in modern human populations. With its complement of ancestral and active TEs, the human genome exhibits key aspects of the host-TE dynamic that has played out since early on in organismal evolution. In this review, we examine what insights the particularly well-characterized human system can provide regarding the nature of the host-TE interaction.
Collapse
Affiliation(s)
- Dale J Hedges
- Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | |
Collapse
|
18
|
Ludwig AL, Hershey JWB, Hagerman PJ. Initiation of translation of the FMR1 mRNA Occurs predominantly through 5'-end-dependent ribosomal scanning. J Mol Biol 2011; 407:21-34. [PMID: 21237174 DOI: 10.1016/j.jmb.2011.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 01/17/2023]
Abstract
The fragile X mental retardation 1 (FMR1) gene contains a CGG repeat within its 5' untranslated region (5'UTR) that, when expanded to 55-200 CGG repeats (premutation allele), can result in the late-onset neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome. The CGG repeat is expected to form a highly stable secondary structure that is capable of inhibiting 5'-cap-dependent translation. Paradoxically, translation in vivo is only mildly impaired within the premutation range, suggesting that other modes of translation initiation may be operating. To address this issue, we translated in vitro a set of reporter mRNAs containing between 0 and 99 CGG repeats in either native (FMR1) or unrelated (heterologous) 5'UTR context. The 5'-cap dependence of translation was assessed by inserting a stable hairpin (HP) near the 5' end of the mRNAs. The results of the current studies indicate that translation initiation of the FMR1 mRNA occurs primarily by scanning, with little evidence of internal ribosome entry or shunting. Additionally, the efficiency of translation initiation depends on transcription start site selection, with the shorter 5'UTR (downstream transcription start site I) translating with greater efficiency compared to the longer mRNA (start site III) for all CGG-repeat elements studied. Lastly, an HP previously shown to block translation gave differing results depending on the 5'UTR context, in one case initiating translation from within the HP.
Collapse
Affiliation(s)
- Anna L Ludwig
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
| | | | | |
Collapse
|
19
|
Abstract
The average human genome contains a small cohort of active L1 retrotransposons that encode two proteins (ORF1p and ORF2p) required for their mobility (i.e., retrotransposition). Prior studies demonstrated that human ORF1p, L1 RNA, and an ORF2p-encoded reverse transcriptase activity are present in ribonucleoprotein (RNP) complexes. However, the inability to physically detect ORF2p from engineered human L1 constructs has remained a technical challenge in the field. Here, we have employed an epitope/RNA tagging strategy with engineered human L1 retrotransposons to identify ORF1p, ORF2p, and L1 RNA in a RNP complex. We next used this system to assess how mutations in ORF1p and/or ORF2p impact RNP formation. Importantly, we demonstrate that mutations in the coiled-coil domain and RNA recognition motif of ORF1p, as well as the cysteine-rich domain of ORF2p, reduce the levels of ORF1p and/or ORF2p in L1 RNPs. Finally, we used this tagging strategy to localize the L1–encoded proteins and L1 RNA to cytoplasmic foci that often were associated with stress granules. Thus, we conclude that a precise interplay among ORF1p, ORF2p, and L1 RNA is critical for L1 RNP assembly, function, and L1 retrotransposition. Long Interspersed Element-1 (LINE-1 or L1) sequences are the predominant class of autonomous retrotransposons in the human genome and comprise an astounding 17% of human DNA. Although the majority of L1s are considered to be “dead,” an average human genome contains ∼80–100 active L1s. Active L1s encode two proteins (ORF1p and ORF2p) that are required for mobility (retrotransposition) by a “copy and paste” mechanism termed target-site primed reverse transcription. Prior experiments suggested that ORF1p, ORF2p reverse transcriptase activity, and L1 mRNA associate in ribonucleoprotein (RNP) particles and that RNP formation is a necessary step in L1 retrotransposition. However, the difficulty in detecting ORF2p from engineered human L1s has prevented a thorough understanding of its role in L1 retrotransposition. Here, we have exploited epitope and/or RNA–tagging strategies to detect and characterize a “basal” RNP complex from engineered human L1s. We also expanded on previous studies and characterized how mutations in conserved functional domains of ORF1p and ORF2p can adversely affect L1 RNP formation/function. Finally, our strategy allowed us to detect the L1–encoded proteins and L1 RNA in cytoplasmic foci. Thus, we have developed and employed a system to gain greater understanding of LINE-1 retrotransposition at the molecular level.
Collapse
|
20
|
Chavali VRM, Sommer JR, Petters RM, Ayyagari R. Identification of a promoter for the human C1Q-tumor necrosis factor-related protein-5 gene associated with late-onset retinal degeneration. Invest Ophthalmol Vis Sci 2010; 51:5499-507. [PMID: 20554618 DOI: 10.1167/iovs.10-5543] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The Complement-1q tumor necrosis factor-related protein 5 (C1QTNF5/CTRP5) gene is located in the 3' untranslated region of the Membrane Frizzled Related Protein (MFRP) gene, and these two genes are reported to be dicistronic. The authors examined the 5' upstream sequence of CTRP5 for the presence of a promoter regulating the expression of this gene. METHODS The sequence upstream of the translational start site of human CTRP5 (hCTRP5) was analyzed by Promoter Inspector software. A series of plasmids containing segments of hCTRP5 putative promoter sequence (-29 bp to -3.6 kb) upstream of the luciferase gene were generated. Cells were transiently transfected with these plasmids, and luciferase activity was measured. 5' RACE analysis was performed to determine the functional transcription start site. V5 tagged-pig CTRP5 (pCTRP5) gene, cloned downstream of the hCTRP5 putative promoter, was expressed in a human retinal cell line (ARPE-19) and a Chinese hamster ovary cell line (CHO-K1) to study the functionality of the putative promoter. RESULTS Bioinformatic analysis identified a putative promoter region between nt -1322 and +1 sequence of hCTRP5. 5' RACE analysis revealed the presence of the transcriptional start site (TSS) at 62 bp upstream of the start codon in the CTRP5. The 1.3-kb sequence of the hCTRP5 predicted promoter produced higher levels of luciferase activity, indicating the strength of the cloned CTRP5 promoter. The promoter sequence between nt -1322 bp to -29 bp upstream of the first ATG of CTRP5 was found to be essential for this promoter activity. The predicted hCTRP5 promoter was found to control the expression of V5-tagged pCTRP5 and nuclear GFP, indicating that the promoter was functional. CONCLUSIONS This study revealed the presence of a functional promoter for the CTRP5 gene located 5' of its start site. Understanding the regulation of CTRP5 gene transcription may provide insights into the possible role of CTRP5 in the retina and the pathology underlying late-onset retinal degeneration caused by mutations in this gene. In addition, these studies will determine whether CTRP5 and MFRP are functionally dicistronic.
