1
|
Brüll M, Multrus S, Schäfer M, Celardo I, Karreman C, Leist M. Programmed neurite degeneration in human central nervous system neurons driven by changes in NAD + metabolism. Cell Death Dis 2025; 16:24. [PMID: 39824831 PMCID: PMC11742042 DOI: 10.1038/s41419-024-07326-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 01/20/2025]
Abstract
Neurite degeneration (ND) precedes cell death in many neurodegenerative diseases. However, it remains unclear how this compartmentalized cell death process is orchestrated in the central nervous system (CNS). The establishment of a CNS axotomy model (using modified 3D LUHMES cultures) allowed us to study metabolic control of ND in human midbrain-derived neurons without the use of toxicants or other direct disturbance of cellular metabolism. Axotomy lead to a loss of the NAD+ synthesis enzyme NMNAT2 within 2 h and a depletion of NAD+ within 4-6 h. This process appeared specific, as isolated neurites maintained ATP levels and a coupled mitochondrial respiration for at least 6 h. In the peripheral nervous system (PNS) many studies observed that NAD+ metabolism, in particular by the NADase SARM1, plays a major role in the ND occurring after axotomy. Since neither ferroptosis nor necroptosis, nor caspase-dependent apoptosis seemed to be involved in neurite loss, we investigated SARM1 as potential executioner (or controller). Knock-down or expression of a dominant-negative isoform of SARM1 indeed drastically delayed ND. Various modifications of NAD+ metabolism known to modulate SARM1 activity showed the corresponding effects on ND. Moreover, supplementation with NAD+ attenuated ND. As a third approach to investigate the role of altered NAD+ metabolism, we made use of the WLD(s) protein, which has been found in a mutant mouse to inhibit Wallerian degeneration of axons. This protein, which has a stable NMNAT activity, and thus can buffer the loss of NMNAT2, protected the neurites by stabilizing neurite NAD+ levels. Thus CNS-type ND was tightly linked to neurite metabolism in multiple experimental setups. Based on this knowledge, several new strategies for treating neurodegenerative diseases can be envisaged.
Collapse
Affiliation(s)
- Markus Brüll
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Selina Multrus
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Michael Schäfer
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Ivana Celardo
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Christiaan Karreman
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Marcel Leist
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany.
- CAAT-Europe, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
2
|
Dai A, Zhang X, Wang X, Liu G, Wang Q, Yu F. Transcription factors in chimeric antigen receptor T-cell development. Hum Cell 2024; 37:571-581. [PMID: 38436882 DOI: 10.1007/s13577-024-01040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a new and innovative approach to treating cancers that has shown promising results in the treatment of lymphoma. However, it has been found to be less effective in the treatment of solid tumors. To overcome the limitation, researchers have explored the use of combined CAR-T therapy with other complementary regimens that target specific genes or biomarkers, which would enhance the synergistic therapeutic effects. Transcription factors (TFs) have been identified as potential markers that can regulate gene expression in CAR-T cells to enhance their cytotoxicity and safety. TFs are known to bind DNA specifically and recruit cofactor proteins to regulate the expression of target genes. By targeting TFs, it is possible to improve the anti-tumor response of CAR-T cells by altering their phenotype and transcriptional map, thereby increasing their effector function, such as reducing the exhaustion, enhancing the survival, and cytotoxicity of CAR-T cells. This review summarizes the application of transcription factors in CART therapy to enhance the synergistic therapeutic effect of CAR-T cells in the treatment of solid tumors and improve their anti-tumor responses.
Collapse
Affiliation(s)
- Anran Dai
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xiangzhi Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoyan Wang
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Guodong Liu
- Department of General Surgery, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Feng Yu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
3
|
Kiy Z, Chaud J, Xu L, Brandhorst E, Kamali T, Vargas C, Keller S, Hong H, Specht A, Cambridge S. Towards a Light-mediated Gene Therapy for the Eye using Caged Ethinylestradiol and the Inducible Cre/lox System. Angew Chem Int Ed Engl 2024; 63:e202317675. [PMID: 38127455 DOI: 10.1002/anie.202317675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Increasingly, retinal pathologies are being treated with virus-mediated gene therapies. To be able to target viral transgene expression specifically to the pathological regions of the retina with light, we established an in vivo photoactivated gene expression paradigm for retinal tissue. Based on the inducible Cre/lox system, we discovered that ethinylestradiol is a suitable alternative to Tamoxifen as ethinylestradiol is more amenable to modification with photosensitive protecting compounds, i.e., "caging." Identification of ethinylestradiol as a ligand for the mutated human estradiol receptor was supported by in silico binding studies showing the reduced binding of caged ethinylestradiol. Caged ethinylestradiol was injected into the eyes of double transgenic GFAP-CreERT2 mice with a Cre-dependent tdTomato reporter transgene followed by irradiation with light of 450 nm. Photoactivation significantly increased retinal tdTomato expression compared to controls. We thus demonstrated a first step towards the development of a targeted, light-mediated gene therapy for the eyes.
Collapse
Affiliation(s)
- Zoe Kiy
- Heidelberg University, 69120, Heidelberg, Germany
| | - Juliane Chaud
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, CNRS, CAMB UMR 7199, 67000, Strasbourg, France
| | - Liang Xu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Eric Brandhorst
- Sektion Endokrinologie, Medizinische Fakultät Mannheim, 68167, Mannheim, Germany
| | - Tschackad Kamali
- Heidelberg Engineering GmbH, Max-Jarecki-Straße 8, 69115, Heidelberg, Germany
| | - Carolyn Vargas
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Sandro Keller
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Alexandre Specht
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, CNRS, CAMB UMR 7199, 67000, Strasbourg, France
| | - Sidney Cambridge
- Heidelberg University, 69120, Heidelberg, Germany
- Institute for Anatomy II, Dr. Senckenberg Anatomy, Goethe-University Frankfurt am Main, 60590, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Morant L, Petrovic-Erfurth ML, Jordanova A. An Adapted GeneSwitch Toolkit for Comparable Cellular and Animal Models: A Proof of Concept in Modeling Charcot-Marie-Tooth Neuropathy. Int J Mol Sci 2023; 24:16138. [PMID: 38003325 PMCID: PMC10670994 DOI: 10.3390/ijms242216138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Investigating the impact of disease-causing mutations, their affected pathways, and/or potential therapeutic strategies using disease modeling often requires the generation of different in vivo and in cellulo models. To date, several approaches have been established to induce transgene expression in a controlled manner in different model systems. Several rounds of subcloning are, however, required, depending on the model organism used, thus bringing labor-intensive experiments into the technical approach and analysis comparison. The GeneSwitch™ technology is an adapted version of the classical UAS-GAL4 inducible system, allowing the spatial and temporal modulation of transgene expression. It consists of three components: a plasmid encoding for the chimeric regulatory pSwitch protein, Mifepristone as an inducer, and an inducible plasmid. While the pSwitch-containing first plasmid can be used both in vivo and in cellulo, the inducible second plasmid can only be used in cellulo. This requires a specific subcloning strategy of the inducible plasmid tailored to the model organism used. To avoid this step and unify gene expression in the transgenic models generated, we replaced the backbone vector with standard pUAS-attB plasmid for both plasmids containing either the chimeric GeneSwitch™ cDNA sequence or the transgene cDNA sequence. We optimized this adapted system to regulate transgene expression in several mammalian cell lines. Moreover, we took advantage of this new system to generate unified cellular and fruit fly models for YARS1-induced Charco-Marie-Tooth neuropathy (CMT). These new models displayed the expected CMT-like phenotypes. In the N2a neuroblastoma cells expressing YARS1 transgenes, we observed the typical "teardrop" distribution of the synthetase that was perturbed when expressing the YARS1CMT mutation. In flies, the ubiquitous expression of YARS1CMT induced dose-dependent developmental lethality and pan-neuronal expression caused locomotor deficit, while expression of the wild-type allele was harmless. Our proof-of-concept disease modeling studies support the efficacy of the adapted transgenesis system as a powerful tool allowing the design of studies with optimal data comparability.
Collapse
Affiliation(s)
- Laura Morant
- Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.P.-E.)
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
| | - Maria-Luise Petrovic-Erfurth
- Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.P.-E.)
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
| | - Albena Jordanova
- Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.P.-E.)
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University-Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
5
|
Kretschmer S, Perry N, Zhang Y, Kortemme T. Multi-input Drug-Controlled Switches of Mammalian Gene Expression Based on Engineered Nuclear Hormone Receptors. ACS Synth Biol 2023; 12:1924-1934. [PMID: 37315218 PMCID: PMC10367131 DOI: 10.1021/acssynbio.3c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Indexed: 06/16/2023]
Abstract
Protein-based switches that respond to different inputs to regulate cellular outputs, such as gene expression, are central to synthetic biology. For increased controllability, multi-input switches that integrate several cooperating and competing signals for the regulation of a shared output are of particular interest. The nuclear hormone receptor (NHR) superfamily offers promising starting points for engineering multi-input-controlled responses to clinically approved drugs. Starting from the VgEcR/RXR pair, we demonstrate that novel (multi)drug regulation can be achieved by exchange of the ecdysone receptor (EcR) ligand binding domain (LBD) for other human NHR-derived LBDs. For responses activated to saturation by an agonist for the first LBD, we show that outputs can be boosted by an agonist targeting the second LBD. In combination with an antagonist, output levels are tunable by up to three simultaneously present small-molecule drugs. Such high-level control validates NHRs as a versatile, engineerable platform for programming multidrug-controlled responses.
Collapse
Affiliation(s)
- Simon Kretschmer
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- California
Quantitative Biosciences Institute (QBI) at UCSF, San Francisco, California 94158, United States
| | - Nicholas Perry
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- California
Quantitative Biosciences Institute (QBI) at UCSF, San Francisco, California 94158, United States
- University
of California, Berkeley—University of California, San Francisco
Joint Graduate Program in Bioengineering, San Francisco, California 94158, United States
| | - Yang Zhang
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- California
Quantitative Biosciences Institute (QBI) at UCSF, San Francisco, California 94158, United States
| | - Tanja Kortemme
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- California
Quantitative Biosciences Institute (QBI) at UCSF, San Francisco, California 94158, United States
- University
of California, Berkeley—University of California, San Francisco
Joint Graduate Program in Bioengineering, San Francisco, California 94158, United States
| |
Collapse
|
6
|
Chao LFI, Liu D, Siewers V. A highly selective cell-based fluorescent biosensor for genistein detection. ENGINEERING MICROBIOLOGY 2023; 3:100078. [PMID: 39629249 PMCID: PMC11611022 DOI: 10.1016/j.engmic.2023.100078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 12/07/2024]
Abstract
Genistein, an isoflavone found mainly in legumes, has been shown to have numerous health benefits for humans. Therefore, there is substantial interest in producing it using microbial cell factories. To aid in screening for high genistein producing microbial strains, a cell-based biosensor for genistein was developed by repurposing the Gal4DBD-ERα-VP16 (GEV) transcriptional activator in Saccharomyces cerevisiae. In the presence of genistein, the GEV sensor protein binds to the GAL1 promoter and activates transcription of a downstream GFP reporter. The performance of the biosensor, as measured by fold difference in GFP signal intensity after external genistein induction, was improved by engineering the sensor protein, its promoter and the reporter promoter. Biosensor performance increased when the weak promoter REV1p was used to drive GEV sensor gene expression and the VP16 transactivating domain on GEV was replaced with the tripartite VPR transactivator that had its NLS removed. The biosensor performance further improved when the binding sites for the inhibitor Mig1 were removed from and two additional Gal4p binding sites were added to the reporter promoter. After genistein induction, our improved biosensor output a GFP signal that was 20 times higher compared to the uninduced state. Out of the 8 flavonoids tested, the improved biosensor responded only to genistein and in a somewhat linear manner. The improved biosensor also responded to genistein produced in vivo, with the GFP reporter intensity directly proportional to intracellular genistein concentration. When combined with fluorescence-based cell sorting technology, this biosensor could facilitate high-throughput screening of a genistein-producing yeast cell factory.
Collapse
Affiliation(s)
| | | | - Verena Siewers
- Department of Life Sciences, Division of Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg SE-41296, Sweden
| |
Collapse
|
7
|
Kretschmer S, Perry N, Zhang Y, Kortemme T. Multi-input drug-controlled switches of mammalian gene expression based on engineered nuclear hormone receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526549. [PMID: 36778233 PMCID: PMC9915577 DOI: 10.1101/2023.02.01.526549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein-based switches that respond to different inputs to regulate cellular outputs, such as gene expression, are central to synthetic biology. For increased controllability, multi-input switches that integrate several cooperating and competing signals for the regulation of a shared output are of particular interest. The nuclear hormone receptor (NHR) superfamily offers promising starting points for engineering multi-input-controlled responses to clinically approved drugs. Starting from the VgEcR/RXR pair, we demonstrate that novel (multi-)drug regulation can be achieved by exchange of the ecdysone receptor (EcR) ligand binding domain (LBD) for other human NHR-derived LBDs. For responses activated to saturation by an agonist for the first LBD, we show that outputs can be boosted by an agonist targeting the second LBD. In combination with an antagonist, output levels are tunable by up to three simultaneously present small-molecule drugs. Such high-level control validates NHRs as a versatile, engineerable platform for programming multi-drug-controlled responses.
Collapse
Affiliation(s)
- Simon Kretschmer
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
- California Quantitative Biosciences Institute (QBI) at UCSF, San Francisco, CA 94158, USA
| | - Nicholas Perry
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
- California Quantitative Biosciences Institute (QBI) at UCSF, San Francisco, CA 94158, USA
- University of California, Berkeley—University of California, San Francisco Joint Graduate Program in Bioengineering, San Francisco, CA, USA
| | - Yang Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
- California Quantitative Biosciences Institute (QBI) at UCSF, San Francisco, CA 94158, USA
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
- California Quantitative Biosciences Institute (QBI) at UCSF, San Francisco, CA 94158, USA
- University of California, Berkeley—University of California, San Francisco Joint Graduate Program in Bioengineering, San Francisco, CA, USA
| |
Collapse
|
8
|
Li HS, Israni DV, Gagnon KA, Gan KA, Raymond MH, Sander JD, Roybal KT, Joung JK, Wong WW, Khalil AS. Multidimensional control of therapeutic human cell function with synthetic gene circuits. Science 2022; 378:1227-1234. [PMID: 36520914 PMCID: PMC10054295 DOI: 10.1126/science.ade0156] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Synthetic gene circuits that precisely control human cell function could expand the capabilities of gene- and cell-based therapies. However, platforms for developing circuits in primary human cells that drive robust functional changes in vivo and have compositions suitable for clinical use are lacking. Here, we developed synthetic zinc finger transcription regulators (synZiFTRs), which are compact and based largely on human-derived proteins. As a proof of principle, we engineered gene switches and circuits that allow precise, user-defined control over therapeutically relevant genes in primary T cells using orthogonal, US Food and Drug Administration-approved small-molecule inducers. Our circuits can instruct T cells to sequentially activate multiple cellular programs such as proliferation and antitumor activity to drive synergistic therapeutic responses. This platform should accelerate the development and clinical translation of synthetic gene circuits in diverse human cell types and contexts.
Collapse
Affiliation(s)
- Hui-Shan Li
- Biological Design Center, Boston University, Boston, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Divya V Israni
- Biological Design Center, Boston University, Boston, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Keith A Gagnon
- Biological Design Center, Boston University, Boston, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Kok Ann Gan
- Biological Design Center, Boston University, Boston, MA, USA.,Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA, USA
| | - Michael H Raymond
- Biological Design Center, Boston University, Boston, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Jeffry D Sander
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA.,Department of Genomics Technologies, Corteva Agriscience, Johnston, IA, USA
| | - Kole T Roybal
- Cell Design Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.,Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - J Keith Joung
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Wilson W Wong
- Biological Design Center, Boston University, Boston, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA.,Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
9
|
Sobolev VV, Khashukoeva AZ, Evina OE, Geppe NA, Chebysheva SN, Korsunskaya IM, Tchepourina E, Mezentsev A. Role of the Transcription Factor FOSL1 in Organ Development and Tumorigenesis. Int J Mol Sci 2022; 23:1521. [PMID: 35163444 PMCID: PMC8835756 DOI: 10.3390/ijms23031521] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/25/2022] Open
Abstract
The transcription factor FOSL1 plays an important role in cell differentiation and tumorigenesis. Primarily, FOSL1 is crucial for the differentiation of several cell lineages, namely adipocytes, chondrocytes, and osteoblasts. In solid tumors, FOSL1 controls the progression of tumor cells through the epithelial-mesenchymal transformation. In this review, we summarize the available data on FOSL1 expression, stabilization, and degradation in the cell. We discuss how FOSL1 is integrated into the intracellular signaling mechanisms and provide a comprehensive analysis of FOSL1 influence on gene expression. We also analyze the pathological changes caused by altered Fosl1 expression in genetically modified mice. In addition, we dedicated a separate section of the review to the role of FOSL1 in human cancer. Primarily, we focus on the FOSL1 expression pattern in solid tumors, FOSL1 importance as a prognostic factor, and FOSL1 perspectives as a molecular target for anticancer therapy.