Collapse
Affiliation(s)
- Venkata R M Chavali
- Department of Ophthalmology, University of California San Diego, La Jolla, California, USA
| | | | | | | |
Collapse
|
21
|
Crow MK. Long interspersed nuclear elements (LINE-1): potential triggers of systemic autoimmune disease. Autoimmunity 2010; 43:7-16. [PMID: 19961365 DOI: 10.3109/08916930903374865] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recent advances have identified immune complexes containing nucleic acids as stimuli for toll-like receptors and inducers of type I interferon (IFN). While a similar mechanism may serve to amplify immune system activation and production of inflammatory mediators in vivo in the context of systemic autoimmune diseases, the initial triggers of autoimmunity have not been defined. In this review, we describe a category of potential inducers of autoimmunity, the endogenous retroelements, with a particular focus on long interspersed nuclear elements (LINE-1, L1). Increased expression of L1 transcripts or decreased degradation of L1 DNA or RNA could provide potent stimuli for an innate immune response, priming of the immune system, and induction of autoimmunity and inflammation. Genomic and genetic variations among individuals, sex-related differences in L1 regulation, and environmental triggers are among the potential mechanisms that might account for increased L1 expression. Induction of type I IFN by L1-enriched nucleic acids through TLR-independent pathways could represent a first step in the complex series of events leading to systemic autoimmune disease.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York 10021, USA.
| |
Collapse
|
22
|
Belancio VP, Roy-Engel AM, Pochampally RR, Deininger P. Somatic expression of LINE-1 elements in human tissues. Nucleic Acids Res 2010; 38:3909-22. [PMID: 20215437 PMCID: PMC2896524 DOI: 10.1093/nar/gkq132] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
LINE-1 expression damages host DNA via insertions and endonuclease-dependent DNA double-strand breaks (DSBs) that are highly toxic and mutagenic. The predominant tissue of LINE-1 expression has been considered to be the germ line. We show that both full-length and processed L1 transcripts are widespread in human somatic tissues and transformed cells, with significant variation in both L1 expression and L1 mRNA processing. This is the first demonstration that RNA processing is a major regulator of L1 activity. Many tissues also produce translatable spliced transcript (SpORF2). An Alu retrotransposition assay, COMET assays and 53BP1 foci staining show that the SpORF2 product can support functional ORF2 protein expression and can induce DNA damage in normal cells. Tests of the senescence-associated beta-galactosidase expression suggest that expression of exogenous full-length L1, or the SpORF2 mRNA alone in human fibroblasts and adult stem cells triggers a senescence-like phenotype, which is one of the reported responses to DNA damage. In contrast to previous assumptions that L1 expression is germ line specific, the increased spectrum of tissues exposed to L1-associated damage suggests a role for L1 as an endogenous mutagen in somatic tissues. These findings have potential consequences for the whole organism in the form of cancer and mammalian aging.
Collapse
Affiliation(s)
- Victoria P Belancio
- Department of Structural and Cellular Biology, Tulane School of Medicine and Tulane Center for Aging, Tulane University, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
23
|
Goodier JL, Mandal PK, Zhang L, Kazazian HH. Discrete subcellular partitioning of human retrotransposon RNAs despite a common mechanism of genome insertion. Hum Mol Genet 2010; 19:1712-25. [PMID: 20147320 DOI: 10.1093/hmg/ddq048] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Despite the immense significance retrotransposons have had for genome evolution much about their biology is unknown, including the processes of forming their ribonucleoprotein (RNP) particles and transporting them about the cell. Suppression of retrotransposon expression, together with the presence of retrotransposon sequence within numerous mRNAs, makes tracking endogenous L1 RNP particles in cells problematic. We overcame these difficulties by assaying in living and fixed cells tagged-RNPs generated from constructs expressing retrotransposition-competent L1s. In this way, we demonstrate for the first time the subcellular colocalization of L1 RNA and proteins ORF1p and ORF2p, and show their targeting together to cytoplasmic foci. Foci are often associated with markers of cytoplasmic stress granules. Furthermore, mutation analyses reveal that ORF1p can direct L1 RNP distribution within the cell. We also assayed RNA localization of the non-autonomous retrotransposons Alu and SVA. Despite a requirement for the L1 integration machinery, each manifests unique features of subcellular RNA distribution. In nuclei Alu RNA forms small round foci partially associated with marker proteins for coiled bodies, suborganelles involved in the processing of non-coding RNAs. SVA RNA patterning is distinctive, being cytoplasmic but without prominent foci and concentrated in large nuclear aggregates that often ring nucleoli. Such variability predicts significant differences in the life cycles of these elements.
Collapse
Affiliation(s)
- John L Goodier
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
24
|
Wang GS, Wang MW, Wu BY, Yang XY, Wang WH, You WD. LINE-1 family member GCRG123 gene is up-regulated in human gastric signet-ring cell carcinoma. World J Gastroenterol 2008; 14:758-63. [PMID: 18205268 PMCID: PMC2684005 DOI: 10.3748/wjg.14.758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the expression profiles of a human gastric-cancer-related gene, GCRG123, in human gastric signet-ring cell carcinoma tissues, and to perform bioinformatics analysis on GCRG123.
METHODS: In situ hybridization was used to explore the GCRG123 expression pattern in paraffin-embedded gastric tissues, including 15 cases of signet-ring cell carcinoma, 15 of intestinal-type adenocarcinoma, and 15 of normal gastric mucosa. Northern blotting was used to analyze the differences in GCRG123 expression between stomach signet-ring cell carcinoma and intestinal-type adenocarcinoma tissues. Online software, including BLAST, Multalin and BLAT, were applied for bioinformatics analysis. National Center for Biotechnology Information (NCBI) and the University of California Santa Cruz (UCSC) databases were used for the analyses.
RESULTS: The in situ hybridization signal appeared as blue precipitates restricted to the cytoplasm. Ten out of 15 cases of gastric signet ring cell carcinoma, normal gastric mucosal epithelium and pyloric glands showed high GCRG123 expression. Low GCRG123 expression was observed in gastric intestinal-type adenocarcinoma and normal gastric glands. Northern blotting revealed that GCRG123 was up-regulated in signet-ring cell carcinoma tissue but down-regulated in intestinal-type adenocarcinoma tissue. BLAST and Multalin analyses revealed that the GCRG123 sequence had 92% similarity with the ORF2 sequence of human long interspersed nuclear element retrotransposons (LINE-1, L1). BLAT analysis indicated that GCRG123 mapped to all chromosomes. GCRG123 was found to integrate in the intron-17 and -23 of Rb, 5’ flanking region of IL-2 and clotting factor IX genes.
CONCLUSION: GCRG123, an active member of the L1 family, was up-regulated in human gastric signet-ring cell carcinoma.