Collapse
Affiliation(s)
- Vladimir V. Sobolev
- Center for Theoretical Problems in Physico-Chemical Pharmacology, Russian Academy of Sciences, 109029 Moscow, Russia; (I.M.K.); (E.T.)
| | - Asiat Z. Khashukoeva
- Federal State Autonomous Educational Institution of Higher Education, N.I. Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, 117997 Moscow, Russia;
| | - Olga E. Evina
- “JSC DK Medsi”, Medical and Diagnostics Center, 125284 Moscow, Russia;
| | - Natalia A. Geppe
- NF Filatov Clinical Institute of Children’s Health, I.M. Sechenov First MSMU, 119435 Moscow, Russia; (N.A.G.); (S.N.C.)
| | - Svetlana N. Chebysheva
- NF Filatov Clinical Institute of Children’s Health, I.M. Sechenov First MSMU, 119435 Moscow, Russia; (N.A.G.); (S.N.C.)
| | - Irina M. Korsunskaya
- Center for Theoretical Problems in Physico-Chemical Pharmacology, Russian Academy of Sciences, 109029 Moscow, Russia; (I.M.K.); (E.T.)
| | - Ekaterina Tchepourina
- Center for Theoretical Problems in Physico-Chemical Pharmacology, Russian Academy of Sciences, 109029 Moscow, Russia; (I.M.K.); (E.T.)
| | - Alexandre Mezentsev
- Center for Theoretical Problems in Physico-Chemical Pharmacology, Russian Academy of Sciences, 109029 Moscow, Russia; (I.M.K.); (E.T.)
| |
Collapse
|
10
|
Doshi A, Sadeghi F, Varadarajan N, Cirino PC. Small-molecule inducible transcriptional control in mammalian cells. Crit Rev Biotechnol 2020; 40:1131-1150. [PMID: 32862714 DOI: 10.1080/07388551.2020.1808583] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tools for tuning transcription in mammalian cells have broad applications, from basic biological discovery to human gene therapy. While precise control over target gene transcription via dosing with small molecules (drugs) is highly sought, the design of such inducible systems that meets required performance metrics poses a great challenge in mammalian cell synthetic biology. Important characteristics include tight and tunable gene expression with a low background, minimal drug toxicity, and orthogonality. Here, we review small-molecule-inducible transcriptional control devices that have demonstrated success in mammalian cells and mouse models. Most of these systems employ natural or designed ligand-binding protein domains to directly or indirectly communicate with transcription machinery at a target sequence, via carefully constructed fusions. Example fusions include those to transcription activator-like effectors (TALEs), DNA-targeting proteins (e.g. dCas systems) fused to transactivating domains, and recombinases. Similar to the architecture of Type I nuclear receptors, many of the systems are designed such that the transcriptional controller is excluded from the nucleus in the absence of an inducer. Techniques that use ligand-induced proteolysis and antibody-based chemically induced dimerizers are also described. Collectively, these transcriptional control devices take advantage of a variety of recently developed molecular biology tools and cell biology insights and represent both proof of concept (e.g. targeting reporter gene expression) and disease-targeting studies.
Collapse
Affiliation(s)
- Aarti Doshi
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Fatemeh Sadeghi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Patrick C Cirino
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.,Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
11
|
Hamouri F, Zhang W, Aujard I, Le Saux T, Ducos B, Vriz S, Jullien L, Bensimon D. Optical control of protein activity and gene expression by photoactivation of caged cyclofen. Methods Enzymol 2019; 624:1-23. [PMID: 31370925 DOI: 10.1016/bs.mie.2019.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of light to control the expression of genes and the activity of proteins is a rapidly expanding field. While many of these approaches use a fusion between a light activatable protein and the protein of interest to control the activity of the latter, it is also possible to control the activity of a protein by uncaging a specific ligand. In that context, controlling the activation of a protein fused to the modified estrogen receptor (ERT) by uncaging its ligand cyclofen-OH has emerged as a generic and versatile method to control the activation of proteins quantitatively, quickly and locally in a live organism. Here, we present the experimental details behind this approach.
Collapse
Affiliation(s)
- Fatima Hamouri
- Laboratoire de Physique de l'ENS, CNRS-UMR8023, PSL Research University, Paris, France; Institut de Biologie de l'ENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, Paris, France
| | - Weiting Zhang
- Laboratoire de Physique de l'ENS, CNRS-UMR8023, PSL Research University, Paris, France; Institut de Biologie de l'ENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, Paris, France
| | - Isabelle Aujard
- PASTEUR, Département de Chimie de l'ENS, CNRS, PSL Research University, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, Paris, France
| | - Thomas Le Saux
- PASTEUR, Département de Chimie de l'ENS, CNRS, PSL Research University, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, Paris, France
| | - Bertrand Ducos
- Laboratoire de Physique de l'ENS, CNRS-UMR8023, PSL Research University, Paris, France; Institut de Biologie de l'ENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, Paris, France
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR 7241, INSERM U1050, Paris, France; Department of Life Sciences, Paris-Diderot University, Sorbonne-Paris-Cité, Paris, France
| | - Ludovic Jullien
- PASTEUR, Département de Chimie de l'ENS, CNRS, PSL Research University, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, Paris, France
| | - David Bensimon
- Laboratoire de Physique de l'ENS, CNRS-UMR8023, PSL Research University, Paris, France; Institut de Biologie de l'ENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, Paris, France; Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
12
|
Zhang W, Hamouri F, Feng Z, Aujard I, Ducos B, Ye S, Weiss S, Volovitch M, Vriz S, Jullien L, Bensimon D. Control of Protein Activity and Gene Expression by Cyclofen-OH Uncaging. Chembiochem 2018; 19:1232-1238. [PMID: 29341391 DOI: 10.1002/cbic.201700630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 11/06/2022]
Abstract
The use of light to control the expression of genes and the activity of proteins is a rapidly expanding field. Whereas many of these approaches use fusion between a light-activable protein and the protein of interest to control the activity of the latter, it is also possible to control the activity of a protein by uncaging a specific ligand. In that context, controlling the activation of a protein fused to the modified estrogen receptor (ERT) by uncaging its ligand cyclofen-OH has emerged as a generic and versatile method to control the activation of proteins quantitatively, quickly, and locally in a live organism. We present that approach and its uses in a variety of physiological contexts.
Collapse
Affiliation(s)
- Weiting Zhang
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, 24 rue Lhomond, 75005, Paris, France.,IBENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, 46 rue d'Ulm, 75005, Paris, France
| | - Fatima Hamouri
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, 24 rue Lhomond, 75005, Paris, France.,IBENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, 46 rue d'Ulm, 75005, Paris, France
| | - Zhiping Feng
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, 94305, USA
| | - Isabelle Aujard
- PASTEUR, Département de Chimie, École Normale Supérieure, UPMC Univ Paris 06, CNRS, PSL Research University, 75005, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, École Normale Supérieure, CNRS, PASTEUR, 75005, Paris, France
| | - Bertrand Ducos
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, 24 rue Lhomond, 75005, Paris, France.,IBENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, 46 rue d'Ulm, 75005, Paris, France
| | - Shixin Ye
- Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, 75005, Paris, France
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, 90024, USA
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR 7241, INSERM U1050, 11 place Marcellin Berthelot, 75005, Paris, France.,Department of Biology, Ecole Normale Supérieure, PSL Research University, 46 rue d'Ulm, 75005, Paris, France
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR 7241, INSERM U1050, 11 place Marcellin Berthelot, 75005, Paris, France.,Department of Life Sciences, Paris-Diderot University, Sorbonne-Paris-Cité, 5 rue Thomas Mann, 75013, Paris, France
| | - Ludovic Jullien
- PASTEUR, Département de Chimie, École Normale Supérieure, UPMC Univ Paris 06, CNRS, PSL Research University, 75005, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, École Normale Supérieure, CNRS, PASTEUR, 75005, Paris, France
| | - David Bensimon
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, 24 rue Lhomond, 75005, Paris, France.,IBENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, 46 rue d'Ulm, 75005, Paris, France.,Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, 90024, USA
| |
Collapse
|
13
|
Pinto R, Hansen L, Hintze J, Almeida R, Larsen S, Coskun M, Davidsen J, Mitchelmore C, David L, Troelsen JT, Bennett EP. Precise integration of inducible transcriptional elements (PrIITE) enables absolute control of gene expression. Nucleic Acids Res 2017; 45:e123. [PMID: 28472465 PMCID: PMC5570051 DOI: 10.1093/nar/gkx371] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/30/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022] Open
Abstract
Tetracycline-based inducible systems provide powerful methods for functional studies where gene expression can be controlled. However, the lack of tight control of the inducible system, leading to leakiness and adverse effects caused by undesirable tetracycline dosage requirements, has proven to be a limitation. Here, we report that the combined use of genome editing tools and last generation Tet-On systems can resolve these issues. Our principle is based on precise integration of inducible transcriptional elements (coined PrIITE) targeted to: (i) exons of an endogenous gene of interest (GOI) and (ii) a safe harbor locus. Using PrIITE cells harboring a GFP reporter or CDX2 transcription factor, we demonstrate discrete inducibility of gene expression with complete abrogation of leakiness. CDX2 PrIITE cells generated by this approach uncovered novel CDX2 downstream effector genes. Our results provide a strategy for characterization of dose-dependent effector functions of essential genes that require absence of endogenous gene expression.
Collapse
Affiliation(s)
- Rita Pinto
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - John Hintze
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Raquel Almeida
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Sylvester Larsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Department of Clinical Immunology, Naestved Hospital, Naestved, Denmark
| | - Mehmet Coskun
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Johanne Davidsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Cathy Mitchelmore
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Leonor David
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
| | | | - Eric Paul Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Aranda-Díaz A, Mace K, Zuleta I, Harrigan P, El-Samad H. Robust Synthetic Circuits for Two-Dimensional Control of Gene Expression in Yeast. ACS Synth Biol 2017; 6:545-554. [PMID: 27930885 PMCID: PMC5507677 DOI: 10.1021/acssynbio.6b00251] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cellular phenotypes are the result of complex interactions between many components. Understanding and predicting the system level properties of the resulting networks requires the development of perturbation tools that can simultaneously and independently modulate multiple cellular variables. Here, we develop synthetic modules that use different arrangements of two transcriptional regulators to achieve either concurrent and independent control of the expression of two genes, or decoupled control of the mean and variance of a single gene. These modules constitute powerful tools to probe the quantitative attributes of network wiring and function.