Collapse
|
25
|
Kirilyuk A, Tolstonog GV, Damert A, Held U, Hahn S, Löwer R, Buschmann C, Horn AV, Traub P, Schumann GG. Functional endogenous LINE-1 retrotransposons are expressed and mobilized in rat chloroleukemia cells. Nucleic Acids Res 2007; 36:648-65. [PMID: 18073200 PMCID: PMC2241872 DOI: 10.1093/nar/gkm1045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
LINE-1 (L1) is a highly successful autonomous non-LTR retrotransposon and a major force shaping mammalian genomes. Although there are about 600 000 L1 copies covering 23% of the rat genome, full-length rat L1s (L1Rn) with intact open reading frames (ORFs) representing functional master copies for retrotransposition have not been identified yet. In conjunction with studies to elucidate the role of L1 retrotransposons in tumorigenesis, we isolated and characterized 10 different cDNAs from transcribed full-length L1Rn elements in rat chloroleukemia (RCL) cells, each encoding intact ORF1 proteins (ORF1p). We identified the first functional L1Rn retrotransposon from this pool of cDNAs, determined its activity in HeLa cells and in the RCL cell line the cDNAs originated from and demonstrate that it is mobilized in the tumor cell line in which it is expressed. Furthermore, we generated monoclonal antibodies directed against L1Rn ORF1 and ORF2-encoded recombinant proteins, analyzed the expression of L1-encoded proteins and found ORF1p predominantly in the nucleus. Our results support the hypothesis that the reported explosive amplification of genomic L1Rn sequences after their transcriptional activation in RCL cells is based on L1 retrotransposition. Therefore, L1 activity might be one cause for genomic instability observed during the progression of leukemia.
Collapse
Affiliation(s)
- Alexander Kirilyuk
- Max-Planck-Institut für Zellbiologie, Rosenhof, D-68526 Ladenburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Goodwin TJD, Busby JN, Poulter RTM. A yeast model for target-primed (non-LTR) retrotransposition. BMC Genomics 2007; 8:263. [PMID: 17683538 PMCID: PMC1965478 DOI: 10.1186/1471-2164-8-263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 08/03/2007] [Indexed: 01/27/2023] Open
Abstract
Background Target-primed (non-LTR) retrotransposons, such as the human L1 element, are mobile genetic elements found in many eukaryotic genomes. They are often present in large numbers and their retrotransposition can cause mutations and genomic rearrangements. Despite their importance, many aspects of their replication are not well understood. Results We have developed a yeast model system for studying target-primed retrotransposons. This system uses the Zorro3 element from Candida albicans. A cloned copy of Zorro3, tagged with a retrotransposition indicator gene, retrotransposes at a high frequency when introduced into an appropriate C. albicans host strain. Retrotransposed copies of the tagged element exhibit similar features to the native copies, indicating that the natural retrotransposition pathway is being used. Retrotransposition is dependent on the products of the tagged element's own genes and is highly temperature-regulated. The new assay permits the analysis of the effects of specific mutations introduced into the cloned element. Conclusion This Zorro3 retrotransposition assay system complements previously available target-primed retrotransposition assays. Due to the relative simplicity of the growth, manipulation and analysis of yeast cells, the system should advance our understanding of target-primed retrotransposition.
Collapse
Affiliation(s)
| | - Jason N Busby
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
27
|
Abstract
Long interspersed nucleotide element (LINE)-1 retrotransposon (L1) has emerged as the largest contributor to mammalian genome mass, responsible for over 35% of the human genome. Differences in the number and activity levels of L1s contribute to interindividual variation in humans, both by affecting an individual's likelihood of acquiring new L1-mediated mutations, as well as by differentially modifying gene expression. Here, we report on recent progress in understanding L1 biology, with a focus on mechanisms of L1-mediated disease. We discuss known details of L1 life cycle, including L1 structure, transcriptional regulation, and the mechanisms of translation and retrotransposition. Current views on cell type specificity, timing, and control of retrotransposition are put forth. Finally, we discuss the role of L1 as a mutagen, using the latest findings in L1 biology to illuminate molecular mechanisms of L1-mediated gene disruption.
Collapse
Affiliation(s)
- Daria V Babushok
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6145, USA
| | | |
Collapse
|
28
|
Dmitriev SE, Andreev DE, Terenin IM, Olovnikov IA, Prassolov VS, Merrick WC, Shatsky IN. Efficient translation initiation directed by the 900-nucleotide-long and GC-rich 5' untranslated region of the human retrotransposon LINE-1 mRNA is strictly cap dependent rather than internal ribosome entry site mediated. Mol Cell Biol 2007; 27:4685-97. [PMID: 17470553 PMCID: PMC1951496 DOI: 10.1128/mcb.02138-06] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retrotransposon L1 is a mobile genetic element of the LINE family that is extremely widespread in the mammalian genome. It encodes a dicistronic mRNA, which is exceptionally rare among eukaryotic cellular mRNAs. The extremely long and GC-rich L1 5' untranslated region (5'UTR) directs synthesis of numerous copies of RNA-binding protein ORF1p per mRNA. One could suggest that the 5'UTR of L1 mRNA contained a powerful internal ribosome entry site (IRES) element. Using transfection of cultured cells with the polyadenylated monocistronic (L1 5'UTR-Fluc) or bicistronic (Rluc-L1 5'UTR-Fluc) RNA constructs, capped or uncapped, it has been firmly established that the 5'UTR of L1 does not contain an IRES. Uncapping reduces the initiation activity of the L1 5'UTR to that of background. Moreover, the translation is inhibited by upstream AUG codons in the 5'UTR. Nevertheless, this cap-dependent initiation activity of the L1 5'UTR was unexpectedly high and resembles that of the beta-actin 5'UTR (84 nucleotides long). Strikingly, the deletion of up to 80% of the nucleotide sequence of the L1 5'UTR, with most of its stem loops, does not significantly change its translation initiation efficiency. These data can modify current ideas on mechanisms used by 40S ribosomal subunits to cope with complex 5'UTRs and call into question the conception that every long GC-rich 5'UTR working with a high efficiency has to contain an IRES. Our data also demonstrate that the ORF2 translation initiation is not directed by internal initiation, either. It is very inefficient and presumably based on a reinitiation event.
Collapse
Affiliation(s)
- Sergey E Dmitriev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Bldg. A, Moscow 119992, Russia
| | | | | | | | | | | | | |
Collapse
|
29
|
Alisch RS, Garcia-Perez JL, Muotri AR, Gage FH, Moran JV. Unconventional translation of mammalian LINE-1 retrotransposons. Genes Dev 2006; 20:210-24. [PMID: 16418485 PMCID: PMC1356112 DOI: 10.1101/gad.1380406] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Long Interspersed Element-1 (LINE-1 or L1) retrotransposons encode proteins required for their mobility (ORF1p and ORF2p), yet little is known about how L1 mRNA is translated. Here, we show that ORF2 translation generally initiates from the first in-frame methionine codon of ORF2, and that both ORF1 and the inter-ORF spacer are dispensable for ORF2 translation. Remarkably, changing the ORF2 AUG codon to any other coding triplet is compatible with retrotransposition. However, introducing a premature termination codon in ORF1 or a thermostable hairpin in the inter-ORF spacer reduces ORF2p translation or L1 retrotransposition to approximately 5% of wild-type levels. Similar data obtained from "natural" and codon optimized "synthetic" mouse L1s lead us to propose that ORF2 is translated by an unconventional termination/reinitiation mechanism.
Collapse
Affiliation(s)
- Reid S Alisch
- Department of Human Genetics and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-0618, USA
| | | | | | | | | |
Collapse
|
30
|
Li PWL, Li J, Timmerman SL, Krushel LA, Martin SL. The dicistronic RNA from the mouse LINE-1 retrotransposon contains an internal ribosome entry site upstream of each ORF: implications for retrotransposition. Nucleic Acids Res 2006; 34:853-64. [PMID: 16464823 PMCID: PMC1361618 DOI: 10.1093/nar/gkj490] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Most eukaryotic mRNAs are monocistronic and translated by cap-dependent initiation. LINE-1 RNA is exceptional because it is naturally dicistronic, encoding two proteins essential for retrotransposition, ORF1p and ORF2p. Here, we show that sequences upstream of ORF1 and ORF2 in mouse L1 function as internal ribosome entry sites (IRESes). Deletion analysis of the ORF1 IRES indicates that RNA structure is critical for its function. Conversely, the ORF2 IRES localizes to 53 nt near the 3′ end of ORF1, and appears to depend upon sequence rather than structure. The 40 nt intergenic region (IGR) is not essential for ORF2 IRES function or retrotransposition. Because of strong cis-preference for both proteins during L1 retrotransposition, correct stoichiometry of the two proteins can only be achieved post-transcriptionally. Although the precise stoichiometry is unknown, the retrotransposition intermediate likely contains hundreds of ORF1ps for every ORF2p, together with one L1 RNA. IRES-mediated translation initiation is a well-established mechanism of message-specific regulation, hence, unique mechanisms for the recognition and control of these two IRESes in the L1 RNA could explain differences in translational efficiency of ORF1 and ORF2. In addition, translational regulation may provide an additional layer of control on L1 retrotransposition efficiency, thereby protecting the integrity of the genome.
Collapse
Affiliation(s)
- Patrick Wai-Lun Li
- Cell and Developmental Biology, University of Colorado School of Medicine12801 E. 17th Avenue, Aurora, CO 80010, USA
- Human Medical Genetics Program, University of Colorado School of Medicine12801 E. 17th Avenue, Aurora, CO 80010, USA
| | - Jinfang Li
- Cell and Developmental Biology, University of Colorado School of Medicine12801 E. 17th Avenue, Aurora, CO 80010, USA
| | - Stephanie L. Timmerman
- Biochemistry and Molecular Genetics, University of Colorado School of Medicine12801 E. 17th Avenue, Aurora, CO 80010, USA
| | - Les A. Krushel
- Program in Molecular Biology, University of Colorado School of Medicine12801 E. 17th Avenue, Aurora, CO 80010, USA
- Department of Pharmacology, University of Colorado School of Medicine12801 E. 17th Avenue, Aurora, CO 80010, USA
| | - Sandra L. Martin
- Cell and Developmental Biology, University of Colorado School of Medicine12801 E. 17th Avenue, Aurora, CO 80010, USA
- Program in Molecular Biology, University of Colorado School of Medicine12801 E. 17th Avenue, Aurora, CO 80010, USA
- To whom correspondence should be addressed. Tel: +1 303 724 3467; Fax: +1 303 724 3420;
| |
Collapse
|
31
|
Babkin IV, Shchelkunov SN. Adequate system for studying translation initiation on the human retrotransposon L1 mRNA in vitro. Mol Biol 2006; 40:20-4. [PMID: 16523687 DOI: 10.1134/s0026893306010043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Unlike vertebrates and RNA-containing viruses, the objective estimate of molecular clock for DNA-containing viruses was so far absent. An extended central conservative genomic region of orthopoxviruses (about 102 kbp) and the sequence of DNA polymerase gene (about 3 kbp) of the viruses belonging to various genera from the family Poxviridae were analyzed. During this analysis, the known dating of variola virus (VARV) transfer from West Africa to South America (XVI century) and our own data on close phylogenetic relations between the modem West African and South American VARV isolates were used. As a result of this work, it was calculated for the first time that the rate of mutation accumulation in these DNA-containing viruses amounted to 0.9-1.2 x 10(-6) substitutions per site per year. The poxviruses started separating from the ancestor virus to form the modem genera approximately 500 thousand years ago; the ancestor of the genus Orthopoxvirus separated about 300 thousand years ago; and its division into the modem studied species took place approximately 14 thousand years ago.