Collapse
Affiliation(s)
- Andrés Aranda-Díaz
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158, United States
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Kieran Mace
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158, United States
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Ignacio Zuleta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158, United States
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Patrick Harrigan
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158, United States
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Hana El-Samad
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158, United States
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
15
|
Tang S, Xi W, Cheng Z, Yin L, Li R, Wu G, Liu W, Xu J, Xiang S, Zheng Y, Ge Q, Ning K, Yan Y, Zhan Y. A Living Eukaryotic Autocementation Kit from Surface Display of Silica Binding Peptides on Yarrowia lipolytica. ACS Synth Biol 2016; 5:1466-1474. [PMID: 27461158 DOI: 10.1021/acssynbio.6b00085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the development of civil engineering, the demand for suitable cementation materials is increasing rapidly. However, traditional cementation methods are not eco-friendly enough and more sustainable approach such as biobased cementation is required. To meet such demand, Euk.cement, a living eukaryotic cell-based biological autocementation kit, was created in this work. Through the surface display of different silica binding peptides on the fungus Yarrowia lipolytica, Euk.cement cells can immobilize onto any particles with a silica containing surface with variable binding intensity. Meanwhile, recombinant MCFP3 released from the cells will slowly consolidate this binding of cells to particles. The metabolism of immobilized living cells will finally complete the carbonate sedimentation and tightly stick the particles together. The system is designed to be initiated by blue light, making it controllable. This autocementation kit can be utilized for industrial and environmental applications that fit our concerns on making the cementation process eco-friendly.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shuaiying Xiang
- Bei
Shizhang Advanced Class of Life Science Research, co-founded by Huazhong University of Science and Technology, 430074, Wuhan, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, and University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | | | - Qian Ge
- Bei
Shizhang Advanced Class of Life Science Research, co-founded by Huazhong University of Science and Technology, 430074, Wuhan, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, and University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | | | | | - Yi Zhan
- Bei
Shizhang Advanced Class of Life Science Research, co-founded by Huazhong University of Science and Technology, 430074, Wuhan, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, and University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
16
|
Kim KT, Song MR. Light-induced Notch activity controls neurogenic and gliogenic potential of neural progenitors. Biochem Biophys Res Commun 2016; 479:820-826. [PMID: 27680314 DOI: 10.1016/j.bbrc.2016.09.124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/24/2016] [Indexed: 11/27/2022]
Abstract
Oscillations in Notch signaling are essential for reserving neural progenitors for cellular diversity in developing brains. Thus, steady and prolonged overactivation of Notch signaling is not suitable for generating neurons. To acquire greater temporal control of Notch activity and mimic endogenous oscillating signals, here we adopted a light-inducible transgene system to induce active form of Notch NICD in neural progenitors. Alternating Notch activity saved more progenitors that are prone to produce neurons creating larger number of mixed clones with neurons and progenitors in vitro, compared to groups with no light or continuous light stimulus. Furthermore, more upper layer neurons and astrocytes arose upon intermittent Notch activity, indicating that dynamic Notch activity maintains neural progeny and fine-tune neuron-glia diversity.
Collapse
Affiliation(s)
- Kyung-Tai Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
17
|
Lin X, Fukazawa K, Ishihara K. Photoinduced inhibition of DNA unwinding in vitro with water-soluble polymers containing both phosphorylcholine and photoreactive groups. Acta Biomater 2016; 40:226-234. [PMID: 27045692 DOI: 10.1016/j.actbio.2016.03.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED Nile blue (NB)-tagged DNA helix-targeting amphiphilic photoreactive 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer, poly(MPC-co-3-methacryloyloxy-2-hydroxypropyl-4-oxybenzophenone-co-2-trimethylammonium ethyl methacrylate chloride) (PMHT-NB), containing a cationic group to facilitate cell membrane penetration and a benzophenone (BP) group to promote photoinduced conjugation with DNA helix was synthesized using radical polymerization method. Ultraviolet light (UV)-visible light absorption spectra of PMHT-NB showed absorption peaks at wavelengths 254, 289, and 600nm, suggesting successful incorporation of BP and NB groups. PMHT-NB was highly sensitive to photoirradiation with UV irradiation at the second level, as confirmed based on the degradation spectra of UV absorption peaks for the BP group in PBS (pH=7.4). PMHT-NB showed good solubility in both aqueous solution and in ethanol. In a cell culture medium containing 10mg/mL PMHT-NB, the NB group showed fluorescence peaks at an emission wavelength of 650nm and excitation wavelength of 633nm. PMHT-NB also showed low cytotoxicity and good cell membrane permeability toward cancerous HeLa cells. Further, photoinduced PMHT-NB effectively inhibited the unwinding of a molecular beacon with a hairpin structure, indicating that synthetic photoreactive MPC polymers photoregulated the unwinding of DNA. STATEMENT OF SIGNIFICANCE Natural and synthetic genetic hybrid biomaterials consisting of well-designed polymers loaded with oligonucleotide fragments are considered as an attractive alternative to conventional transgene systems and chemical methods for precisely and rapidly modulation of intracellular gene expression. Containing versatile functional moieties, the effectiveness of well-designed cytocompatible polymers themselves without oligonucleotide fragments on gene regulation is rarely investigated. In the present study, a 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer composed of a tumor/DNA-targeting moiety and photo-controllable unit demonstrated low cytotoxicity, rapid cell membrane permeability and effective inhibitive ability on DNA unwinding under a light irradiation. The synthetic polymer was considered as promising material to effectively inhibit intracellular partial DNA unwinding for cancer/gene therapy.
Collapse
|
18
|
Schukur L, Fussenegger M. Engineering of synthetic gene circuits for (re-)balancing physiological processes in chronic diseases. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:402-22. [DOI: 10.1002/wsbm.1345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/12/2016] [Accepted: 04/26/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Lina Schukur
- Department of Biosystems Science and Engineering; ETH Zurich; Basel Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering; ETH Zurich; Basel Switzerland
- Faculty of Science; University of Basel; Basel Switzerland
| |
Collapse
|
19
|
A dual molecular analogue tuner for dissecting protein function in mammalian cells. Nat Commun 2016; 7:11742. [PMID: 27230261 PMCID: PMC4895048 DOI: 10.1038/ncomms11742] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/26/2016] [Indexed: 12/16/2022] Open
Abstract
Loss-of-function studies are fundamental for dissecting gene function. Yet, methods
to rapidly and effectively perturb genes in mammalian cells, and particularly in
stem cells, are scarce. Here we present a system for simultaneous conditional
regulation of two different proteins in the same mammalian cell. This system
harnesses the plant auxin and jasmonate hormone-induced degradation pathways, and is
deliverable with only two lentiviral vectors. It combines RNAi-mediated silencing of
two endogenous proteins with the expression of two exogenous proteins whose
degradation is induced by external ligands in a rapid, reversible, titratable and
independent manner. By engineering molecular tuners for NANOG, CHK1, p53 and NOTCH1
in mammalian stem cells, we have validated the applicability of the system and
demonstrated its potential to unravel complex biological processes. Loss-of-function approaches are fundamental for dissecting the roles
played by genes but methods to simultaneously perturb several proteins in the same
mammalian cell are scarce. Here the authors harness the plant auxin and jasmonate
hormone-degradation pathways and RNAi technology, to control the levels of two proteins
and validate its application in stem cells.
Collapse
|
20
|
Hughes JH, Kumar S. Synthetic mechanobiology: engineering cellular force generation and signaling. Curr Opin Biotechnol 2016; 40:82-89. [PMID: 27023733 DOI: 10.1016/j.copbio.2016.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 10/24/2022]
Abstract
Mechanobiology seeks to understand and control mechanical and related biophysical communication between cells and their surroundings. While experimental efforts in this field have traditionally emphasized manipulation of the extracellular force environment, a new suite of approaches has recently emerged in which cell phenotype and signaling are controlled by directly engineering the cell itself. One route is to control cell behavior by modulating gene expression using conditional promoters. Alternatively, protein activity can be actuated directly using synthetic protein ligands, chemically induced protein dimerization, optogenetic strategies, or functionalized magnetic nanoparticles. Proof-of-principle studies are already demonstrating the translational potential of these approaches, and future technological development will permit increasingly precise control over cell mechanobiology and improve our understanding of the underlying signaling events.
Collapse
Affiliation(s)
- Jasmine Hannah Hughes
- Department of Bioengineering, University of California, Berkeley, United States; UC Berkeley - UCSF Graduate Program in Bioengineering, United States
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, United States.
| |
Collapse
|
21
|
Kis Z, Pereira HS, Homma T, Pedrigi RM, Krams R. Mammalian synthetic biology: emerging medical applications. J R Soc Interface 2016; 12:rsif.2014.1000. [PMID: 25808341 DOI: 10.1098/rsif.2014.1000] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes.