Collapse
|
32
|
Kojima KK, Matsumoto T, Fujiwara H. Eukaryotic translational coupling in UAAUG stop-start codons for the bicistronic RNA translation of the non-long terminal repeat retrotransposon SART1. Mol Cell Biol 2005; 25:7675-86. [PMID: 16107714 PMCID: PMC1190309 DOI: 10.1128/mcb.25.17.7675-7686.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most eukaryotic cellular mRNAs are monocistronic; however, many retroviruses and long terminal repeat (LTR) retrotransposons encode multiple proteins on a single RNA transcript using ribosomal frameshifting. Non-long terminal repeat (non-LTR) retrotransposons are considered the ancestor of LTR retrotransposons and retroviruses, but their translational mechanism of bicistronic RNA remains unknown. We used a baculovirus expression system to produce a large amount of the bicistronic RNA of SART1, a non-LTR retrotransposon of the silkworm, and were able to detect the second open reading frame protein (ORF2) by Western blotting. The ORF2 protein was translated as an independent protein, not as an ORF1-ORF2 fusion protein. We revealed by mutagenesis that the UAAUG overlapping stop-start codon and the downstream RNA secondary structure are necessary for efficient ORF2 translation. Increasing the distance between the ORF1 stop codon and the ORF2 start codon decreased translation efficiency. These results are different from the eukaryotic translation reinitiation mechanism represented by the yeast GCN4 gene, in which the probability of reinitiation increases as the distance between the two ORFs increases. The translational mechanism of SART1 ORF2 is analogous to translational coupling observed in prokaryotes and viruses. Our results indicate that translational coupling is a general mechanism for bicistronic RNA translation.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/genetics
- Base Sequence
- Codon, Initiator/genetics
- Codon, Terminator/genetics
- Frameshifting, Ribosomal
- Molecular Sequence Data
- Nucleic Acid Conformation
- Open Reading Frames/genetics
- Protein Biosynthesis/genetics
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- Retroelements/genetics
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/genetics
- Saccharomyces cerevisiae/genetics
Collapse
Affiliation(s)
- Kenji K Kojima
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | | | | |
Collapse
|
33
|
del Carmen Seleme M, Disson O, Robin S, Brun C, Teninges D, Bucheton A. In vivo RNA localization of I factor, a non-LTR retrotransposon, requires a cis-acting signal in ORF2 and ORF1 protein. Nucleic Acids Res 2005; 33:776-85. [PMID: 15687386 PMCID: PMC548363 DOI: 10.1093/nar/gki221] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
According to the current model of non-LTR retrotransposon (NLR) mobilization, co-expression of the RNA transposition intermediate, and the proteins it encodes (ORF1p and ORF2p), is a requisite for the formation of cytoplasmic ribonucleoprotein complexes which contain necessary elements to complete a retrotransposition cycle later in the nucleus. To understand these early processes of NLR mobilization, here we analyzed in vivo the protein and RNA expression patterns of the I factor, a model NLR in Drosophila. We show that ORF1p and I factor RNA, specifically produced during transposition, are co-expressed and tightly co-localize with a specific pattern (Loc+) exclusively in the cytoplasm of germ cells permissive for retrotransposition. Using an ORF2 mutated I factor, we show that ORF2p plays no role in the Loc+ patterning. With deletion derivatives of an I factor we define an RNA localization signal required to display the Loc+ pattern. Finally, by complementation experiments we show that ORF1p is necessary for the efficient localization of I factor RNA. Our data suggest that ORF1p is involved in proper folding and stabilization of I factor RNA for efficient targeting, through Loc+ patterning, to the nuclear neighborhood where downstream steps of the retrotransposition process occur.
Collapse
Affiliation(s)
| | | | | | | | - Danielle Teninges
- To whom correspondence should be addressed. Tel: +33 0 4 99 61 99 47;
| | | |
Collapse
|
34
|
Ergün S, Buschmann C, Heukeshoven J, Dammann K, Schnieders F, Lauke H, Chalajour F, Kilic N, Strätling WH, Schumann GG. Cell type-specific expression of LINE-1 open reading frames 1 and 2 in fetal and adult human tissues. J Biol Chem 2004; 279:27753-63. [PMID: 15056671 DOI: 10.1074/jbc.m312985200] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The LINE-1 (L1) family of non-long terminal repeat retrotransposons is a major force shaping mammalian genomes, and its members can alter the genome in many ways. Mutational analyses have shown that coexpression of functional proteins encoded by the two L1-specific open reading frames, ORF1 and ORF2, is an essential prerequisite for the propagation of L1 elements in the genome. However, all efforts to identify ORF2-encoded proteins have failed so far. Here, applying a novel antibody we report the presence of proteins encoded by ORF2 in a subset of cellular components of human male gonads. Immunohistochemical analyses revealed coexpression of ORF1 and ORF2 in prespermatogonia of fetal testis, in germ cells of adult testis, and in distinct somatic cell types, such as Leydig, Sertoli, and vascular endothelial cells. Coexpression of both proteins in male germ cells is necessary for the observed genomic expansion of the number of L1 elements. Peptide mass fingerprinting analysis of a approximately 130-kDa polypeptide isolated from cultured human dermal microvascular endothelial cells led to the identification of ORF2-encoded peptides. An isolated approximately 45-kDa polypeptide was shown to derive from nonfunctional copies of ORF2 coding regions. The presence of both ORF1- and ORF2-encoded proteins in vascular endothelial cells and its apparent association with certain stages of differentiation and maturation of blood vessels may have functional relevance for vasculogenesis and/or angiogenesis.
Collapse
Affiliation(s)
- Süleyman Ergün
- Institut für Anatomie, Universitätsklinikum Hamburg-Eppendorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
As in other eukaryotes, telomeres in Drosophila melanogaster are composed of long arrays of repeated DNA sequences. Remarkably, in D. melanogaster these repeats are produced, not by telomerase, but by successive transpositions of two telomere-specific retrotransposons, HeT-A and TART. These are the only transposable elements known to be completely dedicated to a role in chromosomes, a finding that provides an opportunity for investigating questions about the evolution of telomeres, telomerase, and the transposable elements themselves. Recent studies of D. yakuba revealed the presence of HeT-A elements with precisely the same unusual characteristics as HeT-A(mel) although they had only 55% nucleotide sequence identity. We now report that the second element, TART, is also a telomere component in D. yakuba; thus, these two elements have been evolving together since before the separation of the melanogaster and yakuba species complexes. Like HeT-A(yak), TART(yak) is undergoing concerted sequence evolution, yet they retain the unusual features TART(mel) shares with HeT-A(mel). There are at least two subfamilies of TART(yak) with significantly different sequence and expression. Surprisingly, one subfamily of TART(yak) has >95% sequence identity with a subfamily of TART(mel) and shows similar transcription patterns. As in D. melanogaster, other retrotransposons are excluded from the D. yakuba terminal arrays studied to date.
Collapse
Affiliation(s)
- Elena Casacuberta
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
36
|
Männik A, Rünkorg K, Jaanson N, Ustav M, Ustav E. Induction of the bovine papillomavirus origin "onion skin"-type DNA replication at high E1 protein concentrations in vivo. J Virol 2002; 76:5835-45. [PMID: 11992014 PMCID: PMC137012 DOI: 10.1128/jvi.76.11.5835-5845.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the replication of plasmids composed of bovine papillomavirus type 1 (BPV1) origin of replication and expression cartridges for viral proteins E1 and E2 in hamster and mouse cells. We found that the replication mode changed dramatically at different expression levels of the E1 protein. At high levels of the E1 protein, overreplication of the origin region of the plasmid was observed. Analysis of the replication products by one-dimensional and two-dimensional gel electrophoresis suggested that initially "onion skin"-type replication intermediates were generated, presumably resulting from initiation of the new replication forks before the leading fork completed the synthesis of the DNA on the episomal plasmid. These replication intermediates served as templates for generation of a heterogeneous set of origin region-containing linear fragments by displacement synthesis at the partially replicated plasmid. Additionally, the linear fragments may have been generated by DNA break-up of the onion skin-type intermediates. Analysis of replication products indicated that generated linear fragments recombined and formed concatemers or circular molecules, which presumably were able to replicate in an E1- and E2-dependent fashion. At moderate and low levels of E1, generated by transcription of the E1 open reading frame using weaker promoters, DNA replication was initiated at much lower levels, which allowed elongation of the replication fork starting from the origin to be more balanced and resulted in the generation of full-sized replication products.