Collapse
Affiliation(s)
- Zoltán Kis
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Takayuki Homma
- Department of Bioengineering, Imperial College London, London, UK
| | - Ryan M Pedrigi
- Department of Bioengineering, Imperial College London, London, UK
| | - Rob Krams
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
22
|
Ma KC, Perli SD, Lu TK. Foundations and Emerging Paradigms for Computing in Living Cells. J Mol Biol 2016; 428:893-915. [DOI: 10.1016/j.jmb.2016.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 01/11/2023]
|
23
|
Chen X, Wang X, Du Z, Ma Z, Yang Y. Spatiotemporal control of gene expression in mammalian cells and in mice using the LightOn system. ACTA ACUST UNITED AC 2015; 5:111-29. [PMID: 23839993 DOI: 10.1002/9780470559277.ch120267] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A light-switchable transgene system could be a powerful optogenetic tool for the precise manipulation of spatiotemporal gene expression in multicellular organisms. We have developed the LightOn system, which consists of a single chimeric protein (GAVPO) that can homodimerize and bind to promoters upon exposure to blue light, activating transcription of a target gene. This article describes protocols for precise control of gene expression in mammalian cells and mice using the LightOn system. These protocols can be carried out in an ordinary laboratory, as both liposome-mediated transfection and hydrodynamic tail vein injection are routine methods that can easily transfer the LightOn system to mammalian cells and mouse liver, respectively. The illumination equipment can also be easily obtained. The LightOn system can provide a robust, convenient means to control the expression of a gene of interest, with unprecedented temporal and spatial accuracy in manipulating an extremely broad range of biological processes.
Collapse
Affiliation(s)
- Xianjun Chen
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | | | | | | | | |
Collapse
|
24
|
MacKay JL, Sood A, Kumar S. Three-dimensional patterning of multiple cell populations through orthogonal genetic control of cell motility. SOFT MATTER 2014; 10:2372-80. [PMID: 24622945 PMCID: PMC3954980 DOI: 10.1039/c3sm52265b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ability to independently assemble multiple cell types within a three-dimensional matrix would be a powerful enabling tool for modeling and engineering complex tissues. Here we introduce a strategy to dynamically pattern distinct subpopulations of cells through genetic regulation of cell motility. We first describe glioma cell lines that were genetically engineered to stably express constitutively active or dominant negative Rac1 GTPase mutants under the control of either a doxycycline-inducible or cumate-inducible promoter. We culture each population as multicellular spheroids and show that by adding or withdrawing the appropriate inducer at specific times, we can control the timing and extent of Rac1-dependent cell migration into three-dimensional collagen matrices. We then report results with mixed spheroids in which one subpopulation of cells expresses dominant negative Rac1 under a doxycycline-inducible promoter and the other expresses dominant negative Rac1 under a cumate-inducible promoter. Using this system, we demonstrate that doxycycline and cumate addition suppress Rac1-dependent motility in a subpopulation-specific and temporally-controlled manner. This allows us to orthogonally control the motility of each subpopulation and spatially assemble the cells into radially symmetric three-dimensional patterns through the synchronized addition and removal of doxycycline and cumate. This synthetic biology-inspired strategy offers a novel means of spatially organizing multiple cell populations in conventional matrix scaffolds and complements the emerging suite of technologies that seek to pattern cells by engineering extracellular matrix properties.
Collapse
Affiliation(s)
- Joanna L. MacKay
- Department of Chemical and Biomolecular Engineering, University of California-Berkeley, Berkeley, California 94720, USA
| | - Anshum Sood
- Department of Bioengineering, University of California-Berkeley, Berkeley, California 94720, USA
| | - Sanjay Kumar
- Department of Bioengineering, University of California-Berkeley, Berkeley, California 94720, USA. Fax: 510-642-5835; Tel: 510-643-0787
| |
Collapse
|
25
|
Tanago A, Ikeuchi T. Stable reporter gene assay based on Gal4-vitamin D receptor β fusion proteins in medaka (Oryzias latipes), and its transactivational properties. Zoolog Sci 2014; 31:195-201. [PMID: 24694221 DOI: 10.2108/zs130217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transactivational property of natural and synthetic chemicals via medaka vitamin D receptor β subtype (VDRβ) was investigated after the development of a stable cell line expressing a Gal4-VDRβ fusion protein for reporter gene assay. Members of vitamin D class, including 1α, 25- dihydroxyvitamin D3 (1,25VD3) were specifically detected as agonists in our system. Although other steroids and chemicals used in the present estimation induced no agonistic response, 10 compounds displayed antagonistic or synergistic activity. Spironolactone, which is an antagonist of corticoid receptors in mammals, competitively inhibited the transactivity of 1,25VD3 by over 80% in a dose dependent manner. Mifepristone and cyproterone acetate were also detected as antagonists, but they significantly acted only at 10µ. Pregnenolone and raloxifene dose-dependently enhanced the activity of 1,25VD3 at EC50 to the maximum level. Diethylstilbestrol, 17α-ethynylestradiol, genistein, and stanozolol were also synergists, but their potency was low. Interestingly, dibutyltin dichloride, which is used as a stabilizer in the production of polyvinyl chloride plastics, produced greater response than maximum effect of 1,25VD3 although the concentration-response curve was not typically sigmoidal. In the present study, we successfully developed a stable reporter gene assay, which allows assessment of the vitamin D-like chemicals toward the medaka VDRβ.
Collapse
Affiliation(s)
- Atsushi Tanago
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | | |
Collapse
|
26
|
Basu S, Sachidanandan C. Zebrafish: a multifaceted tool for chemical biologists. Chem Rev 2013; 113:7952-80. [PMID: 23819893 DOI: 10.1021/cr4000013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sandeep Basu
- Council of Scientific and Industrial Research-Institute of Genomics & Integrative Biology (CSIR-IGIB) , South Campus, New Delhi 110025, India
| | | |
Collapse
|
27
|
Perry RH, Bellovin DI, Shroff EH, Ismail AI, Zabuawala T, Felsher DW, Zare RN. Characterization of MYC-induced tumorigenesis by in situ lipid profiling. Anal Chem 2013; 85:4259-62. [PMID: 23560736 PMCID: PMC3773496 DOI: 10.1021/ac400479j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We apply desorption electrospray ionization mass spectrometry imaging (DESI-MSI) to provide an in situ lipidomic profile of genetically modified tissues from a conditional transgenic mouse model of MYC-induced hepatocellular carcinoma (HCC). This unique, label-free approach of combining DESI-MSI with the ability to turn specific genes on and off has led to the discovery of highly specific lipid molecules associated with MYC-induced tumor onset. We are able to distinguish normal from MYC-induced malignant cells. Our approach provides a strategy to define a precise molecular picture at a resolution of about 200 μm that may be useful in identifying lipid molecules that define how the MYC oncogene initiates and maintains tumorigenesis.
Collapse
Affiliation(s)
- Richard H. Perry
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | - David I. Bellovin
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Emelyn H. Shroff
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ali I. Ismail
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | - Tahera Zabuawala
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dean W. Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| |
Collapse
|
28
|
Ausländer S, Fussenegger M. From gene switches to mammalian designer cells: present and future prospects. Trends Biotechnol 2013; 31:155-68. [DOI: 10.1016/j.tibtech.2012.11.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/14/2012] [Accepted: 11/14/2012] [Indexed: 10/27/2022]
|
29
|
Zhang J, Zhao J, Jiang WJ, Shan XW, Yang XM, Gao JG. Conditional gene manipulation: Cre-ating a new biological era. J Zhejiang Univ Sci B 2012; 13:511-24. [PMID: 22761243 DOI: 10.1631/jzus.b1200042] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To solve the problem of embryonic lethality in conventional gene knockouts, site-specific recombinase (SSR) systems (Cre-loxP, Flp-FRT, and ΦC31) have been used for tissue-specific gene knockout. With the combination of an SSR system and inducible gene expression systems (tetracycline and tamoxifen), stage-specific knockout and transgenic expression can be achieved. The application of this "SSR+inducible" conditional tool to genomic manipulation can be extended in various ways. Alternatives to conditional gene targeting, such as conditional gene trapping, multipurpose conditional alleles, and conditional gene silencing, have been developed. SSR systems can also be used to construct precise disease models with point mutations and chromosomal abnormalities. With these exciting achievements, we are moving towards a new era in which the whole genome can be manipulated as we wish.
Collapse
Affiliation(s)
- Jian Zhang
- School of Life Science, Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
30
|
Wang X, Chen X, Yang Y. Spatiotemporal control of gene expression by a light-switchable transgene system. Nat Methods 2012; 9:266-9. [DOI: 10.1038/nmeth.1892] [Citation(s) in RCA: 391] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 12/28/2011] [Indexed: 11/09/2022]
|
31
|
Botezatu L, Sievers S, Gama-Norton L, Schucht R, Hauser H, Wirth D. Genetic aspects of cell line development from a synthetic biology perspective. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 127:251-284. [PMID: 22068842 DOI: 10.1007/10_2011_117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Animal cells can be regarded as factories for the production of relevant proteins. The advances described in this chapter towards the development of cell lines with higher productivity capacities, certain metabolic and proliferation properties, reduced apoptosis and other features must be regarded in an integrative perspective. The systematic application of systems biology approaches in combination with a synthetic arsenal for targeted modification of endogenous networks are proposed to lead towards the achievement of a predictable and technologically advanced cell system with high biotechnological impact.