Collapse
Affiliation(s)
- Andres Männik
- Department of Microbiology and Virology, Institute of Molecular and Cell Biology, Estonian Biocentre, Tartu University, Tartu, Estonia
| | | | | | | | | |
Collapse
|
37
|
Abstract
L1 retrotransposons comprise 17% of the human genome. Although most L1s are inactive, some elements remain capable of retrotransposition. L1 elements have a long evolutionary history dating to the beginnings of eukaryotic existence. Although many aspects of their retrotransposition mechanism remain poorly understood, they likely integrate into genomic DNA by a process called target primed reverse transcription. L1s have shaped mammalian genomes through a number of mechanisms. First, they have greatly expanded the genome both by their own retrotransposition and by providing the machinery necessary for the retrotransposition of other mobile elements, such as Alus. Second, they have shuffled non-L1 sequence throughout the genome by a process termed transduction. Third, they have affected gene expression by a number of mechanisms. For instance, they occasionally insert into genes and cause disease both in humans and in mice. L1 elements have proven useful as phylogenetic markers and may find other practical applications in gene discovery following insertional mutagenesis in mice and in the delivery of therapeutic genes.
Collapse
Affiliation(s)
- E M Ostertag
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
38
|
Ryabova LA, Pooggin MM, Hohn T. Viral strategies of translation initiation: ribosomal shunt and reinitiation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:1-39. [PMID: 12206450 PMCID: PMC7133299 DOI: 10.1016/s0079-6603(02)72066-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to the compactness of their genomes, viruses are well suited to the study of basic expression mechanisms, including details of transcription, RNA processing, transport, and translation. In fact, most basic principles of these processes were first described in viral systems. Furthermore, viruses seem not to respect basic rules, and cases of "abnormal" expression strategies are quiet common, although such strategies are usually also finally observed in rare cases of cellular gene expression. Concerning translation, viruses most often violate Kozak's original rule that eukaryotic translation starts from a capped monocistronic mRNA and involves linear scanning to find the first suitable start codon. Thus, many viral cases have been described where translation is initiated from noncapped RNA, using an internal ribosome entry site. This review centers on other viral translation strategies, namely shunting and virus-controlled reinitiation as first described in plant pararetroviruses (Caulimoviridae). In shunting, major parts of a complex leader are bypassed and not melted by scanning ribosomes. In the Caulimoviridae, this process is coupled to reinitiation after translation of a small open reading frame; in other cases, it is possibly initiated upon pausing of the scanning ribosome. Most of the Caulimoviridae produce polycistronic mRNAs. Two basic mechanisms are used for their translation. Alternative translation of the downstream open reading frames in the bacilliform Caulimoviridae occurs by a leaky scanning mechanism, and reinitiation of polycistronic translation in many of the icosahedral Caulimoviridae is enabled by the action of a viral transactivator. Both of these processes are discussed here in detail and compared to related processes in other viruses and cells.
Collapse
|
39
|
Buck CB, Shen X, Egan MA, Pierson TC, Walker CM, Siliciano RF. The human immunodeficiency virus type 1 gag gene encodes an internal ribosome entry site. J Virol 2001; 75:181-91. [PMID: 11119587 PMCID: PMC113911 DOI: 10.1128/jvi.75.1.181-191.2001] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several retroviruses have recently been shown to promote translation of their gag gene products by internal ribosome entry. In this report, we show that mRNAs containing the human immunodeficiency virus type 1 (HIV-1) gag open reading frame (ORF) exhibit internal ribosome entry site (IRES) activity that can promote translational initiation of Pr55(gag). Remarkably, this IRES activity is driven by sequences within the gag ORF itself and is not dependent on the native gag 5'-untranslated region (UTR). This cap-independent mechanism for Pr55(gag) translation may help explain the high levels of translation of this protein in the face of major RNA structural barriers to scanning ribosomes found in the gag 5' UTR. The gag IRES activity described here also drives translation of a novel 40-kDa Gag isoform through translational initiation at an internal AUG codon found near the amino terminus of the Pr55(gag) capsid domain. Our findings suggest that this low-abundance Gag isoform may be important for wild-type replication of HIV-1 in cultured cells. The activities of the HIV-1 gag IRES may be an important feature of the HIV-1 life cycle and could serve as a novel target for antiretroviral therapeutic strategies.
Collapse
Affiliation(s)
- C B Buck
- Program in Cellular and Molecular Medicine, Cellular and Molecular Biology, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
40
|
Guan X, Ramanathan S, Garris JP, Shetty RS, Ensor M, Bachas LG, Daunert S. Chlorocatechol detection based on a clc operon/reporter gene system. Anal Chem 2000; 72:2423-7. [PMID: 10857616 DOI: 10.1021/ac9913917] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A sensitive and selective sensing system for chlorocatechols (3-chlorocatechol and 4-chlorocatechol) was developed based on Pseudomonas putida bacteria harboring the plasmid pSMM50R-B'. In this plasmid, the regulatory protein of the clc operon, ClcR, controls the expression of the reporter enzyme beta-galactosidase. When bacteria containing components of the clc operon are grown in the presence of chlorocatechols, ClcR activates the clcA promoter, which is located upstream from the beta-galactosidase gene. Thus, the concentration of chlorocatechols can be related to the production of beta-galactosidase in the bacteria. The concentration of beta-galactosidase expressed in the bacteria was determined by measuring the chemiluminescence signal emitted with the use of a 1,2-dioxetane substrate. ClcR has a high specificity for chlorocatechols and provides the sensing system with high selectivity. This was demonstrated by evaluating several structurally related organic compounds as potential interfering agents. Both 3-chlorocatechol and 4-chlorocatechol can be detected with this sensing system at concentrations as low as 8 x 10(-10) and 2 x 10(-9) M, respectively, using a 2-h induction period. In the case of 3-chlorocatechol, a highly selective sensing system was developed that can detect this species at concentrations as low as 6 x 10(-8) M after a 5-min induction period; the presence of 4-chlorocatechol at concentrations as high as 2 x 10(-4) M did not interfere with this system.