Collapse
Affiliation(s)
- L Botezatu
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Saeki S, Kunitomo H, Narita Y, Mimura H, Nishi T, Sasaki K. A reporter assay for G-protein-coupled receptors using a B-cell line suitable for stable episomal expression. Anal Biochem 2010; 400:163-72. [PMID: 20122890 DOI: 10.1016/j.ab.2010.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 12/03/2009] [Accepted: 01/26/2010] [Indexed: 01/22/2023]
Abstract
We have established a cAMP response element (CRE)-mediated reporter assay system for G-protein-coupled receptors (GPCRs) using an oriP-based estrogen-inducible expression vector and the B-cell line (GBC53 or GBCC71) that expresses EBNA-1 and is adapted to serum-free culture. GBC53 harbors a GAL4-ER expression unit and a CRE-luciferase gene in the genome, and GBCC71 also harbors expression units for two chimeric Galphas proteins (Gs/q and Gs/i). Introduction of a GPCR expression plasmid into GBC53 or GBCC71 creates polyclonal stable transformants in 2 weeks, and these are easily expanded and used for assays after induction of the GPCR expression. Using GBC53, we detected ligand-dependent signals of Gs-coupled GPCRs such as glucagon-like peptide 1 receptor (GLP1R) and beta2 adrenergic receptor (beta2AR) with high sensitivity. Interestingly, we also detected constitutive activity of beta2AR. Using GBCC71, we detected ligand-dependent signals of Gq- or Gi-coupled GPCRs such as H1 histamine receptor and CXCR1 chemokine receptor in addition to Gs-coupled GPCRs. An agonist, antagonist, or inverse agonist was successfully evaluated in this system. We succeeded in constructing a 384-well high-throughput screening (HTS) system for GLP1R. This system enabled us to easily and rapidly make a large number of efficient GPCR assay systems suitable for HTS as well as ligand hunting of orphan GPCRs.
Collapse
MESH Headings
- B-Lymphocytes/metabolism
- Cell Line, Tumor
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/metabolism
- Gene Expression
- Genes, Reporter
- Glucagon-Like Peptide-1 Receptor
- High-Throughput Screening Assays
- Humans
- Ligands
- Luciferases/genetics
- Luciferases/metabolism
- Plasmids
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Glucagon/genetics
- Receptors, Glucagon/metabolism
- Receptors, Histamine H1/genetics
- Receptors, Histamine H1/metabolism
- Receptors, Interleukin-8A/genetics
- Receptors, Interleukin-8A/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- Satoshi Saeki
- Drug Discovery Research Laboratories, Research Division, Kyowa Hakko Kirin, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Synthetic biology aims to engineer novel cellular functions by assembling well-characterized molecular parts (i.e., nucleic acids and proteins) into biological "devices" that exhibit predictable behavior. Recently, efforts in eukaryotic synthetic biology have sprung from foundational work in bacteria. Designing synthetic circuits to operate reliably in the context of differentiating and morphologically complex cells presents unique challenges and opportunities for progress in the field. This review surveys recent advances in eukaryotic synthetic biology and describes how synthetic systems can be linked to natural cellular processes in order to manipulate cell behavior and to foster new discoveries in cell biology research.
Collapse
Affiliation(s)
- Karmella A Haynes
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
34
|
McLachlan MJ, Chockalingam K, Lai K, Zhao H. Directed Evolution of Orthogonal Ligand Specificity in a Single Scaffold. Angew Chem Int Ed Engl 2009; 48:7783-6. [DOI: 10.1002/anie.200903413] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
McLachlan MJ, Chockalingam K, Lai K, Zhao H. Directed Evolution of Orthogonal Ligand Specificity in a Single Scaffold. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200903413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Tigges M, Fussenegger M. Recent advances in mammalian synthetic biology-design of synthetic transgene control networks. Curr Opin Biotechnol 2009; 20:449-60. [PMID: 19762224 DOI: 10.1016/j.copbio.2009.07.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 10/20/2022]
Abstract
Capitalizing on an era of functional genomic research, systems biology offers a systematic quantitative analysis of existing biological systems thereby providing the molecular inventory of biological parts that are currently being used for rational synthesis and engineering of complex biological systems with novel and potentially useful functions-an emerging discipline known as synthetic biology. During the past decade synthetic biology has rapidly developed from simple control devices fine-tuning the activity of single genes and proteins to multi-gene/protein-based transcription and signaling networks providing new insight into global control and molecular reaction dynamics, thereby enabling the design of novel drug-synthesis pathways as well as genetic devices with unmatched biological functions. While pioneering synthetic devices have first been designed as test, toy, and teaser systems for use in prokaryotes and lower eukaryotes, first examples of a systematic assembly of synthetic gene networks in mammalian cells has sketched the full potential of synthetic biology: foster novel therapeutic opportunities in gene and cell-based therapies. Here we provide a concise overview on the latest advances in mammalian synthetic biology.
Collapse
Affiliation(s)
- Marcel Tigges
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel CH-4058, Switzerland
| | | |
Collapse
|
37
|
Theodorou E, Dalembert G, Heffelfinger C, White E, Weissman S, Corcoran L, Snyder M. A high throughput embryonic stem cell screen identifies Oct-2 as a bifunctional regulator of neuronal differentiation. Genes Dev 2009; 23:575-88. [PMID: 19270158 DOI: 10.1101/gad.1772509] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuronal differentiation is a complex process that involves a plethora of regulatory steps. To identify transcription factors that influence neuronal differentiation we developed a high throughput screen using embryonic stem (ES) cells. Seven-hundred human transcription factor clones were stably introduced into mouse ES (mES) cells and screened for their ability to induce neuronal differentiation of mES cells. Twenty-four factors that are capable of inducing neuronal differentiation were identified, including four known effectors of neuronal differentiation, 11 factors with limited evidence of involvement in regulating neuronal differentiation, and nine novel factors. One transcription factor, Oct-2, was studied in detail and found to be a bifunctional regulator: It can either repress or induce neuronal differentiation, depending on the particular isoform. Ectopic expression experiments demonstrate that isoform Oct-2.4 represses neuronal differentiation, whereas Oct-2.2 activates neuron formation. Consistent with a role in neuronal differentiation, Oct-2.2 expression is induced during differentiation, and cells depleted of Oct-2 and its homolog Oct-1 have a reduced capacity to differentiate into neurons. Our results reveal a number of transcription factors potentially important for mammalian neuronal differentiation, and indicate that Oct-2 may serve as a binary switch to repress differentiation in precursor cells and induce neuronal differentiation later during neuronal development.
Collapse
Affiliation(s)
- Elias Theodorou
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Greber D, El-Baba MD, Fussenegger M. Intronically encoded siRNAs improve dynamic range of mammalian gene regulation systems and toggle switch. Nucleic Acids Res 2008; 36:e101. [PMID: 18632760 PMCID: PMC2532736 DOI: 10.1093/nar/gkn443] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Applications of conditional gene expression, whether for therapeutic or basic research purposes, are increasingly requiring mammalian gene control systems that exhibit far tighter control properties. While numerous approaches have been used to improve the widely used Tet-regulatory system, many applications, particularly with respect to the engineering of synthetic gene networks, will require a broader range of tightly performing gene control systems. Here, a generically applicable approach is described that utilizes intronically encoded siRNA on the relevant transregulator construct, and siRNA sequence-specific tags on the reporter construct, to minimize basal gene activity in the off-state of a range of common gene control systems. To demonstrate tight control of residual expression the approach was successfully used to conditionally express the toxic proteins RipDD and Linamarase. The intronic siRNA concept was also extended to create a new generation of compact, single-vector, autoinducible siRNA vectors. Finally, using improved regulation systems a mammalian epigenetic toggle switch was engineered that exhibited superior in vitro and in vivo induction characteristics in mice compared to the equivalent non-intronic system.
Collapse
Affiliation(s)
- David Greber
- Institute for Chemical and Bioengineering, ETH Zurich, HCI F115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
39
|
Adams DG, Wang Y, Mak PA, Chyba J, Shalizi O, Matzen J, Anderson P, Smith TR, Garcia M, Welch GL, Claret EJ, Fink M, Orth AP, Caldwell JS, Brinker A. Cellular Ser/Thr-kinase assays using generic peptide substrates. CURRENT CHEMICAL GENOMICS 2008; 1:54-64. [PMID: 20161828 PMCID: PMC2774688 DOI: 10.2174/1875397300801010054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 03/31/2008] [Accepted: 04/04/2008] [Indexed: 01/07/2023]
Abstract
High-throughput cellular profiling has successfully stimulated early drug discovery pipelines by facilitating targeted as well as opportunistic lead finding, hit annotation and SAR analysis. While automation-friendly universal assay formats exist to address most established drug target classes like GPCRs, NHRs, ion channels or Tyr-kinases, no such cellular assay technology is currently enabling an equally broad and rapid interrogation of the Ser/Thr-kinase space. Here we present the foundation of an emerging cellular Ser/Thr-kinase platform that involves a) coexpression of targeted kinases with promiscuous peptide substrates and b) quantification of intracellular substrate phosphorylation by homogeneous TR-FRET. Proof-of-concept data is provided for cellular AKT, B-RAF and CamK2δ assays. Importantly, comparable activity profiles were found for well characterized B-Raf inhibitors in TR-FRET assays relying on either promiscuous peptide substrates or a MEK1(WT) protein substrate respectively. Moreover, IC50-values correlated strongly between cellular TR-FRET assays and a gold standard Ba/F3 proliferation assay for B-Raf activity. Finally, we expanded our initial assay panel by screening a kinase-focused cDNA library and identified starting points for >20 cellular Ser/Thr-kinase assays.