Collapse
Affiliation(s)
- X Guan
- Department of Chemistry, University of Kentucky, Lexington 40506-0055, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Sakuma-Takagi M, Tohyama Y, Kasama-Yoshida H, Sakagami H, Kondo H, Kurihara T. Novel related cDNAs (C184L, C184M, and C184S) from developing mouse brain encoding two apparently unrelated proteins. Biochem Biophys Res Commun 1999; 263:737-42. [PMID: 10512749 DOI: 10.1006/bbrc.1999.1462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three related cDNAs (C184L, C184M, and C184S) were isolated from a developing mouse brain cDNA library. C184S is the 5'-end portion and C184M is the 3'-end portion, respectively, of C184L. C184S and C184M have open reading frames of 199 amino acids (ORF1) and 189 amino acids (ORF2), respectively; C184L has both ORF1 and ORF2 (dicistronic structure), but seems to translate only ORF1. Southern blot analysis suggests that all of the three related mRNAs are transcribed from the same single gene. The intervening region of C184L cDNA between ORF1 and ORF2 contained a promoter sequence for C184M mRNA, which is transcribed from the corresponding genomic sequence. Very recently, a cDNA encoding human homologue of ORF1 (human autoantigen p27) and a cDNA encoding a different mouse isoform of ORF2 (mammary tumor virus receptor) were reported. Our results indicate that the mRNAs encoding these apparently unrelated proteins are transcribed within an adjacent or overlapping area on the genome, suggesting the same origin of the two transcription units.
Collapse
Affiliation(s)
- M Sakuma-Takagi
- Institute of Life Science, Soka University, Hachioji, Tokyo, 192-8577, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Remm M, Remm A, Ustav M. Human papillomavirus type 18 E1 protein is translated from polycistronic mRNA by a discontinuous scanning mechanism. J Virol 1999; 73:3062-70. [PMID: 10074156 PMCID: PMC104066 DOI: 10.1128/jvi.73.4.3062-3070.1999] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Papillomaviruses are small double-stranded DNA viruses that replicate episomally in the nuclei of infected cells. The full-length E1 protein of papillomaviruses is required for the replication of viral DNA. The viral mRNA from which the human papillomavirus type 18 E1 protein is expressed is not known. We demonstrate that in eukaryotic cells, the E1 protein is expressed from polycistronic mRNA containing E6, E7, and E1 open reading frames (ORFs). The translation of adjacent E7 and E1 ORFs is not associated; it is performed by separate populations of ribosomes. The translation of the downstream E1 gene is preceded by ribosome scanning. Scanning happens at least at the 5' end of the polycistronic mRNA and also approximately 100 bp in front of the E1 gene. Long areas in middle of the mRNA are bypassed by ribosomes, possibly by ribosomal "shunting." Inactivation of short minicistrons in the upstream area of the E1 gene did not change the expression level of the E1 gene.
Collapse
Affiliation(s)
- M Remm
- Department of Microbiology and Virology, University of Tartu, and Estonian Biocentre, Tartu 51010, Estonia.
| | | | | |
Collapse
|
43
|
Abstract
A substantial fraction of mammalian genomes is composed of mobile elements and their remnants. Recent insertions of LTR-retrotransposons, non-LTR retrotransposons, and non-autonomous retrotransposons have caused disease frequently in mice, but infrequently in humans. Although many of these elements are defective, a number of mammalian non-LTR retrotransposons of the L1 type are capable of autonomous retrotransposition. The mechanism by which they retrotranspose and in turn aide the retrotransposition of non-autonomous elements is being elucidated.
Collapse
Affiliation(s)
- H H Kazazian
- Department of Genetics, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
44
|
Abstract
The 'master' human mobile element, the L1 retrotransposon, has come of age as a biological entity. Knowledge of how it retrotransposes in vivo, how its proteins act to retrotranspose other poly A elements and the extent of its role in shaping the human genome should emerge rapidly over the next few years. We review the impact of retrotransposons and how new insight is likely to lead to important practical applications for these intriguing mobile elements.
Collapse
Affiliation(s)
- H H Kazazian
- Department of Genetics, University of Pennsylvania, School of Medicine, Philadelphia 19104, USA.
| | | |
Collapse
|
45
|
Leng P, Klatte DH, Schumann G, Boeke JD, Steck TL. Skipper, an LTR retrotransposon of Dictyostelium. Nucleic Acids Res 1998; 26:2008-15. [PMID: 9518497 PMCID: PMC147500 DOI: 10.1093/nar/26.8.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The complete sequence of a retrotransposon from Dictyostelium discoideum , named skipper , was obtained from cDNA and genomic clones. The sequence of a nearly full-length skipper cDNA was similar to that of three other partially sequenced cDNAs. The corresponding retrotransposon is represented in approximately 15-20 copies and is abundantly transcribed. Skipper contains three open reading frames (ORFs) with an unusual sequence organization, aspects of which resemble certain mammalian retroviruses. ORFs 1 and 3 correspond to gag and pol genes; the second ORF, pro, corresponding to protease, was separated from gag by a single stop codon followed shortly thereafter by a potential pseudoknot. ORF3 (pol) was separated from pro by a +1 frameshift. ORFs 2 and 3 overlapped by 32 bp. The computed amino acid sequences of the skipper ORFs contain regions resembling retrotransposon polyprotein domains, including a nucleic acid binding protein, aspartyl protease, reverse transcriptase and integrase. Skipper is the first example of a retrotransposon with a separate pro gene. Skipper is also novel in that it appears to use stop codon suppression rather than frameshifting to modulate pro expression. Finally, skipper and its components may provide useful tools for the genetic characterization of Dictyostelium.
Collapse
Affiliation(s)
- P Leng
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
46
|
Dhellin O, Maestre J, Heidmann T. Functional differences between the human LINE retrotransposon and retroviral reverse transcriptases for in vivo mRNA reverse transcription. EMBO J 1997; 16:6590-602. [PMID: 9351839 PMCID: PMC1170263 DOI: 10.1093/emboj/16.21.6590] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have analysed the reverse transcriptase (RT) activity of the human LINE retrotransposon and that of two retroviruses, using an in vivo assay within mammalian (murine and human) cells. The assay relies on transfection of the cells with expression vectors for the RT of the corresponding elements and PCR analysis of the DNA extracted 2-4 days post-transfection using primers bracketing the intronic domains of co-transfected reporter genes or of cellular genes. This assay revealed high levels of reverse-transcribed cDNA molecules, with the intron spliced out, with expression vectors for the LINE. Generation of cDNA molecules requires LINE ORF2, whereas ORF1 is dispensable. Deletion derivatives within the 3.8 kb LINE ORF2 allowed further delineation of the RT domain: > 0.7 kb at the 5'-end of the LINE ORF2 is dispensable for reverse transcription, consistent with this domain being an endonuclease-like domain, as well as 1 kb at the 3'-end, a putative RNase H domain. Conversely, the RT of the two retroviruses tested, Moloney murine leukemia virus and human immunodeficiency virus, failed to produce similar reverse transcripts. These experiments demonstrate a specific and high efficiency reverse transcription activity for the LINE RT, which applies to RNA with no sequence specificity, including those from cellular genes, and which might therefore be responsible for the endogenous activity that we previously detected within mammalian cells through the formation of pseudogene-like structures.
Collapse
Affiliation(s)
- O Dhellin
- Unité de Physicochimie et Pharmacologie des Macromolécules Biologiques, CNRS URA147, Institute Gustave Roussy, Villejuif, France
| | | | | |
Collapse
|
47
|
Hohjoh H, Singer MF. Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon. EMBO J 1997; 16:6034-43. [PMID: 9312060 PMCID: PMC1170233 DOI: 10.1093/emboj/16.19.6034] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previous experiments using human teratocarcinoma cells indicated that p40, the protein encoded by the first open reading frame (ORF) of the human LINE-1 (L1Hs) retrotransposon, occurs in a large cytoplasmic ribonucleoprotein complex in direct association with L1Hs RNA(s), the p40 RNP complex. We have now investigated the interaction between partially purified p40 and L1Hs RNA in vitro using an RNA binding assay dependent on co-immunoprecipitation of p40 and bound RNA. These experiments identified two p40 binding sites on the full-length sense strand L1Hs RNA. Both sites are in the second ORF of the 6000 nt RNA: site A between residues 1999 and 2039 and site B between residues 4839 and 4875. The two RNA segments share homologous regions. Experiments involving UV cross-linking followed by immunoprecipitation indicate that p40 in the in vitro complex is directly associated with L1Hs RNA, as it is in the p40 RNP complex found in teratocarcinoma cells. Binding and competition experiments demonstrate that p40 binds to single-stranded RNA containing a p40 binding site, but not to single-stranded or double-stranded DNA, double-stranded RNA or a DNA-RNA hybrid containing a binding site sequence. Thus, p40 appears to be a sequence-specific, single-strand RNA binding protein.
Collapse
Affiliation(s)
- H Hohjoh
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
48
|
Pont-Kingdon G, Chi E, Christensen S, Carroll D. Ribonucleoprotein formation by the ORF1 protein of the non-LTR retrotransposon Tx1L in Xenopus oocytes. Nucleic Acids Res 1997; 25:3088-94. [PMID: 9224609 PMCID: PMC146839 DOI: 10.1093/nar/25.15.3088] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Tx1L elements constitute a family of site-specific non-LTR retrotransposons found in the genome of the frog Xenopus laevis . The elements have two open reading frames (ORFs) with homology to proteins of retroviruses and other retroelements. This study demonstrates an expected activity of one of the element-encoded proteins. The RNA binding properties of ORF1p, the product of the first ORF of Tx1L, were examined after expression from RNA injected into Xenopus oocytes. Using sucrose gradient sedimentation and non-denaturing gel electrophoresis, we show that ORF1p associates with RNA in cytoplasmic ribonucleoprotein (RNP) particles. Discrete RNPs are formed with well-defined mobilities. The ORF1p RNPs are distinct from endogenous RNPs that contain stored oocyte mRNAs and two specific endogenous mRNAs do not become associated with ORF1p. ORF1p appears to be capable of associating with its own mRNA and with other injected RNAs, independent of specific recognition sequences. Although nuclear localization of ORF1p was anticipated, based both on the supposed mechanism of transposition and on the presence of a potential nuclear localization signal, no significant fraction of the protein was found in the oocyte nucleus. Nonetheless, the RNA binding capability of ORF1p is consistent with the proposed model for transposition of non-LTR retrotransposons.
Collapse
Affiliation(s)
- G Pont-Kingdon
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | | | | | | |
Collapse
|
49
|
Borman AM, Le Mercier P, Girard M, Kean KM. Comparison of picornaviral IRES-driven internal initiation of translation in cultured cells of different origins. Nucleic Acids Res 1997; 25:925-32. [PMID: 9023100 PMCID: PMC146526 DOI: 10.1093/nar/25.5.925] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We recently compared the efficiency of six picornaviral internal ribosome entry segments (IRESes) and the hepatitis C virus (HCV) IRES for their ability to drive internal initiation of translationin vitro. Here we present the results of a similar comparison performed in six different cultured cell lines infected with a recombinant vaccinia virus expressing the T7 polymerase and transfected with dicistronic plasmids. The IRESes could be divided into three groups: (i) the cardiovirus and aphthovirus IRESes (and the HCV element) direct internal initiation efficiently in all cell lines tested; (ii) the enterovirus and rhinovirus IRESes are at least equally efficient in several cell lines, but are extremely inefficient in certain cell types; and (iii) the hepatitis A virus IRES is incapable of directing efficient internal initiation in any of the cell lines used (including human hepatocytes). These are the same three groups found when IRESes were classified according to their activitiesin vitro, or according to sequence homologies. In a mouse neuronal cell line, the poliovirus and other type I IRESes were not functional in an artificial bicistronic context. However, infectious poliovirions were produced efficiently after transfection of these cells with a genomic length RNA. Furthermore, activity of the type I IRESes was dramatically increased upon co-expression of the poliovirus 2A proteinase, demonstrating that while IRES efficiency may vary considerably from one cell type to another, at least in some cases viral proteins are capable of overcoming cell-specific translational defects.
Collapse
Affiliation(s)
- A M Borman
- Unité de Virologie Moléculaire (CNRS URA 1966) and 1 Laboratoire des Lyssavirus, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris cedex 15, France
| | | | | | | |
Collapse
|
50
|
Contursi C, Minchiotti G, Di Nocera PP. Identification of sequences which regulate the expression of Drosophila melanogaster Doc elements. J Biol Chem 1995; 270:26570-6. [PMID: 7592878 DOI: 10.1074/jbc.270.44.26570] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Long interspersed nuclear elements (LINEs) are mobile DNA elements which propagate by reverse transcription of RNA intermediates. LINEs lack long terminal repeats, and their expression is controlled by promoters located inside to the transcribed region of unit-length DNA copies. Doc elements constitute one of the seven families of LINEs found in Drosophila melanogaster. Plasmids in which the chloramphenicol acetyltransferase (CAT) gene is preceded by DNA segments from different Doc family members were used as templates for transient expression assays in Drosophila S2 cells. Transcription is initiated at the 5' end of Doc elements within hexamers fitting the consensus (C/G)AYTCG and is regulated by a DNA region which is located approximately 20 base pairs (bp) downstream from the RNA start site(s). The region includes a sequence (RGACGTGY motif, or DE2) which stimulates transcription in other Drosophila LINEs, and two adjacent elements, DE1 and DE3. Moving the downstream region either 4 bp away from, or 5 bp closer to the RNA start site region inhibited transcription. Sequences located approximately 200 bp downstream from the Doc 5' end repressed CAT expression in an orientation- and position-dependent manner. The inhibition reflects impaired translation of the CAT gene possibly consequent to the interaction of specific Doc RNA sequences with a cellular component.
Collapse
Affiliation(s)
- C Contursi
- Dipartimento di Biologia e Patologie Cellulare e Molecolare L. Califano, Università degli Studi di Napoli Federico II, Italy
| | | | | |
Collapse
|