Collapse
Affiliation(s)
- Deanna G Adams
- Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fluri DA, Baba MDE, Fussenegger M. Adeno-associated viral vectors engineered for macrolide-adjustable transgene expression in mammalian cells and mice. BMC Biotechnol 2007; 7:75. [PMID: 17986332 PMCID: PMC2211474 DOI: 10.1186/1472-6750-7-75] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 11/06/2007] [Indexed: 01/31/2023] Open
Abstract
Background Adjustable gene expression is crucial in a number of applications such as de- or transdifferentiation of cell phenotypes, tissue engineering, various production processes as well as gene-therapy initiatives. Viral vectors, based on the Adeno-Associated Virus (AAV) type 2, have emerged as one of the most promising types of vectors for therapeutic applications due to excellent transduction efficiencies of a broad variety of dividing and mitotically inert cell types and due to their unique safety features. Results We designed recombinant adeno-associated virus (rAAV) vectors for the regulated expression of transgenes in different configurations. We integrated the macrolide-responsive E.REX systems (EON and EOFF) into rAAV backbones and investigated the delivery and expression of intracellular as well as secreted transgenes for binary set-ups and for self- and auto-regulated one-vector configurations. Extensive quantitative analysis of an array of vectors revealed a high level of adjustability as well as tight transgene regulation with low levels of leaky expression, both crucial for therapeutical applications. We tested the performance of the different vectors in selected biotechnologically and therapeutically relevant cell types (CHO-K1, HT-1080, NHDF, MCF-7). Moreover, we investigated key characteristics of the systems, such as reversibility and adjustability to the regulating agent, to determine promising candidates for in vivo studies. To validate the functionality of delivery and regulation we performed in vivo studies by injecting particles, coding for compact self-regulated expression units, into mice and adjusting transgene expression. Conclusion Capitalizing on established safety features and a track record of high transduction efficiencies of mammalian cells, adeno- associated virus type 2 were successfully engineered to provide new powerful tools for macrolide-adjustable transgene expression in mammalian cells as well as in mice.
Collapse
Affiliation(s)
- David A Fluri
- Institute for Chemical and Bioengineering, ETH Zurich, HCI F115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland.
| | | | | |
Collapse
|
41
|
Inducible product gene expression technology tailored to bioprocess engineering. Curr Opin Biotechnol 2007; 18:399-410. [PMID: 17933507 DOI: 10.1016/j.copbio.2007.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 09/05/2007] [Indexed: 02/01/2023]
Abstract
Bioprocess engineering has developed as a discipline to design optimal culture conditions and bioreactor operation protocols for production cell lines engineered for constitutive expression of desired protein pharmaceuticals. With the advent of heterologous gene regulation systems it has become possible to fine-tune expression of difficult-to-produce protein pharmaceuticals to optimal levels and to conditionally engineer cell metabolism for the best production performance. However, most of the small-molecules used to trigger expression of product or metabolic engineering product genes are incompatible with downstream processing regulations or process economics. Recent progress in product gene control design has resulted in the development of bioprocess-compatible regulation systems, which are responsive to physical parameters such as temperature or physiologic trigger molecules that are either an inherent part of host cell metabolism or intrinsic components of licensed protein-free cell culture media, such as redox status, vitamin H and gaseous acetaldehyde. While all of these systems have been shown to fine-tune product gene expression independent of the host cell metabolism some of them can be plugged into metabolic networks to capture critical physiologic parameters and convert them into an optimal production response. Assembly of individual product gene control modalities into synthetic networks has recently enabled construction of autonomously regulated time-delay or cell density-sensitive gene circuits, which trigger population-wide induction of product gene expression at a predefined time or culture density. We provide a comprehensive overview on the latest developments in the design of bioprocess-compatible product gene control systems.
Collapse
|
42
|
Greber D, Fussenegger M. Mammalian synthetic biology: Engineering of sophisticated gene networks. J Biotechnol 2007; 130:329-45. [PMID: 17602777 DOI: 10.1016/j.jbiotec.2007.05.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 05/05/2007] [Accepted: 05/18/2007] [Indexed: 11/26/2022]
Abstract
With the recent development of a wide range of inducible mammalian transgene control systems it has now become possible to create functional synthetic gene networks by linking and connecting systems into various configurations. The past 5 years has thus seen the design and construction of the first synthetic mammalian gene regulatory networks. These networks have built upon pioneering advances in prokaryotic synthetic networks and possess an impressive range of functionalities that will some day enable the engineering of sophisticated inter- and intra-cellular functions to become a reality. At a relatively simple level, the modular linking of transcriptional components has enabled the creation of genetic networks that are strongly analogous to the architectural design and functionality of electronic circuits. Thus, by combining components in different serial or parallel configurations it is possible to produce networks that follow strict logic in integrating multiple independent signals (logic gates and transcriptional cascades) or which temporally modify input signals (time-delay circuits). Progressing in terms of sophistication, synthetic transcriptional networks have also been constructed which emulate naturally occurring genetic properties, such as bistability or dynamic instability. Toggle switches which possess "memory" so as to remember transient administered inputs, hysteric switches which are resistant to stochastic fluctuations in inputs, and oscillatory networks which produce regularly timed expression outputs, are all examples of networks that have been constructed using such properties. Initial steps have also been made in designing the above networks to respond not only to exogenous signals, but also endogenous signals that may be associated with aberrant cellular function or physiology thereby providing a means for tightly controlled gene therapy applications. Moving beyond pure transcriptional control, synthetic networks have also been created which utilize phenomena, such as post-transcriptional silencing, translational control, or inter-cellular signaling to produce novel network-based control both within and between cells. It is envisaged in the not-too-distant future that these networks will provide the basis for highly sophisticated genetic manipulations in biopharmaceutical manufacturing, gene therapy and tissue engineering applications.
Collapse
Affiliation(s)
- David Greber
- Institute for Chemical and Bioengineering, ETH Zurich, HCI F115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
43
|
Werner NS, Weber W, Fussenegger M, Geisse S. A gas-inducible expression system in HEK.EBNA cells applied to controlled proliferation studies by expression of p27(Kip1). Biotechnol Bioeng 2007; 96:1155-66. [PMID: 17058277 DOI: 10.1002/bit.21235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We describe an efficient inducible gene expression system in HEK.EBNA cells, a well-established cell system for the rapid transient expression of research-tool proteins. The transgene control system of choice is the novel acetaldehyde-inducible regulation (AIR) technology, which has been shown to modulate transgene levels following exposure of cells to acetaldehyde. For application in HEK.EBNA cells, AlcR transactivator plasmids were constructed and co-expressed with the secreted alkaline phosphatase (SEAP) gene under the control of a chimeric mammalian promoter (P(AIR)) for acetaldehyde-regulated expression. Several highly inducible transactivator cell lines were established. Adjustable transgene induction by gaseous acetaldehyde led to high induction levels and tight repression in transient expression trials and in stably transfected HEK.EBNA cell lines. Thus, the AIR technology can be used for inducible expression of any desired recombinant protein in HEK.EBNA cells. A possible application for inducible gene expression is a controlled proliferation strategy. Clonal HEK.EBNA cell lines, expressing the fungal transactivator protein AlcR, were engineered for gas-adjustable expression of the cell-cycle regulator p27(Kip1). We show that expression of p27(Kip1) via transient or stable transfection led to a G1-phase specific growth arrest of HEK.EBNA cells. Furthermore, production pools engineered for gas-adjustable expression of p27(Kip1) and constitutive expression of SEAP showed enhanced productive capacity.
Collapse
Affiliation(s)
- Nicola Susann Werner
- Novartis Institutes for BioMedical Research, Discovery Technologies/Biomolecules Production, WSJ 506.3.04, CH-4002 Basel, Switzerland
| | | | | | | |
Collapse
|
44
|
Fradot M, Lorentz O, Wurtz JM, Sahel JA, Léveillard T. The loss of transcriptional inhibition by the photoreceptor-cell specific nuclear receptor (NR2E3) is not a necessary cause of enhanced S-cone syndrome. Mol Vis 2007; 13:594-601. [PMID: 17438525 PMCID: PMC2669504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To investigate functional consequence on photoreceptor-cell specific nuclear receptor (NR2E3) transcriptional activity of enhanced S-cone syndrome (ESCS) mutations localized in ligand binding domain (LBD). METHODS Point mutations were introduced into the LBD of full length and Gal4 chimeric NR2E3 receptors and transcriptional activity was investigated by using transient co-transfection assay on corresponding luciferase reporters. Expression and DNA binding properties of transfected mutant and wild-type receptors were tested by Western blotting and gel shift assay. RESULTS Our analysis show that two ESCS mutations, missense mutations R385P and M407K, abolished NR2E3 repressive activity in the context of full-length and Gal4 chimeric receptors, while W234S and R311Q mutants retained their repressive activity in both assays. All mutant receptors maintained their stability and DNA binding ability. CONCLUSIONS These results showed that NR2E3 mutations localized in LBD induce ESCS disease without affecting inhibitory activity as recorded in vitro. This demonstrates the absence of correlation between transcriptional inhibition and ESCS phenotype. This analysis suggests that NR2E3 might have transcriptional activation properties not yet identified.
Collapse
Affiliation(s)
- Mathias Fradot
- Inserm U592 Université Pierre et Marie Curie, Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, Hôpital Saint-Antoine, Paris, France
| | - Olivier Lorentz
- Inserm U592 Université Pierre et Marie Curie, Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, Hôpital Saint-Antoine, Paris, France
| | - Jean-Marie Wurtz
- Departement de Biologie et de Génomique Structurales, IGBMC, CNRS/Inserm/Université Louis Pasteur, BP10142, Illkirch Cedex, France
| | - José-Alain Sahel
- Inserm U592 Université Pierre et Marie Curie, Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, Hôpital Saint-Antoine, Paris, France,University College of London, Institute of Ophthalmology, UK
| | - Thierry Léveillard
- Inserm U592 Université Pierre et Marie Curie, Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
45
|
Heimbucher T, Murko C, Bajoghli B, Aghaallaei N, Huber A, Stebegg R, Eberhard D, Fink M, Simeone A, Czerny T. Gbx2 and Otx2 interact with the WD40 domain of Groucho/Tle corepressors. Mol Cell Biol 2006; 27:340-51. [PMID: 17060451 PMCID: PMC1800652 DOI: 10.1128/mcb.00811-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the earliest organizational decisions in the development of the vertebrate brain is the division of the neural plate into Otx2-positive anterior and Gbx2-positive posterior territories. At the junction of these two expression domains, a local signaling center is formed, known as the midbrain-hindbrain boundary (MHB). This tissue coordinates or "organizes" the development of neighboring brain structures, such as the midbrain and cerebellum. Correct positioning of the MHB is thought to depend on mutual repression involving these two homeobox genes. Using a cell culture colocalization assay and coimmunoprecipitation experiments, we show that engrailed homology region 1 (eh1)-like motifs of both transcription factors physically interact with the WD40 domain of Groucho/Tle corepressor proteins. In addition, heat shock-induced expression of wild-type and mutant Otx2 and Gbx2 in medaka embryos demonstrates that Groucho is required for the repression of Otx2 by Gbx2. On the other hand, the repressive functions of Otx2 on Gbx2 do not appear to be dependent on corepressor interaction. Interestingly, the association of Groucho with Otx2 is also required for the repression of Fgf8 in the MHB. Therefore Groucho/Tle family members appear to regulate key aspects in the MHB development of the vertebrate brain.
Collapse
Affiliation(s)
- Thomas Heimbucher
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Glinka EM, Edelweiss EF, Deyev SM. Eukaryotic expression vectors and immunoconjugates for cancer therapy. BIOCHEMISTRY (MOSCOW) 2006; 71:597-606. [PMID: 16827650 DOI: 10.1134/s0006297906060022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review considers ways to address specificity to therapeutic targeted anticancer agents. These include transcriptional activation of tissue- and tumor-specific promoters in eukaryotic expression vectors and use of antitumor-directed immunoconjugates. The review deals with analysis of strategies used for selection of targeted promoters and examples of antibody fusion proteins exhibiting antitumor activity. A new direction in antitumor treatment pooling together methods of gene therapy and antibody therapy has appeared. This direction is based on the development of vectors encoding secreted forms of immunoconjugates. After vector introduction into a cell, the latter is capable of synthesizing and secreting antibody fusion protein composed of a therapeutic anticancer agent and antibody specifically targeted to cancer cells.
Collapse
Affiliation(s)
- E M Glinka
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | | | |
Collapse
|
47
|
Abstract
A sedentary life-style and an environment of caloric abundance have contributed to the recent rise in the incidence of obesity. Treating such a complex disease requires an understanding of its underlying molecular mechanisms that has only recently become possible with the sequencing of the human genome and the mapping of hundreds of genes associated with increased risk of obesity. With few safe and efficacious weight-maintenance drugs available on the market, gene therapy offers an alternative long-term treatment modality. Still in its infancy, gene therapy for obesity is poised for significant progress, due in large part to a wide variety of available gene targets and the development of novel systems to control gene expression. Coincidently, novel vectors are being developed based on adeno-associated virus providing efficient and sustained expression of a transgene in metabolically important tissues. These advances are driving the development of gene therapy as a viable therapeutic option in treating obesity and its associated disorders.
Collapse
Affiliation(s)
- Sergei Zolotukhin
- University of Florida, Division of Cellular and Molecular Therapy, Department of Pediatrics, 13706 Innovation Drive, Progress Park, Alachua, FL 32615-9586, USA.
| |
Collapse
|
48
|
Glinka EM, Edelweiss EF, Sapozhnikov AM, Deyev SM. A new vector for controllable expression of an anti-HER2/neu mini-antibody-barnase fusion protein in HEK 293T cells. Gene 2006; 366:97-103. [PMID: 16300908 DOI: 10.1016/j.gene.2005.06.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2005] [Accepted: 06/27/2005] [Indexed: 11/18/2022]
Abstract
Tumor-targeted vectors with controllable expression of therapeutic genes and specific antitumor antibodies are promising tools for the reduction of malignant tumors. Here we describe a new plasmid for the eukaryotic expression of an anti-HER2/neu mini-antibody-barnase fusion protein (4D5 scFv-barnase-His(5)) with an NH(2)-terminal leader peptide. The 4D5 scFv-barnase-His(5) gene was placed downstream of the tetracycline responsive-element minimal promoter in the vector using the Tet-Off gene-expression system. The Bacillus amyloliquefaciens ribonuclease barnase is toxic for the host cells. To overcome this problem, barstar gene under its own minimal cytomegalovirus promoter was used in designed vector. Barstar inhibits the background level of barnase in the cells in the presence of tetracycline in culture medium. The HEK 293T cells were transfected with the designed vector, and the 4D5 scFv-barnase-His(5) fusion protein was identified by anti-barnase antibodies in cell culture medium and after purification from cell lysates using metal-affinity chromatography. The overexpression of the anti-HER2/neu mini-antibody-barnase fusion protein decreased the intensity of fluorescence of HEK 293T cells co-transfected with the generated plasmid and a plasmid containing the gene of enhanced green fluorescent protein (pEGFP-N1), in comparison with the intensity of fluorescence of HEK 293T cells transfected with pEGFP-N1, in the absence of tetracycline in the medium. The effect of the 4D5 scFv-barnase-His(5) on EGFP fluorescence indicates that the introduced barnase functions as a ribonuclease inside the cells. The anti-HER2/neu mini-antibody could be used to deliver barnase to HER2/neu-positive cells and provide its penetration into the target cells, as HER2/neu is a ligand-internalizing receptor. This expression vector has potential applications to both gene and antibody therapies of cancer.
Collapse
Affiliation(s)
- Elena M Glinka
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian, Academy of Sciences, Miklukho-Maklaya, 16/10, Moscow, 117997, Russia.
| | | | | | | |
Collapse
|
49
|
Chockalingam K, Zhao H. Creating new specific ligand-receptor pairs for transgene regulation. Trends Biotechnol 2005; 23:333-5. [PMID: 15978316 DOI: 10.1016/j.tibtech.2005.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 03/21/2005] [Accepted: 05/05/2005] [Indexed: 11/18/2022]
Abstract
The creation of specifically matched ligand-receptor pairs that are orthogonal to naturally present interacting pairs is essential for the development of small molecule-regulated gene expression systems for biotechnological applications. However, for many years this task has represented a significant challenge for synthetic chemists and protein engineers. Recently, Doyle and colleagues demonstrated that highly specific ligand-receptor pairs can be engineered in a rapid fashion by creating large libraries of protein variants and applying a selection scheme to identify variants with improved activation by the target synthetic ligand.
Collapse
Affiliation(s)
- Karuppiah Chockalingam
- Department of Chemical Engineering and Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
50
|
Lee J, Zylka MJ, Anderson DJ, Burdette JE, Woodruff TK, Meade TJ. A Steroid-Conjugated Contrast Agent for Magnetic Resonance Imaging of Cell Signaling. J Am Chem Soc 2005; 127:13164-6. [PMID: 16173742 DOI: 10.1021/ja051294x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have synthesized the first steroid hormone-MR contrast agent conjugate designed to track the cell signaling process upon binding to a gene switch system. The derivative has a high relaxivity and when tested in vitro is active as a progesterone antagonist (RU-486). By combining a transcriptional system and a noninvasive imaging technology, such as MRI, it would be a powerful tool to research the cell signaling pathway in vivo.
Collapse
Affiliation(s)
- Jiyoun Lee
- Department of Chemistry, Northwestern University, Evanston, Illinois 60201, USA
| | | | | | | | | | | |
Collapse
|